1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryProfileInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/StackSafetyAnalysis.h" 30 #include "llvm/Analysis/TypeMetadataUtils.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/FileSystem.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <vector> 58 59 using namespace llvm; 60 using namespace llvm::memprof; 61 62 #define DEBUG_TYPE "module-summary-analysis" 63 64 // Option to force edges cold which will block importing when the 65 // -import-cold-multiplier is set to 0. Useful for debugging. 66 namespace llvm { 67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 68 FunctionSummary::FSHT_None; 69 } // namespace llvm 70 71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 73 cl::desc("Force all edges in the function summary to cold"), 74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 75 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 76 "all-non-critical", "All non-critical edges."), 77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 78 79 static cl::opt<std::string> ModuleSummaryDotFile( 80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 81 cl::desc("File to emit dot graph of new summary into")); 82 83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; 84 85 // Walk through the operands of a given User via worklist iteration and populate 86 // the set of GlobalValue references encountered. Invoked either on an 87 // Instruction or a GlobalVariable (which walks its initializer). 88 // Return true if any of the operands contains blockaddress. This is important 89 // to know when computing summary for global var, because if global variable 90 // references basic block address we can't import it separately from function 91 // containing that basic block. For simplicity we currently don't import such 92 // global vars at all. When importing function we aren't interested if any 93 // instruction in it takes an address of any basic block, because instruction 94 // can only take an address of basic block located in the same function. 95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 96 SetVector<ValueInfo> &RefEdges, 97 SmallPtrSet<const User *, 8> &Visited) { 98 bool HasBlockAddress = false; 99 SmallVector<const User *, 32> Worklist; 100 if (Visited.insert(CurUser).second) 101 Worklist.push_back(CurUser); 102 103 while (!Worklist.empty()) { 104 const User *U = Worklist.pop_back_val(); 105 const auto *CB = dyn_cast<CallBase>(U); 106 107 for (const auto &OI : U->operands()) { 108 const User *Operand = dyn_cast<User>(OI); 109 if (!Operand) 110 continue; 111 if (isa<BlockAddress>(Operand)) { 112 HasBlockAddress = true; 113 continue; 114 } 115 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 116 // We have a reference to a global value. This should be added to 117 // the reference set unless it is a callee. Callees are handled 118 // specially by WriteFunction and are added to a separate list. 119 if (!(CB && CB->isCallee(&OI))) 120 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 121 continue; 122 } 123 if (Visited.insert(Operand).second) 124 Worklist.push_back(Operand); 125 } 126 } 127 return HasBlockAddress; 128 } 129 130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 131 ProfileSummaryInfo *PSI) { 132 if (!PSI) 133 return CalleeInfo::HotnessType::Unknown; 134 if (PSI->isHotCount(ProfileCount)) 135 return CalleeInfo::HotnessType::Hot; 136 if (PSI->isColdCount(ProfileCount)) 137 return CalleeInfo::HotnessType::Cold; 138 return CalleeInfo::HotnessType::None; 139 } 140 141 static bool isNonRenamableLocal(const GlobalValue &GV) { 142 return GV.hasSection() && GV.hasLocalLinkage(); 143 } 144 145 /// Determine whether this call has all constant integer arguments (excluding 146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 147 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 148 SetVector<FunctionSummary::VFuncId> &VCalls, 149 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 150 std::vector<uint64_t> Args; 151 // Start from the second argument to skip the "this" pointer. 152 for (auto &Arg : drop_begin(Call.CB.args())) { 153 auto *CI = dyn_cast<ConstantInt>(Arg); 154 if (!CI || CI->getBitWidth() > 64) { 155 VCalls.insert({Guid, Call.Offset}); 156 return; 157 } 158 Args.push_back(CI->getZExtValue()); 159 } 160 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 161 } 162 163 /// If this intrinsic call requires that we add information to the function 164 /// summary, do so via the non-constant reference arguments. 165 static void addIntrinsicToSummary( 166 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 167 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 168 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 169 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 170 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, 171 DominatorTree &DT) { 172 switch (CI->getCalledFunction()->getIntrinsicID()) { 173 case Intrinsic::type_test: 174 case Intrinsic::public_type_test: { 175 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 176 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 177 if (!TypeId) 178 break; 179 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 180 181 // Produce a summary from type.test intrinsics. We only summarize type.test 182 // intrinsics that are used other than by an llvm.assume intrinsic. 183 // Intrinsics that are assumed are relevant only to the devirtualization 184 // pass, not the type test lowering pass. 185 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 186 return !isa<AssumeInst>(CIU.getUser()); 187 }); 188 if (HasNonAssumeUses) 189 TypeTests.insert(Guid); 190 191 SmallVector<DevirtCallSite, 4> DevirtCalls; 192 SmallVector<CallInst *, 4> Assumes; 193 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 194 for (auto &Call : DevirtCalls) 195 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 196 TypeTestAssumeConstVCalls); 197 198 break; 199 } 200 201 case Intrinsic::type_checked_load_relative: 202 case Intrinsic::type_checked_load: { 203 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 204 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 205 if (!TypeId) 206 break; 207 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 208 209 SmallVector<DevirtCallSite, 4> DevirtCalls; 210 SmallVector<Instruction *, 4> LoadedPtrs; 211 SmallVector<Instruction *, 4> Preds; 212 bool HasNonCallUses = false; 213 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 214 HasNonCallUses, CI, DT); 215 // Any non-call uses of the result of llvm.type.checked.load will 216 // prevent us from optimizing away the llvm.type.test. 217 if (HasNonCallUses) 218 TypeTests.insert(Guid); 219 for (auto &Call : DevirtCalls) 220 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 221 TypeCheckedLoadConstVCalls); 222 223 break; 224 } 225 default: 226 break; 227 } 228 } 229 230 static bool isNonVolatileLoad(const Instruction *I) { 231 if (const auto *LI = dyn_cast<LoadInst>(I)) 232 return !LI->isVolatile(); 233 234 return false; 235 } 236 237 static bool isNonVolatileStore(const Instruction *I) { 238 if (const auto *SI = dyn_cast<StoreInst>(I)) 239 return !SI->isVolatile(); 240 241 return false; 242 } 243 244 // Returns true if the function definition must be unreachable. 245 // 246 // Note if this helper function returns true, `F` is guaranteed 247 // to be unreachable; if it returns false, `F` might still 248 // be unreachable but not covered by this helper function. 249 static bool mustBeUnreachableFunction(const Function &F) { 250 // A function must be unreachable if its entry block ends with an 251 // 'unreachable'. 252 assert(!F.isDeclaration()); 253 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 254 } 255 256 static void computeFunctionSummary( 257 ModuleSummaryIndex &Index, const Module &M, const Function &F, 258 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 259 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 260 bool IsThinLTO, 261 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 262 // Summary not currently supported for anonymous functions, they should 263 // have been named. 264 assert(F.hasName()); 265 266 unsigned NumInsts = 0; 267 // Map from callee ValueId to profile count. Used to accumulate profile 268 // counts for all static calls to a given callee. 269 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, 270 std::vector<std::pair<ValueInfo, CalleeInfo>>> 271 CallGraphEdges; 272 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; 273 SetVector<GlobalValue::GUID> TypeTests; 274 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 275 TypeCheckedLoadVCalls; 276 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 277 TypeCheckedLoadConstVCalls; 278 ICallPromotionAnalysis ICallAnalysis; 279 SmallPtrSet<const User *, 8> Visited; 280 281 // Add personality function, prefix data and prologue data to function's ref 282 // list. 283 findRefEdges(Index, &F, RefEdges, Visited); 284 std::vector<const Instruction *> NonVolatileLoads; 285 std::vector<const Instruction *> NonVolatileStores; 286 287 std::vector<CallsiteInfo> Callsites; 288 std::vector<AllocInfo> Allocs; 289 290 #ifndef NDEBUG 291 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; 292 #endif 293 294 bool HasInlineAsmMaybeReferencingInternal = false; 295 bool HasIndirBranchToBlockAddress = false; 296 bool HasUnknownCall = false; 297 bool MayThrow = false; 298 for (const BasicBlock &BB : F) { 299 // We don't allow inlining of function with indirect branch to blockaddress. 300 // If the blockaddress escapes the function, e.g., via a global variable, 301 // inlining may lead to an invalid cross-function reference. So we shouldn't 302 // import such function either. 303 if (BB.hasAddressTaken()) { 304 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 305 if (!isa<CallBrInst>(*U)) { 306 HasIndirBranchToBlockAddress = true; 307 break; 308 } 309 } 310 311 for (const Instruction &I : BB) { 312 if (I.isDebugOrPseudoInst()) 313 continue; 314 ++NumInsts; 315 316 // Regular LTO module doesn't participate in ThinLTO import, 317 // so no reference from it can be read/writeonly, since this 318 // would require importing variable as local copy 319 if (IsThinLTO) { 320 if (isNonVolatileLoad(&I)) { 321 // Postpone processing of non-volatile load instructions 322 // See comments below 323 Visited.insert(&I); 324 NonVolatileLoads.push_back(&I); 325 continue; 326 } else if (isNonVolatileStore(&I)) { 327 Visited.insert(&I); 328 NonVolatileStores.push_back(&I); 329 // All references from second operand of store (destination address) 330 // can be considered write-only if they're not referenced by any 331 // non-store instruction. References from first operand of store 332 // (stored value) can't be treated either as read- or as write-only 333 // so we add them to RefEdges as we do with all other instructions 334 // except non-volatile load. 335 Value *Stored = I.getOperand(0); 336 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 337 // findRefEdges will try to examine GV operands, so instead 338 // of calling it we should add GV to RefEdges directly. 339 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 340 else if (auto *U = dyn_cast<User>(Stored)) 341 findRefEdges(Index, U, RefEdges, Visited); 342 continue; 343 } 344 } 345 findRefEdges(Index, &I, RefEdges, Visited); 346 const auto *CB = dyn_cast<CallBase>(&I); 347 if (!CB) { 348 if (I.mayThrow()) 349 MayThrow = true; 350 continue; 351 } 352 353 const auto *CI = dyn_cast<CallInst>(&I); 354 // Since we don't know exactly which local values are referenced in inline 355 // assembly, conservatively mark the function as possibly referencing 356 // a local value from inline assembly to ensure we don't export a 357 // reference (which would require renaming and promotion of the 358 // referenced value). 359 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 360 HasInlineAsmMaybeReferencingInternal = true; 361 362 auto *CalledValue = CB->getCalledOperand(); 363 auto *CalledFunction = CB->getCalledFunction(); 364 if (CalledValue && !CalledFunction) { 365 CalledValue = CalledValue->stripPointerCasts(); 366 // Stripping pointer casts can reveal a called function. 367 CalledFunction = dyn_cast<Function>(CalledValue); 368 } 369 // Check if this is an alias to a function. If so, get the 370 // called aliasee for the checks below. 371 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 372 assert(!CalledFunction && "Expected null called function in callsite for alias"); 373 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 374 } 375 // Check if this is a direct call to a known function or a known 376 // intrinsic, or an indirect call with profile data. 377 if (CalledFunction) { 378 if (CI && CalledFunction->isIntrinsic()) { 379 addIntrinsicToSummary( 380 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 381 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 382 continue; 383 } 384 // We should have named any anonymous globals 385 assert(CalledFunction->hasName()); 386 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 387 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 388 : CalleeInfo::HotnessType::Unknown; 389 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 390 Hotness = CalleeInfo::HotnessType::Cold; 391 392 // Use the original CalledValue, in case it was an alias. We want 393 // to record the call edge to the alias in that case. Eventually 394 // an alias summary will be created to associate the alias and 395 // aliasee. 396 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 397 cast<GlobalValue>(CalledValue))]; 398 ValueInfo.updateHotness(Hotness); 399 // Add the relative block frequency to CalleeInfo if there is no profile 400 // information. 401 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 402 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 403 uint64_t EntryFreq = BFI->getEntryFreq(); 404 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 405 } 406 } else { 407 HasUnknownCall = true; 408 // Skip inline assembly calls. 409 if (CI && CI->isInlineAsm()) 410 continue; 411 // Skip direct calls. 412 if (!CalledValue || isa<Constant>(CalledValue)) 413 continue; 414 415 // Check if the instruction has a callees metadata. If so, add callees 416 // to CallGraphEdges to reflect the references from the metadata, and 417 // to enable importing for subsequent indirect call promotion and 418 // inlining. 419 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 420 for (const auto &Op : MD->operands()) { 421 Function *Callee = mdconst::extract_or_null<Function>(Op); 422 if (Callee) 423 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 424 } 425 } 426 427 uint32_t NumVals, NumCandidates; 428 uint64_t TotalCount; 429 auto CandidateProfileData = 430 ICallAnalysis.getPromotionCandidatesForInstruction( 431 &I, NumVals, TotalCount, NumCandidates); 432 for (const auto &Candidate : CandidateProfileData) 433 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 434 .updateHotness(getHotness(Candidate.Count, PSI)); 435 } 436 437 // Summarize memprof related metadata. This is only needed for ThinLTO. 438 if (!IsThinLTO) 439 continue; 440 441 // TODO: Skip indirect calls for now. Need to handle these better, likely 442 // by creating multiple Callsites, one per target, then speculatively 443 // devirtualize while applying clone info in the ThinLTO backends. This 444 // will also be important because we will have a different set of clone 445 // versions per target. This handling needs to match that in the ThinLTO 446 // backend so we handle things consistently for matching of callsite 447 // summaries to instructions. 448 if (!CalledFunction) 449 continue; 450 451 // Ensure we keep this analysis in sync with the handling in the ThinLTO 452 // backend (see MemProfContextDisambiguation::applyImport). Save this call 453 // so that we can skip it in checking the reverse case later. 454 assert(mayHaveMemprofSummary(CB)); 455 #ifndef NDEBUG 456 CallsThatMayHaveMemprofSummary.insert(CB); 457 #endif 458 459 // Compute the list of stack ids first (so we can trim them from the stack 460 // ids on any MIBs). 461 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 462 I.getMetadata(LLVMContext::MD_callsite)); 463 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 464 if (MemProfMD) { 465 std::vector<MIBInfo> MIBs; 466 for (auto &MDOp : MemProfMD->operands()) { 467 auto *MIBMD = cast<const MDNode>(MDOp); 468 MDNode *StackNode = getMIBStackNode(MIBMD); 469 assert(StackNode); 470 SmallVector<unsigned> StackIdIndices; 471 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 472 // Collapse out any on the allocation call (inlining). 473 for (auto ContextIter = 474 StackContext.beginAfterSharedPrefix(InstCallsite); 475 ContextIter != StackContext.end(); ++ContextIter) { 476 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 477 // If this is a direct recursion, simply skip the duplicate 478 // entries. If this is mutual recursion, handling is left to 479 // the LTO link analysis client. 480 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 481 StackIdIndices.push_back(StackIdIdx); 482 } 483 MIBs.push_back( 484 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 485 } 486 Allocs.push_back(AllocInfo(std::move(MIBs))); 487 } else if (!InstCallsite.empty()) { 488 SmallVector<unsigned> StackIdIndices; 489 for (auto StackId : InstCallsite) 490 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 491 // Use the original CalledValue, in case it was an alias. We want 492 // to record the call edge to the alias in that case. Eventually 493 // an alias summary will be created to associate the alias and 494 // aliasee. 495 auto CalleeValueInfo = 496 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 497 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 498 } 499 } 500 } 501 502 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) 503 Index.addBlockCount(F.size()); 504 505 std::vector<ValueInfo> Refs; 506 if (IsThinLTO) { 507 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 508 SetVector<ValueInfo> &Edges, 509 SmallPtrSet<const User *, 8> &Cache) { 510 for (const auto *I : Instrs) { 511 Cache.erase(I); 512 findRefEdges(Index, I, Edges, Cache); 513 } 514 }; 515 516 // By now we processed all instructions in a function, except 517 // non-volatile loads and non-volatile value stores. Let's find 518 // ref edges for both of instruction sets 519 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 520 // We can add some values to the Visited set when processing load 521 // instructions which are also used by stores in NonVolatileStores. 522 // For example this can happen if we have following code: 523 // 524 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 525 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 526 // 527 // After processing loads we'll add bitcast to the Visited set, and if 528 // we use the same set while processing stores, we'll never see store 529 // to @bar and @bar will be mistakenly treated as readonly. 530 SmallPtrSet<const llvm::User *, 8> StoreCache; 531 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 532 533 // If both load and store instruction reference the same variable 534 // we won't be able to optimize it. Add all such reference edges 535 // to RefEdges set. 536 for (const auto &VI : StoreRefEdges) 537 if (LoadRefEdges.remove(VI)) 538 RefEdges.insert(VI); 539 540 unsigned RefCnt = RefEdges.size(); 541 // All new reference edges inserted in two loops below are either 542 // read or write only. They will be grouped in the end of RefEdges 543 // vector, so we can use a single integer value to identify them. 544 for (const auto &VI : LoadRefEdges) 545 RefEdges.insert(VI); 546 547 unsigned FirstWORef = RefEdges.size(); 548 for (const auto &VI : StoreRefEdges) 549 RefEdges.insert(VI); 550 551 Refs = RefEdges.takeVector(); 552 for (; RefCnt < FirstWORef; ++RefCnt) 553 Refs[RefCnt].setReadOnly(); 554 555 for (; RefCnt < Refs.size(); ++RefCnt) 556 Refs[RefCnt].setWriteOnly(); 557 } else { 558 Refs = RefEdges.takeVector(); 559 } 560 // Explicit add hot edges to enforce importing for designated GUIDs for 561 // sample PGO, to enable the same inlines as the profiled optimized binary. 562 for (auto &I : F.getImportGUIDs()) 563 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 564 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 565 ? CalleeInfo::HotnessType::Cold 566 : CalleeInfo::HotnessType::Critical); 567 568 #ifndef NDEBUG 569 // Make sure that all calls we decided could not have memprof summaries get a 570 // false value for mayHaveMemprofSummary, to ensure that this handling remains 571 // in sync with the ThinLTO backend handling. 572 if (IsThinLTO) { 573 for (const BasicBlock &BB : F) { 574 for (const Instruction &I : BB) { 575 const auto *CB = dyn_cast<CallBase>(&I); 576 if (!CB) 577 continue; 578 // We already checked these above. 579 if (CallsThatMayHaveMemprofSummary.count(CB)) 580 continue; 581 assert(!mayHaveMemprofSummary(CB)); 582 } 583 } 584 } 585 #endif 586 587 bool NonRenamableLocal = isNonRenamableLocal(F); 588 bool NotEligibleForImport = NonRenamableLocal || 589 HasInlineAsmMaybeReferencingInternal || 590 HasIndirBranchToBlockAddress; 591 GlobalValueSummary::GVFlags Flags( 592 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 593 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable()); 594 FunctionSummary::FFlags FunFlags{ 595 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 596 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 597 // FIXME: refactor this to use the same code that inliner is using. 598 // Don't try to import functions with noinline attribute. 599 F.getAttributes().hasFnAttr(Attribute::NoInline), 600 F.hasFnAttribute(Attribute::AlwaysInline), 601 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 602 mustBeUnreachableFunction(F)}; 603 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 604 if (auto *SSI = GetSSICallback(F)) 605 ParamAccesses = SSI->getParamAccesses(Index); 606 auto FuncSummary = std::make_unique<FunctionSummary>( 607 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 608 CallGraphEdges.takeVector(), TypeTests.takeVector(), 609 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 610 TypeTestAssumeConstVCalls.takeVector(), 611 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 612 std::move(Callsites), std::move(Allocs)); 613 if (NonRenamableLocal) 614 CantBePromoted.insert(F.getGUID()); 615 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 616 } 617 618 /// Find function pointers referenced within the given vtable initializer 619 /// (or subset of an initializer) \p I. The starting offset of \p I within 620 /// the vtable initializer is \p StartingOffset. Any discovered function 621 /// pointers are added to \p VTableFuncs along with their cumulative offset 622 /// within the initializer. 623 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 624 const Module &M, ModuleSummaryIndex &Index, 625 VTableFuncList &VTableFuncs) { 626 // First check if this is a function pointer. 627 if (I->getType()->isPointerTy()) { 628 auto C = I->stripPointerCasts(); 629 auto A = dyn_cast<GlobalAlias>(C); 630 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) { 631 auto GV = dyn_cast<GlobalValue>(C); 632 assert(GV); 633 // We can disregard __cxa_pure_virtual as a possible call target, as 634 // calls to pure virtuals are UB. 635 if (GV && GV->getName() != "__cxa_pure_virtual") 636 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset}); 637 return; 638 } 639 } 640 641 // Walk through the elements in the constant struct or array and recursively 642 // look for virtual function pointers. 643 const DataLayout &DL = M.getDataLayout(); 644 if (auto *C = dyn_cast<ConstantStruct>(I)) { 645 StructType *STy = dyn_cast<StructType>(C->getType()); 646 assert(STy); 647 const StructLayout *SL = DL.getStructLayout(C->getType()); 648 649 for (auto EI : llvm::enumerate(STy->elements())) { 650 auto Offset = SL->getElementOffset(EI.index()); 651 unsigned Op = SL->getElementContainingOffset(Offset); 652 findFuncPointers(cast<Constant>(I->getOperand(Op)), 653 StartingOffset + Offset, M, Index, VTableFuncs); 654 } 655 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 656 ArrayType *ATy = C->getType(); 657 Type *EltTy = ATy->getElementType(); 658 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 659 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 660 findFuncPointers(cast<Constant>(I->getOperand(i)), 661 StartingOffset + i * EltSize, M, Index, VTableFuncs); 662 } 663 } 664 } 665 666 // Identify the function pointers referenced by vtable definition \p V. 667 static void computeVTableFuncs(ModuleSummaryIndex &Index, 668 const GlobalVariable &V, const Module &M, 669 VTableFuncList &VTableFuncs) { 670 if (!V.isConstant()) 671 return; 672 673 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 674 VTableFuncs); 675 676 #ifndef NDEBUG 677 // Validate that the VTableFuncs list is ordered by offset. 678 uint64_t PrevOffset = 0; 679 for (auto &P : VTableFuncs) { 680 // The findVFuncPointers traversal should have encountered the 681 // functions in offset order. We need to use ">=" since PrevOffset 682 // starts at 0. 683 assert(P.VTableOffset >= PrevOffset); 684 PrevOffset = P.VTableOffset; 685 } 686 #endif 687 } 688 689 /// Record vtable definition \p V for each type metadata it references. 690 static void 691 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 692 const GlobalVariable &V, 693 SmallVectorImpl<MDNode *> &Types) { 694 for (MDNode *Type : Types) { 695 auto TypeID = Type->getOperand(1).get(); 696 697 uint64_t Offset = 698 cast<ConstantInt>( 699 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 700 ->getZExtValue(); 701 702 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 703 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 704 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 705 } 706 } 707 708 static void computeVariableSummary(ModuleSummaryIndex &Index, 709 const GlobalVariable &V, 710 DenseSet<GlobalValue::GUID> &CantBePromoted, 711 const Module &M, 712 SmallVectorImpl<MDNode *> &Types) { 713 SetVector<ValueInfo> RefEdges; 714 SmallPtrSet<const User *, 8> Visited; 715 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 716 bool NonRenamableLocal = isNonRenamableLocal(V); 717 GlobalValueSummary::GVFlags Flags( 718 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 719 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable()); 720 721 VTableFuncList VTableFuncs; 722 // If splitting is not enabled, then we compute the summary information 723 // necessary for index-based whole program devirtualization. 724 if (!Index.enableSplitLTOUnit()) { 725 Types.clear(); 726 V.getMetadata(LLVMContext::MD_type, Types); 727 if (!Types.empty()) { 728 // Identify the function pointers referenced by this vtable definition. 729 computeVTableFuncs(Index, V, M, VTableFuncs); 730 731 // Record this vtable definition for each type metadata it references. 732 recordTypeIdCompatibleVtableReferences(Index, V, Types); 733 } 734 } 735 736 // Don't mark variables we won't be able to internalize as read/write-only. 737 bool CanBeInternalized = 738 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 739 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 740 bool Constant = V.isConstant(); 741 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 742 Constant ? false : CanBeInternalized, 743 Constant, V.getVCallVisibility()); 744 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 745 RefEdges.takeVector()); 746 if (NonRenamableLocal) 747 CantBePromoted.insert(V.getGUID()); 748 if (HasBlockAddress) 749 GVarSummary->setNotEligibleToImport(); 750 if (!VTableFuncs.empty()) 751 GVarSummary->setVTableFuncs(VTableFuncs); 752 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 753 } 754 755 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 756 DenseSet<GlobalValue::GUID> &CantBePromoted) { 757 // Skip summary for indirect function aliases as summary for aliasee will not 758 // be emitted. 759 const GlobalObject *Aliasee = A.getAliaseeObject(); 760 if (isa<GlobalIFunc>(Aliasee)) 761 return; 762 bool NonRenamableLocal = isNonRenamableLocal(A); 763 GlobalValueSummary::GVFlags Flags( 764 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 765 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable()); 766 auto AS = std::make_unique<AliasSummary>(Flags); 767 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 768 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 769 assert(AliaseeVI.getSummaryList().size() == 1 && 770 "Expected a single entry per aliasee in per-module index"); 771 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 772 if (NonRenamableLocal) 773 CantBePromoted.insert(A.getGUID()); 774 Index.addGlobalValueSummary(A, std::move(AS)); 775 } 776 777 // Set LiveRoot flag on entries matching the given value name. 778 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 779 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 780 for (const auto &Summary : VI.getSummaryList()) 781 Summary->setLive(true); 782 } 783 784 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 785 const Module &M, 786 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 787 ProfileSummaryInfo *PSI, 788 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 789 assert(PSI); 790 bool EnableSplitLTOUnit = false; 791 bool UnifiedLTO = false; 792 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 793 M.getModuleFlag("EnableSplitLTOUnit"))) 794 EnableSplitLTOUnit = MD->getZExtValue(); 795 if (auto *MD = 796 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 797 UnifiedLTO = MD->getZExtValue(); 798 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); 799 800 // Identify the local values in the llvm.used and llvm.compiler.used sets, 801 // which should not be exported as they would then require renaming and 802 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 803 // here because we use this information to mark functions containing inline 804 // assembly calls as not importable. 805 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 806 SmallVector<GlobalValue *, 4> Used; 807 // First collect those in the llvm.used set. 808 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 809 // Next collect those in the llvm.compiler.used set. 810 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 811 DenseSet<GlobalValue::GUID> CantBePromoted; 812 for (auto *V : Used) { 813 if (V->hasLocalLinkage()) { 814 LocalsUsed.insert(V); 815 CantBePromoted.insert(V->getGUID()); 816 } 817 } 818 819 bool HasLocalInlineAsmSymbol = false; 820 if (!M.getModuleInlineAsm().empty()) { 821 // Collect the local values defined by module level asm, and set up 822 // summaries for these symbols so that they can be marked as NoRename, 823 // to prevent export of any use of them in regular IR that would require 824 // renaming within the module level asm. Note we don't need to create a 825 // summary for weak or global defs, as they don't need to be flagged as 826 // NoRename, and defs in module level asm can't be imported anyway. 827 // Also, any values used but not defined within module level asm should 828 // be listed on the llvm.used or llvm.compiler.used global and marked as 829 // referenced from there. 830 ModuleSymbolTable::CollectAsmSymbols( 831 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 832 // Symbols not marked as Weak or Global are local definitions. 833 if (Flags & (object::BasicSymbolRef::SF_Weak | 834 object::BasicSymbolRef::SF_Global)) 835 return; 836 HasLocalInlineAsmSymbol = true; 837 GlobalValue *GV = M.getNamedValue(Name); 838 if (!GV) 839 return; 840 assert(GV->isDeclaration() && "Def in module asm already has definition"); 841 GlobalValueSummary::GVFlags GVFlags( 842 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 843 /* NotEligibleToImport = */ true, 844 /* Live = */ true, 845 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable()); 846 CantBePromoted.insert(GV->getGUID()); 847 // Create the appropriate summary type. 848 if (Function *F = dyn_cast<Function>(GV)) { 849 std::unique_ptr<FunctionSummary> Summary = 850 std::make_unique<FunctionSummary>( 851 GVFlags, /*InstCount=*/0, 852 FunctionSummary::FFlags{ 853 F->hasFnAttribute(Attribute::ReadNone), 854 F->hasFnAttribute(Attribute::ReadOnly), 855 F->hasFnAttribute(Attribute::NoRecurse), 856 F->returnDoesNotAlias(), 857 /* NoInline = */ false, 858 F->hasFnAttribute(Attribute::AlwaysInline), 859 F->hasFnAttribute(Attribute::NoUnwind), 860 /* MayThrow */ true, 861 /* HasUnknownCall */ true, 862 /* MustBeUnreachable */ false}, 863 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 864 ArrayRef<FunctionSummary::EdgeTy>{}, 865 ArrayRef<GlobalValue::GUID>{}, 866 ArrayRef<FunctionSummary::VFuncId>{}, 867 ArrayRef<FunctionSummary::VFuncId>{}, 868 ArrayRef<FunctionSummary::ConstVCall>{}, 869 ArrayRef<FunctionSummary::ConstVCall>{}, 870 ArrayRef<FunctionSummary::ParamAccess>{}, 871 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 872 Index.addGlobalValueSummary(*GV, std::move(Summary)); 873 } else { 874 std::unique_ptr<GlobalVarSummary> Summary = 875 std::make_unique<GlobalVarSummary>( 876 GVFlags, 877 GlobalVarSummary::GVarFlags( 878 false, false, cast<GlobalVariable>(GV)->isConstant(), 879 GlobalObject::VCallVisibilityPublic), 880 ArrayRef<ValueInfo>{}); 881 Index.addGlobalValueSummary(*GV, std::move(Summary)); 882 } 883 }); 884 } 885 886 bool IsThinLTO = true; 887 if (auto *MD = 888 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 889 IsThinLTO = MD->getZExtValue(); 890 891 // Compute summaries for all functions defined in module, and save in the 892 // index. 893 for (const auto &F : M) { 894 if (F.isDeclaration()) 895 continue; 896 897 DominatorTree DT(const_cast<Function &>(F)); 898 BlockFrequencyInfo *BFI = nullptr; 899 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 900 if (GetBFICallback) 901 BFI = GetBFICallback(F); 902 else if (F.hasProfileData()) { 903 LoopInfo LI{DT}; 904 BranchProbabilityInfo BPI{F, LI}; 905 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 906 BFI = BFIPtr.get(); 907 } 908 909 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 910 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 911 CantBePromoted, IsThinLTO, GetSSICallback); 912 } 913 914 // Compute summaries for all variables defined in module, and save in the 915 // index. 916 SmallVector<MDNode *, 2> Types; 917 for (const GlobalVariable &G : M.globals()) { 918 if (G.isDeclaration()) 919 continue; 920 computeVariableSummary(Index, G, CantBePromoted, M, Types); 921 } 922 923 // Compute summaries for all aliases defined in module, and save in the 924 // index. 925 for (const GlobalAlias &A : M.aliases()) 926 computeAliasSummary(Index, A, CantBePromoted); 927 928 // Iterate through ifuncs, set their resolvers all alive. 929 for (const GlobalIFunc &I : M.ifuncs()) { 930 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 931 Index.getGlobalValueSummary(GV)->setLive(true); 932 }); 933 } 934 935 for (auto *V : LocalsUsed) { 936 auto *Summary = Index.getGlobalValueSummary(*V); 937 assert(Summary && "Missing summary for global value"); 938 Summary->setNotEligibleToImport(); 939 } 940 941 // The linker doesn't know about these LLVM produced values, so we need 942 // to flag them as live in the index to ensure index-based dead value 943 // analysis treats them as live roots of the analysis. 944 setLiveRoot(Index, "llvm.used"); 945 setLiveRoot(Index, "llvm.compiler.used"); 946 setLiveRoot(Index, "llvm.global_ctors"); 947 setLiveRoot(Index, "llvm.global_dtors"); 948 setLiveRoot(Index, "llvm.global.annotations"); 949 950 for (auto &GlobalList : Index) { 951 // Ignore entries for references that are undefined in the current module. 952 if (GlobalList.second.SummaryList.empty()) 953 continue; 954 955 assert(GlobalList.second.SummaryList.size() == 1 && 956 "Expected module's index to have one summary per GUID"); 957 auto &Summary = GlobalList.second.SummaryList[0]; 958 if (!IsThinLTO) { 959 Summary->setNotEligibleToImport(); 960 continue; 961 } 962 963 bool AllRefsCanBeExternallyReferenced = 964 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 965 return !CantBePromoted.count(VI.getGUID()); 966 }); 967 if (!AllRefsCanBeExternallyReferenced) { 968 Summary->setNotEligibleToImport(); 969 continue; 970 } 971 972 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 973 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 974 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 975 return !CantBePromoted.count(Edge.first.getGUID()); 976 }); 977 if (!AllCallsCanBeExternallyReferenced) 978 Summary->setNotEligibleToImport(); 979 } 980 } 981 982 if (!ModuleSummaryDotFile.empty()) { 983 std::error_code EC; 984 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 985 if (EC) 986 report_fatal_error(Twine("Failed to open dot file ") + 987 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 988 Index.exportToDot(OSDot, {}); 989 } 990 991 return Index; 992 } 993 994 AnalysisKey ModuleSummaryIndexAnalysis::Key; 995 996 ModuleSummaryIndex 997 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 998 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 999 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1000 bool NeedSSI = needsParamAccessSummary(M); 1001 return buildModuleSummaryIndex( 1002 M, 1003 [&FAM](const Function &F) { 1004 return &FAM.getResult<BlockFrequencyAnalysis>( 1005 *const_cast<Function *>(&F)); 1006 }, 1007 &PSI, 1008 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 1009 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 1010 const_cast<Function &>(F)) 1011 : nullptr; 1012 }); 1013 } 1014 1015 char ModuleSummaryIndexWrapperPass::ID = 0; 1016 1017 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1018 "Module Summary Analysis", false, true) 1019 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 1020 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1021 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1022 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1023 "Module Summary Analysis", false, true) 1024 1025 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 1026 return new ModuleSummaryIndexWrapperPass(); 1027 } 1028 1029 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 1030 : ModulePass(ID) { 1031 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 1032 } 1033 1034 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 1035 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1036 bool NeedSSI = needsParamAccessSummary(M); 1037 Index.emplace(buildModuleSummaryIndex( 1038 M, 1039 [this](const Function &F) { 1040 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 1041 *const_cast<Function *>(&F)) 1042 .getBFI()); 1043 }, 1044 PSI, 1045 [&](const Function &F) -> const StackSafetyInfo * { 1046 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 1047 const_cast<Function &>(F)) 1048 .getResult() 1049 : nullptr; 1050 })); 1051 return false; 1052 } 1053 1054 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1055 Index.reset(); 1056 return false; 1057 } 1058 1059 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1060 AU.setPreservesAll(); 1061 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1062 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1063 AU.addRequired<StackSafetyInfoWrapperPass>(); 1064 } 1065 1066 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1067 1068 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1069 const ModuleSummaryIndex *Index) 1070 : ImmutablePass(ID), Index(Index) { 1071 initializeImmutableModuleSummaryIndexWrapperPassPass( 1072 *PassRegistry::getPassRegistry()); 1073 } 1074 1075 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1076 AnalysisUsage &AU) const { 1077 AU.setPreservesAll(); 1078 } 1079 1080 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1081 const ModuleSummaryIndex *Index) { 1082 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1083 } 1084 1085 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1086 "Module summary info", false, true) 1087 1088 bool llvm::mayHaveMemprofSummary(const CallBase *CB) { 1089 if (!CB) 1090 return false; 1091 if (CB->isDebugOrPseudoInst()) 1092 return false; 1093 auto *CI = dyn_cast<CallInst>(CB); 1094 auto *CalledValue = CB->getCalledOperand(); 1095 auto *CalledFunction = CB->getCalledFunction(); 1096 if (CalledValue && !CalledFunction) { 1097 CalledValue = CalledValue->stripPointerCasts(); 1098 // Stripping pointer casts can reveal a called function. 1099 CalledFunction = dyn_cast<Function>(CalledValue); 1100 } 1101 // Check if this is an alias to a function. If so, get the 1102 // called aliasee for the checks below. 1103 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 1104 assert(!CalledFunction && 1105 "Expected null called function in callsite for alias"); 1106 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 1107 } 1108 // Check if this is a direct call to a known function or a known 1109 // intrinsic, or an indirect call with profile data. 1110 if (CalledFunction) { 1111 if (CI && CalledFunction->isIntrinsic()) 1112 return false; 1113 } else { 1114 // TODO: For now skip indirect calls. See comments in 1115 // computeFunctionSummary for what is needed to handle this. 1116 return false; 1117 } 1118 return true; 1119 } 1120