xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 using namespace llvm::memprof;
61 
62 #define DEBUG_TYPE "module-summary-analysis"
63 
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68     FunctionSummary::FSHT_None;
69 } // namespace llvm
70 
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73     cl::desc("Force all edges in the function summary to cold"),
74     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76                           "all-non-critical", "All non-critical edges."),
77                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
78 
79 static cl::opt<std::string> ModuleSummaryDotFile(
80     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81     cl::desc("File to emit dot graph of new summary into"));
82 
83 // Walk through the operands of a given User via worklist iteration and populate
84 // the set of GlobalValue references encountered. Invoked either on an
85 // Instruction or a GlobalVariable (which walks its initializer).
86 // Return true if any of the operands contains blockaddress. This is important
87 // to know when computing summary for global var, because if global variable
88 // references basic block address we can't import it separately from function
89 // containing that basic block. For simplicity we currently don't import such
90 // global vars at all. When importing function we aren't interested if any
91 // instruction in it takes an address of any basic block, because instruction
92 // can only take an address of basic block located in the same function.
93 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
94                          SetVector<ValueInfo> &RefEdges,
95                          SmallPtrSet<const User *, 8> &Visited) {
96   bool HasBlockAddress = false;
97   SmallVector<const User *, 32> Worklist;
98   if (Visited.insert(CurUser).second)
99     Worklist.push_back(CurUser);
100 
101   while (!Worklist.empty()) {
102     const User *U = Worklist.pop_back_val();
103     const auto *CB = dyn_cast<CallBase>(U);
104 
105     for (const auto &OI : U->operands()) {
106       const User *Operand = dyn_cast<User>(OI);
107       if (!Operand)
108         continue;
109       if (isa<BlockAddress>(Operand)) {
110         HasBlockAddress = true;
111         continue;
112       }
113       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
114         // We have a reference to a global value. This should be added to
115         // the reference set unless it is a callee. Callees are handled
116         // specially by WriteFunction and are added to a separate list.
117         if (!(CB && CB->isCallee(&OI)))
118           RefEdges.insert(Index.getOrInsertValueInfo(GV));
119         continue;
120       }
121       if (Visited.insert(Operand).second)
122         Worklist.push_back(Operand);
123     }
124   }
125   return HasBlockAddress;
126 }
127 
128 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
129                                           ProfileSummaryInfo *PSI) {
130   if (!PSI)
131     return CalleeInfo::HotnessType::Unknown;
132   if (PSI->isHotCount(ProfileCount))
133     return CalleeInfo::HotnessType::Hot;
134   if (PSI->isColdCount(ProfileCount))
135     return CalleeInfo::HotnessType::Cold;
136   return CalleeInfo::HotnessType::None;
137 }
138 
139 static bool isNonRenamableLocal(const GlobalValue &GV) {
140   return GV.hasSection() && GV.hasLocalLinkage();
141 }
142 
143 /// Determine whether this call has all constant integer arguments (excluding
144 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
145 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
146                           SetVector<FunctionSummary::VFuncId> &VCalls,
147                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
148   std::vector<uint64_t> Args;
149   // Start from the second argument to skip the "this" pointer.
150   for (auto &Arg : drop_begin(Call.CB.args())) {
151     auto *CI = dyn_cast<ConstantInt>(Arg);
152     if (!CI || CI->getBitWidth() > 64) {
153       VCalls.insert({Guid, Call.Offset});
154       return;
155     }
156     Args.push_back(CI->getZExtValue());
157   }
158   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
159 }
160 
161 /// If this intrinsic call requires that we add information to the function
162 /// summary, do so via the non-constant reference arguments.
163 static void addIntrinsicToSummary(
164     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
165     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
166     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
167     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
168     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
169     DominatorTree &DT) {
170   switch (CI->getCalledFunction()->getIntrinsicID()) {
171   case Intrinsic::type_test:
172   case Intrinsic::public_type_test: {
173     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
174     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
175     if (!TypeId)
176       break;
177     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
178 
179     // Produce a summary from type.test intrinsics. We only summarize type.test
180     // intrinsics that are used other than by an llvm.assume intrinsic.
181     // Intrinsics that are assumed are relevant only to the devirtualization
182     // pass, not the type test lowering pass.
183     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
184       return !isa<AssumeInst>(CIU.getUser());
185     });
186     if (HasNonAssumeUses)
187       TypeTests.insert(Guid);
188 
189     SmallVector<DevirtCallSite, 4> DevirtCalls;
190     SmallVector<CallInst *, 4> Assumes;
191     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
192     for (auto &Call : DevirtCalls)
193       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
194                     TypeTestAssumeConstVCalls);
195 
196     break;
197   }
198 
199   case Intrinsic::type_checked_load: {
200     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
201     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
202     if (!TypeId)
203       break;
204     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
205 
206     SmallVector<DevirtCallSite, 4> DevirtCalls;
207     SmallVector<Instruction *, 4> LoadedPtrs;
208     SmallVector<Instruction *, 4> Preds;
209     bool HasNonCallUses = false;
210     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
211                                                HasNonCallUses, CI, DT);
212     // Any non-call uses of the result of llvm.type.checked.load will
213     // prevent us from optimizing away the llvm.type.test.
214     if (HasNonCallUses)
215       TypeTests.insert(Guid);
216     for (auto &Call : DevirtCalls)
217       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
218                     TypeCheckedLoadConstVCalls);
219 
220     break;
221   }
222   default:
223     break;
224   }
225 }
226 
227 static bool isNonVolatileLoad(const Instruction *I) {
228   if (const auto *LI = dyn_cast<LoadInst>(I))
229     return !LI->isVolatile();
230 
231   return false;
232 }
233 
234 static bool isNonVolatileStore(const Instruction *I) {
235   if (const auto *SI = dyn_cast<StoreInst>(I))
236     return !SI->isVolatile();
237 
238   return false;
239 }
240 
241 // Returns true if the function definition must be unreachable.
242 //
243 // Note if this helper function returns true, `F` is guaranteed
244 // to be unreachable; if it returns false, `F` might still
245 // be unreachable but not covered by this helper function.
246 static bool mustBeUnreachableFunction(const Function &F) {
247   // A function must be unreachable if its entry block ends with an
248   // 'unreachable'.
249   assert(!F.isDeclaration());
250   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
251 }
252 
253 static void computeFunctionSummary(
254     ModuleSummaryIndex &Index, const Module &M, const Function &F,
255     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
256     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
257     bool IsThinLTO,
258     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
259   // Summary not currently supported for anonymous functions, they should
260   // have been named.
261   assert(F.hasName());
262 
263   unsigned NumInsts = 0;
264   // Map from callee ValueId to profile count. Used to accumulate profile
265   // counts for all static calls to a given callee.
266   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
267   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
268   SetVector<GlobalValue::GUID> TypeTests;
269   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
270       TypeCheckedLoadVCalls;
271   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
272       TypeCheckedLoadConstVCalls;
273   ICallPromotionAnalysis ICallAnalysis;
274   SmallPtrSet<const User *, 8> Visited;
275 
276   // Add personality function, prefix data and prologue data to function's ref
277   // list.
278   findRefEdges(Index, &F, RefEdges, Visited);
279   std::vector<const Instruction *> NonVolatileLoads;
280   std::vector<const Instruction *> NonVolatileStores;
281 
282   std::vector<CallsiteInfo> Callsites;
283   std::vector<AllocInfo> Allocs;
284 
285   bool HasInlineAsmMaybeReferencingInternal = false;
286   bool HasIndirBranchToBlockAddress = false;
287   bool HasUnknownCall = false;
288   bool MayThrow = false;
289   for (const BasicBlock &BB : F) {
290     // We don't allow inlining of function with indirect branch to blockaddress.
291     // If the blockaddress escapes the function, e.g., via a global variable,
292     // inlining may lead to an invalid cross-function reference. So we shouldn't
293     // import such function either.
294     if (BB.hasAddressTaken()) {
295       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
296         if (!isa<CallBrInst>(*U)) {
297           HasIndirBranchToBlockAddress = true;
298           break;
299         }
300     }
301 
302     for (const Instruction &I : BB) {
303       if (I.isDebugOrPseudoInst())
304         continue;
305       ++NumInsts;
306 
307       // Regular LTO module doesn't participate in ThinLTO import,
308       // so no reference from it can be read/writeonly, since this
309       // would require importing variable as local copy
310       if (IsThinLTO) {
311         if (isNonVolatileLoad(&I)) {
312           // Postpone processing of non-volatile load instructions
313           // See comments below
314           Visited.insert(&I);
315           NonVolatileLoads.push_back(&I);
316           continue;
317         } else if (isNonVolatileStore(&I)) {
318           Visited.insert(&I);
319           NonVolatileStores.push_back(&I);
320           // All references from second operand of store (destination address)
321           // can be considered write-only if they're not referenced by any
322           // non-store instruction. References from first operand of store
323           // (stored value) can't be treated either as read- or as write-only
324           // so we add them to RefEdges as we do with all other instructions
325           // except non-volatile load.
326           Value *Stored = I.getOperand(0);
327           if (auto *GV = dyn_cast<GlobalValue>(Stored))
328             // findRefEdges will try to examine GV operands, so instead
329             // of calling it we should add GV to RefEdges directly.
330             RefEdges.insert(Index.getOrInsertValueInfo(GV));
331           else if (auto *U = dyn_cast<User>(Stored))
332             findRefEdges(Index, U, RefEdges, Visited);
333           continue;
334         }
335       }
336       findRefEdges(Index, &I, RefEdges, Visited);
337       const auto *CB = dyn_cast<CallBase>(&I);
338       if (!CB) {
339         if (I.mayThrow())
340           MayThrow = true;
341         continue;
342       }
343 
344       const auto *CI = dyn_cast<CallInst>(&I);
345       // Since we don't know exactly which local values are referenced in inline
346       // assembly, conservatively mark the function as possibly referencing
347       // a local value from inline assembly to ensure we don't export a
348       // reference (which would require renaming and promotion of the
349       // referenced value).
350       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
351         HasInlineAsmMaybeReferencingInternal = true;
352 
353       auto *CalledValue = CB->getCalledOperand();
354       auto *CalledFunction = CB->getCalledFunction();
355       if (CalledValue && !CalledFunction) {
356         CalledValue = CalledValue->stripPointerCasts();
357         // Stripping pointer casts can reveal a called function.
358         CalledFunction = dyn_cast<Function>(CalledValue);
359       }
360       // Check if this is an alias to a function. If so, get the
361       // called aliasee for the checks below.
362       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
363         assert(!CalledFunction && "Expected null called function in callsite for alias");
364         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
365       }
366       // Check if this is a direct call to a known function or a known
367       // intrinsic, or an indirect call with profile data.
368       if (CalledFunction) {
369         if (CI && CalledFunction->isIntrinsic()) {
370           addIntrinsicToSummary(
371               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
372               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
373           continue;
374         }
375         // We should have named any anonymous globals
376         assert(CalledFunction->hasName());
377         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
378         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
379                                    : CalleeInfo::HotnessType::Unknown;
380         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
381           Hotness = CalleeInfo::HotnessType::Cold;
382 
383         // Use the original CalledValue, in case it was an alias. We want
384         // to record the call edge to the alias in that case. Eventually
385         // an alias summary will be created to associate the alias and
386         // aliasee.
387         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
388             cast<GlobalValue>(CalledValue))];
389         ValueInfo.updateHotness(Hotness);
390         // Add the relative block frequency to CalleeInfo if there is no profile
391         // information.
392         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
393           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
394           uint64_t EntryFreq = BFI->getEntryFreq();
395           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
396         }
397       } else {
398         HasUnknownCall = true;
399         // Skip inline assembly calls.
400         if (CI && CI->isInlineAsm())
401           continue;
402         // Skip direct calls.
403         if (!CalledValue || isa<Constant>(CalledValue))
404           continue;
405 
406         // Check if the instruction has a callees metadata. If so, add callees
407         // to CallGraphEdges to reflect the references from the metadata, and
408         // to enable importing for subsequent indirect call promotion and
409         // inlining.
410         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
411           for (const auto &Op : MD->operands()) {
412             Function *Callee = mdconst::extract_or_null<Function>(Op);
413             if (Callee)
414               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
415           }
416         }
417 
418         uint32_t NumVals, NumCandidates;
419         uint64_t TotalCount;
420         auto CandidateProfileData =
421             ICallAnalysis.getPromotionCandidatesForInstruction(
422                 &I, NumVals, TotalCount, NumCandidates);
423         for (const auto &Candidate : CandidateProfileData)
424           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
425               .updateHotness(getHotness(Candidate.Count, PSI));
426       }
427 
428       // TODO: Skip indirect calls for now. Need to handle these better, likely
429       // by creating multiple Callsites, one per target, then speculatively
430       // devirtualize while applying clone info in the ThinLTO backends. This
431       // will also be important because we will have a different set of clone
432       // versions per target. This handling needs to match that in the ThinLTO
433       // backend so we handle things consistently for matching of callsite
434       // summaries to instructions.
435       if (!CalledFunction)
436         continue;
437 
438       // Compute the list of stack ids first (so we can trim them from the stack
439       // ids on any MIBs).
440       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
441           I.getMetadata(LLVMContext::MD_callsite));
442       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
443       if (MemProfMD) {
444         std::vector<MIBInfo> MIBs;
445         for (auto &MDOp : MemProfMD->operands()) {
446           auto *MIBMD = cast<const MDNode>(MDOp);
447           MDNode *StackNode = getMIBStackNode(MIBMD);
448           assert(StackNode);
449           SmallVector<unsigned> StackIdIndices;
450           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
451           // Collapse out any on the allocation call (inlining).
452           for (auto ContextIter =
453                    StackContext.beginAfterSharedPrefix(InstCallsite);
454                ContextIter != StackContext.end(); ++ContextIter) {
455             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
456             // If this is a direct recursion, simply skip the duplicate
457             // entries. If this is mutual recursion, handling is left to
458             // the LTO link analysis client.
459             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
460               StackIdIndices.push_back(StackIdIdx);
461           }
462           MIBs.push_back(
463               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
464         }
465         Allocs.push_back(AllocInfo(std::move(MIBs)));
466       } else if (!InstCallsite.empty()) {
467         SmallVector<unsigned> StackIdIndices;
468         for (auto StackId : InstCallsite)
469           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
470         // Use the original CalledValue, in case it was an alias. We want
471         // to record the call edge to the alias in that case. Eventually
472         // an alias summary will be created to associate the alias and
473         // aliasee.
474         auto CalleeValueInfo =
475             Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
476         Callsites.push_back({CalleeValueInfo, StackIdIndices});
477       }
478     }
479   }
480   Index.addBlockCount(F.size());
481 
482   std::vector<ValueInfo> Refs;
483   if (IsThinLTO) {
484     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
485                            SetVector<ValueInfo> &Edges,
486                            SmallPtrSet<const User *, 8> &Cache) {
487       for (const auto *I : Instrs) {
488         Cache.erase(I);
489         findRefEdges(Index, I, Edges, Cache);
490       }
491     };
492 
493     // By now we processed all instructions in a function, except
494     // non-volatile loads and non-volatile value stores. Let's find
495     // ref edges for both of instruction sets
496     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
497     // We can add some values to the Visited set when processing load
498     // instructions which are also used by stores in NonVolatileStores.
499     // For example this can happen if we have following code:
500     //
501     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
502     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
503     //
504     // After processing loads we'll add bitcast to the Visited set, and if
505     // we use the same set while processing stores, we'll never see store
506     // to @bar and @bar will be mistakenly treated as readonly.
507     SmallPtrSet<const llvm::User *, 8> StoreCache;
508     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
509 
510     // If both load and store instruction reference the same variable
511     // we won't be able to optimize it. Add all such reference edges
512     // to RefEdges set.
513     for (const auto &VI : StoreRefEdges)
514       if (LoadRefEdges.remove(VI))
515         RefEdges.insert(VI);
516 
517     unsigned RefCnt = RefEdges.size();
518     // All new reference edges inserted in two loops below are either
519     // read or write only. They will be grouped in the end of RefEdges
520     // vector, so we can use a single integer value to identify them.
521     for (const auto &VI : LoadRefEdges)
522       RefEdges.insert(VI);
523 
524     unsigned FirstWORef = RefEdges.size();
525     for (const auto &VI : StoreRefEdges)
526       RefEdges.insert(VI);
527 
528     Refs = RefEdges.takeVector();
529     for (; RefCnt < FirstWORef; ++RefCnt)
530       Refs[RefCnt].setReadOnly();
531 
532     for (; RefCnt < Refs.size(); ++RefCnt)
533       Refs[RefCnt].setWriteOnly();
534   } else {
535     Refs = RefEdges.takeVector();
536   }
537   // Explicit add hot edges to enforce importing for designated GUIDs for
538   // sample PGO, to enable the same inlines as the profiled optimized binary.
539   for (auto &I : F.getImportGUIDs())
540     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
541         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
542             ? CalleeInfo::HotnessType::Cold
543             : CalleeInfo::HotnessType::Critical);
544 
545   bool NonRenamableLocal = isNonRenamableLocal(F);
546   bool NotEligibleForImport = NonRenamableLocal ||
547                               HasInlineAsmMaybeReferencingInternal ||
548                               HasIndirBranchToBlockAddress;
549   GlobalValueSummary::GVFlags Flags(
550       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
551       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
552   FunctionSummary::FFlags FunFlags{
553       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
554       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
555       // FIXME: refactor this to use the same code that inliner is using.
556       // Don't try to import functions with noinline attribute.
557       F.getAttributes().hasFnAttr(Attribute::NoInline),
558       F.hasFnAttribute(Attribute::AlwaysInline),
559       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
560       mustBeUnreachableFunction(F)};
561   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
562   if (auto *SSI = GetSSICallback(F))
563     ParamAccesses = SSI->getParamAccesses(Index);
564   auto FuncSummary = std::make_unique<FunctionSummary>(
565       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
566       CallGraphEdges.takeVector(), TypeTests.takeVector(),
567       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
568       TypeTestAssumeConstVCalls.takeVector(),
569       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
570       std::move(Callsites), std::move(Allocs));
571   if (NonRenamableLocal)
572     CantBePromoted.insert(F.getGUID());
573   Index.addGlobalValueSummary(F, std::move(FuncSummary));
574 }
575 
576 /// Find function pointers referenced within the given vtable initializer
577 /// (or subset of an initializer) \p I. The starting offset of \p I within
578 /// the vtable initializer is \p StartingOffset. Any discovered function
579 /// pointers are added to \p VTableFuncs along with their cumulative offset
580 /// within the initializer.
581 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
582                              const Module &M, ModuleSummaryIndex &Index,
583                              VTableFuncList &VTableFuncs) {
584   // First check if this is a function pointer.
585   if (I->getType()->isPointerTy()) {
586     auto Fn = dyn_cast<Function>(I->stripPointerCasts());
587     // We can disregard __cxa_pure_virtual as a possible call target, as
588     // calls to pure virtuals are UB.
589     if (Fn && Fn->getName() != "__cxa_pure_virtual")
590       VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
591     return;
592   }
593 
594   // Walk through the elements in the constant struct or array and recursively
595   // look for virtual function pointers.
596   const DataLayout &DL = M.getDataLayout();
597   if (auto *C = dyn_cast<ConstantStruct>(I)) {
598     StructType *STy = dyn_cast<StructType>(C->getType());
599     assert(STy);
600     const StructLayout *SL = DL.getStructLayout(C->getType());
601 
602     for (auto EI : llvm::enumerate(STy->elements())) {
603       auto Offset = SL->getElementOffset(EI.index());
604       unsigned Op = SL->getElementContainingOffset(Offset);
605       findFuncPointers(cast<Constant>(I->getOperand(Op)),
606                        StartingOffset + Offset, M, Index, VTableFuncs);
607     }
608   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
609     ArrayType *ATy = C->getType();
610     Type *EltTy = ATy->getElementType();
611     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
612     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
613       findFuncPointers(cast<Constant>(I->getOperand(i)),
614                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
615     }
616   }
617 }
618 
619 // Identify the function pointers referenced by vtable definition \p V.
620 static void computeVTableFuncs(ModuleSummaryIndex &Index,
621                                const GlobalVariable &V, const Module &M,
622                                VTableFuncList &VTableFuncs) {
623   if (!V.isConstant())
624     return;
625 
626   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
627                    VTableFuncs);
628 
629 #ifndef NDEBUG
630   // Validate that the VTableFuncs list is ordered by offset.
631   uint64_t PrevOffset = 0;
632   for (auto &P : VTableFuncs) {
633     // The findVFuncPointers traversal should have encountered the
634     // functions in offset order. We need to use ">=" since PrevOffset
635     // starts at 0.
636     assert(P.VTableOffset >= PrevOffset);
637     PrevOffset = P.VTableOffset;
638   }
639 #endif
640 }
641 
642 /// Record vtable definition \p V for each type metadata it references.
643 static void
644 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
645                                        const GlobalVariable &V,
646                                        SmallVectorImpl<MDNode *> &Types) {
647   for (MDNode *Type : Types) {
648     auto TypeID = Type->getOperand(1).get();
649 
650     uint64_t Offset =
651         cast<ConstantInt>(
652             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
653             ->getZExtValue();
654 
655     if (auto *TypeId = dyn_cast<MDString>(TypeID))
656       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
657           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
658   }
659 }
660 
661 static void computeVariableSummary(ModuleSummaryIndex &Index,
662                                    const GlobalVariable &V,
663                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
664                                    const Module &M,
665                                    SmallVectorImpl<MDNode *> &Types) {
666   SetVector<ValueInfo> RefEdges;
667   SmallPtrSet<const User *, 8> Visited;
668   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
669   bool NonRenamableLocal = isNonRenamableLocal(V);
670   GlobalValueSummary::GVFlags Flags(
671       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
672       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
673 
674   VTableFuncList VTableFuncs;
675   // If splitting is not enabled, then we compute the summary information
676   // necessary for index-based whole program devirtualization.
677   if (!Index.enableSplitLTOUnit()) {
678     Types.clear();
679     V.getMetadata(LLVMContext::MD_type, Types);
680     if (!Types.empty()) {
681       // Identify the function pointers referenced by this vtable definition.
682       computeVTableFuncs(Index, V, M, VTableFuncs);
683 
684       // Record this vtable definition for each type metadata it references.
685       recordTypeIdCompatibleVtableReferences(Index, V, Types);
686     }
687   }
688 
689   // Don't mark variables we won't be able to internalize as read/write-only.
690   bool CanBeInternalized =
691       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
692       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
693   bool Constant = V.isConstant();
694   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
695                                        Constant ? false : CanBeInternalized,
696                                        Constant, V.getVCallVisibility());
697   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
698                                                          RefEdges.takeVector());
699   if (NonRenamableLocal)
700     CantBePromoted.insert(V.getGUID());
701   if (HasBlockAddress)
702     GVarSummary->setNotEligibleToImport();
703   if (!VTableFuncs.empty())
704     GVarSummary->setVTableFuncs(VTableFuncs);
705   Index.addGlobalValueSummary(V, std::move(GVarSummary));
706 }
707 
708 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
709                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
710   // Skip summary for indirect function aliases as summary for aliasee will not
711   // be emitted.
712   const GlobalObject *Aliasee = A.getAliaseeObject();
713   if (isa<GlobalIFunc>(Aliasee))
714     return;
715   bool NonRenamableLocal = isNonRenamableLocal(A);
716   GlobalValueSummary::GVFlags Flags(
717       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
718       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
719   auto AS = std::make_unique<AliasSummary>(Flags);
720   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
721   assert(AliaseeVI && "Alias expects aliasee summary to be available");
722   assert(AliaseeVI.getSummaryList().size() == 1 &&
723          "Expected a single entry per aliasee in per-module index");
724   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
725   if (NonRenamableLocal)
726     CantBePromoted.insert(A.getGUID());
727   Index.addGlobalValueSummary(A, std::move(AS));
728 }
729 
730 // Set LiveRoot flag on entries matching the given value name.
731 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
732   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
733     for (const auto &Summary : VI.getSummaryList())
734       Summary->setLive(true);
735 }
736 
737 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
738     const Module &M,
739     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
740     ProfileSummaryInfo *PSI,
741     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
742   assert(PSI);
743   bool EnableSplitLTOUnit = false;
744   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
745           M.getModuleFlag("EnableSplitLTOUnit")))
746     EnableSplitLTOUnit = MD->getZExtValue();
747   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
748 
749   // Identify the local values in the llvm.used and llvm.compiler.used sets,
750   // which should not be exported as they would then require renaming and
751   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
752   // here because we use this information to mark functions containing inline
753   // assembly calls as not importable.
754   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
755   SmallVector<GlobalValue *, 4> Used;
756   // First collect those in the llvm.used set.
757   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
758   // Next collect those in the llvm.compiler.used set.
759   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
760   DenseSet<GlobalValue::GUID> CantBePromoted;
761   for (auto *V : Used) {
762     if (V->hasLocalLinkage()) {
763       LocalsUsed.insert(V);
764       CantBePromoted.insert(V->getGUID());
765     }
766   }
767 
768   bool HasLocalInlineAsmSymbol = false;
769   if (!M.getModuleInlineAsm().empty()) {
770     // Collect the local values defined by module level asm, and set up
771     // summaries for these symbols so that they can be marked as NoRename,
772     // to prevent export of any use of them in regular IR that would require
773     // renaming within the module level asm. Note we don't need to create a
774     // summary for weak or global defs, as they don't need to be flagged as
775     // NoRename, and defs in module level asm can't be imported anyway.
776     // Also, any values used but not defined within module level asm should
777     // be listed on the llvm.used or llvm.compiler.used global and marked as
778     // referenced from there.
779     ModuleSymbolTable::CollectAsmSymbols(
780         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
781           // Symbols not marked as Weak or Global are local definitions.
782           if (Flags & (object::BasicSymbolRef::SF_Weak |
783                        object::BasicSymbolRef::SF_Global))
784             return;
785           HasLocalInlineAsmSymbol = true;
786           GlobalValue *GV = M.getNamedValue(Name);
787           if (!GV)
788             return;
789           assert(GV->isDeclaration() && "Def in module asm already has definition");
790           GlobalValueSummary::GVFlags GVFlags(
791               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
792               /* NotEligibleToImport = */ true,
793               /* Live = */ true,
794               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
795           CantBePromoted.insert(GV->getGUID());
796           // Create the appropriate summary type.
797           if (Function *F = dyn_cast<Function>(GV)) {
798             std::unique_ptr<FunctionSummary> Summary =
799                 std::make_unique<FunctionSummary>(
800                     GVFlags, /*InstCount=*/0,
801                     FunctionSummary::FFlags{
802                         F->hasFnAttribute(Attribute::ReadNone),
803                         F->hasFnAttribute(Attribute::ReadOnly),
804                         F->hasFnAttribute(Attribute::NoRecurse),
805                         F->returnDoesNotAlias(),
806                         /* NoInline = */ false,
807                         F->hasFnAttribute(Attribute::AlwaysInline),
808                         F->hasFnAttribute(Attribute::NoUnwind),
809                         /* MayThrow */ true,
810                         /* HasUnknownCall */ true,
811                         /* MustBeUnreachable */ false},
812                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
813                     ArrayRef<FunctionSummary::EdgeTy>{},
814                     ArrayRef<GlobalValue::GUID>{},
815                     ArrayRef<FunctionSummary::VFuncId>{},
816                     ArrayRef<FunctionSummary::VFuncId>{},
817                     ArrayRef<FunctionSummary::ConstVCall>{},
818                     ArrayRef<FunctionSummary::ConstVCall>{},
819                     ArrayRef<FunctionSummary::ParamAccess>{},
820                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
821             Index.addGlobalValueSummary(*GV, std::move(Summary));
822           } else {
823             std::unique_ptr<GlobalVarSummary> Summary =
824                 std::make_unique<GlobalVarSummary>(
825                     GVFlags,
826                     GlobalVarSummary::GVarFlags(
827                         false, false, cast<GlobalVariable>(GV)->isConstant(),
828                         GlobalObject::VCallVisibilityPublic),
829                     ArrayRef<ValueInfo>{});
830             Index.addGlobalValueSummary(*GV, std::move(Summary));
831           }
832         });
833   }
834 
835   bool IsThinLTO = true;
836   if (auto *MD =
837           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
838     IsThinLTO = MD->getZExtValue();
839 
840   // Compute summaries for all functions defined in module, and save in the
841   // index.
842   for (const auto &F : M) {
843     if (F.isDeclaration())
844       continue;
845 
846     DominatorTree DT(const_cast<Function &>(F));
847     BlockFrequencyInfo *BFI = nullptr;
848     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
849     if (GetBFICallback)
850       BFI = GetBFICallback(F);
851     else if (F.hasProfileData()) {
852       LoopInfo LI{DT};
853       BranchProbabilityInfo BPI{F, LI};
854       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
855       BFI = BFIPtr.get();
856     }
857 
858     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
859                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
860                            CantBePromoted, IsThinLTO, GetSSICallback);
861   }
862 
863   // Compute summaries for all variables defined in module, and save in the
864   // index.
865   SmallVector<MDNode *, 2> Types;
866   for (const GlobalVariable &G : M.globals()) {
867     if (G.isDeclaration())
868       continue;
869     computeVariableSummary(Index, G, CantBePromoted, M, Types);
870   }
871 
872   // Compute summaries for all aliases defined in module, and save in the
873   // index.
874   for (const GlobalAlias &A : M.aliases())
875     computeAliasSummary(Index, A, CantBePromoted);
876 
877   // Iterate through ifuncs, set their resolvers all alive.
878   for (const GlobalIFunc &I : M.ifuncs()) {
879     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
880       Index.getGlobalValueSummary(GV)->setLive(true);
881     });
882   }
883 
884   for (auto *V : LocalsUsed) {
885     auto *Summary = Index.getGlobalValueSummary(*V);
886     assert(Summary && "Missing summary for global value");
887     Summary->setNotEligibleToImport();
888   }
889 
890   // The linker doesn't know about these LLVM produced values, so we need
891   // to flag them as live in the index to ensure index-based dead value
892   // analysis treats them as live roots of the analysis.
893   setLiveRoot(Index, "llvm.used");
894   setLiveRoot(Index, "llvm.compiler.used");
895   setLiveRoot(Index, "llvm.global_ctors");
896   setLiveRoot(Index, "llvm.global_dtors");
897   setLiveRoot(Index, "llvm.global.annotations");
898 
899   for (auto &GlobalList : Index) {
900     // Ignore entries for references that are undefined in the current module.
901     if (GlobalList.second.SummaryList.empty())
902       continue;
903 
904     assert(GlobalList.second.SummaryList.size() == 1 &&
905            "Expected module's index to have one summary per GUID");
906     auto &Summary = GlobalList.second.SummaryList[0];
907     if (!IsThinLTO) {
908       Summary->setNotEligibleToImport();
909       continue;
910     }
911 
912     bool AllRefsCanBeExternallyReferenced =
913         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
914           return !CantBePromoted.count(VI.getGUID());
915         });
916     if (!AllRefsCanBeExternallyReferenced) {
917       Summary->setNotEligibleToImport();
918       continue;
919     }
920 
921     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
922       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
923           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
924             return !CantBePromoted.count(Edge.first.getGUID());
925           });
926       if (!AllCallsCanBeExternallyReferenced)
927         Summary->setNotEligibleToImport();
928     }
929   }
930 
931   if (!ModuleSummaryDotFile.empty()) {
932     std::error_code EC;
933     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
934     if (EC)
935       report_fatal_error(Twine("Failed to open dot file ") +
936                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
937     Index.exportToDot(OSDot, {});
938   }
939 
940   return Index;
941 }
942 
943 AnalysisKey ModuleSummaryIndexAnalysis::Key;
944 
945 ModuleSummaryIndex
946 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
947   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
948   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
949   bool NeedSSI = needsParamAccessSummary(M);
950   return buildModuleSummaryIndex(
951       M,
952       [&FAM](const Function &F) {
953         return &FAM.getResult<BlockFrequencyAnalysis>(
954             *const_cast<Function *>(&F));
955       },
956       &PSI,
957       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
958         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
959                              const_cast<Function &>(F))
960                        : nullptr;
961       });
962 }
963 
964 char ModuleSummaryIndexWrapperPass::ID = 0;
965 
966 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
967                       "Module Summary Analysis", false, true)
968 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
969 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
970 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
971 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
972                     "Module Summary Analysis", false, true)
973 
974 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
975   return new ModuleSummaryIndexWrapperPass();
976 }
977 
978 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
979     : ModulePass(ID) {
980   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
981 }
982 
983 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
984   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
985   bool NeedSSI = needsParamAccessSummary(M);
986   Index.emplace(buildModuleSummaryIndex(
987       M,
988       [this](const Function &F) {
989         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
990                          *const_cast<Function *>(&F))
991                      .getBFI());
992       },
993       PSI,
994       [&](const Function &F) -> const StackSafetyInfo * {
995         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
996                               const_cast<Function &>(F))
997                               .getResult()
998                        : nullptr;
999       }));
1000   return false;
1001 }
1002 
1003 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1004   Index.reset();
1005   return false;
1006 }
1007 
1008 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1009   AU.setPreservesAll();
1010   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1011   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1012   AU.addRequired<StackSafetyInfoWrapperPass>();
1013 }
1014 
1015 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1016 
1017 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1018     const ModuleSummaryIndex *Index)
1019     : ImmutablePass(ID), Index(Index) {
1020   initializeImmutableModuleSummaryIndexWrapperPassPass(
1021       *PassRegistry::getPassRegistry());
1022 }
1023 
1024 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1025     AnalysisUsage &AU) const {
1026   AU.setPreservesAll();
1027 }
1028 
1029 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1030     const ModuleSummaryIndex *Index) {
1031   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1032 }
1033 
1034 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1035                 "Module summary info", false, true)
1036