xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 1eec5861d52e074bc20d08aef051af59cc70040e)
1  //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This pass builds a ModuleSummaryIndex object for the module, to be written
10  // to bitcode or LLVM assembly.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15  #include "llvm/ADT/ArrayRef.h"
16  #include "llvm/ADT/DenseSet.h"
17  #include "llvm/ADT/MapVector.h"
18  #include "llvm/ADT/STLExtras.h"
19  #include "llvm/ADT/SetVector.h"
20  #include "llvm/ADT/SmallPtrSet.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/Analysis/BlockFrequencyInfo.h"
24  #include "llvm/Analysis/BranchProbabilityInfo.h"
25  #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26  #include "llvm/Analysis/LoopInfo.h"
27  #include "llvm/Analysis/ProfileSummaryInfo.h"
28  #include "llvm/Analysis/StackSafetyAnalysis.h"
29  #include "llvm/Analysis/TypeMetadataUtils.h"
30  #include "llvm/IR/Attributes.h"
31  #include "llvm/IR/BasicBlock.h"
32  #include "llvm/IR/Constant.h"
33  #include "llvm/IR/Constants.h"
34  #include "llvm/IR/Dominators.h"
35  #include "llvm/IR/Function.h"
36  #include "llvm/IR/GlobalAlias.h"
37  #include "llvm/IR/GlobalValue.h"
38  #include "llvm/IR/GlobalVariable.h"
39  #include "llvm/IR/Instructions.h"
40  #include "llvm/IR/IntrinsicInst.h"
41  #include "llvm/IR/Intrinsics.h"
42  #include "llvm/IR/Metadata.h"
43  #include "llvm/IR/Module.h"
44  #include "llvm/IR/ModuleSummaryIndex.h"
45  #include "llvm/IR/Use.h"
46  #include "llvm/IR/User.h"
47  #include "llvm/InitializePasses.h"
48  #include "llvm/Object/ModuleSymbolTable.h"
49  #include "llvm/Object/SymbolicFile.h"
50  #include "llvm/Pass.h"
51  #include "llvm/Support/Casting.h"
52  #include "llvm/Support/CommandLine.h"
53  #include <algorithm>
54  #include <cassert>
55  #include <cstdint>
56  #include <vector>
57  
58  using namespace llvm;
59  
60  #define DEBUG_TYPE "module-summary-analysis"
61  
62  // Option to force edges cold which will block importing when the
63  // -import-cold-multiplier is set to 0. Useful for debugging.
64  FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
65      FunctionSummary::FSHT_None;
66  cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
67      "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
68      cl::desc("Force all edges in the function summary to cold"),
69      cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
70                 clEnumValN(FunctionSummary::FSHT_AllNonCritical,
71                            "all-non-critical", "All non-critical edges."),
72                 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
73  
74  cl::opt<std::string> ModuleSummaryDotFile(
75      "module-summary-dot-file", cl::init(""), cl::Hidden,
76      cl::value_desc("filename"),
77      cl::desc("File to emit dot graph of new summary into."));
78  
79  // Walk through the operands of a given User via worklist iteration and populate
80  // the set of GlobalValue references encountered. Invoked either on an
81  // Instruction or a GlobalVariable (which walks its initializer).
82  // Return true if any of the operands contains blockaddress. This is important
83  // to know when computing summary for global var, because if global variable
84  // references basic block address we can't import it separately from function
85  // containing that basic block. For simplicity we currently don't import such
86  // global vars at all. When importing function we aren't interested if any
87  // instruction in it takes an address of any basic block, because instruction
88  // can only take an address of basic block located in the same function.
89  static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
90                           SetVector<ValueInfo> &RefEdges,
91                           SmallPtrSet<const User *, 8> &Visited) {
92    bool HasBlockAddress = false;
93    SmallVector<const User *, 32> Worklist;
94    Worklist.push_back(CurUser);
95  
96    while (!Worklist.empty()) {
97      const User *U = Worklist.pop_back_val();
98  
99      if (!Visited.insert(U).second)
100        continue;
101  
102      const auto *CB = dyn_cast<CallBase>(U);
103  
104      for (const auto &OI : U->operands()) {
105        const User *Operand = dyn_cast<User>(OI);
106        if (!Operand)
107          continue;
108        if (isa<BlockAddress>(Operand)) {
109          HasBlockAddress = true;
110          continue;
111        }
112        if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
113          // We have a reference to a global value. This should be added to
114          // the reference set unless it is a callee. Callees are handled
115          // specially by WriteFunction and are added to a separate list.
116          if (!(CB && CB->isCallee(&OI)))
117            RefEdges.insert(Index.getOrInsertValueInfo(GV));
118          continue;
119        }
120        Worklist.push_back(Operand);
121      }
122    }
123    return HasBlockAddress;
124  }
125  
126  static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
127                                            ProfileSummaryInfo *PSI) {
128    if (!PSI)
129      return CalleeInfo::HotnessType::Unknown;
130    if (PSI->isHotCount(ProfileCount))
131      return CalleeInfo::HotnessType::Hot;
132    if (PSI->isColdCount(ProfileCount))
133      return CalleeInfo::HotnessType::Cold;
134    return CalleeInfo::HotnessType::None;
135  }
136  
137  static bool isNonRenamableLocal(const GlobalValue &GV) {
138    return GV.hasSection() && GV.hasLocalLinkage();
139  }
140  
141  /// Determine whether this call has all constant integer arguments (excluding
142  /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
143  static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
144                            SetVector<FunctionSummary::VFuncId> &VCalls,
145                            SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
146    std::vector<uint64_t> Args;
147    // Start from the second argument to skip the "this" pointer.
148    for (auto &Arg : make_range(Call.CB.arg_begin() + 1, Call.CB.arg_end())) {
149      auto *CI = dyn_cast<ConstantInt>(Arg);
150      if (!CI || CI->getBitWidth() > 64) {
151        VCalls.insert({Guid, Call.Offset});
152        return;
153      }
154      Args.push_back(CI->getZExtValue());
155    }
156    ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
157  }
158  
159  /// If this intrinsic call requires that we add information to the function
160  /// summary, do so via the non-constant reference arguments.
161  static void addIntrinsicToSummary(
162      const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
163      SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
164      SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
165      SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
166      SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
167      DominatorTree &DT) {
168    switch (CI->getCalledFunction()->getIntrinsicID()) {
169    case Intrinsic::type_test: {
170      auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
171      auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
172      if (!TypeId)
173        break;
174      GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
175  
176      // Produce a summary from type.test intrinsics. We only summarize type.test
177      // intrinsics that are used other than by an llvm.assume intrinsic.
178      // Intrinsics that are assumed are relevant only to the devirtualization
179      // pass, not the type test lowering pass.
180      bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
181        auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
182        if (!AssumeCI)
183          return true;
184        Function *F = AssumeCI->getCalledFunction();
185        return !F || F->getIntrinsicID() != Intrinsic::assume;
186      });
187      if (HasNonAssumeUses)
188        TypeTests.insert(Guid);
189  
190      SmallVector<DevirtCallSite, 4> DevirtCalls;
191      SmallVector<CallInst *, 4> Assumes;
192      findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
193      for (auto &Call : DevirtCalls)
194        addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
195                      TypeTestAssumeConstVCalls);
196  
197      break;
198    }
199  
200    case Intrinsic::type_checked_load: {
201      auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
202      auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
203      if (!TypeId)
204        break;
205      GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
206  
207      SmallVector<DevirtCallSite, 4> DevirtCalls;
208      SmallVector<Instruction *, 4> LoadedPtrs;
209      SmallVector<Instruction *, 4> Preds;
210      bool HasNonCallUses = false;
211      findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
212                                                 HasNonCallUses, CI, DT);
213      // Any non-call uses of the result of llvm.type.checked.load will
214      // prevent us from optimizing away the llvm.type.test.
215      if (HasNonCallUses)
216        TypeTests.insert(Guid);
217      for (auto &Call : DevirtCalls)
218        addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
219                      TypeCheckedLoadConstVCalls);
220  
221      break;
222    }
223    default:
224      break;
225    }
226  }
227  
228  static bool isNonVolatileLoad(const Instruction *I) {
229    if (const auto *LI = dyn_cast<LoadInst>(I))
230      return !LI->isVolatile();
231  
232    return false;
233  }
234  
235  static bool isNonVolatileStore(const Instruction *I) {
236    if (const auto *SI = dyn_cast<StoreInst>(I))
237      return !SI->isVolatile();
238  
239    return false;
240  }
241  
242  static void computeFunctionSummary(
243      ModuleSummaryIndex &Index, const Module &M, const Function &F,
244      BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
245      bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
246      bool IsThinLTO,
247      std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
248    // Summary not currently supported for anonymous functions, they should
249    // have been named.
250    assert(F.hasName());
251  
252    unsigned NumInsts = 0;
253    // Map from callee ValueId to profile count. Used to accumulate profile
254    // counts for all static calls to a given callee.
255    MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
256    SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
257    SetVector<GlobalValue::GUID> TypeTests;
258    SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
259        TypeCheckedLoadVCalls;
260    SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
261        TypeCheckedLoadConstVCalls;
262    ICallPromotionAnalysis ICallAnalysis;
263    SmallPtrSet<const User *, 8> Visited;
264  
265    // Add personality function, prefix data and prologue data to function's ref
266    // list.
267    findRefEdges(Index, &F, RefEdges, Visited);
268    std::vector<const Instruction *> NonVolatileLoads;
269    std::vector<const Instruction *> NonVolatileStores;
270  
271    bool HasInlineAsmMaybeReferencingInternal = false;
272    for (const BasicBlock &BB : F)
273      for (const Instruction &I : BB) {
274        if (isa<DbgInfoIntrinsic>(I))
275          continue;
276        ++NumInsts;
277        // Regular LTO module doesn't participate in ThinLTO import,
278        // so no reference from it can be read/writeonly, since this
279        // would require importing variable as local copy
280        if (IsThinLTO) {
281          if (isNonVolatileLoad(&I)) {
282            // Postpone processing of non-volatile load instructions
283            // See comments below
284            Visited.insert(&I);
285            NonVolatileLoads.push_back(&I);
286            continue;
287          } else if (isNonVolatileStore(&I)) {
288            Visited.insert(&I);
289            NonVolatileStores.push_back(&I);
290            // All references from second operand of store (destination address)
291            // can be considered write-only if they're not referenced by any
292            // non-store instruction. References from first operand of store
293            // (stored value) can't be treated either as read- or as write-only
294            // so we add them to RefEdges as we do with all other instructions
295            // except non-volatile load.
296            Value *Stored = I.getOperand(0);
297            if (auto *GV = dyn_cast<GlobalValue>(Stored))
298              // findRefEdges will try to examine GV operands, so instead
299              // of calling it we should add GV to RefEdges directly.
300              RefEdges.insert(Index.getOrInsertValueInfo(GV));
301            else if (auto *U = dyn_cast<User>(Stored))
302              findRefEdges(Index, U, RefEdges, Visited);
303            continue;
304          }
305        }
306        findRefEdges(Index, &I, RefEdges, Visited);
307        const auto *CB = dyn_cast<CallBase>(&I);
308        if (!CB)
309          continue;
310  
311        const auto *CI = dyn_cast<CallInst>(&I);
312        // Since we don't know exactly which local values are referenced in inline
313        // assembly, conservatively mark the function as possibly referencing
314        // a local value from inline assembly to ensure we don't export a
315        // reference (which would require renaming and promotion of the
316        // referenced value).
317        if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
318          HasInlineAsmMaybeReferencingInternal = true;
319  
320        auto *CalledValue = CB->getCalledOperand();
321        auto *CalledFunction = CB->getCalledFunction();
322        if (CalledValue && !CalledFunction) {
323          CalledValue = CalledValue->stripPointerCasts();
324          // Stripping pointer casts can reveal a called function.
325          CalledFunction = dyn_cast<Function>(CalledValue);
326        }
327        // Check if this is an alias to a function. If so, get the
328        // called aliasee for the checks below.
329        if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
330          assert(!CalledFunction && "Expected null called function in callsite for alias");
331          CalledFunction = dyn_cast<Function>(GA->getBaseObject());
332        }
333        // Check if this is a direct call to a known function or a known
334        // intrinsic, or an indirect call with profile data.
335        if (CalledFunction) {
336          if (CI && CalledFunction->isIntrinsic()) {
337            addIntrinsicToSummary(
338                CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
339                TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
340            continue;
341          }
342          // We should have named any anonymous globals
343          assert(CalledFunction->hasName());
344          auto ScaledCount = PSI->getProfileCount(*CB, BFI);
345          auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
346                                     : CalleeInfo::HotnessType::Unknown;
347          if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
348            Hotness = CalleeInfo::HotnessType::Cold;
349  
350          // Use the original CalledValue, in case it was an alias. We want
351          // to record the call edge to the alias in that case. Eventually
352          // an alias summary will be created to associate the alias and
353          // aliasee.
354          auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
355              cast<GlobalValue>(CalledValue))];
356          ValueInfo.updateHotness(Hotness);
357          // Add the relative block frequency to CalleeInfo if there is no profile
358          // information.
359          if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
360            uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
361            uint64_t EntryFreq = BFI->getEntryFreq();
362            ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
363          }
364        } else {
365          // Skip inline assembly calls.
366          if (CI && CI->isInlineAsm())
367            continue;
368          // Skip direct calls.
369          if (!CalledValue || isa<Constant>(CalledValue))
370            continue;
371  
372          // Check if the instruction has a callees metadata. If so, add callees
373          // to CallGraphEdges to reflect the references from the metadata, and
374          // to enable importing for subsequent indirect call promotion and
375          // inlining.
376          if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
377            for (auto &Op : MD->operands()) {
378              Function *Callee = mdconst::extract_or_null<Function>(Op);
379              if (Callee)
380                CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
381            }
382          }
383  
384          uint32_t NumVals, NumCandidates;
385          uint64_t TotalCount;
386          auto CandidateProfileData =
387              ICallAnalysis.getPromotionCandidatesForInstruction(
388                  &I, NumVals, TotalCount, NumCandidates);
389          for (auto &Candidate : CandidateProfileData)
390            CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
391                .updateHotness(getHotness(Candidate.Count, PSI));
392        }
393      }
394    Index.addBlockCount(F.size());
395  
396    std::vector<ValueInfo> Refs;
397    if (IsThinLTO) {
398      auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
399                             SetVector<ValueInfo> &Edges,
400                             SmallPtrSet<const User *, 8> &Cache) {
401        for (const auto *I : Instrs) {
402          Cache.erase(I);
403          findRefEdges(Index, I, Edges, Cache);
404        }
405      };
406  
407      // By now we processed all instructions in a function, except
408      // non-volatile loads and non-volatile value stores. Let's find
409      // ref edges for both of instruction sets
410      AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
411      // We can add some values to the Visited set when processing load
412      // instructions which are also used by stores in NonVolatileStores.
413      // For example this can happen if we have following code:
414      //
415      // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
416      // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
417      //
418      // After processing loads we'll add bitcast to the Visited set, and if
419      // we use the same set while processing stores, we'll never see store
420      // to @bar and @bar will be mistakenly treated as readonly.
421      SmallPtrSet<const llvm::User *, 8> StoreCache;
422      AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
423  
424      // If both load and store instruction reference the same variable
425      // we won't be able to optimize it. Add all such reference edges
426      // to RefEdges set.
427      for (auto &VI : StoreRefEdges)
428        if (LoadRefEdges.remove(VI))
429          RefEdges.insert(VI);
430  
431      unsigned RefCnt = RefEdges.size();
432      // All new reference edges inserted in two loops below are either
433      // read or write only. They will be grouped in the end of RefEdges
434      // vector, so we can use a single integer value to identify them.
435      for (auto &VI : LoadRefEdges)
436        RefEdges.insert(VI);
437  
438      unsigned FirstWORef = RefEdges.size();
439      for (auto &VI : StoreRefEdges)
440        RefEdges.insert(VI);
441  
442      Refs = RefEdges.takeVector();
443      for (; RefCnt < FirstWORef; ++RefCnt)
444        Refs[RefCnt].setReadOnly();
445  
446      for (; RefCnt < Refs.size(); ++RefCnt)
447        Refs[RefCnt].setWriteOnly();
448    } else {
449      Refs = RefEdges.takeVector();
450    }
451    // Explicit add hot edges to enforce importing for designated GUIDs for
452    // sample PGO, to enable the same inlines as the profiled optimized binary.
453    for (auto &I : F.getImportGUIDs())
454      CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
455          ForceSummaryEdgesCold == FunctionSummary::FSHT_All
456              ? CalleeInfo::HotnessType::Cold
457              : CalleeInfo::HotnessType::Critical);
458  
459    bool NonRenamableLocal = isNonRenamableLocal(F);
460    bool NotEligibleForImport =
461        NonRenamableLocal || HasInlineAsmMaybeReferencingInternal;
462    GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
463                                      /* Live = */ false, F.isDSOLocal(),
464                                      F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr());
465    FunctionSummary::FFlags FunFlags{
466        F.hasFnAttribute(Attribute::ReadNone),
467        F.hasFnAttribute(Attribute::ReadOnly),
468        F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
469        // FIXME: refactor this to use the same code that inliner is using.
470        // Don't try to import functions with noinline attribute.
471        F.getAttributes().hasFnAttribute(Attribute::NoInline),
472        F.hasFnAttribute(Attribute::AlwaysInline)};
473    std::vector<FunctionSummary::ParamAccess> ParamAccesses;
474    if (auto *SSI = GetSSICallback(F))
475      ParamAccesses = SSI->getParamAccesses();
476    auto FuncSummary = std::make_unique<FunctionSummary>(
477        Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
478        CallGraphEdges.takeVector(), TypeTests.takeVector(),
479        TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
480        TypeTestAssumeConstVCalls.takeVector(),
481        TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
482    if (NonRenamableLocal)
483      CantBePromoted.insert(F.getGUID());
484    Index.addGlobalValueSummary(F, std::move(FuncSummary));
485  }
486  
487  /// Find function pointers referenced within the given vtable initializer
488  /// (or subset of an initializer) \p I. The starting offset of \p I within
489  /// the vtable initializer is \p StartingOffset. Any discovered function
490  /// pointers are added to \p VTableFuncs along with their cumulative offset
491  /// within the initializer.
492  static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
493                               const Module &M, ModuleSummaryIndex &Index,
494                               VTableFuncList &VTableFuncs) {
495    // First check if this is a function pointer.
496    if (I->getType()->isPointerTy()) {
497      auto Fn = dyn_cast<Function>(I->stripPointerCasts());
498      // We can disregard __cxa_pure_virtual as a possible call target, as
499      // calls to pure virtuals are UB.
500      if (Fn && Fn->getName() != "__cxa_pure_virtual")
501        VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
502      return;
503    }
504  
505    // Walk through the elements in the constant struct or array and recursively
506    // look for virtual function pointers.
507    const DataLayout &DL = M.getDataLayout();
508    if (auto *C = dyn_cast<ConstantStruct>(I)) {
509      StructType *STy = dyn_cast<StructType>(C->getType());
510      assert(STy);
511      const StructLayout *SL = DL.getStructLayout(C->getType());
512  
513      for (StructType::element_iterator EB = STy->element_begin(), EI = EB,
514                                        EE = STy->element_end();
515           EI != EE; ++EI) {
516        auto Offset = SL->getElementOffset(EI - EB);
517        unsigned Op = SL->getElementContainingOffset(Offset);
518        findFuncPointers(cast<Constant>(I->getOperand(Op)),
519                         StartingOffset + Offset, M, Index, VTableFuncs);
520      }
521    } else if (auto *C = dyn_cast<ConstantArray>(I)) {
522      ArrayType *ATy = C->getType();
523      Type *EltTy = ATy->getElementType();
524      uint64_t EltSize = DL.getTypeAllocSize(EltTy);
525      for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
526        findFuncPointers(cast<Constant>(I->getOperand(i)),
527                         StartingOffset + i * EltSize, M, Index, VTableFuncs);
528      }
529    }
530  }
531  
532  // Identify the function pointers referenced by vtable definition \p V.
533  static void computeVTableFuncs(ModuleSummaryIndex &Index,
534                                 const GlobalVariable &V, const Module &M,
535                                 VTableFuncList &VTableFuncs) {
536    if (!V.isConstant())
537      return;
538  
539    findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
540                     VTableFuncs);
541  
542  #ifndef NDEBUG
543    // Validate that the VTableFuncs list is ordered by offset.
544    uint64_t PrevOffset = 0;
545    for (auto &P : VTableFuncs) {
546      // The findVFuncPointers traversal should have encountered the
547      // functions in offset order. We need to use ">=" since PrevOffset
548      // starts at 0.
549      assert(P.VTableOffset >= PrevOffset);
550      PrevOffset = P.VTableOffset;
551    }
552  #endif
553  }
554  
555  /// Record vtable definition \p V for each type metadata it references.
556  static void
557  recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
558                                         const GlobalVariable &V,
559                                         SmallVectorImpl<MDNode *> &Types) {
560    for (MDNode *Type : Types) {
561      auto TypeID = Type->getOperand(1).get();
562  
563      uint64_t Offset =
564          cast<ConstantInt>(
565              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
566              ->getZExtValue();
567  
568      if (auto *TypeId = dyn_cast<MDString>(TypeID))
569        Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
570            .push_back({Offset, Index.getOrInsertValueInfo(&V)});
571    }
572  }
573  
574  static void computeVariableSummary(ModuleSummaryIndex &Index,
575                                     const GlobalVariable &V,
576                                     DenseSet<GlobalValue::GUID> &CantBePromoted,
577                                     const Module &M,
578                                     SmallVectorImpl<MDNode *> &Types) {
579    SetVector<ValueInfo> RefEdges;
580    SmallPtrSet<const User *, 8> Visited;
581    bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
582    bool NonRenamableLocal = isNonRenamableLocal(V);
583    GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
584                                      /* Live = */ false, V.isDSOLocal(),
585                                      V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr());
586  
587    VTableFuncList VTableFuncs;
588    // If splitting is not enabled, then we compute the summary information
589    // necessary for index-based whole program devirtualization.
590    if (!Index.enableSplitLTOUnit()) {
591      Types.clear();
592      V.getMetadata(LLVMContext::MD_type, Types);
593      if (!Types.empty()) {
594        // Identify the function pointers referenced by this vtable definition.
595        computeVTableFuncs(Index, V, M, VTableFuncs);
596  
597        // Record this vtable definition for each type metadata it references.
598        recordTypeIdCompatibleVtableReferences(Index, V, Types);
599      }
600    }
601  
602    // Don't mark variables we won't be able to internalize as read/write-only.
603    bool CanBeInternalized =
604        !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
605        !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
606    bool Constant = V.isConstant();
607    GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
608                                         Constant ? false : CanBeInternalized,
609                                         Constant, V.getVCallVisibility());
610    auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
611                                                           RefEdges.takeVector());
612    if (NonRenamableLocal)
613      CantBePromoted.insert(V.getGUID());
614    if (HasBlockAddress)
615      GVarSummary->setNotEligibleToImport();
616    if (!VTableFuncs.empty())
617      GVarSummary->setVTableFuncs(VTableFuncs);
618    Index.addGlobalValueSummary(V, std::move(GVarSummary));
619  }
620  
621  static void
622  computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
623                      DenseSet<GlobalValue::GUID> &CantBePromoted) {
624    bool NonRenamableLocal = isNonRenamableLocal(A);
625    GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
626                                      /* Live = */ false, A.isDSOLocal(),
627                                      A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr());
628    auto AS = std::make_unique<AliasSummary>(Flags);
629    auto *Aliasee = A.getBaseObject();
630    auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
631    assert(AliaseeVI && "Alias expects aliasee summary to be available");
632    assert(AliaseeVI.getSummaryList().size() == 1 &&
633           "Expected a single entry per aliasee in per-module index");
634    AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
635    if (NonRenamableLocal)
636      CantBePromoted.insert(A.getGUID());
637    Index.addGlobalValueSummary(A, std::move(AS));
638  }
639  
640  // Set LiveRoot flag on entries matching the given value name.
641  static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
642    if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
643      for (auto &Summary : VI.getSummaryList())
644        Summary->setLive(true);
645  }
646  
647  ModuleSummaryIndex llvm::buildModuleSummaryIndex(
648      const Module &M,
649      std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
650      ProfileSummaryInfo *PSI,
651      std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
652    assert(PSI);
653    bool EnableSplitLTOUnit = false;
654    if (auto *MD = mdconst::extract_or_null<ConstantInt>(
655            M.getModuleFlag("EnableSplitLTOUnit")))
656      EnableSplitLTOUnit = MD->getZExtValue();
657    ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
658  
659    // Identify the local values in the llvm.used and llvm.compiler.used sets,
660    // which should not be exported as they would then require renaming and
661    // promotion, but we may have opaque uses e.g. in inline asm. We collect them
662    // here because we use this information to mark functions containing inline
663    // assembly calls as not importable.
664    SmallPtrSet<GlobalValue *, 8> LocalsUsed;
665    SmallPtrSet<GlobalValue *, 8> Used;
666    // First collect those in the llvm.used set.
667    collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
668    // Next collect those in the llvm.compiler.used set.
669    collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
670    DenseSet<GlobalValue::GUID> CantBePromoted;
671    for (auto *V : Used) {
672      if (V->hasLocalLinkage()) {
673        LocalsUsed.insert(V);
674        CantBePromoted.insert(V->getGUID());
675      }
676    }
677  
678    bool HasLocalInlineAsmSymbol = false;
679    if (!M.getModuleInlineAsm().empty()) {
680      // Collect the local values defined by module level asm, and set up
681      // summaries for these symbols so that they can be marked as NoRename,
682      // to prevent export of any use of them in regular IR that would require
683      // renaming within the module level asm. Note we don't need to create a
684      // summary for weak or global defs, as they don't need to be flagged as
685      // NoRename, and defs in module level asm can't be imported anyway.
686      // Also, any values used but not defined within module level asm should
687      // be listed on the llvm.used or llvm.compiler.used global and marked as
688      // referenced from there.
689      ModuleSymbolTable::CollectAsmSymbols(
690          M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
691            // Symbols not marked as Weak or Global are local definitions.
692            if (Flags & (object::BasicSymbolRef::SF_Weak |
693                         object::BasicSymbolRef::SF_Global))
694              return;
695            HasLocalInlineAsmSymbol = true;
696            GlobalValue *GV = M.getNamedValue(Name);
697            if (!GV)
698              return;
699            assert(GV->isDeclaration() && "Def in module asm already has definition");
700            GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
701                                                /* NotEligibleToImport = */ true,
702                                                /* Live = */ true,
703                                                /* Local */ GV->isDSOLocal(),
704                                                GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr());
705            CantBePromoted.insert(GV->getGUID());
706            // Create the appropriate summary type.
707            if (Function *F = dyn_cast<Function>(GV)) {
708              std::unique_ptr<FunctionSummary> Summary =
709                  std::make_unique<FunctionSummary>(
710                      GVFlags, /*InstCount=*/0,
711                      FunctionSummary::FFlags{
712                          F->hasFnAttribute(Attribute::ReadNone),
713                          F->hasFnAttribute(Attribute::ReadOnly),
714                          F->hasFnAttribute(Attribute::NoRecurse),
715                          F->returnDoesNotAlias(),
716                          /* NoInline = */ false,
717                          F->hasFnAttribute(Attribute::AlwaysInline)},
718                      /*EntryCount=*/0, ArrayRef<ValueInfo>{},
719                      ArrayRef<FunctionSummary::EdgeTy>{},
720                      ArrayRef<GlobalValue::GUID>{},
721                      ArrayRef<FunctionSummary::VFuncId>{},
722                      ArrayRef<FunctionSummary::VFuncId>{},
723                      ArrayRef<FunctionSummary::ConstVCall>{},
724                      ArrayRef<FunctionSummary::ConstVCall>{},
725                      ArrayRef<FunctionSummary::ParamAccess>{});
726              Index.addGlobalValueSummary(*GV, std::move(Summary));
727            } else {
728              std::unique_ptr<GlobalVarSummary> Summary =
729                  std::make_unique<GlobalVarSummary>(
730                      GVFlags,
731                      GlobalVarSummary::GVarFlags(
732                          false, false, cast<GlobalVariable>(GV)->isConstant(),
733                          GlobalObject::VCallVisibilityPublic),
734                      ArrayRef<ValueInfo>{});
735              Index.addGlobalValueSummary(*GV, std::move(Summary));
736            }
737          });
738    }
739  
740    bool IsThinLTO = true;
741    if (auto *MD =
742            mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
743      IsThinLTO = MD->getZExtValue();
744  
745    // Compute summaries for all functions defined in module, and save in the
746    // index.
747    for (auto &F : M) {
748      if (F.isDeclaration())
749        continue;
750  
751      DominatorTree DT(const_cast<Function &>(F));
752      BlockFrequencyInfo *BFI = nullptr;
753      std::unique_ptr<BlockFrequencyInfo> BFIPtr;
754      if (GetBFICallback)
755        BFI = GetBFICallback(F);
756      else if (F.hasProfileData()) {
757        LoopInfo LI{DT};
758        BranchProbabilityInfo BPI{F, LI};
759        BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
760        BFI = BFIPtr.get();
761      }
762  
763      computeFunctionSummary(Index, M, F, BFI, PSI, DT,
764                             !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
765                             CantBePromoted, IsThinLTO, GetSSICallback);
766    }
767  
768    // Compute summaries for all variables defined in module, and save in the
769    // index.
770    SmallVector<MDNode *, 2> Types;
771    for (const GlobalVariable &G : M.globals()) {
772      if (G.isDeclaration())
773        continue;
774      computeVariableSummary(Index, G, CantBePromoted, M, Types);
775    }
776  
777    // Compute summaries for all aliases defined in module, and save in the
778    // index.
779    for (const GlobalAlias &A : M.aliases())
780      computeAliasSummary(Index, A, CantBePromoted);
781  
782    for (auto *V : LocalsUsed) {
783      auto *Summary = Index.getGlobalValueSummary(*V);
784      assert(Summary && "Missing summary for global value");
785      Summary->setNotEligibleToImport();
786    }
787  
788    // The linker doesn't know about these LLVM produced values, so we need
789    // to flag them as live in the index to ensure index-based dead value
790    // analysis treats them as live roots of the analysis.
791    setLiveRoot(Index, "llvm.used");
792    setLiveRoot(Index, "llvm.compiler.used");
793    setLiveRoot(Index, "llvm.global_ctors");
794    setLiveRoot(Index, "llvm.global_dtors");
795    setLiveRoot(Index, "llvm.global.annotations");
796  
797    for (auto &GlobalList : Index) {
798      // Ignore entries for references that are undefined in the current module.
799      if (GlobalList.second.SummaryList.empty())
800        continue;
801  
802      assert(GlobalList.second.SummaryList.size() == 1 &&
803             "Expected module's index to have one summary per GUID");
804      auto &Summary = GlobalList.second.SummaryList[0];
805      if (!IsThinLTO) {
806        Summary->setNotEligibleToImport();
807        continue;
808      }
809  
810      bool AllRefsCanBeExternallyReferenced =
811          llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
812            return !CantBePromoted.count(VI.getGUID());
813          });
814      if (!AllRefsCanBeExternallyReferenced) {
815        Summary->setNotEligibleToImport();
816        continue;
817      }
818  
819      if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
820        bool AllCallsCanBeExternallyReferenced = llvm::all_of(
821            FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
822              return !CantBePromoted.count(Edge.first.getGUID());
823            });
824        if (!AllCallsCanBeExternallyReferenced)
825          Summary->setNotEligibleToImport();
826      }
827    }
828  
829    if (!ModuleSummaryDotFile.empty()) {
830      std::error_code EC;
831      raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
832      if (EC)
833        report_fatal_error(Twine("Failed to open dot file ") +
834                           ModuleSummaryDotFile + ": " + EC.message() + "\n");
835      Index.exportToDot(OSDot, {});
836    }
837  
838    return Index;
839  }
840  
841  AnalysisKey ModuleSummaryIndexAnalysis::Key;
842  
843  ModuleSummaryIndex
844  ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
845    ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
846    auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
847    bool NeedSSI = needsParamAccessSummary(M);
848    return buildModuleSummaryIndex(
849        M,
850        [&FAM](const Function &F) {
851          return &FAM.getResult<BlockFrequencyAnalysis>(
852              *const_cast<Function *>(&F));
853        },
854        &PSI,
855        [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
856          return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
857                               const_cast<Function &>(F))
858                         : nullptr;
859        });
860  }
861  
862  char ModuleSummaryIndexWrapperPass::ID = 0;
863  
864  INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
865                        "Module Summary Analysis", false, true)
866  INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
867  INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
868  INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
869  INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
870                      "Module Summary Analysis", false, true)
871  
872  ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
873    return new ModuleSummaryIndexWrapperPass();
874  }
875  
876  ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
877      : ModulePass(ID) {
878    initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
879  }
880  
881  bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
882    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
883    bool NeedSSI = needsParamAccessSummary(M);
884    Index.emplace(buildModuleSummaryIndex(
885        M,
886        [this](const Function &F) {
887          return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
888                           *const_cast<Function *>(&F))
889                       .getBFI());
890        },
891        PSI,
892        [&](const Function &F) -> const StackSafetyInfo * {
893          return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
894                                const_cast<Function &>(F))
895                                .getResult()
896                         : nullptr;
897        }));
898    return false;
899  }
900  
901  bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
902    Index.reset();
903    return false;
904  }
905  
906  void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
907    AU.setPreservesAll();
908    AU.addRequired<BlockFrequencyInfoWrapperPass>();
909    AU.addRequired<ProfileSummaryInfoWrapperPass>();
910    AU.addRequired<StackSafetyInfoWrapperPass>();
911  }
912  
913  char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
914  
915  ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
916      const ModuleSummaryIndex *Index)
917      : ImmutablePass(ID), Index(Index) {
918    initializeImmutableModuleSummaryIndexWrapperPassPass(
919        *PassRegistry::getPassRegistry());
920  }
921  
922  void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
923      AnalysisUsage &AU) const {
924    AU.setPreservesAll();
925  }
926  
927  ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
928      const ModuleSummaryIndex *Index) {
929    return new ImmutableModuleSummaryIndexWrapperPass(Index);
930  }
931  
932  INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
933                  "Module summary info", false, true)
934