1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) 48 return Cached->second; 49 50 // If this method is called from an unreachable block, return LoE. 51 if (!MSSA->DT->isReachableFromEntry(BB)) 52 return MSSA->getLiveOnEntryDef(); 53 54 if (BasicBlock *Pred = BB->getUniquePredecessor()) { 55 VisitedBlocks.insert(BB); 56 // Single predecessor case, just recurse, we can only have one definition. 57 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 58 CachedPreviousDef.insert({BB, Result}); 59 return Result; 60 } 61 62 if (VisitedBlocks.count(BB)) { 63 // We hit our node again, meaning we had a cycle, we must insert a phi 64 // node to break it so we have an operand. The only case this will 65 // insert useless phis is if we have irreducible control flow. 66 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 67 CachedPreviousDef.insert({BB, Result}); 68 return Result; 69 } 70 71 if (VisitedBlocks.insert(BB).second) { 72 // Mark us visited so we can detect a cycle 73 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 74 75 // Recurse to get the values in our predecessors for placement of a 76 // potential phi node. This will insert phi nodes if we cycle in order to 77 // break the cycle and have an operand. 78 bool UniqueIncomingAccess = true; 79 MemoryAccess *SingleAccess = nullptr; 80 for (auto *Pred : predecessors(BB)) { 81 if (MSSA->DT->isReachableFromEntry(Pred)) { 82 auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef); 83 if (!SingleAccess) 84 SingleAccess = IncomingAccess; 85 else if (IncomingAccess != SingleAccess) 86 UniqueIncomingAccess = false; 87 PhiOps.push_back(IncomingAccess); 88 } else 89 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 90 } 91 92 // Now try to simplify the ops to avoid placing a phi. 93 // This may return null if we never created a phi yet, that's okay 94 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 95 96 // See if we can avoid the phi by simplifying it. 97 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 98 // If we couldn't simplify, we may have to create a phi 99 if (Result == Phi && UniqueIncomingAccess && SingleAccess) { 100 // A concrete Phi only exists if we created an empty one to break a cycle. 101 if (Phi) { 102 assert(Phi->operands().empty() && "Expected empty Phi"); 103 Phi->replaceAllUsesWith(SingleAccess); 104 removeMemoryAccess(Phi); 105 } 106 Result = SingleAccess; 107 } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) { 108 if (!Phi) 109 Phi = MSSA->createMemoryPhi(BB); 110 111 // See if the existing phi operands match what we need. 112 // Unlike normal SSA, we only allow one phi node per block, so we can't just 113 // create a new one. 114 if (Phi->getNumOperands() != 0) { 115 // FIXME: Figure out whether this is dead code and if so remove it. 116 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 117 // These will have been filled in by the recursive read we did above. 118 llvm::copy(PhiOps, Phi->op_begin()); 119 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 120 } 121 } else { 122 unsigned i = 0; 123 for (auto *Pred : predecessors(BB)) 124 Phi->addIncoming(&*PhiOps[i++], Pred); 125 InsertedPHIs.push_back(Phi); 126 } 127 Result = Phi; 128 } 129 130 // Set ourselves up for the next variable by resetting visited state. 131 VisitedBlocks.erase(BB); 132 CachedPreviousDef.insert({BB, Result}); 133 return Result; 134 } 135 llvm_unreachable("Should have hit one of the three cases above"); 136 } 137 138 // This starts at the memory access, and goes backwards in the block to find the 139 // previous definition. If a definition is not found the block of the access, 140 // it continues globally, creating phi nodes to ensure we have a single 141 // definition. 142 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 143 if (auto *LocalResult = getPreviousDefInBlock(MA)) 144 return LocalResult; 145 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 146 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 147 } 148 149 // This starts at the memory access, and goes backwards in the block to the find 150 // the previous definition. If the definition is not found in the block of the 151 // access, it returns nullptr. 152 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 153 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 154 155 // It's possible there are no defs, or we got handed the first def to start. 156 if (Defs) { 157 // If this is a def, we can just use the def iterators. 158 if (!isa<MemoryUse>(MA)) { 159 auto Iter = MA->getReverseDefsIterator(); 160 ++Iter; 161 if (Iter != Defs->rend()) 162 return &*Iter; 163 } else { 164 // Otherwise, have to walk the all access iterator. 165 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 166 for (auto &U : make_range(++MA->getReverseIterator(), End)) 167 if (!isa<MemoryUse>(U)) 168 return cast<MemoryAccess>(&U); 169 // Note that if MA comes before Defs->begin(), we won't hit a def. 170 return nullptr; 171 } 172 } 173 return nullptr; 174 } 175 176 // This starts at the end of block 177 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 178 BasicBlock *BB, 179 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 180 auto *Defs = MSSA->getWritableBlockDefs(BB); 181 182 if (Defs) { 183 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 184 return &*Defs->rbegin(); 185 } 186 187 return getPreviousDefRecursive(BB, CachedPreviousDef); 188 } 189 // Recurse over a set of phi uses to eliminate the trivial ones 190 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 191 if (!Phi) 192 return nullptr; 193 TrackingVH<MemoryAccess> Res(Phi); 194 SmallVector<TrackingVH<Value>, 8> Uses; 195 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 196 for (auto &U : Uses) 197 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) 198 tryRemoveTrivialPhi(UsePhi); 199 return Res; 200 } 201 202 // Eliminate trivial phis 203 // Phis are trivial if they are defined either by themselves, or all the same 204 // argument. 205 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 206 // We recursively try to remove them. 207 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) { 208 assert(Phi && "Can only remove concrete Phi."); 209 auto OperRange = Phi->operands(); 210 return tryRemoveTrivialPhi(Phi, OperRange); 211 } 212 template <class RangeType> 213 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 214 RangeType &Operands) { 215 // Bail out on non-opt Phis. 216 if (NonOptPhis.count(Phi)) 217 return Phi; 218 219 // Detect equal or self arguments 220 MemoryAccess *Same = nullptr; 221 for (auto &Op : Operands) { 222 // If the same or self, good so far 223 if (Op == Phi || Op == Same) 224 continue; 225 // not the same, return the phi since it's not eliminatable by us 226 if (Same) 227 return Phi; 228 Same = cast<MemoryAccess>(&*Op); 229 } 230 // Never found a non-self reference, the phi is undef 231 if (Same == nullptr) 232 return MSSA->getLiveOnEntryDef(); 233 if (Phi) { 234 Phi->replaceAllUsesWith(Same); 235 removeMemoryAccess(Phi); 236 } 237 238 // We should only end up recursing in case we replaced something, in which 239 // case, we may have made other Phis trivial. 240 return recursePhi(Same); 241 } 242 243 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) { 244 InsertedPHIs.clear(); 245 MU->setDefiningAccess(getPreviousDef(MU)); 246 247 // In cases without unreachable blocks, because uses do not create new 248 // may-defs, there are only two cases: 249 // 1. There was a def already below us, and therefore, we should not have 250 // created a phi node because it was already needed for the def. 251 // 252 // 2. There is no def below us, and therefore, there is no extra renaming work 253 // to do. 254 255 // In cases with unreachable blocks, where the unnecessary Phis were 256 // optimized out, adding the Use may re-insert those Phis. Hence, when 257 // inserting Uses outside of the MSSA creation process, and new Phis were 258 // added, rename all uses if we are asked. 259 260 if (!RenameUses && !InsertedPHIs.empty()) { 261 auto *Defs = MSSA->getBlockDefs(MU->getBlock()); 262 (void)Defs; 263 assert((!Defs || (++Defs->begin() == Defs->end())) && 264 "Block may have only a Phi or no defs"); 265 } 266 267 if (RenameUses && InsertedPHIs.size()) { 268 SmallPtrSet<BasicBlock *, 16> Visited; 269 BasicBlock *StartBlock = MU->getBlock(); 270 271 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) { 272 MemoryAccess *FirstDef = &*Defs->begin(); 273 // Convert to incoming value if it's a memorydef. A phi *is* already an 274 // incoming value. 275 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 276 FirstDef = MD->getDefiningAccess(); 277 278 MSSA->renamePass(MU->getBlock(), FirstDef, Visited); 279 } 280 // We just inserted a phi into this block, so the incoming value will 281 // become the phi anyway, so it does not matter what we pass. 282 for (auto &MP : InsertedPHIs) 283 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP)) 284 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 285 } 286 } 287 288 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 289 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 290 MemoryAccess *NewDef) { 291 // Replace any operand with us an incoming block with the new defining 292 // access. 293 int i = MP->getBasicBlockIndex(BB); 294 assert(i != -1 && "Should have found the basic block in the phi"); 295 // We can't just compare i against getNumOperands since one is signed and the 296 // other not. So use it to index into the block iterator. 297 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 298 ++BBIter) { 299 if (*BBIter != BB) 300 break; 301 MP->setIncomingValue(i, NewDef); 302 ++i; 303 } 304 } 305 306 // A brief description of the algorithm: 307 // First, we compute what should define the new def, using the SSA 308 // construction algorithm. 309 // Then, we update the defs below us (and any new phi nodes) in the graph to 310 // point to the correct new defs, to ensure we only have one variable, and no 311 // disconnected stores. 312 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 313 InsertedPHIs.clear(); 314 315 // See if we had a local def, and if not, go hunting. 316 MemoryAccess *DefBefore = getPreviousDef(MD); 317 bool DefBeforeSameBlock = false; 318 if (DefBefore->getBlock() == MD->getBlock() && 319 !(isa<MemoryPhi>(DefBefore) && 320 std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) != 321 InsertedPHIs.end())) 322 DefBeforeSameBlock = true; 323 324 // There is a def before us, which means we can replace any store/phi uses 325 // of that thing with us, since we are in the way of whatever was there 326 // before. 327 // We now define that def's memorydefs and memoryphis 328 if (DefBeforeSameBlock) { 329 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) { 330 // Leave the MemoryUses alone. 331 // Also make sure we skip ourselves to avoid self references. 332 User *Usr = U.getUser(); 333 return !isa<MemoryUse>(Usr) && Usr != MD; 334 // Defs are automatically unoptimized when the user is set to MD below, 335 // because the isOptimized() call will fail to find the same ID. 336 }); 337 } 338 339 // and that def is now our defining access. 340 MD->setDefiningAccess(DefBefore); 341 342 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 343 344 // Remember the index where we may insert new phis. 345 unsigned NewPhiIndex = InsertedPHIs.size(); 346 if (!DefBeforeSameBlock) { 347 // If there was a local def before us, we must have the same effect it 348 // did. Because every may-def is the same, any phis/etc we would create, it 349 // would also have created. If there was no local def before us, we 350 // performed a global update, and have to search all successors and make 351 // sure we update the first def in each of them (following all paths until 352 // we hit the first def along each path). This may also insert phi nodes. 353 // TODO: There are other cases we can skip this work, such as when we have a 354 // single successor, and only used a straight line of single pred blocks 355 // backwards to find the def. To make that work, we'd have to track whether 356 // getDefRecursive only ever used the single predecessor case. These types 357 // of paths also only exist in between CFG simplifications. 358 359 // If this is the first def in the block and this insert is in an arbitrary 360 // place, compute IDF and place phis. 361 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 362 363 // If this is the last Def in the block, also compute IDF based on MD, since 364 // this may a new Def added, and we may need additional Phis. 365 auto Iter = MD->getDefsIterator(); 366 ++Iter; 367 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 368 if (Iter == IterEnd) 369 DefiningBlocks.insert(MD->getBlock()); 370 371 for (const auto &VH : InsertedPHIs) 372 if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH)) 373 DefiningBlocks.insert(RealPHI->getBlock()); 374 ForwardIDFCalculator IDFs(*MSSA->DT); 375 SmallVector<BasicBlock *, 32> IDFBlocks; 376 IDFs.setDefiningBlocks(DefiningBlocks); 377 IDFs.calculate(IDFBlocks); 378 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 379 for (auto *BBIDF : IDFBlocks) { 380 auto *MPhi = MSSA->getMemoryAccess(BBIDF); 381 if (!MPhi) { 382 MPhi = MSSA->createMemoryPhi(BBIDF); 383 NewInsertedPHIs.push_back(MPhi); 384 } 385 // Add the phis created into the IDF blocks to NonOptPhis, so they are not 386 // optimized out as trivial by the call to getPreviousDefFromEnd below. 387 // Once they are complete, all these Phis are added to the FixupList, and 388 // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may 389 // need fixing as well, and potentially be trivial before this insertion, 390 // hence add all IDF Phis. See PR43044. 391 NonOptPhis.insert(MPhi); 392 } 393 for (auto &MPhi : NewInsertedPHIs) { 394 auto *BBIDF = MPhi->getBlock(); 395 for (auto *Pred : predecessors(BBIDF)) { 396 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 397 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); 398 } 399 } 400 401 // Re-take the index where we're adding the new phis, because the above call 402 // to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 403 NewPhiIndex = InsertedPHIs.size(); 404 for (auto &MPhi : NewInsertedPHIs) { 405 InsertedPHIs.push_back(&*MPhi); 406 FixupList.push_back(&*MPhi); 407 } 408 409 FixupList.push_back(MD); 410 } 411 412 // Remember the index where we stopped inserting new phis above, since the 413 // fixupDefs call in the loop below may insert more, that are already minimal. 414 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 415 416 while (!FixupList.empty()) { 417 unsigned StartingPHISize = InsertedPHIs.size(); 418 fixupDefs(FixupList); 419 FixupList.clear(); 420 // Put any new phis on the fixup list, and process them 421 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 422 } 423 424 // Optimize potentially non-minimal phis added in this method. 425 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 426 if (NewPhiSize) 427 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 428 429 // Now that all fixups are done, rename all uses if we are asked. 430 if (RenameUses) { 431 SmallPtrSet<BasicBlock *, 16> Visited; 432 BasicBlock *StartBlock = MD->getBlock(); 433 // We are guaranteed there is a def in the block, because we just got it 434 // handed to us in this function. 435 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 436 // Convert to incoming value if it's a memorydef. A phi *is* already an 437 // incoming value. 438 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 439 FirstDef = MD->getDefiningAccess(); 440 441 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 442 // We just inserted a phi into this block, so the incoming value will become 443 // the phi anyway, so it does not matter what we pass. 444 for (auto &MP : InsertedPHIs) { 445 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 446 if (Phi) 447 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 448 } 449 } 450 } 451 452 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 453 SmallPtrSet<const BasicBlock *, 8> Seen; 454 SmallVector<const BasicBlock *, 16> Worklist; 455 for (auto &Var : Vars) { 456 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 457 if (!NewDef) 458 continue; 459 // First, see if there is a local def after the operand. 460 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 461 auto DefIter = NewDef->getDefsIterator(); 462 463 // The temporary Phi is being fixed, unmark it for not to optimize. 464 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 465 NonOptPhis.erase(Phi); 466 467 // If there is a local def after us, we only have to rename that. 468 if (++DefIter != Defs->end()) { 469 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 470 continue; 471 } 472 473 // Otherwise, we need to search down through the CFG. 474 // For each of our successors, handle it directly if their is a phi, or 475 // place on the fixup worklist. 476 for (const auto *S : successors(NewDef->getBlock())) { 477 if (auto *MP = MSSA->getMemoryAccess(S)) 478 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 479 else 480 Worklist.push_back(S); 481 } 482 483 while (!Worklist.empty()) { 484 const BasicBlock *FixupBlock = Worklist.back(); 485 Worklist.pop_back(); 486 487 // Get the first def in the block that isn't a phi node. 488 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 489 auto *FirstDef = &*Defs->begin(); 490 // The loop above and below should have taken care of phi nodes 491 assert(!isa<MemoryPhi>(FirstDef) && 492 "Should have already handled phi nodes!"); 493 // We are now this def's defining access, make sure we actually dominate 494 // it 495 assert(MSSA->dominates(NewDef, FirstDef) && 496 "Should have dominated the new access"); 497 498 // This may insert new phi nodes, because we are not guaranteed the 499 // block we are processing has a single pred, and depending where the 500 // store was inserted, it may require phi nodes below it. 501 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 502 return; 503 } 504 // We didn't find a def, so we must continue. 505 for (const auto *S : successors(FixupBlock)) { 506 // If there is a phi node, handle it. 507 // Otherwise, put the block on the worklist 508 if (auto *MP = MSSA->getMemoryAccess(S)) 509 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 510 else { 511 // If we cycle, we should have ended up at a phi node that we already 512 // processed. FIXME: Double check this 513 if (!Seen.insert(S).second) 514 continue; 515 Worklist.push_back(S); 516 } 517 } 518 } 519 } 520 } 521 522 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 523 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 524 MPhi->unorderedDeleteIncomingBlock(From); 525 tryRemoveTrivialPhi(MPhi); 526 } 527 } 528 529 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 530 const BasicBlock *To) { 531 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 532 bool Found = false; 533 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 534 if (From != B) 535 return false; 536 if (Found) 537 return true; 538 Found = true; 539 return false; 540 }); 541 tryRemoveTrivialPhi(MPhi); 542 } 543 } 544 545 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA, 546 const ValueToValueMapTy &VMap, 547 PhiToDefMap &MPhiMap, 548 bool CloneWasSimplified, 549 MemorySSA *MSSA) { 550 MemoryAccess *InsnDefining = MA; 551 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) { 552 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 553 Instruction *DefMUDI = DefMUD->getMemoryInst(); 554 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 555 if (Instruction *NewDefMUDI = 556 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) { 557 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 558 if (!CloneWasSimplified) 559 assert(InsnDefining && "Defining instruction cannot be nullptr."); 560 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) { 561 // The clone was simplified, it's no longer a MemoryDef, look up. 562 auto DefIt = DefMUD->getDefsIterator(); 563 // Since simplified clones only occur in single block cloning, a 564 // previous definition must exist, otherwise NewDefMUDI would not 565 // have been found in VMap. 566 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() && 567 "Previous def must exist"); 568 InsnDefining = getNewDefiningAccessForClone( 569 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA); 570 } 571 } 572 } 573 } else { 574 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 575 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 576 InsnDefining = NewDefPhi; 577 } 578 assert(InsnDefining && "Defining instruction cannot be nullptr."); 579 return InsnDefining; 580 } 581 582 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 583 const ValueToValueMapTy &VMap, 584 PhiToDefMap &MPhiMap, 585 bool CloneWasSimplified) { 586 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 587 if (!Acc) 588 return; 589 for (const MemoryAccess &MA : *Acc) { 590 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 591 Instruction *Insn = MUD->getMemoryInst(); 592 // Entry does not exist if the clone of the block did not clone all 593 // instructions. This occurs in LoopRotate when cloning instructions 594 // from the old header to the old preheader. The cloned instruction may 595 // also be a simplified Value, not an Instruction (see LoopRotate). 596 // Also in LoopRotate, even when it's an instruction, due to it being 597 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 598 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 599 if (Instruction *NewInsn = 600 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 601 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 602 NewInsn, 603 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap, 604 MPhiMap, CloneWasSimplified, MSSA), 605 /*Template=*/CloneWasSimplified ? nullptr : MUD, 606 /*CreationMustSucceed=*/CloneWasSimplified ? false : true); 607 if (NewUseOrDef) 608 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 609 } 610 } 611 } 612 } 613 614 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 615 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 616 auto *MPhi = MSSA->getMemoryAccess(Header); 617 if (!MPhi) 618 return; 619 620 // Create phi node in the backedge block and populate it with the same 621 // incoming values as MPhi. Skip incoming values coming from Preheader. 622 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 623 bool HasUniqueIncomingValue = true; 624 MemoryAccess *UniqueValue = nullptr; 625 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 626 BasicBlock *IBB = MPhi->getIncomingBlock(I); 627 MemoryAccess *IV = MPhi->getIncomingValue(I); 628 if (IBB != Preheader) { 629 NewMPhi->addIncoming(IV, IBB); 630 if (HasUniqueIncomingValue) { 631 if (!UniqueValue) 632 UniqueValue = IV; 633 else if (UniqueValue != IV) 634 HasUniqueIncomingValue = false; 635 } 636 } 637 } 638 639 // Update incoming edges into MPhi. Remove all but the incoming edge from 640 // Preheader. Add an edge from NewMPhi 641 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 642 MPhi->setIncomingValue(0, AccFromPreheader); 643 MPhi->setIncomingBlock(0, Preheader); 644 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 645 MPhi->unorderedDeleteIncoming(I); 646 MPhi->addIncoming(NewMPhi, BEBlock); 647 648 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 649 // replaced with the unique value. 650 tryRemoveTrivialPhi(NewMPhi); 651 } 652 653 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 654 ArrayRef<BasicBlock *> ExitBlocks, 655 const ValueToValueMapTy &VMap, 656 bool IgnoreIncomingWithNoClones) { 657 PhiToDefMap MPhiMap; 658 659 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 660 assert(Phi && NewPhi && "Invalid Phi nodes."); 661 BasicBlock *NewPhiBB = NewPhi->getBlock(); 662 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 663 pred_end(NewPhiBB)); 664 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 665 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 666 BasicBlock *IncBB = Phi->getIncomingBlock(It); 667 668 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 669 IncBB = NewIncBB; 670 else if (IgnoreIncomingWithNoClones) 671 continue; 672 673 // Now we have IncBB, and will need to add incoming from it to NewPhi. 674 675 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 676 // NewPhiBB was cloned without that edge. 677 if (!NewPhiBBPreds.count(IncBB)) 678 continue; 679 680 // Determine incoming value and add it as incoming from IncBB. 681 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 682 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 683 Instruction *IncI = IncMUD->getMemoryInst(); 684 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 685 if (Instruction *NewIncI = 686 cast_or_null<Instruction>(VMap.lookup(IncI))) { 687 IncMUD = MSSA->getMemoryAccess(NewIncI); 688 assert(IncMUD && 689 "MemoryUseOrDef cannot be null, all preds processed."); 690 } 691 } 692 NewPhi->addIncoming(IncMUD, IncBB); 693 } else { 694 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 695 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 696 NewPhi->addIncoming(NewDefPhi, IncBB); 697 else 698 NewPhi->addIncoming(IncPhi, IncBB); 699 } 700 } 701 }; 702 703 auto ProcessBlock = [&](BasicBlock *BB) { 704 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 705 if (!NewBlock) 706 return; 707 708 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 709 "Cloned block should have no accesses"); 710 711 // Add MemoryPhi. 712 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 713 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 714 MPhiMap[MPhi] = NewPhi; 715 } 716 // Update Uses and Defs. 717 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 718 }; 719 720 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 721 ProcessBlock(BB); 722 723 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 724 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 725 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 726 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 727 } 728 729 void MemorySSAUpdater::updateForClonedBlockIntoPred( 730 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 731 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 732 // Since those defs/phis must have dominated BB, and also dominate P1. 733 // Defs from BB being used in BB will be replaced with the cloned defs from 734 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 735 // incoming def into the Phi from P1. 736 // Instructions cloned into the predecessor are in practice sometimes 737 // simplified, so disable the use of the template, and create an access from 738 // scratch. 739 PhiToDefMap MPhiMap; 740 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 741 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 742 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 743 } 744 745 template <typename Iter> 746 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 747 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 748 DominatorTree &DT) { 749 SmallVector<CFGUpdate, 4> Updates; 750 // Update/insert phis in all successors of exit blocks. 751 for (auto *Exit : ExitBlocks) 752 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 753 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 754 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 755 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 756 } 757 applyInsertUpdates(Updates, DT); 758 } 759 760 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 761 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 762 DominatorTree &DT) { 763 const ValueToValueMapTy *const Arr[] = {&VMap}; 764 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 765 std::end(Arr), DT); 766 } 767 768 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 769 ArrayRef<BasicBlock *> ExitBlocks, 770 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 771 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 772 return I.get(); 773 }; 774 using MappedIteratorType = 775 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 776 decltype(GetPtr)>; 777 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 778 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 779 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 780 } 781 782 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 783 DominatorTree &DT) { 784 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 785 SmallVector<CFGUpdate, 4> InsertUpdates; 786 for (auto &Update : Updates) { 787 if (Update.getKind() == DT.Insert) 788 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 789 else 790 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 791 } 792 793 if (!RevDeleteUpdates.empty()) { 794 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 795 // not occurred. 796 // FIXME: This creates a new DT, so it's more expensive to do mix 797 // delete/inserts vs just inserts. We can do an incremental update on the DT 798 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 799 // part of a pending cleanup. 800 DominatorTree NewDT(DT, RevDeleteUpdates); 801 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 802 applyInsertUpdates(InsertUpdates, NewDT, &GD); 803 } else { 804 GraphDiff<BasicBlock *> GD; 805 applyInsertUpdates(InsertUpdates, DT, &GD); 806 } 807 808 // Update for deleted edges 809 for (auto &Update : RevDeleteUpdates) 810 removeEdge(Update.getFrom(), Update.getTo()); 811 } 812 813 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 814 DominatorTree &DT) { 815 GraphDiff<BasicBlock *> GD; 816 applyInsertUpdates(Updates, DT, &GD); 817 } 818 819 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 820 DominatorTree &DT, 821 const GraphDiff<BasicBlock *> *GD) { 822 // Get recursive last Def, assuming well formed MSSA and updated DT. 823 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 824 while (true) { 825 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 826 // Return last Def or Phi in BB, if it exists. 827 if (Defs) 828 return &*(--Defs->end()); 829 830 // Check number of predecessors, we only care if there's more than one. 831 unsigned Count = 0; 832 BasicBlock *Pred = nullptr; 833 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 834 Pred = Pair.second; 835 Count++; 836 if (Count == 2) 837 break; 838 } 839 840 // If BB has multiple predecessors, get last definition from IDom. 841 if (Count != 1) { 842 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 843 // DT is invalidated. Return LoE as its last def. This will be added to 844 // MemoryPhi node, and later deleted when the block is deleted. 845 if (!DT.getNode(BB)) 846 return MSSA->getLiveOnEntryDef(); 847 if (auto *IDom = DT.getNode(BB)->getIDom()) 848 if (IDom->getBlock() != BB) { 849 BB = IDom->getBlock(); 850 continue; 851 } 852 return MSSA->getLiveOnEntryDef(); 853 } else { 854 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 855 assert(Count == 1 && Pred && "Single predecessor expected."); 856 // BB can be unreachable though, return LoE if that is the case. 857 if (!DT.getNode(BB)) 858 return MSSA->getLiveOnEntryDef(); 859 BB = Pred; 860 } 861 }; 862 llvm_unreachable("Unable to get last definition."); 863 }; 864 865 // Get nearest IDom given a set of blocks. 866 // TODO: this can be optimized by starting the search at the node with the 867 // lowest level (highest in the tree). 868 auto FindNearestCommonDominator = 869 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 870 BasicBlock *PrevIDom = *BBSet.begin(); 871 for (auto *BB : BBSet) 872 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 873 return PrevIDom; 874 }; 875 876 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 877 // include CurrIDom. 878 auto GetNoLongerDomBlocks = 879 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 880 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 881 if (PrevIDom == CurrIDom) 882 return; 883 BlocksPrevDom.push_back(PrevIDom); 884 BasicBlock *NextIDom = PrevIDom; 885 while (BasicBlock *UpIDom = 886 DT.getNode(NextIDom)->getIDom()->getBlock()) { 887 if (UpIDom == CurrIDom) 888 break; 889 BlocksPrevDom.push_back(UpIDom); 890 NextIDom = UpIDom; 891 } 892 }; 893 894 // Map a BB to its predecessors: added + previously existing. To get a 895 // deterministic order, store predecessors as SetVectors. The order in each 896 // will be defined by the order in Updates (fixed) and the order given by 897 // children<> (also fixed). Since we further iterate over these ordered sets, 898 // we lose the information of multiple edges possibly existing between two 899 // blocks, so we'll keep and EdgeCount map for that. 900 // An alternate implementation could keep unordered set for the predecessors, 901 // traverse either Updates or children<> each time to get the deterministic 902 // order, and drop the usage of EdgeCount. This alternate approach would still 903 // require querying the maps for each predecessor, and children<> call has 904 // additional computation inside for creating the snapshot-graph predecessors. 905 // As such, we favor using a little additional storage and less compute time. 906 // This decision can be revisited if we find the alternative more favorable. 907 908 struct PredInfo { 909 SmallSetVector<BasicBlock *, 2> Added; 910 SmallSetVector<BasicBlock *, 2> Prev; 911 }; 912 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 913 914 for (auto &Edge : Updates) { 915 BasicBlock *BB = Edge.getTo(); 916 auto &AddedBlockSet = PredMap[BB].Added; 917 AddedBlockSet.insert(Edge.getFrom()); 918 } 919 920 // Store all existing predecessor for each BB, at least one must exist. 921 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 922 SmallPtrSet<BasicBlock *, 2> NewBlocks; 923 for (auto &BBPredPair : PredMap) { 924 auto *BB = BBPredPair.first; 925 const auto &AddedBlockSet = BBPredPair.second.Added; 926 auto &PrevBlockSet = BBPredPair.second.Prev; 927 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 928 BasicBlock *Pi = Pair.second; 929 if (!AddedBlockSet.count(Pi)) 930 PrevBlockSet.insert(Pi); 931 EdgeCountMap[{Pi, BB}]++; 932 } 933 934 if (PrevBlockSet.empty()) { 935 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 936 LLVM_DEBUG( 937 dbgs() 938 << "Adding a predecessor to a block with no predecessors. " 939 "This must be an edge added to a new, likely cloned, block. " 940 "Its memory accesses must be already correct, assuming completed " 941 "via the updateExitBlocksForClonedLoop API. " 942 "Assert a single such edge is added so no phi addition or " 943 "additional processing is required.\n"); 944 assert(AddedBlockSet.size() == 1 && 945 "Can only handle adding one predecessor to a new block."); 946 // Need to remove new blocks from PredMap. Remove below to not invalidate 947 // iterator here. 948 NewBlocks.insert(BB); 949 } 950 } 951 // Nothing to process for new/cloned blocks. 952 for (auto *BB : NewBlocks) 953 PredMap.erase(BB); 954 955 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 956 SmallVector<WeakVH, 8> InsertedPhis; 957 958 // First create MemoryPhis in all blocks that don't have one. Create in the 959 // order found in Updates, not in PredMap, to get deterministic numbering. 960 for (auto &Edge : Updates) { 961 BasicBlock *BB = Edge.getTo(); 962 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 963 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 964 } 965 966 // Now we'll fill in the MemoryPhis with the right incoming values. 967 for (auto &BBPredPair : PredMap) { 968 auto *BB = BBPredPair.first; 969 const auto &PrevBlockSet = BBPredPair.second.Prev; 970 const auto &AddedBlockSet = BBPredPair.second.Added; 971 assert(!PrevBlockSet.empty() && 972 "At least one previous predecessor must exist."); 973 974 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 975 // keeping this map before the loop. We can reuse already populated entries 976 // if an edge is added from the same predecessor to two different blocks, 977 // and this does happen in rotate. Note that the map needs to be updated 978 // when deleting non-necessary phis below, if the phi is in the map by 979 // replacing the value with DefP1. 980 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 981 for (auto *AddedPred : AddedBlockSet) { 982 auto *DefPn = GetLastDef(AddedPred); 983 assert(DefPn != nullptr && "Unable to find last definition."); 984 LastDefAddedPred[AddedPred] = DefPn; 985 } 986 987 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 988 // If Phi is not empty, add an incoming edge from each added pred. Must 989 // still compute blocks with defs to replace for this block below. 990 if (NewPhi->getNumOperands()) { 991 for (auto *Pred : AddedBlockSet) { 992 auto *LastDefForPred = LastDefAddedPred[Pred]; 993 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 994 NewPhi->addIncoming(LastDefForPred, Pred); 995 } 996 } else { 997 // Pick any existing predecessor and get its definition. All other 998 // existing predecessors should have the same one, since no phi existed. 999 auto *P1 = *PrevBlockSet.begin(); 1000 MemoryAccess *DefP1 = GetLastDef(P1); 1001 1002 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 1003 // nothing to add. 1004 bool InsertPhi = false; 1005 for (auto LastDefPredPair : LastDefAddedPred) 1006 if (DefP1 != LastDefPredPair.second) { 1007 InsertPhi = true; 1008 break; 1009 } 1010 if (!InsertPhi) { 1011 // Since NewPhi may be used in other newly added Phis, replace all uses 1012 // of NewPhi with the definition coming from all predecessors (DefP1), 1013 // before deleting it. 1014 NewPhi->replaceAllUsesWith(DefP1); 1015 removeMemoryAccess(NewPhi); 1016 continue; 1017 } 1018 1019 // Update Phi with new values for new predecessors and old value for all 1020 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 1021 // sets, the order of entries in NewPhi is deterministic. 1022 for (auto *Pred : AddedBlockSet) { 1023 auto *LastDefForPred = LastDefAddedPred[Pred]; 1024 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1025 NewPhi->addIncoming(LastDefForPred, Pred); 1026 } 1027 for (auto *Pred : PrevBlockSet) 1028 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 1029 NewPhi->addIncoming(DefP1, Pred); 1030 } 1031 1032 // Get all blocks that used to dominate BB and no longer do after adding 1033 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 1034 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 1035 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 1036 assert(PrevIDom && "Previous IDom should exists"); 1037 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 1038 assert(NewIDom && "BB should have a new valid idom"); 1039 assert(DT.dominates(NewIDom, PrevIDom) && 1040 "New idom should dominate old idom"); 1041 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 1042 } 1043 1044 tryRemoveTrivialPhis(InsertedPhis); 1045 // Create the set of blocks that now have a definition. We'll use this to 1046 // compute IDF and add Phis there next. 1047 SmallVector<BasicBlock *, 8> BlocksToProcess; 1048 for (auto &VH : InsertedPhis) 1049 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1050 BlocksToProcess.push_back(MPhi->getBlock()); 1051 1052 // Compute IDF and add Phis in all IDF blocks that do not have one. 1053 SmallVector<BasicBlock *, 32> IDFBlocks; 1054 if (!BlocksToProcess.empty()) { 1055 ForwardIDFCalculator IDFs(DT, GD); 1056 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 1057 BlocksToProcess.end()); 1058 IDFs.setDefiningBlocks(DefiningBlocks); 1059 IDFs.calculate(IDFBlocks); 1060 1061 SmallSetVector<MemoryPhi *, 4> PhisToFill; 1062 // First create all needed Phis. 1063 for (auto *BBIDF : IDFBlocks) 1064 if (!MSSA->getMemoryAccess(BBIDF)) { 1065 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 1066 InsertedPhis.push_back(IDFPhi); 1067 PhisToFill.insert(IDFPhi); 1068 } 1069 // Then update or insert their correct incoming values. 1070 for (auto *BBIDF : IDFBlocks) { 1071 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 1072 assert(IDFPhi && "Phi must exist"); 1073 if (!PhisToFill.count(IDFPhi)) { 1074 // Update existing Phi. 1075 // FIXME: some updates may be redundant, try to optimize and skip some. 1076 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 1077 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 1078 } else { 1079 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 1080 BasicBlock *Pi = Pair.second; 1081 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 1082 } 1083 } 1084 } 1085 } 1086 1087 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1088 // longer dominate, replace those with the closest dominating def. 1089 // This will also update optimized accesses, as they're also uses. 1090 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1091 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1092 for (auto &DefToReplaceUses : *DefsList) { 1093 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1094 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1095 E = DefToReplaceUses.use_end(); 1096 for (; UI != E;) { 1097 Use &U = *UI; 1098 ++UI; 1099 MemoryAccess *Usr = cast<MemoryAccess>(U.getUser()); 1100 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1101 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1102 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1103 U.set(GetLastDef(DominatedBlock)); 1104 } else { 1105 BasicBlock *DominatedBlock = Usr->getBlock(); 1106 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1107 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1108 U.set(DomBlPhi); 1109 else { 1110 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1111 assert(IDom && "Block must have a valid IDom."); 1112 U.set(GetLastDef(IDom->getBlock())); 1113 } 1114 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1115 } 1116 } 1117 } 1118 } 1119 } 1120 } 1121 tryRemoveTrivialPhis(InsertedPhis); 1122 } 1123 1124 // Move What before Where in the MemorySSA IR. 1125 template <class WhereType> 1126 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1127 WhereType Where) { 1128 // Mark MemoryPhi users of What not to be optimized. 1129 for (auto *U : What->users()) 1130 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1131 NonOptPhis.insert(PhiUser); 1132 1133 // Replace all our users with our defining access. 1134 What->replaceAllUsesWith(What->getDefiningAccess()); 1135 1136 // Let MemorySSA take care of moving it around in the lists. 1137 MSSA->moveTo(What, BB, Where); 1138 1139 // Now reinsert it into the IR and do whatever fixups needed. 1140 if (auto *MD = dyn_cast<MemoryDef>(What)) 1141 insertDef(MD, /*RenameUses=*/true); 1142 else 1143 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true); 1144 1145 // Clear dangling pointers. We added all MemoryPhi users, but not all 1146 // of them are removed by fixupDefs(). 1147 NonOptPhis.clear(); 1148 } 1149 1150 // Move What before Where in the MemorySSA IR. 1151 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1152 moveTo(What, Where->getBlock(), Where->getIterator()); 1153 } 1154 1155 // Move What after Where in the MemorySSA IR. 1156 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1157 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1158 } 1159 1160 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1161 MemorySSA::InsertionPlace Where) { 1162 if (Where != MemorySSA::InsertionPlace::BeforeTerminator) 1163 return moveTo(What, BB, Where); 1164 1165 if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator())) 1166 return moveBefore(What, Where); 1167 else 1168 return moveTo(What, BB, MemorySSA::InsertionPlace::End); 1169 } 1170 1171 // All accesses in To used to be in From. Move to end and update access lists. 1172 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1173 Instruction *Start) { 1174 1175 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1176 if (!Accs) 1177 return; 1178 1179 assert(Start->getParent() == To && "Incorrect Start instruction"); 1180 MemoryAccess *FirstInNew = nullptr; 1181 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1182 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1183 break; 1184 if (FirstInNew) { 1185 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1186 do { 1187 auto NextIt = ++MUD->getIterator(); 1188 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1189 ? nullptr 1190 : cast<MemoryUseOrDef>(&*NextIt); 1191 MSSA->moveTo(MUD, To, MemorySSA::End); 1192 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need 1193 // to retrieve it again. 1194 Accs = MSSA->getWritableBlockAccesses(From); 1195 MUD = NextMUD; 1196 } while (MUD); 1197 } 1198 1199 // If all accesses were moved and only a trivial Phi remains, we try to remove 1200 // that Phi. This is needed when From is going to be deleted. 1201 auto *Defs = MSSA->getWritableBlockDefs(From); 1202 if (Defs && !Defs->empty()) 1203 if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin())) 1204 tryRemoveTrivialPhi(Phi); 1205 } 1206 1207 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1208 BasicBlock *To, 1209 Instruction *Start) { 1210 assert(MSSA->getBlockAccesses(To) == nullptr && 1211 "To block is expected to be free of MemoryAccesses."); 1212 moveAllAccesses(From, To, Start); 1213 for (BasicBlock *Succ : successors(To)) 1214 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1215 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1216 } 1217 1218 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1219 Instruction *Start) { 1220 assert(From->getUniquePredecessor() == To && 1221 "From block is expected to have a single predecessor (To)."); 1222 moveAllAccesses(From, To, Start); 1223 for (BasicBlock *Succ : successors(From)) 1224 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1225 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1226 } 1227 1228 /// If all arguments of a MemoryPHI are defined by the same incoming 1229 /// argument, return that argument. 1230 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1231 MemoryAccess *MA = nullptr; 1232 1233 for (auto &Arg : MP->operands()) { 1234 if (!MA) 1235 MA = cast<MemoryAccess>(Arg); 1236 else if (MA != Arg) 1237 return nullptr; 1238 } 1239 return MA; 1240 } 1241 1242 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1243 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1244 bool IdenticalEdgesWereMerged) { 1245 assert(!MSSA->getWritableBlockAccesses(New) && 1246 "Access list should be null for a new block."); 1247 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1248 if (!Phi) 1249 return; 1250 if (Old->hasNPredecessors(1)) { 1251 assert(pred_size(New) == Preds.size() && 1252 "Should have moved all predecessors."); 1253 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1254 } else { 1255 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1256 "new immediate predecessor."); 1257 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1258 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1259 // Currently only support the case of removing a single incoming edge when 1260 // identical edges were not merged. 1261 if (!IdenticalEdgesWereMerged) 1262 assert(PredsSet.size() == Preds.size() && 1263 "If identical edges were not merged, we cannot have duplicate " 1264 "blocks in the predecessors"); 1265 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1266 if (PredsSet.count(B)) { 1267 NewPhi->addIncoming(MA, B); 1268 if (!IdenticalEdgesWereMerged) 1269 PredsSet.erase(B); 1270 return true; 1271 } 1272 return false; 1273 }); 1274 Phi->addIncoming(NewPhi, New); 1275 tryRemoveTrivialPhi(NewPhi); 1276 } 1277 } 1278 1279 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1280 assert(!MSSA->isLiveOnEntryDef(MA) && 1281 "Trying to remove the live on entry def"); 1282 // We can only delete phi nodes if they have no uses, or we can replace all 1283 // uses with a single definition. 1284 MemoryAccess *NewDefTarget = nullptr; 1285 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1286 // Note that it is sufficient to know that all edges of the phi node have 1287 // the same argument. If they do, by the definition of dominance frontiers 1288 // (which we used to place this phi), that argument must dominate this phi, 1289 // and thus, must dominate the phi's uses, and so we will not hit the assert 1290 // below. 1291 NewDefTarget = onlySingleValue(MP); 1292 assert((NewDefTarget || MP->use_empty()) && 1293 "We can't delete this memory phi"); 1294 } else { 1295 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1296 } 1297 1298 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1299 1300 // Re-point the uses at our defining access 1301 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1302 // Reset optimized on users of this store, and reset the uses. 1303 // A few notes: 1304 // 1. This is a slightly modified version of RAUW to avoid walking the 1305 // uses twice here. 1306 // 2. If we wanted to be complete, we would have to reset the optimized 1307 // flags on users of phi nodes if doing the below makes a phi node have all 1308 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1309 // phi nodes, because doing it here would be N^3. 1310 if (MA->hasValueHandle()) 1311 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1312 // Note: We assume MemorySSA is not used in metadata since it's not really 1313 // part of the IR. 1314 1315 while (!MA->use_empty()) { 1316 Use &U = *MA->use_begin(); 1317 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1318 MUD->resetOptimized(); 1319 if (OptimizePhis) 1320 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1321 PhisToCheck.insert(MP); 1322 U.set(NewDefTarget); 1323 } 1324 } 1325 1326 // The call below to erase will destroy MA, so we can't change the order we 1327 // are doing things here 1328 MSSA->removeFromLookups(MA); 1329 MSSA->removeFromLists(MA); 1330 1331 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1332 if (!PhisToCheck.empty()) { 1333 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1334 PhisToCheck.end()}; 1335 PhisToCheck.clear(); 1336 1337 unsigned PhisSize = PhisToOptimize.size(); 1338 while (PhisSize-- > 0) 1339 if (MemoryPhi *MP = 1340 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) 1341 tryRemoveTrivialPhi(MP); 1342 } 1343 } 1344 1345 void MemorySSAUpdater::removeBlocks( 1346 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1347 // First delete all uses of BB in MemoryPhis. 1348 for (BasicBlock *BB : DeadBlocks) { 1349 Instruction *TI = BB->getTerminator(); 1350 assert(TI && "Basic block expected to have a terminator instruction"); 1351 for (BasicBlock *Succ : successors(TI)) 1352 if (!DeadBlocks.count(Succ)) 1353 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1354 MP->unorderedDeleteIncomingBlock(BB); 1355 tryRemoveTrivialPhi(MP); 1356 } 1357 // Drop all references of all accesses in BB 1358 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1359 for (MemoryAccess &MA : *Acc) 1360 MA.dropAllReferences(); 1361 } 1362 1363 // Next, delete all memory accesses in each block 1364 for (BasicBlock *BB : DeadBlocks) { 1365 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1366 if (!Acc) 1367 continue; 1368 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1369 MemoryAccess *MA = &*AB; 1370 ++AB; 1371 MSSA->removeFromLookups(MA); 1372 MSSA->removeFromLists(MA); 1373 } 1374 } 1375 } 1376 1377 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1378 for (auto &VH : UpdatedPHIs) 1379 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 1380 tryRemoveTrivialPhi(MPhi); 1381 } 1382 1383 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1384 const BasicBlock *BB = I->getParent(); 1385 // Remove memory accesses in BB for I and all following instructions. 1386 auto BBI = I->getIterator(), BBE = BB->end(); 1387 // FIXME: If this becomes too expensive, iterate until the first instruction 1388 // with a memory access, then iterate over MemoryAccesses. 1389 while (BBI != BBE) 1390 removeMemoryAccess(&*(BBI++)); 1391 // Update phis in BB's successors to remove BB. 1392 SmallVector<WeakVH, 16> UpdatedPHIs; 1393 for (const BasicBlock *Successor : successors(BB)) { 1394 removeDuplicatePhiEdgesBetween(BB, Successor); 1395 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1396 MPhi->unorderedDeleteIncomingBlock(BB); 1397 UpdatedPHIs.push_back(MPhi); 1398 } 1399 } 1400 // Optimize trivial phis. 1401 tryRemoveTrivialPhis(UpdatedPHIs); 1402 } 1403 1404 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1405 const BasicBlock *To) { 1406 const BasicBlock *BB = BI->getParent(); 1407 SmallVector<WeakVH, 16> UpdatedPHIs; 1408 for (const BasicBlock *Succ : successors(BB)) { 1409 removeDuplicatePhiEdgesBetween(BB, Succ); 1410 if (Succ != To) 1411 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1412 MPhi->unorderedDeleteIncomingBlock(BB); 1413 UpdatedPHIs.push_back(MPhi); 1414 } 1415 } 1416 // Optimize trivial phis. 1417 tryRemoveTrivialPhis(UpdatedPHIs); 1418 } 1419 1420 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1421 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1422 MemorySSA::InsertionPlace Point) { 1423 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1424 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1425 return NewAccess; 1426 } 1427 1428 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1429 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1430 assert(I->getParent() == InsertPt->getBlock() && 1431 "New and old access must be in the same block"); 1432 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1433 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1434 InsertPt->getIterator()); 1435 return NewAccess; 1436 } 1437 1438 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1439 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1440 assert(I->getParent() == InsertPt->getBlock() && 1441 "New and old access must be in the same block"); 1442 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1443 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1444 ++InsertPt->getIterator()); 1445 return NewAccess; 1446 } 1447