xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSAUpdater.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
28 
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
31 
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42     BasicBlock *BB,
43     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44   // First, do a cache lookup. Without this cache, certain CFG structures
45   // (like a series of if statements) take exponential time to visit.
46   auto Cached = CachedPreviousDef.find(BB);
47   if (Cached != CachedPreviousDef.end())
48     return Cached->second;
49 
50   // If this method is called from an unreachable block, return LoE.
51   if (!MSSA->DT->isReachableFromEntry(BB))
52     return MSSA->getLiveOnEntryDef();
53 
54   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
55     VisitedBlocks.insert(BB);
56     // Single predecessor case, just recurse, we can only have one definition.
57     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
58     CachedPreviousDef.insert({BB, Result});
59     return Result;
60   }
61 
62   if (VisitedBlocks.count(BB)) {
63     // We hit our node again, meaning we had a cycle, we must insert a phi
64     // node to break it so we have an operand. The only case this will
65     // insert useless phis is if we have irreducible control flow.
66     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
67     CachedPreviousDef.insert({BB, Result});
68     return Result;
69   }
70 
71   if (VisitedBlocks.insert(BB).second) {
72     // Mark us visited so we can detect a cycle
73     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
74 
75     // Recurse to get the values in our predecessors for placement of a
76     // potential phi node. This will insert phi nodes if we cycle in order to
77     // break the cycle and have an operand.
78     bool UniqueIncomingAccess = true;
79     MemoryAccess *SingleAccess = nullptr;
80     for (auto *Pred : predecessors(BB)) {
81       if (MSSA->DT->isReachableFromEntry(Pred)) {
82         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
83         if (!SingleAccess)
84           SingleAccess = IncomingAccess;
85         else if (IncomingAccess != SingleAccess)
86           UniqueIncomingAccess = false;
87         PhiOps.push_back(IncomingAccess);
88       } else
89         PhiOps.push_back(MSSA->getLiveOnEntryDef());
90     }
91 
92     // Now try to simplify the ops to avoid placing a phi.
93     // This may return null if we never created a phi yet, that's okay
94     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
95 
96     // See if we can avoid the phi by simplifying it.
97     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
98     // If we couldn't simplify, we may have to create a phi
99     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
100       // A concrete Phi only exists if we created an empty one to break a cycle.
101       if (Phi) {
102         assert(Phi->operands().empty() && "Expected empty Phi");
103         Phi->replaceAllUsesWith(SingleAccess);
104         removeMemoryAccess(Phi);
105       }
106       Result = SingleAccess;
107     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
108       if (!Phi)
109         Phi = MSSA->createMemoryPhi(BB);
110 
111       // See if the existing phi operands match what we need.
112       // Unlike normal SSA, we only allow one phi node per block, so we can't just
113       // create a new one.
114       if (Phi->getNumOperands() != 0) {
115         // FIXME: Figure out whether this is dead code and if so remove it.
116         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
117           // These will have been filled in by the recursive read we did above.
118           llvm::copy(PhiOps, Phi->op_begin());
119           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
120         }
121       } else {
122         unsigned i = 0;
123         for (auto *Pred : predecessors(BB))
124           Phi->addIncoming(&*PhiOps[i++], Pred);
125         InsertedPHIs.push_back(Phi);
126       }
127       Result = Phi;
128     }
129 
130     // Set ourselves up for the next variable by resetting visited state.
131     VisitedBlocks.erase(BB);
132     CachedPreviousDef.insert({BB, Result});
133     return Result;
134   }
135   llvm_unreachable("Should have hit one of the three cases above");
136 }
137 
138 // This starts at the memory access, and goes backwards in the block to find the
139 // previous definition. If a definition is not found the block of the access,
140 // it continues globally, creating phi nodes to ensure we have a single
141 // definition.
142 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
143   if (auto *LocalResult = getPreviousDefInBlock(MA))
144     return LocalResult;
145   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
146   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
147 }
148 
149 // This starts at the memory access, and goes backwards in the block to the find
150 // the previous definition. If the definition is not found in the block of the
151 // access, it returns nullptr.
152 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
153   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
154 
155   // It's possible there are no defs, or we got handed the first def to start.
156   if (Defs) {
157     // If this is a def, we can just use the def iterators.
158     if (!isa<MemoryUse>(MA)) {
159       auto Iter = MA->getReverseDefsIterator();
160       ++Iter;
161       if (Iter != Defs->rend())
162         return &*Iter;
163     } else {
164       // Otherwise, have to walk the all access iterator.
165       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
166       for (auto &U : make_range(++MA->getReverseIterator(), End))
167         if (!isa<MemoryUse>(U))
168           return cast<MemoryAccess>(&U);
169       // Note that if MA comes before Defs->begin(), we won't hit a def.
170       return nullptr;
171     }
172   }
173   return nullptr;
174 }
175 
176 // This starts at the end of block
177 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
178     BasicBlock *BB,
179     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
180   auto *Defs = MSSA->getWritableBlockDefs(BB);
181 
182   if (Defs) {
183     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
184     return &*Defs->rbegin();
185   }
186 
187   return getPreviousDefRecursive(BB, CachedPreviousDef);
188 }
189 // Recurse over a set of phi uses to eliminate the trivial ones
190 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
191   if (!Phi)
192     return nullptr;
193   TrackingVH<MemoryAccess> Res(Phi);
194   SmallVector<TrackingVH<Value>, 8> Uses;
195   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
196   for (auto &U : Uses)
197     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
198       tryRemoveTrivialPhi(UsePhi);
199   return Res;
200 }
201 
202 // Eliminate trivial phis
203 // Phis are trivial if they are defined either by themselves, or all the same
204 // argument.
205 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
206 // We recursively try to remove them.
207 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
208   assert(Phi && "Can only remove concrete Phi.");
209   auto OperRange = Phi->operands();
210   return tryRemoveTrivialPhi(Phi, OperRange);
211 }
212 template <class RangeType>
213 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
214                                                     RangeType &Operands) {
215   // Bail out on non-opt Phis.
216   if (NonOptPhis.count(Phi))
217     return Phi;
218 
219   // Detect equal or self arguments
220   MemoryAccess *Same = nullptr;
221   for (auto &Op : Operands) {
222     // If the same or self, good so far
223     if (Op == Phi || Op == Same)
224       continue;
225     // not the same, return the phi since it's not eliminatable by us
226     if (Same)
227       return Phi;
228     Same = cast<MemoryAccess>(&*Op);
229   }
230   // Never found a non-self reference, the phi is undef
231   if (Same == nullptr)
232     return MSSA->getLiveOnEntryDef();
233   if (Phi) {
234     Phi->replaceAllUsesWith(Same);
235     removeMemoryAccess(Phi);
236   }
237 
238   // We should only end up recursing in case we replaced something, in which
239   // case, we may have made other Phis trivial.
240   return recursePhi(Same);
241 }
242 
243 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
244   InsertedPHIs.clear();
245   MU->setDefiningAccess(getPreviousDef(MU));
246 
247   // In cases without unreachable blocks, because uses do not create new
248   // may-defs, there are only two cases:
249   // 1. There was a def already below us, and therefore, we should not have
250   // created a phi node because it was already needed for the def.
251   //
252   // 2. There is no def below us, and therefore, there is no extra renaming work
253   // to do.
254 
255   // In cases with unreachable blocks, where the unnecessary Phis were
256   // optimized out, adding the Use may re-insert those Phis. Hence, when
257   // inserting Uses outside of the MSSA creation process, and new Phis were
258   // added, rename all uses if we are asked.
259 
260   if (!RenameUses && !InsertedPHIs.empty()) {
261     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
262     (void)Defs;
263     assert((!Defs || (++Defs->begin() == Defs->end())) &&
264            "Block may have only a Phi or no defs");
265   }
266 
267   if (RenameUses && InsertedPHIs.size()) {
268     SmallPtrSet<BasicBlock *, 16> Visited;
269     BasicBlock *StartBlock = MU->getBlock();
270 
271     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
272       MemoryAccess *FirstDef = &*Defs->begin();
273       // Convert to incoming value if it's a memorydef. A phi *is* already an
274       // incoming value.
275       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
276         FirstDef = MD->getDefiningAccess();
277 
278       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
279     }
280     // We just inserted a phi into this block, so the incoming value will
281     // become the phi anyway, so it does not matter what we pass.
282     for (auto &MP : InsertedPHIs)
283       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
284         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
285   }
286 }
287 
288 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
289 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
290                                       MemoryAccess *NewDef) {
291   // Replace any operand with us an incoming block with the new defining
292   // access.
293   int i = MP->getBasicBlockIndex(BB);
294   assert(i != -1 && "Should have found the basic block in the phi");
295   // We can't just compare i against getNumOperands since one is signed and the
296   // other not. So use it to index into the block iterator.
297   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
298        ++BBIter) {
299     if (*BBIter != BB)
300       break;
301     MP->setIncomingValue(i, NewDef);
302     ++i;
303   }
304 }
305 
306 // A brief description of the algorithm:
307 // First, we compute what should define the new def, using the SSA
308 // construction algorithm.
309 // Then, we update the defs below us (and any new phi nodes) in the graph to
310 // point to the correct new defs, to ensure we only have one variable, and no
311 // disconnected stores.
312 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
313   InsertedPHIs.clear();
314 
315   // See if we had a local def, and if not, go hunting.
316   MemoryAccess *DefBefore = getPreviousDef(MD);
317   bool DefBeforeSameBlock = false;
318   if (DefBefore->getBlock() == MD->getBlock() &&
319       !(isa<MemoryPhi>(DefBefore) &&
320         std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) !=
321             InsertedPHIs.end()))
322     DefBeforeSameBlock = true;
323 
324   // There is a def before us, which means we can replace any store/phi uses
325   // of that thing with us, since we are in the way of whatever was there
326   // before.
327   // We now define that def's memorydefs and memoryphis
328   if (DefBeforeSameBlock) {
329     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
330       // Leave the MemoryUses alone.
331       // Also make sure we skip ourselves to avoid self references.
332       User *Usr = U.getUser();
333       return !isa<MemoryUse>(Usr) && Usr != MD;
334       // Defs are automatically unoptimized when the user is set to MD below,
335       // because the isOptimized() call will fail to find the same ID.
336     });
337   }
338 
339   // and that def is now our defining access.
340   MD->setDefiningAccess(DefBefore);
341 
342   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
343 
344   // Remember the index where we may insert new phis.
345   unsigned NewPhiIndex = InsertedPHIs.size();
346   if (!DefBeforeSameBlock) {
347     // If there was a local def before us, we must have the same effect it
348     // did. Because every may-def is the same, any phis/etc we would create, it
349     // would also have created.  If there was no local def before us, we
350     // performed a global update, and have to search all successors and make
351     // sure we update the first def in each of them (following all paths until
352     // we hit the first def along each path). This may also insert phi nodes.
353     // TODO: There are other cases we can skip this work, such as when we have a
354     // single successor, and only used a straight line of single pred blocks
355     // backwards to find the def.  To make that work, we'd have to track whether
356     // getDefRecursive only ever used the single predecessor case.  These types
357     // of paths also only exist in between CFG simplifications.
358 
359     // If this is the first def in the block and this insert is in an arbitrary
360     // place, compute IDF and place phis.
361     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
362 
363     // If this is the last Def in the block, also compute IDF based on MD, since
364     // this may a new Def added, and we may need additional Phis.
365     auto Iter = MD->getDefsIterator();
366     ++Iter;
367     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
368     if (Iter == IterEnd)
369       DefiningBlocks.insert(MD->getBlock());
370 
371     for (const auto &VH : InsertedPHIs)
372       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
373         DefiningBlocks.insert(RealPHI->getBlock());
374     ForwardIDFCalculator IDFs(*MSSA->DT);
375     SmallVector<BasicBlock *, 32> IDFBlocks;
376     IDFs.setDefiningBlocks(DefiningBlocks);
377     IDFs.calculate(IDFBlocks);
378     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
379     for (auto *BBIDF : IDFBlocks) {
380       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
381       if (!MPhi) {
382         MPhi = MSSA->createMemoryPhi(BBIDF);
383         NewInsertedPHIs.push_back(MPhi);
384       }
385       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
386       // optimized out as trivial by the call to getPreviousDefFromEnd below.
387       // Once they are complete, all these Phis are added to the FixupList, and
388       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
389       // need fixing as well, and potentially be trivial before this insertion,
390       // hence add all IDF Phis. See PR43044.
391       NonOptPhis.insert(MPhi);
392     }
393     for (auto &MPhi : NewInsertedPHIs) {
394       auto *BBIDF = MPhi->getBlock();
395       for (auto *Pred : predecessors(BBIDF)) {
396         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
397         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
398       }
399     }
400 
401     // Re-take the index where we're adding the new phis, because the above call
402     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
403     NewPhiIndex = InsertedPHIs.size();
404     for (auto &MPhi : NewInsertedPHIs) {
405       InsertedPHIs.push_back(&*MPhi);
406       FixupList.push_back(&*MPhi);
407     }
408 
409     FixupList.push_back(MD);
410   }
411 
412   // Remember the index where we stopped inserting new phis above, since the
413   // fixupDefs call in the loop below may insert more, that are already minimal.
414   unsigned NewPhiIndexEnd = InsertedPHIs.size();
415 
416   while (!FixupList.empty()) {
417     unsigned StartingPHISize = InsertedPHIs.size();
418     fixupDefs(FixupList);
419     FixupList.clear();
420     // Put any new phis on the fixup list, and process them
421     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
422   }
423 
424   // Optimize potentially non-minimal phis added in this method.
425   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
426   if (NewPhiSize)
427     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
428 
429   // Now that all fixups are done, rename all uses if we are asked.
430   if (RenameUses) {
431     SmallPtrSet<BasicBlock *, 16> Visited;
432     BasicBlock *StartBlock = MD->getBlock();
433     // We are guaranteed there is a def in the block, because we just got it
434     // handed to us in this function.
435     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
436     // Convert to incoming value if it's a memorydef. A phi *is* already an
437     // incoming value.
438     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
439       FirstDef = MD->getDefiningAccess();
440 
441     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
442     // We just inserted a phi into this block, so the incoming value will become
443     // the phi anyway, so it does not matter what we pass.
444     for (auto &MP : InsertedPHIs) {
445       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
446       if (Phi)
447         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
448     }
449   }
450 }
451 
452 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
453   SmallPtrSet<const BasicBlock *, 8> Seen;
454   SmallVector<const BasicBlock *, 16> Worklist;
455   for (auto &Var : Vars) {
456     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
457     if (!NewDef)
458       continue;
459     // First, see if there is a local def after the operand.
460     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
461     auto DefIter = NewDef->getDefsIterator();
462 
463     // The temporary Phi is being fixed, unmark it for not to optimize.
464     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
465       NonOptPhis.erase(Phi);
466 
467     // If there is a local def after us, we only have to rename that.
468     if (++DefIter != Defs->end()) {
469       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
470       continue;
471     }
472 
473     // Otherwise, we need to search down through the CFG.
474     // For each of our successors, handle it directly if their is a phi, or
475     // place on the fixup worklist.
476     for (const auto *S : successors(NewDef->getBlock())) {
477       if (auto *MP = MSSA->getMemoryAccess(S))
478         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
479       else
480         Worklist.push_back(S);
481     }
482 
483     while (!Worklist.empty()) {
484       const BasicBlock *FixupBlock = Worklist.back();
485       Worklist.pop_back();
486 
487       // Get the first def in the block that isn't a phi node.
488       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
489         auto *FirstDef = &*Defs->begin();
490         // The loop above and below should have taken care of phi nodes
491         assert(!isa<MemoryPhi>(FirstDef) &&
492                "Should have already handled phi nodes!");
493         // We are now this def's defining access, make sure we actually dominate
494         // it
495         assert(MSSA->dominates(NewDef, FirstDef) &&
496                "Should have dominated the new access");
497 
498         // This may insert new phi nodes, because we are not guaranteed the
499         // block we are processing has a single pred, and depending where the
500         // store was inserted, it may require phi nodes below it.
501         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
502         return;
503       }
504       // We didn't find a def, so we must continue.
505       for (const auto *S : successors(FixupBlock)) {
506         // If there is a phi node, handle it.
507         // Otherwise, put the block on the worklist
508         if (auto *MP = MSSA->getMemoryAccess(S))
509           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
510         else {
511           // If we cycle, we should have ended up at a phi node that we already
512           // processed.  FIXME: Double check this
513           if (!Seen.insert(S).second)
514             continue;
515           Worklist.push_back(S);
516         }
517       }
518     }
519   }
520 }
521 
522 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
523   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
524     MPhi->unorderedDeleteIncomingBlock(From);
525     tryRemoveTrivialPhi(MPhi);
526   }
527 }
528 
529 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
530                                                       const BasicBlock *To) {
531   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
532     bool Found = false;
533     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
534       if (From != B)
535         return false;
536       if (Found)
537         return true;
538       Found = true;
539       return false;
540     });
541     tryRemoveTrivialPhi(MPhi);
542   }
543 }
544 
545 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
546                                                   const ValueToValueMapTy &VMap,
547                                                   PhiToDefMap &MPhiMap,
548                                                   bool CloneWasSimplified,
549                                                   MemorySSA *MSSA) {
550   MemoryAccess *InsnDefining = MA;
551   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
552     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
553       Instruction *DefMUDI = DefMUD->getMemoryInst();
554       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
555       if (Instruction *NewDefMUDI =
556               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
557         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
558         if (!CloneWasSimplified)
559           assert(InsnDefining && "Defining instruction cannot be nullptr.");
560         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
561           // The clone was simplified, it's no longer a MemoryDef, look up.
562           auto DefIt = DefMUD->getDefsIterator();
563           // Since simplified clones only occur in single block cloning, a
564           // previous definition must exist, otherwise NewDefMUDI would not
565           // have been found in VMap.
566           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
567                  "Previous def must exist");
568           InsnDefining = getNewDefiningAccessForClone(
569               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
570         }
571       }
572     }
573   } else {
574     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
575     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
576       InsnDefining = NewDefPhi;
577   }
578   assert(InsnDefining && "Defining instruction cannot be nullptr.");
579   return InsnDefining;
580 }
581 
582 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
583                                         const ValueToValueMapTy &VMap,
584                                         PhiToDefMap &MPhiMap,
585                                         bool CloneWasSimplified) {
586   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
587   if (!Acc)
588     return;
589   for (const MemoryAccess &MA : *Acc) {
590     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
591       Instruction *Insn = MUD->getMemoryInst();
592       // Entry does not exist if the clone of the block did not clone all
593       // instructions. This occurs in LoopRotate when cloning instructions
594       // from the old header to the old preheader. The cloned instruction may
595       // also be a simplified Value, not an Instruction (see LoopRotate).
596       // Also in LoopRotate, even when it's an instruction, due to it being
597       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
598       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
599       if (Instruction *NewInsn =
600               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
601         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
602             NewInsn,
603             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
604                                          MPhiMap, CloneWasSimplified, MSSA),
605             /*Template=*/CloneWasSimplified ? nullptr : MUD,
606             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
607         if (NewUseOrDef)
608           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
609       }
610     }
611   }
612 }
613 
614 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
615     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
616   auto *MPhi = MSSA->getMemoryAccess(Header);
617   if (!MPhi)
618     return;
619 
620   // Create phi node in the backedge block and populate it with the same
621   // incoming values as MPhi. Skip incoming values coming from Preheader.
622   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
623   bool HasUniqueIncomingValue = true;
624   MemoryAccess *UniqueValue = nullptr;
625   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
626     BasicBlock *IBB = MPhi->getIncomingBlock(I);
627     MemoryAccess *IV = MPhi->getIncomingValue(I);
628     if (IBB != Preheader) {
629       NewMPhi->addIncoming(IV, IBB);
630       if (HasUniqueIncomingValue) {
631         if (!UniqueValue)
632           UniqueValue = IV;
633         else if (UniqueValue != IV)
634           HasUniqueIncomingValue = false;
635       }
636     }
637   }
638 
639   // Update incoming edges into MPhi. Remove all but the incoming edge from
640   // Preheader. Add an edge from NewMPhi
641   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
642   MPhi->setIncomingValue(0, AccFromPreheader);
643   MPhi->setIncomingBlock(0, Preheader);
644   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
645     MPhi->unorderedDeleteIncoming(I);
646   MPhi->addIncoming(NewMPhi, BEBlock);
647 
648   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
649   // replaced with the unique value.
650   tryRemoveTrivialPhi(NewMPhi);
651 }
652 
653 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
654                                            ArrayRef<BasicBlock *> ExitBlocks,
655                                            const ValueToValueMapTy &VMap,
656                                            bool IgnoreIncomingWithNoClones) {
657   PhiToDefMap MPhiMap;
658 
659   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
660     assert(Phi && NewPhi && "Invalid Phi nodes.");
661     BasicBlock *NewPhiBB = NewPhi->getBlock();
662     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
663                                                pred_end(NewPhiBB));
664     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
665       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
666       BasicBlock *IncBB = Phi->getIncomingBlock(It);
667 
668       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
669         IncBB = NewIncBB;
670       else if (IgnoreIncomingWithNoClones)
671         continue;
672 
673       // Now we have IncBB, and will need to add incoming from it to NewPhi.
674 
675       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
676       // NewPhiBB was cloned without that edge.
677       if (!NewPhiBBPreds.count(IncBB))
678         continue;
679 
680       // Determine incoming value and add it as incoming from IncBB.
681       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
682         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
683           Instruction *IncI = IncMUD->getMemoryInst();
684           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
685           if (Instruction *NewIncI =
686                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
687             IncMUD = MSSA->getMemoryAccess(NewIncI);
688             assert(IncMUD &&
689                    "MemoryUseOrDef cannot be null, all preds processed.");
690           }
691         }
692         NewPhi->addIncoming(IncMUD, IncBB);
693       } else {
694         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
695         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
696           NewPhi->addIncoming(NewDefPhi, IncBB);
697         else
698           NewPhi->addIncoming(IncPhi, IncBB);
699       }
700     }
701   };
702 
703   auto ProcessBlock = [&](BasicBlock *BB) {
704     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
705     if (!NewBlock)
706       return;
707 
708     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
709            "Cloned block should have no accesses");
710 
711     // Add MemoryPhi.
712     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
713       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
714       MPhiMap[MPhi] = NewPhi;
715     }
716     // Update Uses and Defs.
717     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
718   };
719 
720   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
721     ProcessBlock(BB);
722 
723   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
724     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
725       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
726         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
727 }
728 
729 void MemorySSAUpdater::updateForClonedBlockIntoPred(
730     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
731   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
732   // Since those defs/phis must have dominated BB, and also dominate P1.
733   // Defs from BB being used in BB will be replaced with the cloned defs from
734   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
735   // incoming def into the Phi from P1.
736   // Instructions cloned into the predecessor are in practice sometimes
737   // simplified, so disable the use of the template, and create an access from
738   // scratch.
739   PhiToDefMap MPhiMap;
740   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
741     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
742   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
743 }
744 
745 template <typename Iter>
746 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
747     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
748     DominatorTree &DT) {
749   SmallVector<CFGUpdate, 4> Updates;
750   // Update/insert phis in all successors of exit blocks.
751   for (auto *Exit : ExitBlocks)
752     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
753       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
754         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
755         Updates.push_back({DT.Insert, NewExit, ExitSucc});
756       }
757   applyInsertUpdates(Updates, DT);
758 }
759 
760 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
761     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
762     DominatorTree &DT) {
763   const ValueToValueMapTy *const Arr[] = {&VMap};
764   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
765                                        std::end(Arr), DT);
766 }
767 
768 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
769     ArrayRef<BasicBlock *> ExitBlocks,
770     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
771   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
772     return I.get();
773   };
774   using MappedIteratorType =
775       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
776                       decltype(GetPtr)>;
777   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
778   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
779   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
780 }
781 
782 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
783                                     DominatorTree &DT) {
784   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
785   SmallVector<CFGUpdate, 4> InsertUpdates;
786   for (auto &Update : Updates) {
787     if (Update.getKind() == DT.Insert)
788       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
789     else
790       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
791   }
792 
793   if (!RevDeleteUpdates.empty()) {
794     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
795     // not occurred.
796     // FIXME: This creates a new DT, so it's more expensive to do mix
797     // delete/inserts vs just inserts. We can do an incremental update on the DT
798     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
799     // part of a pending cleanup.
800     DominatorTree NewDT(DT, RevDeleteUpdates);
801     GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
802     applyInsertUpdates(InsertUpdates, NewDT, &GD);
803   } else {
804     GraphDiff<BasicBlock *> GD;
805     applyInsertUpdates(InsertUpdates, DT, &GD);
806   }
807 
808   // Update for deleted edges
809   for (auto &Update : RevDeleteUpdates)
810     removeEdge(Update.getFrom(), Update.getTo());
811 }
812 
813 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
814                                           DominatorTree &DT) {
815   GraphDiff<BasicBlock *> GD;
816   applyInsertUpdates(Updates, DT, &GD);
817 }
818 
819 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
820                                           DominatorTree &DT,
821                                           const GraphDiff<BasicBlock *> *GD) {
822   // Get recursive last Def, assuming well formed MSSA and updated DT.
823   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
824     while (true) {
825       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
826       // Return last Def or Phi in BB, if it exists.
827       if (Defs)
828         return &*(--Defs->end());
829 
830       // Check number of predecessors, we only care if there's more than one.
831       unsigned Count = 0;
832       BasicBlock *Pred = nullptr;
833       for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
834         Pred = Pair.second;
835         Count++;
836         if (Count == 2)
837           break;
838       }
839 
840       // If BB has multiple predecessors, get last definition from IDom.
841       if (Count != 1) {
842         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
843         // DT is invalidated. Return LoE as its last def. This will be added to
844         // MemoryPhi node, and later deleted when the block is deleted.
845         if (!DT.getNode(BB))
846           return MSSA->getLiveOnEntryDef();
847         if (auto *IDom = DT.getNode(BB)->getIDom())
848           if (IDom->getBlock() != BB) {
849             BB = IDom->getBlock();
850             continue;
851           }
852         return MSSA->getLiveOnEntryDef();
853       } else {
854         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
855         assert(Count == 1 && Pred && "Single predecessor expected.");
856         // BB can be unreachable though, return LoE if that is the case.
857         if (!DT.getNode(BB))
858           return MSSA->getLiveOnEntryDef();
859         BB = Pred;
860       }
861     };
862     llvm_unreachable("Unable to get last definition.");
863   };
864 
865   // Get nearest IDom given a set of blocks.
866   // TODO: this can be optimized by starting the search at the node with the
867   // lowest level (highest in the tree).
868   auto FindNearestCommonDominator =
869       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
870     BasicBlock *PrevIDom = *BBSet.begin();
871     for (auto *BB : BBSet)
872       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
873     return PrevIDom;
874   };
875 
876   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
877   // include CurrIDom.
878   auto GetNoLongerDomBlocks =
879       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
880           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
881         if (PrevIDom == CurrIDom)
882           return;
883         BlocksPrevDom.push_back(PrevIDom);
884         BasicBlock *NextIDom = PrevIDom;
885         while (BasicBlock *UpIDom =
886                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
887           if (UpIDom == CurrIDom)
888             break;
889           BlocksPrevDom.push_back(UpIDom);
890           NextIDom = UpIDom;
891         }
892       };
893 
894   // Map a BB to its predecessors: added + previously existing. To get a
895   // deterministic order, store predecessors as SetVectors. The order in each
896   // will be defined by the order in Updates (fixed) and the order given by
897   // children<> (also fixed). Since we further iterate over these ordered sets,
898   // we lose the information of multiple edges possibly existing between two
899   // blocks, so we'll keep and EdgeCount map for that.
900   // An alternate implementation could keep unordered set for the predecessors,
901   // traverse either Updates or children<> each time to get  the deterministic
902   // order, and drop the usage of EdgeCount. This alternate approach would still
903   // require querying the maps for each predecessor, and children<> call has
904   // additional computation inside for creating the snapshot-graph predecessors.
905   // As such, we favor using a little additional storage and less compute time.
906   // This decision can be revisited if we find the alternative more favorable.
907 
908   struct PredInfo {
909     SmallSetVector<BasicBlock *, 2> Added;
910     SmallSetVector<BasicBlock *, 2> Prev;
911   };
912   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
913 
914   for (auto &Edge : Updates) {
915     BasicBlock *BB = Edge.getTo();
916     auto &AddedBlockSet = PredMap[BB].Added;
917     AddedBlockSet.insert(Edge.getFrom());
918   }
919 
920   // Store all existing predecessor for each BB, at least one must exist.
921   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
922   SmallPtrSet<BasicBlock *, 2> NewBlocks;
923   for (auto &BBPredPair : PredMap) {
924     auto *BB = BBPredPair.first;
925     const auto &AddedBlockSet = BBPredPair.second.Added;
926     auto &PrevBlockSet = BBPredPair.second.Prev;
927     for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
928       BasicBlock *Pi = Pair.second;
929       if (!AddedBlockSet.count(Pi))
930         PrevBlockSet.insert(Pi);
931       EdgeCountMap[{Pi, BB}]++;
932     }
933 
934     if (PrevBlockSet.empty()) {
935       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
936       LLVM_DEBUG(
937           dbgs()
938           << "Adding a predecessor to a block with no predecessors. "
939              "This must be an edge added to a new, likely cloned, block. "
940              "Its memory accesses must be already correct, assuming completed "
941              "via the updateExitBlocksForClonedLoop API. "
942              "Assert a single such edge is added so no phi addition or "
943              "additional processing is required.\n");
944       assert(AddedBlockSet.size() == 1 &&
945              "Can only handle adding one predecessor to a new block.");
946       // Need to remove new blocks from PredMap. Remove below to not invalidate
947       // iterator here.
948       NewBlocks.insert(BB);
949     }
950   }
951   // Nothing to process for new/cloned blocks.
952   for (auto *BB : NewBlocks)
953     PredMap.erase(BB);
954 
955   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
956   SmallVector<WeakVH, 8> InsertedPhis;
957 
958   // First create MemoryPhis in all blocks that don't have one. Create in the
959   // order found in Updates, not in PredMap, to get deterministic numbering.
960   for (auto &Edge : Updates) {
961     BasicBlock *BB = Edge.getTo();
962     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
963       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
964   }
965 
966   // Now we'll fill in the MemoryPhis with the right incoming values.
967   for (auto &BBPredPair : PredMap) {
968     auto *BB = BBPredPair.first;
969     const auto &PrevBlockSet = BBPredPair.second.Prev;
970     const auto &AddedBlockSet = BBPredPair.second.Added;
971     assert(!PrevBlockSet.empty() &&
972            "At least one previous predecessor must exist.");
973 
974     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
975     // keeping this map before the loop. We can reuse already populated entries
976     // if an edge is added from the same predecessor to two different blocks,
977     // and this does happen in rotate. Note that the map needs to be updated
978     // when deleting non-necessary phis below, if the phi is in the map by
979     // replacing the value with DefP1.
980     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
981     for (auto *AddedPred : AddedBlockSet) {
982       auto *DefPn = GetLastDef(AddedPred);
983       assert(DefPn != nullptr && "Unable to find last definition.");
984       LastDefAddedPred[AddedPred] = DefPn;
985     }
986 
987     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
988     // If Phi is not empty, add an incoming edge from each added pred. Must
989     // still compute blocks with defs to replace for this block below.
990     if (NewPhi->getNumOperands()) {
991       for (auto *Pred : AddedBlockSet) {
992         auto *LastDefForPred = LastDefAddedPred[Pred];
993         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
994           NewPhi->addIncoming(LastDefForPred, Pred);
995       }
996     } else {
997       // Pick any existing predecessor and get its definition. All other
998       // existing predecessors should have the same one, since no phi existed.
999       auto *P1 = *PrevBlockSet.begin();
1000       MemoryAccess *DefP1 = GetLastDef(P1);
1001 
1002       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1003       // nothing to add.
1004       bool InsertPhi = false;
1005       for (auto LastDefPredPair : LastDefAddedPred)
1006         if (DefP1 != LastDefPredPair.second) {
1007           InsertPhi = true;
1008           break;
1009         }
1010       if (!InsertPhi) {
1011         // Since NewPhi may be used in other newly added Phis, replace all uses
1012         // of NewPhi with the definition coming from all predecessors (DefP1),
1013         // before deleting it.
1014         NewPhi->replaceAllUsesWith(DefP1);
1015         removeMemoryAccess(NewPhi);
1016         continue;
1017       }
1018 
1019       // Update Phi with new values for new predecessors and old value for all
1020       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1021       // sets, the order of entries in NewPhi is deterministic.
1022       for (auto *Pred : AddedBlockSet) {
1023         auto *LastDefForPred = LastDefAddedPred[Pred];
1024         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1025           NewPhi->addIncoming(LastDefForPred, Pred);
1026       }
1027       for (auto *Pred : PrevBlockSet)
1028         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1029           NewPhi->addIncoming(DefP1, Pred);
1030     }
1031 
1032     // Get all blocks that used to dominate BB and no longer do after adding
1033     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1034     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1035     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1036     assert(PrevIDom && "Previous IDom should exists");
1037     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1038     assert(NewIDom && "BB should have a new valid idom");
1039     assert(DT.dominates(NewIDom, PrevIDom) &&
1040            "New idom should dominate old idom");
1041     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1042   }
1043 
1044   tryRemoveTrivialPhis(InsertedPhis);
1045   // Create the set of blocks that now have a definition. We'll use this to
1046   // compute IDF and add Phis there next.
1047   SmallVector<BasicBlock *, 8> BlocksToProcess;
1048   for (auto &VH : InsertedPhis)
1049     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1050       BlocksToProcess.push_back(MPhi->getBlock());
1051 
1052   // Compute IDF and add Phis in all IDF blocks that do not have one.
1053   SmallVector<BasicBlock *, 32> IDFBlocks;
1054   if (!BlocksToProcess.empty()) {
1055     ForwardIDFCalculator IDFs(DT, GD);
1056     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1057                                                  BlocksToProcess.end());
1058     IDFs.setDefiningBlocks(DefiningBlocks);
1059     IDFs.calculate(IDFBlocks);
1060 
1061     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1062     // First create all needed Phis.
1063     for (auto *BBIDF : IDFBlocks)
1064       if (!MSSA->getMemoryAccess(BBIDF)) {
1065         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1066         InsertedPhis.push_back(IDFPhi);
1067         PhisToFill.insert(IDFPhi);
1068       }
1069     // Then update or insert their correct incoming values.
1070     for (auto *BBIDF : IDFBlocks) {
1071       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1072       assert(IDFPhi && "Phi must exist");
1073       if (!PhisToFill.count(IDFPhi)) {
1074         // Update existing Phi.
1075         // FIXME: some updates may be redundant, try to optimize and skip some.
1076         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1077           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1078       } else {
1079         for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1080           BasicBlock *Pi = Pair.second;
1081           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1082         }
1083       }
1084     }
1085   }
1086 
1087   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1088   // longer dominate, replace those with the closest dominating def.
1089   // This will also update optimized accesses, as they're also uses.
1090   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1091     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1092       for (auto &DefToReplaceUses : *DefsList) {
1093         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1094         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1095                             E = DefToReplaceUses.use_end();
1096         for (; UI != E;) {
1097           Use &U = *UI;
1098           ++UI;
1099           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1100           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1101             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1102             if (!DT.dominates(DominatingBlock, DominatedBlock))
1103               U.set(GetLastDef(DominatedBlock));
1104           } else {
1105             BasicBlock *DominatedBlock = Usr->getBlock();
1106             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1107               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1108                 U.set(DomBlPhi);
1109               else {
1110                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1111                 assert(IDom && "Block must have a valid IDom.");
1112                 U.set(GetLastDef(IDom->getBlock()));
1113               }
1114               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1115             }
1116           }
1117         }
1118       }
1119     }
1120   }
1121   tryRemoveTrivialPhis(InsertedPhis);
1122 }
1123 
1124 // Move What before Where in the MemorySSA IR.
1125 template <class WhereType>
1126 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1127                               WhereType Where) {
1128   // Mark MemoryPhi users of What not to be optimized.
1129   for (auto *U : What->users())
1130     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1131       NonOptPhis.insert(PhiUser);
1132 
1133   // Replace all our users with our defining access.
1134   What->replaceAllUsesWith(What->getDefiningAccess());
1135 
1136   // Let MemorySSA take care of moving it around in the lists.
1137   MSSA->moveTo(What, BB, Where);
1138 
1139   // Now reinsert it into the IR and do whatever fixups needed.
1140   if (auto *MD = dyn_cast<MemoryDef>(What))
1141     insertDef(MD, /*RenameUses=*/true);
1142   else
1143     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1144 
1145   // Clear dangling pointers. We added all MemoryPhi users, but not all
1146   // of them are removed by fixupDefs().
1147   NonOptPhis.clear();
1148 }
1149 
1150 // Move What before Where in the MemorySSA IR.
1151 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1152   moveTo(What, Where->getBlock(), Where->getIterator());
1153 }
1154 
1155 // Move What after Where in the MemorySSA IR.
1156 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1157   moveTo(What, Where->getBlock(), ++Where->getIterator());
1158 }
1159 
1160 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1161                                    MemorySSA::InsertionPlace Where) {
1162   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1163     return moveTo(What, BB, Where);
1164 
1165   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1166     return moveBefore(What, Where);
1167   else
1168     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1169 }
1170 
1171 // All accesses in To used to be in From. Move to end and update access lists.
1172 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1173                                        Instruction *Start) {
1174 
1175   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1176   if (!Accs)
1177     return;
1178 
1179   assert(Start->getParent() == To && "Incorrect Start instruction");
1180   MemoryAccess *FirstInNew = nullptr;
1181   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1182     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1183       break;
1184   if (FirstInNew) {
1185     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1186     do {
1187       auto NextIt = ++MUD->getIterator();
1188       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1189                                     ? nullptr
1190                                     : cast<MemoryUseOrDef>(&*NextIt);
1191       MSSA->moveTo(MUD, To, MemorySSA::End);
1192       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1193       // to retrieve it again.
1194       Accs = MSSA->getWritableBlockAccesses(From);
1195       MUD = NextMUD;
1196     } while (MUD);
1197   }
1198 
1199   // If all accesses were moved and only a trivial Phi remains, we try to remove
1200   // that Phi. This is needed when From is going to be deleted.
1201   auto *Defs = MSSA->getWritableBlockDefs(From);
1202   if (Defs && !Defs->empty())
1203     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1204       tryRemoveTrivialPhi(Phi);
1205 }
1206 
1207 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1208                                                 BasicBlock *To,
1209                                                 Instruction *Start) {
1210   assert(MSSA->getBlockAccesses(To) == nullptr &&
1211          "To block is expected to be free of MemoryAccesses.");
1212   moveAllAccesses(From, To, Start);
1213   for (BasicBlock *Succ : successors(To))
1214     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1215       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1216 }
1217 
1218 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1219                                                Instruction *Start) {
1220   assert(From->getUniquePredecessor() == To &&
1221          "From block is expected to have a single predecessor (To).");
1222   moveAllAccesses(From, To, Start);
1223   for (BasicBlock *Succ : successors(From))
1224     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1225       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1226 }
1227 
1228 /// If all arguments of a MemoryPHI are defined by the same incoming
1229 /// argument, return that argument.
1230 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1231   MemoryAccess *MA = nullptr;
1232 
1233   for (auto &Arg : MP->operands()) {
1234     if (!MA)
1235       MA = cast<MemoryAccess>(Arg);
1236     else if (MA != Arg)
1237       return nullptr;
1238   }
1239   return MA;
1240 }
1241 
1242 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1243     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1244     bool IdenticalEdgesWereMerged) {
1245   assert(!MSSA->getWritableBlockAccesses(New) &&
1246          "Access list should be null for a new block.");
1247   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1248   if (!Phi)
1249     return;
1250   if (Old->hasNPredecessors(1)) {
1251     assert(pred_size(New) == Preds.size() &&
1252            "Should have moved all predecessors.");
1253     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1254   } else {
1255     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1256                              "new immediate predecessor.");
1257     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1258     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1259     // Currently only support the case of removing a single incoming edge when
1260     // identical edges were not merged.
1261     if (!IdenticalEdgesWereMerged)
1262       assert(PredsSet.size() == Preds.size() &&
1263              "If identical edges were not merged, we cannot have duplicate "
1264              "blocks in the predecessors");
1265     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1266       if (PredsSet.count(B)) {
1267         NewPhi->addIncoming(MA, B);
1268         if (!IdenticalEdgesWereMerged)
1269           PredsSet.erase(B);
1270         return true;
1271       }
1272       return false;
1273     });
1274     Phi->addIncoming(NewPhi, New);
1275     tryRemoveTrivialPhi(NewPhi);
1276   }
1277 }
1278 
1279 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1280   assert(!MSSA->isLiveOnEntryDef(MA) &&
1281          "Trying to remove the live on entry def");
1282   // We can only delete phi nodes if they have no uses, or we can replace all
1283   // uses with a single definition.
1284   MemoryAccess *NewDefTarget = nullptr;
1285   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1286     // Note that it is sufficient to know that all edges of the phi node have
1287     // the same argument.  If they do, by the definition of dominance frontiers
1288     // (which we used to place this phi), that argument must dominate this phi,
1289     // and thus, must dominate the phi's uses, and so we will not hit the assert
1290     // below.
1291     NewDefTarget = onlySingleValue(MP);
1292     assert((NewDefTarget || MP->use_empty()) &&
1293            "We can't delete this memory phi");
1294   } else {
1295     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1296   }
1297 
1298   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1299 
1300   // Re-point the uses at our defining access
1301   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1302     // Reset optimized on users of this store, and reset the uses.
1303     // A few notes:
1304     // 1. This is a slightly modified version of RAUW to avoid walking the
1305     // uses twice here.
1306     // 2. If we wanted to be complete, we would have to reset the optimized
1307     // flags on users of phi nodes if doing the below makes a phi node have all
1308     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1309     // phi nodes, because doing it here would be N^3.
1310     if (MA->hasValueHandle())
1311       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1312     // Note: We assume MemorySSA is not used in metadata since it's not really
1313     // part of the IR.
1314 
1315     while (!MA->use_empty()) {
1316       Use &U = *MA->use_begin();
1317       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1318         MUD->resetOptimized();
1319       if (OptimizePhis)
1320         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1321           PhisToCheck.insert(MP);
1322       U.set(NewDefTarget);
1323     }
1324   }
1325 
1326   // The call below to erase will destroy MA, so we can't change the order we
1327   // are doing things here
1328   MSSA->removeFromLookups(MA);
1329   MSSA->removeFromLists(MA);
1330 
1331   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1332   if (!PhisToCheck.empty()) {
1333     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1334                                            PhisToCheck.end()};
1335     PhisToCheck.clear();
1336 
1337     unsigned PhisSize = PhisToOptimize.size();
1338     while (PhisSize-- > 0)
1339       if (MemoryPhi *MP =
1340               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1341         tryRemoveTrivialPhi(MP);
1342   }
1343 }
1344 
1345 void MemorySSAUpdater::removeBlocks(
1346     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1347   // First delete all uses of BB in MemoryPhis.
1348   for (BasicBlock *BB : DeadBlocks) {
1349     Instruction *TI = BB->getTerminator();
1350     assert(TI && "Basic block expected to have a terminator instruction");
1351     for (BasicBlock *Succ : successors(TI))
1352       if (!DeadBlocks.count(Succ))
1353         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1354           MP->unorderedDeleteIncomingBlock(BB);
1355           tryRemoveTrivialPhi(MP);
1356         }
1357     // Drop all references of all accesses in BB
1358     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1359       for (MemoryAccess &MA : *Acc)
1360         MA.dropAllReferences();
1361   }
1362 
1363   // Next, delete all memory accesses in each block
1364   for (BasicBlock *BB : DeadBlocks) {
1365     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1366     if (!Acc)
1367       continue;
1368     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1369       MemoryAccess *MA = &*AB;
1370       ++AB;
1371       MSSA->removeFromLookups(MA);
1372       MSSA->removeFromLists(MA);
1373     }
1374   }
1375 }
1376 
1377 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1378   for (auto &VH : UpdatedPHIs)
1379     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1380       tryRemoveTrivialPhi(MPhi);
1381 }
1382 
1383 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1384   const BasicBlock *BB = I->getParent();
1385   // Remove memory accesses in BB for I and all following instructions.
1386   auto BBI = I->getIterator(), BBE = BB->end();
1387   // FIXME: If this becomes too expensive, iterate until the first instruction
1388   // with a memory access, then iterate over MemoryAccesses.
1389   while (BBI != BBE)
1390     removeMemoryAccess(&*(BBI++));
1391   // Update phis in BB's successors to remove BB.
1392   SmallVector<WeakVH, 16> UpdatedPHIs;
1393   for (const BasicBlock *Successor : successors(BB)) {
1394     removeDuplicatePhiEdgesBetween(BB, Successor);
1395     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1396       MPhi->unorderedDeleteIncomingBlock(BB);
1397       UpdatedPHIs.push_back(MPhi);
1398     }
1399   }
1400   // Optimize trivial phis.
1401   tryRemoveTrivialPhis(UpdatedPHIs);
1402 }
1403 
1404 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1405                                                          const BasicBlock *To) {
1406   const BasicBlock *BB = BI->getParent();
1407   SmallVector<WeakVH, 16> UpdatedPHIs;
1408   for (const BasicBlock *Succ : successors(BB)) {
1409     removeDuplicatePhiEdgesBetween(BB, Succ);
1410     if (Succ != To)
1411       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1412         MPhi->unorderedDeleteIncomingBlock(BB);
1413         UpdatedPHIs.push_back(MPhi);
1414       }
1415   }
1416   // Optimize trivial phis.
1417   tryRemoveTrivialPhis(UpdatedPHIs);
1418 }
1419 
1420 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1421     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1422     MemorySSA::InsertionPlace Point) {
1423   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1424   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1425   return NewAccess;
1426 }
1427 
1428 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1429     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1430   assert(I->getParent() == InsertPt->getBlock() &&
1431          "New and old access must be in the same block");
1432   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1433   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1434                               InsertPt->getIterator());
1435   return NewAccess;
1436 }
1437 
1438 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1439     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1440   assert(I->getParent() == InsertPt->getBlock() &&
1441          "New and old access must be in the same block");
1442   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1443   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1444                               ++InsertPt->getIterator());
1445   return NewAccess;
1446 }
1447