xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSAUpdater.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   InsertedPHIs.clear();
247   MU->setDefiningAccess(getPreviousDef(MU));
248 
249   // In cases without unreachable blocks, because uses do not create new
250   // may-defs, there are only two cases:
251   // 1. There was a def already below us, and therefore, we should not have
252   // created a phi node because it was already needed for the def.
253   //
254   // 2. There is no def below us, and therefore, there is no extra renaming work
255   // to do.
256 
257   // In cases with unreachable blocks, where the unnecessary Phis were
258   // optimized out, adding the Use may re-insert those Phis. Hence, when
259   // inserting Uses outside of the MSSA creation process, and new Phis were
260   // added, rename all uses if we are asked.
261 
262   if (!RenameUses && !InsertedPHIs.empty()) {
263     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
264     (void)Defs;
265     assert((!Defs || (++Defs->begin() == Defs->end())) &&
266            "Block may have only a Phi or no defs");
267   }
268 
269   if (RenameUses && InsertedPHIs.size()) {
270     SmallPtrSet<BasicBlock *, 16> Visited;
271     BasicBlock *StartBlock = MU->getBlock();
272 
273     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
274       MemoryAccess *FirstDef = &*Defs->begin();
275       // Convert to incoming value if it's a memorydef. A phi *is* already an
276       // incoming value.
277       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
278         FirstDef = MD->getDefiningAccess();
279 
280       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
281     }
282     // We just inserted a phi into this block, so the incoming value will
283     // become the phi anyway, so it does not matter what we pass.
284     for (auto &MP : InsertedPHIs)
285       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
286         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
287   }
288 }
289 
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
292                                       MemoryAccess *NewDef) {
293   // Replace any operand with us an incoming block with the new defining
294   // access.
295   int i = MP->getBasicBlockIndex(BB);
296   assert(i != -1 && "Should have found the basic block in the phi");
297   // We can't just compare i against getNumOperands since one is signed and the
298   // other not. So use it to index into the block iterator.
299   for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) {
300     if (BlockBB != BB)
301       break;
302     MP->setIncomingValue(i, NewDef);
303     ++i;
304   }
305 }
306 
307 // A brief description of the algorithm:
308 // First, we compute what should define the new def, using the SSA
309 // construction algorithm.
310 // Then, we update the defs below us (and any new phi nodes) in the graph to
311 // point to the correct new defs, to ensure we only have one variable, and no
312 // disconnected stores.
313 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
314   InsertedPHIs.clear();
315 
316   // See if we had a local def, and if not, go hunting.
317   MemoryAccess *DefBefore = getPreviousDef(MD);
318   bool DefBeforeSameBlock = false;
319   if (DefBefore->getBlock() == MD->getBlock() &&
320       !(isa<MemoryPhi>(DefBefore) &&
321         llvm::is_contained(InsertedPHIs, DefBefore)))
322     DefBeforeSameBlock = true;
323 
324   // There is a def before us, which means we can replace any store/phi uses
325   // of that thing with us, since we are in the way of whatever was there
326   // before.
327   // We now define that def's memorydefs and memoryphis
328   if (DefBeforeSameBlock) {
329     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
330       // Leave the MemoryUses alone.
331       // Also make sure we skip ourselves to avoid self references.
332       User *Usr = U.getUser();
333       return !isa<MemoryUse>(Usr) && Usr != MD;
334       // Defs are automatically unoptimized when the user is set to MD below,
335       // because the isOptimized() call will fail to find the same ID.
336     });
337   }
338 
339   // and that def is now our defining access.
340   MD->setDefiningAccess(DefBefore);
341 
342   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
343 
344   SmallSet<WeakVH, 8> ExistingPhis;
345 
346   // Remember the index where we may insert new phis.
347   unsigned NewPhiIndex = InsertedPHIs.size();
348   if (!DefBeforeSameBlock) {
349     // If there was a local def before us, we must have the same effect it
350     // did. Because every may-def is the same, any phis/etc we would create, it
351     // would also have created.  If there was no local def before us, we
352     // performed a global update, and have to search all successors and make
353     // sure we update the first def in each of them (following all paths until
354     // we hit the first def along each path). This may also insert phi nodes.
355     // TODO: There are other cases we can skip this work, such as when we have a
356     // single successor, and only used a straight line of single pred blocks
357     // backwards to find the def.  To make that work, we'd have to track whether
358     // getDefRecursive only ever used the single predecessor case.  These types
359     // of paths also only exist in between CFG simplifications.
360 
361     // If this is the first def in the block and this insert is in an arbitrary
362     // place, compute IDF and place phis.
363     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
364 
365     // If this is the last Def in the block, we may need additional Phis.
366     // Compute IDF in all cases, as renaming needs to be done even when MD is
367     // not the last access, because it can introduce a new access past which a
368     // previous access was optimized; that access needs to be reoptimized.
369     DefiningBlocks.insert(MD->getBlock());
370     for (const auto &VH : InsertedPHIs)
371       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
372         DefiningBlocks.insert(RealPHI->getBlock());
373     ForwardIDFCalculator IDFs(*MSSA->DT);
374     SmallVector<BasicBlock *, 32> IDFBlocks;
375     IDFs.setDefiningBlocks(DefiningBlocks);
376     IDFs.calculate(IDFBlocks);
377     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
378     for (auto *BBIDF : IDFBlocks) {
379       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
380       if (!MPhi) {
381         MPhi = MSSA->createMemoryPhi(BBIDF);
382         NewInsertedPHIs.push_back(MPhi);
383       } else {
384         ExistingPhis.insert(MPhi);
385       }
386       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
387       // optimized out as trivial by the call to getPreviousDefFromEnd below.
388       // Once they are complete, all these Phis are added to the FixupList, and
389       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
390       // need fixing as well, and potentially be trivial before this insertion,
391       // hence add all IDF Phis. See PR43044.
392       NonOptPhis.insert(MPhi);
393     }
394     for (auto &MPhi : NewInsertedPHIs) {
395       auto *BBIDF = MPhi->getBlock();
396       for (auto *Pred : predecessors(BBIDF)) {
397         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
398         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
399       }
400     }
401 
402     // Re-take the index where we're adding the new phis, because the above call
403     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
404     NewPhiIndex = InsertedPHIs.size();
405     for (auto &MPhi : NewInsertedPHIs) {
406       InsertedPHIs.push_back(&*MPhi);
407       FixupList.push_back(&*MPhi);
408     }
409 
410     FixupList.push_back(MD);
411   }
412 
413   // Remember the index where we stopped inserting new phis above, since the
414   // fixupDefs call in the loop below may insert more, that are already minimal.
415   unsigned NewPhiIndexEnd = InsertedPHIs.size();
416 
417   while (!FixupList.empty()) {
418     unsigned StartingPHISize = InsertedPHIs.size();
419     fixupDefs(FixupList);
420     FixupList.clear();
421     // Put any new phis on the fixup list, and process them
422     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
423   }
424 
425   // Optimize potentially non-minimal phis added in this method.
426   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
427   if (NewPhiSize)
428     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
429 
430   // Now that all fixups are done, rename all uses if we are asked. Skip
431   // renaming for defs in unreachable blocks.
432   BasicBlock *StartBlock = MD->getBlock();
433   if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) {
434     SmallPtrSet<BasicBlock *, 16> Visited;
435     // We are guaranteed there is a def in the block, because we just got it
436     // handed to us in this function.
437     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
438     // Convert to incoming value if it's a memorydef. A phi *is* already an
439     // incoming value.
440     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
441       FirstDef = MD->getDefiningAccess();
442 
443     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
444     // We just inserted a phi into this block, so the incoming value will become
445     // the phi anyway, so it does not matter what we pass.
446     for (auto &MP : InsertedPHIs) {
447       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
448       if (Phi)
449         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
450     }
451     // Existing Phi blocks may need renaming too, if an access was previously
452     // optimized and the inserted Defs "covers" the Optimized value.
453     for (auto &MP : ExistingPhis) {
454       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
455       if (Phi)
456         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
457     }
458   }
459 }
460 
461 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
462   SmallPtrSet<const BasicBlock *, 8> Seen;
463   SmallVector<const BasicBlock *, 16> Worklist;
464   for (auto &Var : Vars) {
465     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
466     if (!NewDef)
467       continue;
468     // First, see if there is a local def after the operand.
469     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
470     auto DefIter = NewDef->getDefsIterator();
471 
472     // The temporary Phi is being fixed, unmark it for not to optimize.
473     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
474       NonOptPhis.erase(Phi);
475 
476     // If there is a local def after us, we only have to rename that.
477     if (++DefIter != Defs->end()) {
478       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
479       continue;
480     }
481 
482     // Otherwise, we need to search down through the CFG.
483     // For each of our successors, handle it directly if their is a phi, or
484     // place on the fixup worklist.
485     for (const auto *S : successors(NewDef->getBlock())) {
486       if (auto *MP = MSSA->getMemoryAccess(S))
487         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
488       else
489         Worklist.push_back(S);
490     }
491 
492     while (!Worklist.empty()) {
493       const BasicBlock *FixupBlock = Worklist.pop_back_val();
494 
495       // Get the first def in the block that isn't a phi node.
496       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
497         auto *FirstDef = &*Defs->begin();
498         // The loop above and below should have taken care of phi nodes
499         assert(!isa<MemoryPhi>(FirstDef) &&
500                "Should have already handled phi nodes!");
501         // We are now this def's defining access, make sure we actually dominate
502         // it
503         assert(MSSA->dominates(NewDef, FirstDef) &&
504                "Should have dominated the new access");
505 
506         // This may insert new phi nodes, because we are not guaranteed the
507         // block we are processing has a single pred, and depending where the
508         // store was inserted, it may require phi nodes below it.
509         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
510         return;
511       }
512       // We didn't find a def, so we must continue.
513       for (const auto *S : successors(FixupBlock)) {
514         // If there is a phi node, handle it.
515         // Otherwise, put the block on the worklist
516         if (auto *MP = MSSA->getMemoryAccess(S))
517           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
518         else {
519           // If we cycle, we should have ended up at a phi node that we already
520           // processed.  FIXME: Double check this
521           if (!Seen.insert(S).second)
522             continue;
523           Worklist.push_back(S);
524         }
525       }
526     }
527   }
528 }
529 
530 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
531   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
532     MPhi->unorderedDeleteIncomingBlock(From);
533     tryRemoveTrivialPhi(MPhi);
534   }
535 }
536 
537 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
538                                                       const BasicBlock *To) {
539   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
540     bool Found = false;
541     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
542       if (From != B)
543         return false;
544       if (Found)
545         return true;
546       Found = true;
547       return false;
548     });
549     tryRemoveTrivialPhi(MPhi);
550   }
551 }
552 
553 /// If all arguments of a MemoryPHI are defined by the same incoming
554 /// argument, return that argument.
555 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
556   MemoryAccess *MA = nullptr;
557 
558   for (auto &Arg : MP->operands()) {
559     if (!MA)
560       MA = cast<MemoryAccess>(Arg);
561     else if (MA != Arg)
562       return nullptr;
563   }
564   return MA;
565 }
566 
567 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
568                                                   const ValueToValueMapTy &VMap,
569                                                   PhiToDefMap &MPhiMap,
570                                                   bool CloneWasSimplified,
571                                                   MemorySSA *MSSA) {
572   MemoryAccess *InsnDefining = MA;
573   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
574     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
575       Instruction *DefMUDI = DefMUD->getMemoryInst();
576       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
577       if (Instruction *NewDefMUDI =
578               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
579         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
580         if (!CloneWasSimplified)
581           assert(InsnDefining && "Defining instruction cannot be nullptr.");
582         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
583           // The clone was simplified, it's no longer a MemoryDef, look up.
584           auto DefIt = DefMUD->getDefsIterator();
585           // Since simplified clones only occur in single block cloning, a
586           // previous definition must exist, otherwise NewDefMUDI would not
587           // have been found in VMap.
588           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
589                  "Previous def must exist");
590           InsnDefining = getNewDefiningAccessForClone(
591               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
592         }
593       }
594     }
595   } else {
596     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
597     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
598       InsnDefining = NewDefPhi;
599   }
600   assert(InsnDefining && "Defining instruction cannot be nullptr.");
601   return InsnDefining;
602 }
603 
604 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
605                                         const ValueToValueMapTy &VMap,
606                                         PhiToDefMap &MPhiMap,
607                                         bool CloneWasSimplified) {
608   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
609   if (!Acc)
610     return;
611   for (const MemoryAccess &MA : *Acc) {
612     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
613       Instruction *Insn = MUD->getMemoryInst();
614       // Entry does not exist if the clone of the block did not clone all
615       // instructions. This occurs in LoopRotate when cloning instructions
616       // from the old header to the old preheader. The cloned instruction may
617       // also be a simplified Value, not an Instruction (see LoopRotate).
618       // Also in LoopRotate, even when it's an instruction, due to it being
619       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
620       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
621       if (Instruction *NewInsn =
622               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
623         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
624             NewInsn,
625             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
626                                          MPhiMap, CloneWasSimplified, MSSA),
627             /*Template=*/CloneWasSimplified ? nullptr : MUD,
628             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
629         if (NewUseOrDef)
630           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
631       }
632     }
633   }
634 }
635 
636 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
637     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
638   auto *MPhi = MSSA->getMemoryAccess(Header);
639   if (!MPhi)
640     return;
641 
642   // Create phi node in the backedge block and populate it with the same
643   // incoming values as MPhi. Skip incoming values coming from Preheader.
644   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
645   bool HasUniqueIncomingValue = true;
646   MemoryAccess *UniqueValue = nullptr;
647   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
648     BasicBlock *IBB = MPhi->getIncomingBlock(I);
649     MemoryAccess *IV = MPhi->getIncomingValue(I);
650     if (IBB != Preheader) {
651       NewMPhi->addIncoming(IV, IBB);
652       if (HasUniqueIncomingValue) {
653         if (!UniqueValue)
654           UniqueValue = IV;
655         else if (UniqueValue != IV)
656           HasUniqueIncomingValue = false;
657       }
658     }
659   }
660 
661   // Update incoming edges into MPhi. Remove all but the incoming edge from
662   // Preheader. Add an edge from NewMPhi
663   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
664   MPhi->setIncomingValue(0, AccFromPreheader);
665   MPhi->setIncomingBlock(0, Preheader);
666   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
667     MPhi->unorderedDeleteIncoming(I);
668   MPhi->addIncoming(NewMPhi, BEBlock);
669 
670   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
671   // replaced with the unique value.
672   tryRemoveTrivialPhi(NewMPhi);
673 }
674 
675 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
676                                            ArrayRef<BasicBlock *> ExitBlocks,
677                                            const ValueToValueMapTy &VMap,
678                                            bool IgnoreIncomingWithNoClones) {
679   PhiToDefMap MPhiMap;
680 
681   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
682     assert(Phi && NewPhi && "Invalid Phi nodes.");
683     BasicBlock *NewPhiBB = NewPhi->getBlock();
684     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
685                                                pred_end(NewPhiBB));
686     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
687       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
688       BasicBlock *IncBB = Phi->getIncomingBlock(It);
689 
690       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
691         IncBB = NewIncBB;
692       else if (IgnoreIncomingWithNoClones)
693         continue;
694 
695       // Now we have IncBB, and will need to add incoming from it to NewPhi.
696 
697       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
698       // NewPhiBB was cloned without that edge.
699       if (!NewPhiBBPreds.count(IncBB))
700         continue;
701 
702       // Determine incoming value and add it as incoming from IncBB.
703       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
704         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
705           Instruction *IncI = IncMUD->getMemoryInst();
706           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
707           if (Instruction *NewIncI =
708                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
709             IncMUD = MSSA->getMemoryAccess(NewIncI);
710             assert(IncMUD &&
711                    "MemoryUseOrDef cannot be null, all preds processed.");
712           }
713         }
714         NewPhi->addIncoming(IncMUD, IncBB);
715       } else {
716         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
717         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
718           NewPhi->addIncoming(NewDefPhi, IncBB);
719         else
720           NewPhi->addIncoming(IncPhi, IncBB);
721       }
722     }
723     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
724       MPhiMap[Phi] = SingleAccess;
725       removeMemoryAccess(NewPhi);
726     }
727   };
728 
729   auto ProcessBlock = [&](BasicBlock *BB) {
730     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
731     if (!NewBlock)
732       return;
733 
734     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
735            "Cloned block should have no accesses");
736 
737     // Add MemoryPhi.
738     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
739       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
740       MPhiMap[MPhi] = NewPhi;
741     }
742     // Update Uses and Defs.
743     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
744   };
745 
746   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
747     ProcessBlock(BB);
748 
749   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
750     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
751       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
752         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
753 }
754 
755 void MemorySSAUpdater::updateForClonedBlockIntoPred(
756     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
757   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
758   // Since those defs/phis must have dominated BB, and also dominate P1.
759   // Defs from BB being used in BB will be replaced with the cloned defs from
760   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
761   // incoming def into the Phi from P1.
762   // Instructions cloned into the predecessor are in practice sometimes
763   // simplified, so disable the use of the template, and create an access from
764   // scratch.
765   PhiToDefMap MPhiMap;
766   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
767     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
768   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
769 }
770 
771 template <typename Iter>
772 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
773     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
774     DominatorTree &DT) {
775   SmallVector<CFGUpdate, 4> Updates;
776   // Update/insert phis in all successors of exit blocks.
777   for (auto *Exit : ExitBlocks)
778     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
779       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
780         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
781         Updates.push_back({DT.Insert, NewExit, ExitSucc});
782       }
783   applyInsertUpdates(Updates, DT);
784 }
785 
786 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
787     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
788     DominatorTree &DT) {
789   const ValueToValueMapTy *const Arr[] = {&VMap};
790   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
791                                        std::end(Arr), DT);
792 }
793 
794 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
795     ArrayRef<BasicBlock *> ExitBlocks,
796     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
797   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
798     return I.get();
799   };
800   using MappedIteratorType =
801       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
802                       decltype(GetPtr)>;
803   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
804   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
805   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
806 }
807 
808 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
809                                     DominatorTree &DT, bool UpdateDT) {
810   SmallVector<CFGUpdate, 4> DeleteUpdates;
811   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
812   SmallVector<CFGUpdate, 4> InsertUpdates;
813   for (auto &Update : Updates) {
814     if (Update.getKind() == DT.Insert)
815       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
816     else {
817       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
818       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
819     }
820   }
821 
822   if (!DeleteUpdates.empty()) {
823     if (!InsertUpdates.empty()) {
824       if (!UpdateDT) {
825         SmallVector<CFGUpdate, 0> Empty;
826         // Deletes are reversed applied, because this CFGView is pretending the
827         // deletes did not happen yet, hence the edges still exist.
828         DT.applyUpdates(Empty, RevDeleteUpdates);
829       } else {
830         // Apply all updates, with the RevDeleteUpdates as PostCFGView.
831         DT.applyUpdates(Updates, RevDeleteUpdates);
832       }
833 
834       // Note: the MSSA update below doesn't distinguish between a GD with
835       // (RevDelete,false) and (Delete, true), but this matters for the DT
836       // updates above; for "children" purposes they are equivalent; but the
837       // updates themselves convey the desired update, used inside DT only.
838       GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
839       applyInsertUpdates(InsertUpdates, DT, &GD);
840       // Update DT to redelete edges; this matches the real CFG so we can
841       // perform the standard update without a postview of the CFG.
842       DT.applyUpdates(DeleteUpdates);
843     } else {
844       if (UpdateDT)
845         DT.applyUpdates(DeleteUpdates);
846     }
847   } else {
848     if (UpdateDT)
849       DT.applyUpdates(Updates);
850     GraphDiff<BasicBlock *> GD;
851     applyInsertUpdates(InsertUpdates, DT, &GD);
852   }
853 
854   // Update for deleted edges
855   for (auto &Update : DeleteUpdates)
856     removeEdge(Update.getFrom(), Update.getTo());
857 }
858 
859 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
860                                           DominatorTree &DT) {
861   GraphDiff<BasicBlock *> GD;
862   applyInsertUpdates(Updates, DT, &GD);
863 }
864 
865 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
866                                           DominatorTree &DT,
867                                           const GraphDiff<BasicBlock *> *GD) {
868   // Get recursive last Def, assuming well formed MSSA and updated DT.
869   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
870     while (true) {
871       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
872       // Return last Def or Phi in BB, if it exists.
873       if (Defs)
874         return &*(--Defs->end());
875 
876       // Check number of predecessors, we only care if there's more than one.
877       unsigned Count = 0;
878       BasicBlock *Pred = nullptr;
879       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
880         Pred = Pi;
881         Count++;
882         if (Count == 2)
883           break;
884       }
885 
886       // If BB has multiple predecessors, get last definition from IDom.
887       if (Count != 1) {
888         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
889         // DT is invalidated. Return LoE as its last def. This will be added to
890         // MemoryPhi node, and later deleted when the block is deleted.
891         if (!DT.getNode(BB))
892           return MSSA->getLiveOnEntryDef();
893         if (auto *IDom = DT.getNode(BB)->getIDom())
894           if (IDom->getBlock() != BB) {
895             BB = IDom->getBlock();
896             continue;
897           }
898         return MSSA->getLiveOnEntryDef();
899       } else {
900         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
901         assert(Count == 1 && Pred && "Single predecessor expected.");
902         // BB can be unreachable though, return LoE if that is the case.
903         if (!DT.getNode(BB))
904           return MSSA->getLiveOnEntryDef();
905         BB = Pred;
906       }
907     };
908     llvm_unreachable("Unable to get last definition.");
909   };
910 
911   // Get nearest IDom given a set of blocks.
912   // TODO: this can be optimized by starting the search at the node with the
913   // lowest level (highest in the tree).
914   auto FindNearestCommonDominator =
915       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
916     BasicBlock *PrevIDom = *BBSet.begin();
917     for (auto *BB : BBSet)
918       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
919     return PrevIDom;
920   };
921 
922   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
923   // include CurrIDom.
924   auto GetNoLongerDomBlocks =
925       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
926           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
927         if (PrevIDom == CurrIDom)
928           return;
929         BlocksPrevDom.push_back(PrevIDom);
930         BasicBlock *NextIDom = PrevIDom;
931         while (BasicBlock *UpIDom =
932                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
933           if (UpIDom == CurrIDom)
934             break;
935           BlocksPrevDom.push_back(UpIDom);
936           NextIDom = UpIDom;
937         }
938       };
939 
940   // Map a BB to its predecessors: added + previously existing. To get a
941   // deterministic order, store predecessors as SetVectors. The order in each
942   // will be defined by the order in Updates (fixed) and the order given by
943   // children<> (also fixed). Since we further iterate over these ordered sets,
944   // we lose the information of multiple edges possibly existing between two
945   // blocks, so we'll keep and EdgeCount map for that.
946   // An alternate implementation could keep unordered set for the predecessors,
947   // traverse either Updates or children<> each time to get  the deterministic
948   // order, and drop the usage of EdgeCount. This alternate approach would still
949   // require querying the maps for each predecessor, and children<> call has
950   // additional computation inside for creating the snapshot-graph predecessors.
951   // As such, we favor using a little additional storage and less compute time.
952   // This decision can be revisited if we find the alternative more favorable.
953 
954   struct PredInfo {
955     SmallSetVector<BasicBlock *, 2> Added;
956     SmallSetVector<BasicBlock *, 2> Prev;
957   };
958   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
959 
960   for (auto &Edge : Updates) {
961     BasicBlock *BB = Edge.getTo();
962     auto &AddedBlockSet = PredMap[BB].Added;
963     AddedBlockSet.insert(Edge.getFrom());
964   }
965 
966   // Store all existing predecessor for each BB, at least one must exist.
967   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
968   SmallPtrSet<BasicBlock *, 2> NewBlocks;
969   for (auto &BBPredPair : PredMap) {
970     auto *BB = BBPredPair.first;
971     const auto &AddedBlockSet = BBPredPair.second.Added;
972     auto &PrevBlockSet = BBPredPair.second.Prev;
973     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
974       if (!AddedBlockSet.count(Pi))
975         PrevBlockSet.insert(Pi);
976       EdgeCountMap[{Pi, BB}]++;
977     }
978 
979     if (PrevBlockSet.empty()) {
980       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
981       LLVM_DEBUG(
982           dbgs()
983           << "Adding a predecessor to a block with no predecessors. "
984              "This must be an edge added to a new, likely cloned, block. "
985              "Its memory accesses must be already correct, assuming completed "
986              "via the updateExitBlocksForClonedLoop API. "
987              "Assert a single such edge is added so no phi addition or "
988              "additional processing is required.\n");
989       assert(AddedBlockSet.size() == 1 &&
990              "Can only handle adding one predecessor to a new block.");
991       // Need to remove new blocks from PredMap. Remove below to not invalidate
992       // iterator here.
993       NewBlocks.insert(BB);
994     }
995   }
996   // Nothing to process for new/cloned blocks.
997   for (auto *BB : NewBlocks)
998     PredMap.erase(BB);
999 
1000   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
1001   SmallVector<WeakVH, 8> InsertedPhis;
1002 
1003   // First create MemoryPhis in all blocks that don't have one. Create in the
1004   // order found in Updates, not in PredMap, to get deterministic numbering.
1005   for (auto &Edge : Updates) {
1006     BasicBlock *BB = Edge.getTo();
1007     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
1008       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
1009   }
1010 
1011   // Now we'll fill in the MemoryPhis with the right incoming values.
1012   for (auto &BBPredPair : PredMap) {
1013     auto *BB = BBPredPair.first;
1014     const auto &PrevBlockSet = BBPredPair.second.Prev;
1015     const auto &AddedBlockSet = BBPredPair.second.Added;
1016     assert(!PrevBlockSet.empty() &&
1017            "At least one previous predecessor must exist.");
1018 
1019     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
1020     // keeping this map before the loop. We can reuse already populated entries
1021     // if an edge is added from the same predecessor to two different blocks,
1022     // and this does happen in rotate. Note that the map needs to be updated
1023     // when deleting non-necessary phis below, if the phi is in the map by
1024     // replacing the value with DefP1.
1025     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1026     for (auto *AddedPred : AddedBlockSet) {
1027       auto *DefPn = GetLastDef(AddedPred);
1028       assert(DefPn != nullptr && "Unable to find last definition.");
1029       LastDefAddedPred[AddedPred] = DefPn;
1030     }
1031 
1032     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1033     // If Phi is not empty, add an incoming edge from each added pred. Must
1034     // still compute blocks with defs to replace for this block below.
1035     if (NewPhi->getNumOperands()) {
1036       for (auto *Pred : AddedBlockSet) {
1037         auto *LastDefForPred = LastDefAddedPred[Pred];
1038         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1039           NewPhi->addIncoming(LastDefForPred, Pred);
1040       }
1041     } else {
1042       // Pick any existing predecessor and get its definition. All other
1043       // existing predecessors should have the same one, since no phi existed.
1044       auto *P1 = *PrevBlockSet.begin();
1045       MemoryAccess *DefP1 = GetLastDef(P1);
1046 
1047       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1048       // nothing to add.
1049       bool InsertPhi = false;
1050       for (auto LastDefPredPair : LastDefAddedPred)
1051         if (DefP1 != LastDefPredPair.second) {
1052           InsertPhi = true;
1053           break;
1054         }
1055       if (!InsertPhi) {
1056         // Since NewPhi may be used in other newly added Phis, replace all uses
1057         // of NewPhi with the definition coming from all predecessors (DefP1),
1058         // before deleting it.
1059         NewPhi->replaceAllUsesWith(DefP1);
1060         removeMemoryAccess(NewPhi);
1061         continue;
1062       }
1063 
1064       // Update Phi with new values for new predecessors and old value for all
1065       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1066       // sets, the order of entries in NewPhi is deterministic.
1067       for (auto *Pred : AddedBlockSet) {
1068         auto *LastDefForPred = LastDefAddedPred[Pred];
1069         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1070           NewPhi->addIncoming(LastDefForPred, Pred);
1071       }
1072       for (auto *Pred : PrevBlockSet)
1073         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1074           NewPhi->addIncoming(DefP1, Pred);
1075     }
1076 
1077     // Get all blocks that used to dominate BB and no longer do after adding
1078     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1079     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1080     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1081     assert(PrevIDom && "Previous IDom should exists");
1082     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1083     assert(NewIDom && "BB should have a new valid idom");
1084     assert(DT.dominates(NewIDom, PrevIDom) &&
1085            "New idom should dominate old idom");
1086     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1087   }
1088 
1089   tryRemoveTrivialPhis(InsertedPhis);
1090   // Create the set of blocks that now have a definition. We'll use this to
1091   // compute IDF and add Phis there next.
1092   SmallVector<BasicBlock *, 8> BlocksToProcess;
1093   for (auto &VH : InsertedPhis)
1094     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1095       BlocksToProcess.push_back(MPhi->getBlock());
1096 
1097   // Compute IDF and add Phis in all IDF blocks that do not have one.
1098   SmallVector<BasicBlock *, 32> IDFBlocks;
1099   if (!BlocksToProcess.empty()) {
1100     ForwardIDFCalculator IDFs(DT, GD);
1101     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1102                                                  BlocksToProcess.end());
1103     IDFs.setDefiningBlocks(DefiningBlocks);
1104     IDFs.calculate(IDFBlocks);
1105 
1106     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1107     // First create all needed Phis.
1108     for (auto *BBIDF : IDFBlocks)
1109       if (!MSSA->getMemoryAccess(BBIDF)) {
1110         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1111         InsertedPhis.push_back(IDFPhi);
1112         PhisToFill.insert(IDFPhi);
1113       }
1114     // Then update or insert their correct incoming values.
1115     for (auto *BBIDF : IDFBlocks) {
1116       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1117       assert(IDFPhi && "Phi must exist");
1118       if (!PhisToFill.count(IDFPhi)) {
1119         // Update existing Phi.
1120         // FIXME: some updates may be redundant, try to optimize and skip some.
1121         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1122           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1123       } else {
1124         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1125           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1126       }
1127     }
1128   }
1129 
1130   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1131   // longer dominate, replace those with the closest dominating def.
1132   // This will also update optimized accesses, as they're also uses.
1133   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1134     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1135       for (auto &DefToReplaceUses : *DefsList) {
1136         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1137         for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) {
1138           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1139           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1140             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1141             if (!DT.dominates(DominatingBlock, DominatedBlock))
1142               U.set(GetLastDef(DominatedBlock));
1143           } else {
1144             BasicBlock *DominatedBlock = Usr->getBlock();
1145             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1146               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1147                 U.set(DomBlPhi);
1148               else {
1149                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1150                 assert(IDom && "Block must have a valid IDom.");
1151                 U.set(GetLastDef(IDom->getBlock()));
1152               }
1153               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1154             }
1155           }
1156         }
1157       }
1158     }
1159   }
1160   tryRemoveTrivialPhis(InsertedPhis);
1161 }
1162 
1163 // Move What before Where in the MemorySSA IR.
1164 template <class WhereType>
1165 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1166                               WhereType Where) {
1167   // Mark MemoryPhi users of What not to be optimized.
1168   for (auto *U : What->users())
1169     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1170       NonOptPhis.insert(PhiUser);
1171 
1172   // Replace all our users with our defining access.
1173   What->replaceAllUsesWith(What->getDefiningAccess());
1174 
1175   // Let MemorySSA take care of moving it around in the lists.
1176   MSSA->moveTo(What, BB, Where);
1177 
1178   // Now reinsert it into the IR and do whatever fixups needed.
1179   if (auto *MD = dyn_cast<MemoryDef>(What))
1180     insertDef(MD, /*RenameUses=*/true);
1181   else
1182     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1183 
1184   // Clear dangling pointers. We added all MemoryPhi users, but not all
1185   // of them are removed by fixupDefs().
1186   NonOptPhis.clear();
1187 }
1188 
1189 // Move What before Where in the MemorySSA IR.
1190 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1191   moveTo(What, Where->getBlock(), Where->getIterator());
1192 }
1193 
1194 // Move What after Where in the MemorySSA IR.
1195 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1196   moveTo(What, Where->getBlock(), ++Where->getIterator());
1197 }
1198 
1199 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1200                                    MemorySSA::InsertionPlace Where) {
1201   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1202     return moveTo(What, BB, Where);
1203 
1204   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1205     return moveBefore(What, Where);
1206   else
1207     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1208 }
1209 
1210 // All accesses in To used to be in From. Move to end and update access lists.
1211 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1212                                        Instruction *Start) {
1213 
1214   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1215   if (!Accs)
1216     return;
1217 
1218   assert(Start->getParent() == To && "Incorrect Start instruction");
1219   MemoryAccess *FirstInNew = nullptr;
1220   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1221     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1222       break;
1223   if (FirstInNew) {
1224     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1225     do {
1226       auto NextIt = ++MUD->getIterator();
1227       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1228                                     ? nullptr
1229                                     : cast<MemoryUseOrDef>(&*NextIt);
1230       MSSA->moveTo(MUD, To, MemorySSA::End);
1231       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1232       // to retrieve it again.
1233       Accs = MSSA->getWritableBlockAccesses(From);
1234       MUD = NextMUD;
1235     } while (MUD);
1236   }
1237 
1238   // If all accesses were moved and only a trivial Phi remains, we try to remove
1239   // that Phi. This is needed when From is going to be deleted.
1240   auto *Defs = MSSA->getWritableBlockDefs(From);
1241   if (Defs && !Defs->empty())
1242     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1243       tryRemoveTrivialPhi(Phi);
1244 }
1245 
1246 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1247                                                 BasicBlock *To,
1248                                                 Instruction *Start) {
1249   assert(MSSA->getBlockAccesses(To) == nullptr &&
1250          "To block is expected to be free of MemoryAccesses.");
1251   moveAllAccesses(From, To, Start);
1252   for (BasicBlock *Succ : successors(To))
1253     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1254       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1255 }
1256 
1257 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1258                                                Instruction *Start) {
1259   assert(From->getUniquePredecessor() == To &&
1260          "From block is expected to have a single predecessor (To).");
1261   moveAllAccesses(From, To, Start);
1262   for (BasicBlock *Succ : successors(From))
1263     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1264       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1265 }
1266 
1267 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1268     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1269     bool IdenticalEdgesWereMerged) {
1270   assert(!MSSA->getWritableBlockAccesses(New) &&
1271          "Access list should be null for a new block.");
1272   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1273   if (!Phi)
1274     return;
1275   if (Old->hasNPredecessors(1)) {
1276     assert(pred_size(New) == Preds.size() &&
1277            "Should have moved all predecessors.");
1278     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1279   } else {
1280     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1281                              "new immediate predecessor.");
1282     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1283     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1284     // Currently only support the case of removing a single incoming edge when
1285     // identical edges were not merged.
1286     if (!IdenticalEdgesWereMerged)
1287       assert(PredsSet.size() == Preds.size() &&
1288              "If identical edges were not merged, we cannot have duplicate "
1289              "blocks in the predecessors");
1290     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1291       if (PredsSet.count(B)) {
1292         NewPhi->addIncoming(MA, B);
1293         if (!IdenticalEdgesWereMerged)
1294           PredsSet.erase(B);
1295         return true;
1296       }
1297       return false;
1298     });
1299     Phi->addIncoming(NewPhi, New);
1300     tryRemoveTrivialPhi(NewPhi);
1301   }
1302 }
1303 
1304 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1305   assert(!MSSA->isLiveOnEntryDef(MA) &&
1306          "Trying to remove the live on entry def");
1307   // We can only delete phi nodes if they have no uses, or we can replace all
1308   // uses with a single definition.
1309   MemoryAccess *NewDefTarget = nullptr;
1310   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1311     // Note that it is sufficient to know that all edges of the phi node have
1312     // the same argument.  If they do, by the definition of dominance frontiers
1313     // (which we used to place this phi), that argument must dominate this phi,
1314     // and thus, must dominate the phi's uses, and so we will not hit the assert
1315     // below.
1316     NewDefTarget = onlySingleValue(MP);
1317     assert((NewDefTarget || MP->use_empty()) &&
1318            "We can't delete this memory phi");
1319   } else {
1320     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1321   }
1322 
1323   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1324 
1325   // Re-point the uses at our defining access
1326   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1327     // Reset optimized on users of this store, and reset the uses.
1328     // A few notes:
1329     // 1. This is a slightly modified version of RAUW to avoid walking the
1330     // uses twice here.
1331     // 2. If we wanted to be complete, we would have to reset the optimized
1332     // flags on users of phi nodes if doing the below makes a phi node have all
1333     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1334     // phi nodes, because doing it here would be N^3.
1335     if (MA->hasValueHandle())
1336       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1337     // Note: We assume MemorySSA is not used in metadata since it's not really
1338     // part of the IR.
1339 
1340     assert(NewDefTarget != MA && "Going into an infinite loop");
1341     while (!MA->use_empty()) {
1342       Use &U = *MA->use_begin();
1343       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1344         MUD->resetOptimized();
1345       if (OptimizePhis)
1346         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1347           PhisToCheck.insert(MP);
1348       U.set(NewDefTarget);
1349     }
1350   }
1351 
1352   // The call below to erase will destroy MA, so we can't change the order we
1353   // are doing things here
1354   MSSA->removeFromLookups(MA);
1355   MSSA->removeFromLists(MA);
1356 
1357   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1358   if (!PhisToCheck.empty()) {
1359     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1360                                            PhisToCheck.end()};
1361     PhisToCheck.clear();
1362 
1363     unsigned PhisSize = PhisToOptimize.size();
1364     while (PhisSize-- > 0)
1365       if (MemoryPhi *MP =
1366               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1367         tryRemoveTrivialPhi(MP);
1368   }
1369 }
1370 
1371 void MemorySSAUpdater::removeBlocks(
1372     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1373   // First delete all uses of BB in MemoryPhis.
1374   for (BasicBlock *BB : DeadBlocks) {
1375     Instruction *TI = BB->getTerminator();
1376     assert(TI && "Basic block expected to have a terminator instruction");
1377     for (BasicBlock *Succ : successors(TI))
1378       if (!DeadBlocks.count(Succ))
1379         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1380           MP->unorderedDeleteIncomingBlock(BB);
1381           tryRemoveTrivialPhi(MP);
1382         }
1383     // Drop all references of all accesses in BB
1384     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1385       for (MemoryAccess &MA : *Acc)
1386         MA.dropAllReferences();
1387   }
1388 
1389   // Next, delete all memory accesses in each block
1390   for (BasicBlock *BB : DeadBlocks) {
1391     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1392     if (!Acc)
1393       continue;
1394     for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) {
1395       MSSA->removeFromLookups(&MA);
1396       MSSA->removeFromLists(&MA);
1397     }
1398   }
1399 }
1400 
1401 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1402   for (auto &VH : UpdatedPHIs)
1403     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1404       tryRemoveTrivialPhi(MPhi);
1405 }
1406 
1407 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1408   const BasicBlock *BB = I->getParent();
1409   // Remove memory accesses in BB for I and all following instructions.
1410   auto BBI = I->getIterator(), BBE = BB->end();
1411   // FIXME: If this becomes too expensive, iterate until the first instruction
1412   // with a memory access, then iterate over MemoryAccesses.
1413   while (BBI != BBE)
1414     removeMemoryAccess(&*(BBI++));
1415   // Update phis in BB's successors to remove BB.
1416   SmallVector<WeakVH, 16> UpdatedPHIs;
1417   for (const BasicBlock *Successor : successors(BB)) {
1418     removeDuplicatePhiEdgesBetween(BB, Successor);
1419     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1420       MPhi->unorderedDeleteIncomingBlock(BB);
1421       UpdatedPHIs.push_back(MPhi);
1422     }
1423   }
1424   // Optimize trivial phis.
1425   tryRemoveTrivialPhis(UpdatedPHIs);
1426 }
1427 
1428 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1429     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1430     MemorySSA::InsertionPlace Point) {
1431   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1432   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1433   return NewAccess;
1434 }
1435 
1436 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1437     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1438   assert(I->getParent() == InsertPt->getBlock() &&
1439          "New and old access must be in the same block");
1440   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1441   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1442                               InsertPt->getIterator());
1443   return NewAccess;
1444 }
1445 
1446 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1447     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1448   assert(I->getParent() == InsertPt->getBlock() &&
1449          "New and old access must be in the same block");
1450   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1451   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1452                               ++InsertPt->getIterator());
1453   return NewAccess;
1454 }
1455