xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSAUpdater.cpp (revision 4e62c3cafa4c4e41efd6f87b7fe559cf819cf3e4)
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/Support/Debug.h"
22 #include <algorithm>
23 
24 #define DEBUG_TYPE "memoryssa"
25 using namespace llvm;
26 
27 // This is the marker algorithm from "Simple and Efficient Construction of
28 // Static Single Assignment Form"
29 // The simple, non-marker algorithm places phi nodes at any join
30 // Here, we place markers, and only place phi nodes if they end up necessary.
31 // They are only necessary if they break a cycle (IE we recursively visit
32 // ourselves again), or we discover, while getting the value of the operands,
33 // that there are two or more definitions needing to be merged.
34 // This still will leave non-minimal form in the case of irreducible control
35 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
36 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
37     BasicBlock *BB,
38     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
39   // First, do a cache lookup. Without this cache, certain CFG structures
40   // (like a series of if statements) take exponential time to visit.
41   auto Cached = CachedPreviousDef.find(BB);
42   if (Cached != CachedPreviousDef.end())
43     return Cached->second;
44 
45   // If this method is called from an unreachable block, return LoE.
46   if (!MSSA->DT->isReachableFromEntry(BB))
47     return MSSA->getLiveOnEntryDef();
48 
49   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
50     VisitedBlocks.insert(BB);
51     // Single predecessor case, just recurse, we can only have one definition.
52     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
53     CachedPreviousDef.insert({BB, Result});
54     return Result;
55   }
56 
57   if (VisitedBlocks.count(BB)) {
58     // We hit our node again, meaning we had a cycle, we must insert a phi
59     // node to break it so we have an operand. The only case this will
60     // insert useless phis is if we have irreducible control flow.
61     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
62     CachedPreviousDef.insert({BB, Result});
63     return Result;
64   }
65 
66   if (VisitedBlocks.insert(BB).second) {
67     // Mark us visited so we can detect a cycle
68     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
69 
70     // Recurse to get the values in our predecessors for placement of a
71     // potential phi node. This will insert phi nodes if we cycle in order to
72     // break the cycle and have an operand.
73     bool UniqueIncomingAccess = true;
74     MemoryAccess *SingleAccess = nullptr;
75     for (auto *Pred : predecessors(BB)) {
76       if (MSSA->DT->isReachableFromEntry(Pred)) {
77         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
78         if (!SingleAccess)
79           SingleAccess = IncomingAccess;
80         else if (IncomingAccess != SingleAccess)
81           UniqueIncomingAccess = false;
82         PhiOps.push_back(IncomingAccess);
83       } else
84         PhiOps.push_back(MSSA->getLiveOnEntryDef());
85     }
86 
87     // Now try to simplify the ops to avoid placing a phi.
88     // This may return null if we never created a phi yet, that's okay
89     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
90 
91     // See if we can avoid the phi by simplifying it.
92     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
93     // If we couldn't simplify, we may have to create a phi
94     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
95       // A concrete Phi only exists if we created an empty one to break a cycle.
96       if (Phi) {
97         assert(Phi->operands().empty() && "Expected empty Phi");
98         Phi->replaceAllUsesWith(SingleAccess);
99         removeMemoryAccess(Phi);
100       }
101       Result = SingleAccess;
102     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
103       if (!Phi)
104         Phi = MSSA->createMemoryPhi(BB);
105 
106       // See if the existing phi operands match what we need.
107       // Unlike normal SSA, we only allow one phi node per block, so we can't just
108       // create a new one.
109       if (Phi->getNumOperands() != 0) {
110         // FIXME: Figure out whether this is dead code and if so remove it.
111         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
112           // These will have been filled in by the recursive read we did above.
113           llvm::copy(PhiOps, Phi->op_begin());
114           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
115         }
116       } else {
117         unsigned i = 0;
118         for (auto *Pred : predecessors(BB))
119           Phi->addIncoming(&*PhiOps[i++], Pred);
120         InsertedPHIs.push_back(Phi);
121       }
122       Result = Phi;
123     }
124 
125     // Set ourselves up for the next variable by resetting visited state.
126     VisitedBlocks.erase(BB);
127     CachedPreviousDef.insert({BB, Result});
128     return Result;
129   }
130   llvm_unreachable("Should have hit one of the three cases above");
131 }
132 
133 // This starts at the memory access, and goes backwards in the block to find the
134 // previous definition. If a definition is not found the block of the access,
135 // it continues globally, creating phi nodes to ensure we have a single
136 // definition.
137 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
138   if (auto *LocalResult = getPreviousDefInBlock(MA))
139     return LocalResult;
140   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
141   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
142 }
143 
144 // This starts at the memory access, and goes backwards in the block to the find
145 // the previous definition. If the definition is not found in the block of the
146 // access, it returns nullptr.
147 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
148   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
149 
150   // It's possible there are no defs, or we got handed the first def to start.
151   if (Defs) {
152     // If this is a def, we can just use the def iterators.
153     if (!isa<MemoryUse>(MA)) {
154       auto Iter = MA->getReverseDefsIterator();
155       ++Iter;
156       if (Iter != Defs->rend())
157         return &*Iter;
158     } else {
159       // Otherwise, have to walk the all access iterator.
160       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
161       for (auto &U : make_range(++MA->getReverseIterator(), End))
162         if (!isa<MemoryUse>(U))
163           return cast<MemoryAccess>(&U);
164       // Note that if MA comes before Defs->begin(), we won't hit a def.
165       return nullptr;
166     }
167   }
168   return nullptr;
169 }
170 
171 // This starts at the end of block
172 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
173     BasicBlock *BB,
174     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
175   auto *Defs = MSSA->getWritableBlockDefs(BB);
176 
177   if (Defs) {
178     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
179     return &*Defs->rbegin();
180   }
181 
182   return getPreviousDefRecursive(BB, CachedPreviousDef);
183 }
184 // Recurse over a set of phi uses to eliminate the trivial ones
185 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
186   if (!Phi)
187     return nullptr;
188   TrackingVH<MemoryAccess> Res(Phi);
189   SmallVector<TrackingVH<Value>, 8> Uses;
190   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
191   for (auto &U : Uses)
192     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
193       tryRemoveTrivialPhi(UsePhi);
194   return Res;
195 }
196 
197 // Eliminate trivial phis
198 // Phis are trivial if they are defined either by themselves, or all the same
199 // argument.
200 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
201 // We recursively try to remove them.
202 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
203   assert(Phi && "Can only remove concrete Phi.");
204   auto OperRange = Phi->operands();
205   return tryRemoveTrivialPhi(Phi, OperRange);
206 }
207 template <class RangeType>
208 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
209                                                     RangeType &Operands) {
210   // Bail out on non-opt Phis.
211   if (NonOptPhis.count(Phi))
212     return Phi;
213 
214   // Detect equal or self arguments
215   MemoryAccess *Same = nullptr;
216   for (auto &Op : Operands) {
217     // If the same or self, good so far
218     if (Op == Phi || Op == Same)
219       continue;
220     // not the same, return the phi since it's not eliminatable by us
221     if (Same)
222       return Phi;
223     Same = cast<MemoryAccess>(&*Op);
224   }
225   // Never found a non-self reference, the phi is undef
226   if (Same == nullptr)
227     return MSSA->getLiveOnEntryDef();
228   if (Phi) {
229     Phi->replaceAllUsesWith(Same);
230     removeMemoryAccess(Phi);
231   }
232 
233   // We should only end up recursing in case we replaced something, in which
234   // case, we may have made other Phis trivial.
235   return recursePhi(Same);
236 }
237 
238 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
239   VisitedBlocks.clear();
240   InsertedPHIs.clear();
241   MU->setDefiningAccess(getPreviousDef(MU));
242 
243   // In cases without unreachable blocks, because uses do not create new
244   // may-defs, there are only two cases:
245   // 1. There was a def already below us, and therefore, we should not have
246   // created a phi node because it was already needed for the def.
247   //
248   // 2. There is no def below us, and therefore, there is no extra renaming work
249   // to do.
250 
251   // In cases with unreachable blocks, where the unnecessary Phis were
252   // optimized out, adding the Use may re-insert those Phis. Hence, when
253   // inserting Uses outside of the MSSA creation process, and new Phis were
254   // added, rename all uses if we are asked.
255 
256   if (!RenameUses && !InsertedPHIs.empty()) {
257     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
258     (void)Defs;
259     assert((!Defs || (++Defs->begin() == Defs->end())) &&
260            "Block may have only a Phi or no defs");
261   }
262 
263   if (RenameUses && InsertedPHIs.size()) {
264     SmallPtrSet<BasicBlock *, 16> Visited;
265     BasicBlock *StartBlock = MU->getBlock();
266 
267     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
268       MemoryAccess *FirstDef = &*Defs->begin();
269       // Convert to incoming value if it's a memorydef. A phi *is* already an
270       // incoming value.
271       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
272         FirstDef = MD->getDefiningAccess();
273 
274       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
275     }
276     // We just inserted a phi into this block, so the incoming value will
277     // become the phi anyway, so it does not matter what we pass.
278     for (auto &MP : InsertedPHIs)
279       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
280         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
281   }
282 }
283 
284 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
285 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
286                                       MemoryAccess *NewDef) {
287   // Replace any operand with us an incoming block with the new defining
288   // access.
289   int i = MP->getBasicBlockIndex(BB);
290   assert(i != -1 && "Should have found the basic block in the phi");
291   // We can't just compare i against getNumOperands since one is signed and the
292   // other not. So use it to index into the block iterator.
293   for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) {
294     if (BlockBB != BB)
295       break;
296     MP->setIncomingValue(i, NewDef);
297     ++i;
298   }
299 }
300 
301 // A brief description of the algorithm:
302 // First, we compute what should define the new def, using the SSA
303 // construction algorithm.
304 // Then, we update the defs below us (and any new phi nodes) in the graph to
305 // point to the correct new defs, to ensure we only have one variable, and no
306 // disconnected stores.
307 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
308   // Don't bother updating dead code.
309   if (!MSSA->DT->isReachableFromEntry(MD->getBlock())) {
310     MD->setDefiningAccess(MSSA->getLiveOnEntryDef());
311     return;
312   }
313 
314   VisitedBlocks.clear();
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         llvm::is_contained(InsertedPHIs, DefBefore)))
323     DefBeforeSameBlock = true;
324 
325   // There is a def before us, which means we can replace any store/phi uses
326   // of that thing with us, since we are in the way of whatever was there
327   // before.
328   // We now define that def's memorydefs and memoryphis
329   if (DefBeforeSameBlock) {
330     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
331       // Leave the MemoryUses alone.
332       // Also make sure we skip ourselves to avoid self references.
333       User *Usr = U.getUser();
334       return !isa<MemoryUse>(Usr) && Usr != MD;
335       // Defs are automatically unoptimized when the user is set to MD below,
336       // because the isOptimized() call will fail to find the same ID.
337     });
338   }
339 
340   // and that def is now our defining access.
341   MD->setDefiningAccess(DefBefore);
342 
343   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
344 
345   SmallSet<WeakVH, 8> ExistingPhis;
346 
347   // Remember the index where we may insert new phis.
348   unsigned NewPhiIndex = InsertedPHIs.size();
349   if (!DefBeforeSameBlock) {
350     // If there was a local def before us, we must have the same effect it
351     // did. Because every may-def is the same, any phis/etc we would create, it
352     // would also have created.  If there was no local def before us, we
353     // performed a global update, and have to search all successors and make
354     // sure we update the first def in each of them (following all paths until
355     // we hit the first def along each path). This may also insert phi nodes.
356     // TODO: There are other cases we can skip this work, such as when we have a
357     // single successor, and only used a straight line of single pred blocks
358     // backwards to find the def.  To make that work, we'd have to track whether
359     // getDefRecursive only ever used the single predecessor case.  These types
360     // of paths also only exist in between CFG simplifications.
361 
362     // If this is the first def in the block and this insert is in an arbitrary
363     // place, compute IDF and place phis.
364     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
365 
366     // If this is the last Def in the block, we may need additional Phis.
367     // Compute IDF in all cases, as renaming needs to be done even when MD is
368     // not the last access, because it can introduce a new access past which a
369     // previous access was optimized; that access needs to be reoptimized.
370     DefiningBlocks.insert(MD->getBlock());
371     for (const auto &VH : InsertedPHIs)
372       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
373         DefiningBlocks.insert(RealPHI->getBlock());
374     ForwardIDFCalculator IDFs(*MSSA->DT);
375     SmallVector<BasicBlock *, 32> IDFBlocks;
376     IDFs.setDefiningBlocks(DefiningBlocks);
377     IDFs.calculate(IDFBlocks);
378     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
379     for (auto *BBIDF : IDFBlocks) {
380       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
381       if (!MPhi) {
382         MPhi = MSSA->createMemoryPhi(BBIDF);
383         NewInsertedPHIs.push_back(MPhi);
384       } else {
385         ExistingPhis.insert(MPhi);
386       }
387       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
388       // optimized out as trivial by the call to getPreviousDefFromEnd below.
389       // Once they are complete, all these Phis are added to the FixupList, and
390       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
391       // need fixing as well, and potentially be trivial before this insertion,
392       // hence add all IDF Phis. See PR43044.
393       NonOptPhis.insert(MPhi);
394     }
395     for (auto &MPhi : NewInsertedPHIs) {
396       auto *BBIDF = MPhi->getBlock();
397       for (auto *Pred : predecessors(BBIDF)) {
398         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
399         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
400       }
401     }
402 
403     // Re-take the index where we're adding the new phis, because the above call
404     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
405     NewPhiIndex = InsertedPHIs.size();
406     for (auto &MPhi : NewInsertedPHIs) {
407       InsertedPHIs.push_back(&*MPhi);
408       FixupList.push_back(&*MPhi);
409     }
410 
411     FixupList.push_back(MD);
412   }
413 
414   // Remember the index where we stopped inserting new phis above, since the
415   // fixupDefs call in the loop below may insert more, that are already minimal.
416   unsigned NewPhiIndexEnd = InsertedPHIs.size();
417 
418   while (!FixupList.empty()) {
419     unsigned StartingPHISize = InsertedPHIs.size();
420     fixupDefs(FixupList);
421     FixupList.clear();
422     // Put any new phis on the fixup list, and process them
423     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
424   }
425 
426   // Optimize potentially non-minimal phis added in this method.
427   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
428   if (NewPhiSize)
429     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
430 
431   // Now that all fixups are done, rename all uses if we are asked. The defs are
432   // guaranteed to be in reachable code due to the check at the method entry.
433   BasicBlock *StartBlock = MD->getBlock();
434   if (RenameUses) {
435     SmallPtrSet<BasicBlock *, 16> Visited;
436     // We are guaranteed there is a def in the block, because we just got it
437     // handed to us in this function.
438     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
439     // Convert to incoming value if it's a memorydef. A phi *is* already an
440     // incoming value.
441     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
442       FirstDef = MD->getDefiningAccess();
443 
444     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
445     // We just inserted a phi into this block, so the incoming value will become
446     // the phi anyway, so it does not matter what we pass.
447     for (auto &MP : InsertedPHIs) {
448       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
449       if (Phi)
450         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
451     }
452     // Existing Phi blocks may need renaming too, if an access was previously
453     // optimized and the inserted Defs "covers" the Optimized value.
454     for (const auto &MP : ExistingPhis) {
455       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
456       if (Phi)
457         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
458     }
459   }
460 }
461 
462 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
463   SmallPtrSet<const BasicBlock *, 8> Seen;
464   SmallVector<const BasicBlock *, 16> Worklist;
465   for (const auto &Var : Vars) {
466     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
467     if (!NewDef)
468       continue;
469     // First, see if there is a local def after the operand.
470     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
471     auto DefIter = NewDef->getDefsIterator();
472 
473     // The temporary Phi is being fixed, unmark it for not to optimize.
474     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
475       NonOptPhis.erase(Phi);
476 
477     // If there is a local def after us, we only have to rename that.
478     if (++DefIter != Defs->end()) {
479       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
480       continue;
481     }
482 
483     // Otherwise, we need to search down through the CFG.
484     // For each of our successors, handle it directly if their is a phi, or
485     // place on the fixup worklist.
486     for (const auto *S : successors(NewDef->getBlock())) {
487       if (auto *MP = MSSA->getMemoryAccess(S))
488         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
489       else
490         Worklist.push_back(S);
491     }
492 
493     while (!Worklist.empty()) {
494       const BasicBlock *FixupBlock = Worklist.pop_back_val();
495 
496       // Get the first def in the block that isn't a phi node.
497       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
498         auto *FirstDef = &*Defs->begin();
499         // The loop above and below should have taken care of phi nodes
500         assert(!isa<MemoryPhi>(FirstDef) &&
501                "Should have already handled phi nodes!");
502         // We are now this def's defining access, make sure we actually dominate
503         // it
504         assert(MSSA->dominates(NewDef, FirstDef) &&
505                "Should have dominated the new access");
506 
507         // This may insert new phi nodes, because we are not guaranteed the
508         // block we are processing has a single pred, and depending where the
509         // store was inserted, it may require phi nodes below it.
510         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
511         return;
512       }
513       // We didn't find a def, so we must continue.
514       for (const auto *S : successors(FixupBlock)) {
515         // If there is a phi node, handle it.
516         // Otherwise, put the block on the worklist
517         if (auto *MP = MSSA->getMemoryAccess(S))
518           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
519         else {
520           // If we cycle, we should have ended up at a phi node that we already
521           // processed.  FIXME: Double check this
522           if (!Seen.insert(S).second)
523             continue;
524           Worklist.push_back(S);
525         }
526       }
527     }
528   }
529 }
530 
531 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
532   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
533     MPhi->unorderedDeleteIncomingBlock(From);
534     tryRemoveTrivialPhi(MPhi);
535   }
536 }
537 
538 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
539                                                       const BasicBlock *To) {
540   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
541     bool Found = false;
542     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
543       if (From != B)
544         return false;
545       if (Found)
546         return true;
547       Found = true;
548       return false;
549     });
550     tryRemoveTrivialPhi(MPhi);
551   }
552 }
553 
554 /// If all arguments of a MemoryPHI are defined by the same incoming
555 /// argument, return that argument.
556 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
557   MemoryAccess *MA = nullptr;
558 
559   for (auto &Arg : MP->operands()) {
560     if (!MA)
561       MA = cast<MemoryAccess>(Arg);
562     else if (MA != Arg)
563       return nullptr;
564   }
565   return MA;
566 }
567 
568 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
569                                                   const ValueToValueMapTy &VMap,
570                                                   PhiToDefMap &MPhiMap,
571                                                   MemorySSA *MSSA) {
572   MemoryAccess *InsnDefining = MA;
573   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
574     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
575       Instruction *DefMUDI = DefMUD->getMemoryInst();
576       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
577       if (Instruction *NewDefMUDI =
578               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
579         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
580         if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
581           // The clone was simplified, it's no longer a MemoryDef, look up.
582           InsnDefining = getNewDefiningAccessForClone(
583               DefMUD->getDefiningAccess(), VMap, MPhiMap, MSSA);
584         }
585       }
586     }
587   } else {
588     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
589     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
590       InsnDefining = NewDefPhi;
591   }
592   assert(InsnDefining && "Defining instruction cannot be nullptr.");
593   return InsnDefining;
594 }
595 
596 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
597                                         const ValueToValueMapTy &VMap,
598                                         PhiToDefMap &MPhiMap,
599                                         bool CloneWasSimplified) {
600   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
601   if (!Acc)
602     return;
603   for (const MemoryAccess &MA : *Acc) {
604     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
605       Instruction *Insn = MUD->getMemoryInst();
606       // Entry does not exist if the clone of the block did not clone all
607       // instructions. This occurs in LoopRotate when cloning instructions
608       // from the old header to the old preheader. The cloned instruction may
609       // also be a simplified Value, not an Instruction (see LoopRotate).
610       // Also in LoopRotate, even when it's an instruction, due to it being
611       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
612       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
613       if (Instruction *NewInsn =
614               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
615         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
616             NewInsn,
617             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
618                                          MPhiMap, MSSA),
619             /*Template=*/CloneWasSimplified ? nullptr : MUD,
620             /*CreationMustSucceed=*/false);
621         if (NewUseOrDef)
622           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
623       }
624     }
625   }
626 }
627 
628 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
629     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
630   auto *MPhi = MSSA->getMemoryAccess(Header);
631   if (!MPhi)
632     return;
633 
634   // Create phi node in the backedge block and populate it with the same
635   // incoming values as MPhi. Skip incoming values coming from Preheader.
636   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
637   bool HasUniqueIncomingValue = true;
638   MemoryAccess *UniqueValue = nullptr;
639   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
640     BasicBlock *IBB = MPhi->getIncomingBlock(I);
641     MemoryAccess *IV = MPhi->getIncomingValue(I);
642     if (IBB != Preheader) {
643       NewMPhi->addIncoming(IV, IBB);
644       if (HasUniqueIncomingValue) {
645         if (!UniqueValue)
646           UniqueValue = IV;
647         else if (UniqueValue != IV)
648           HasUniqueIncomingValue = false;
649       }
650     }
651   }
652 
653   // Update incoming edges into MPhi. Remove all but the incoming edge from
654   // Preheader. Add an edge from NewMPhi
655   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
656   MPhi->setIncomingValue(0, AccFromPreheader);
657   MPhi->setIncomingBlock(0, Preheader);
658   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
659     MPhi->unorderedDeleteIncoming(I);
660   MPhi->addIncoming(NewMPhi, BEBlock);
661 
662   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
663   // replaced with the unique value.
664   tryRemoveTrivialPhi(NewMPhi);
665 }
666 
667 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
668                                            ArrayRef<BasicBlock *> ExitBlocks,
669                                            const ValueToValueMapTy &VMap,
670                                            bool IgnoreIncomingWithNoClones) {
671   PhiToDefMap MPhiMap;
672 
673   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
674     assert(Phi && NewPhi && "Invalid Phi nodes.");
675     BasicBlock *NewPhiBB = NewPhi->getBlock();
676     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
677                                                pred_end(NewPhiBB));
678     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
679       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
680       BasicBlock *IncBB = Phi->getIncomingBlock(It);
681 
682       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
683         IncBB = NewIncBB;
684       else if (IgnoreIncomingWithNoClones)
685         continue;
686 
687       // Now we have IncBB, and will need to add incoming from it to NewPhi.
688 
689       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
690       // NewPhiBB was cloned without that edge.
691       if (!NewPhiBBPreds.count(IncBB))
692         continue;
693 
694       // Determine incoming value and add it as incoming from IncBB.
695       NewPhi->addIncoming(
696           getNewDefiningAccessForClone(IncomingAccess, VMap, MPhiMap, MSSA),
697           IncBB);
698     }
699     if (auto *SingleAccess = onlySingleValue(NewPhi)) {
700       MPhiMap[Phi] = SingleAccess;
701       removeMemoryAccess(NewPhi);
702     }
703   };
704 
705   auto ProcessBlock = [&](BasicBlock *BB) {
706     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
707     if (!NewBlock)
708       return;
709 
710     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
711            "Cloned block should have no accesses");
712 
713     // Add MemoryPhi.
714     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
715       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
716       MPhiMap[MPhi] = NewPhi;
717     }
718     // Update Uses and Defs.
719     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
720   };
721 
722   for (auto *BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
723     ProcessBlock(BB);
724 
725   for (auto *BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
726     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
727       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
728         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
729 }
730 
731 void MemorySSAUpdater::updateForClonedBlockIntoPred(
732     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
733   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
734   // Since those defs/phis must have dominated BB, and also dominate P1.
735   // Defs from BB being used in BB will be replaced with the cloned defs from
736   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
737   // incoming def into the Phi from P1.
738   // Instructions cloned into the predecessor are in practice sometimes
739   // simplified, so disable the use of the template, and create an access from
740   // scratch.
741   PhiToDefMap MPhiMap;
742   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
743     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
744   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
745 }
746 
747 template <typename Iter>
748 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
749     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
750     DominatorTree &DT) {
751   SmallVector<CFGUpdate, 4> Updates;
752   // Update/insert phis in all successors of exit blocks.
753   for (auto *Exit : ExitBlocks)
754     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
755       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
756         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
757         Updates.push_back({DT.Insert, NewExit, ExitSucc});
758       }
759   applyInsertUpdates(Updates, DT);
760 }
761 
762 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
763     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
764     DominatorTree &DT) {
765   const ValueToValueMapTy *const Arr[] = {&VMap};
766   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
767                                        std::end(Arr), DT);
768 }
769 
770 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
771     ArrayRef<BasicBlock *> ExitBlocks,
772     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
773   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
774     return I.get();
775   };
776   using MappedIteratorType =
777       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
778                       decltype(GetPtr)>;
779   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
780   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
781   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
782 }
783 
784 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
785                                     DominatorTree &DT, bool UpdateDT) {
786   SmallVector<CFGUpdate, 4> DeleteUpdates;
787   SmallVector<CFGUpdate, 4> RevDeleteUpdates;
788   SmallVector<CFGUpdate, 4> InsertUpdates;
789   for (const auto &Update : Updates) {
790     if (Update.getKind() == DT.Insert)
791       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
792     else {
793       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
794       RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
795     }
796   }
797 
798   if (!DeleteUpdates.empty()) {
799     if (!InsertUpdates.empty()) {
800       if (!UpdateDT) {
801         SmallVector<CFGUpdate, 0> Empty;
802         // Deletes are reversed applied, because this CFGView is pretending the
803         // deletes did not happen yet, hence the edges still exist.
804         DT.applyUpdates(Empty, RevDeleteUpdates);
805       } else {
806         // Apply all updates, with the RevDeleteUpdates as PostCFGView.
807         DT.applyUpdates(Updates, RevDeleteUpdates);
808       }
809 
810       // Note: the MSSA update below doesn't distinguish between a GD with
811       // (RevDelete,false) and (Delete, true), but this matters for the DT
812       // updates above; for "children" purposes they are equivalent; but the
813       // updates themselves convey the desired update, used inside DT only.
814       GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
815       applyInsertUpdates(InsertUpdates, DT, &GD);
816       // Update DT to redelete edges; this matches the real CFG so we can
817       // perform the standard update without a postview of the CFG.
818       DT.applyUpdates(DeleteUpdates);
819     } else {
820       if (UpdateDT)
821         DT.applyUpdates(DeleteUpdates);
822     }
823   } else {
824     if (UpdateDT)
825       DT.applyUpdates(Updates);
826     GraphDiff<BasicBlock *> GD;
827     applyInsertUpdates(InsertUpdates, DT, &GD);
828   }
829 
830   // Update for deleted edges
831   for (auto &Update : DeleteUpdates)
832     removeEdge(Update.getFrom(), Update.getTo());
833 }
834 
835 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
836                                           DominatorTree &DT) {
837   GraphDiff<BasicBlock *> GD;
838   applyInsertUpdates(Updates, DT, &GD);
839 }
840 
841 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
842                                           DominatorTree &DT,
843                                           const GraphDiff<BasicBlock *> *GD) {
844   // Get recursive last Def, assuming well formed MSSA and updated DT.
845   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
846     while (true) {
847       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
848       // Return last Def or Phi in BB, if it exists.
849       if (Defs)
850         return &*(--Defs->end());
851 
852       // Check number of predecessors, we only care if there's more than one.
853       unsigned Count = 0;
854       BasicBlock *Pred = nullptr;
855       for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
856         Pred = Pi;
857         Count++;
858         if (Count == 2)
859           break;
860       }
861 
862       // If BB has multiple predecessors, get last definition from IDom.
863       if (Count != 1) {
864         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
865         // DT is invalidated. Return LoE as its last def. This will be added to
866         // MemoryPhi node, and later deleted when the block is deleted.
867         if (!DT.getNode(BB))
868           return MSSA->getLiveOnEntryDef();
869         if (auto *IDom = DT.getNode(BB)->getIDom())
870           if (IDom->getBlock() != BB) {
871             BB = IDom->getBlock();
872             continue;
873           }
874         return MSSA->getLiveOnEntryDef();
875       } else {
876         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
877         assert(Count == 1 && Pred && "Single predecessor expected.");
878         // BB can be unreachable though, return LoE if that is the case.
879         if (!DT.getNode(BB))
880           return MSSA->getLiveOnEntryDef();
881         BB = Pred;
882       }
883     };
884     llvm_unreachable("Unable to get last definition.");
885   };
886 
887   // Get nearest IDom given a set of blocks.
888   // TODO: this can be optimized by starting the search at the node with the
889   // lowest level (highest in the tree).
890   auto FindNearestCommonDominator =
891       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
892     BasicBlock *PrevIDom = *BBSet.begin();
893     for (auto *BB : BBSet)
894       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
895     return PrevIDom;
896   };
897 
898   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
899   // include CurrIDom.
900   auto GetNoLongerDomBlocks =
901       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
902           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
903         if (PrevIDom == CurrIDom)
904           return;
905         BlocksPrevDom.push_back(PrevIDom);
906         BasicBlock *NextIDom = PrevIDom;
907         while (BasicBlock *UpIDom =
908                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
909           if (UpIDom == CurrIDom)
910             break;
911           BlocksPrevDom.push_back(UpIDom);
912           NextIDom = UpIDom;
913         }
914       };
915 
916   // Map a BB to its predecessors: added + previously existing. To get a
917   // deterministic order, store predecessors as SetVectors. The order in each
918   // will be defined by the order in Updates (fixed) and the order given by
919   // children<> (also fixed). Since we further iterate over these ordered sets,
920   // we lose the information of multiple edges possibly existing between two
921   // blocks, so we'll keep and EdgeCount map for that.
922   // An alternate implementation could keep unordered set for the predecessors,
923   // traverse either Updates or children<> each time to get  the deterministic
924   // order, and drop the usage of EdgeCount. This alternate approach would still
925   // require querying the maps for each predecessor, and children<> call has
926   // additional computation inside for creating the snapshot-graph predecessors.
927   // As such, we favor using a little additional storage and less compute time.
928   // This decision can be revisited if we find the alternative more favorable.
929 
930   struct PredInfo {
931     SmallSetVector<BasicBlock *, 2> Added;
932     SmallSetVector<BasicBlock *, 2> Prev;
933   };
934   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
935 
936   for (const auto &Edge : Updates) {
937     BasicBlock *BB = Edge.getTo();
938     auto &AddedBlockSet = PredMap[BB].Added;
939     AddedBlockSet.insert(Edge.getFrom());
940   }
941 
942   // Store all existing predecessor for each BB, at least one must exist.
943   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
944   SmallPtrSet<BasicBlock *, 2> NewBlocks;
945   for (auto &BBPredPair : PredMap) {
946     auto *BB = BBPredPair.first;
947     const auto &AddedBlockSet = BBPredPair.second.Added;
948     auto &PrevBlockSet = BBPredPair.second.Prev;
949     for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
950       if (!AddedBlockSet.count(Pi))
951         PrevBlockSet.insert(Pi);
952       EdgeCountMap[{Pi, BB}]++;
953     }
954 
955     if (PrevBlockSet.empty()) {
956       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
957       LLVM_DEBUG(
958           dbgs()
959           << "Adding a predecessor to a block with no predecessors. "
960              "This must be an edge added to a new, likely cloned, block. "
961              "Its memory accesses must be already correct, assuming completed "
962              "via the updateExitBlocksForClonedLoop API. "
963              "Assert a single such edge is added so no phi addition or "
964              "additional processing is required.\n");
965       assert(AddedBlockSet.size() == 1 &&
966              "Can only handle adding one predecessor to a new block.");
967       // Need to remove new blocks from PredMap. Remove below to not invalidate
968       // iterator here.
969       NewBlocks.insert(BB);
970     }
971   }
972   // Nothing to process for new/cloned blocks.
973   for (auto *BB : NewBlocks)
974     PredMap.erase(BB);
975 
976   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
977   SmallVector<WeakVH, 8> InsertedPhis;
978 
979   // First create MemoryPhis in all blocks that don't have one. Create in the
980   // order found in Updates, not in PredMap, to get deterministic numbering.
981   for (const auto &Edge : Updates) {
982     BasicBlock *BB = Edge.getTo();
983     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
984       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
985   }
986 
987   // Now we'll fill in the MemoryPhis with the right incoming values.
988   for (auto &BBPredPair : PredMap) {
989     auto *BB = BBPredPair.first;
990     const auto &PrevBlockSet = BBPredPair.second.Prev;
991     const auto &AddedBlockSet = BBPredPair.second.Added;
992     assert(!PrevBlockSet.empty() &&
993            "At least one previous predecessor must exist.");
994 
995     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
996     // keeping this map before the loop. We can reuse already populated entries
997     // if an edge is added from the same predecessor to two different blocks,
998     // and this does happen in rotate. Note that the map needs to be updated
999     // when deleting non-necessary phis below, if the phi is in the map by
1000     // replacing the value with DefP1.
1001     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
1002     for (auto *AddedPred : AddedBlockSet) {
1003       auto *DefPn = GetLastDef(AddedPred);
1004       assert(DefPn != nullptr && "Unable to find last definition.");
1005       LastDefAddedPred[AddedPred] = DefPn;
1006     }
1007 
1008     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
1009     // If Phi is not empty, add an incoming edge from each added pred. Must
1010     // still compute blocks with defs to replace for this block below.
1011     if (NewPhi->getNumOperands()) {
1012       for (auto *Pred : AddedBlockSet) {
1013         auto *LastDefForPred = LastDefAddedPred[Pred];
1014         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1015           NewPhi->addIncoming(LastDefForPred, Pred);
1016       }
1017     } else {
1018       // Pick any existing predecessor and get its definition. All other
1019       // existing predecessors should have the same one, since no phi existed.
1020       auto *P1 = *PrevBlockSet.begin();
1021       MemoryAccess *DefP1 = GetLastDef(P1);
1022 
1023       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1024       // nothing to add.
1025       bool InsertPhi = false;
1026       for (auto LastDefPredPair : LastDefAddedPred)
1027         if (DefP1 != LastDefPredPair.second) {
1028           InsertPhi = true;
1029           break;
1030         }
1031       if (!InsertPhi) {
1032         // Since NewPhi may be used in other newly added Phis, replace all uses
1033         // of NewPhi with the definition coming from all predecessors (DefP1),
1034         // before deleting it.
1035         NewPhi->replaceAllUsesWith(DefP1);
1036         removeMemoryAccess(NewPhi);
1037         continue;
1038       }
1039 
1040       // Update Phi with new values for new predecessors and old value for all
1041       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1042       // sets, the order of entries in NewPhi is deterministic.
1043       for (auto *Pred : AddedBlockSet) {
1044         auto *LastDefForPred = LastDefAddedPred[Pred];
1045         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1046           NewPhi->addIncoming(LastDefForPred, Pred);
1047       }
1048       for (auto *Pred : PrevBlockSet)
1049         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1050           NewPhi->addIncoming(DefP1, Pred);
1051     }
1052 
1053     // Get all blocks that used to dominate BB and no longer do after adding
1054     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1055     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1056     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1057     assert(PrevIDom && "Previous IDom should exists");
1058     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1059     assert(NewIDom && "BB should have a new valid idom");
1060     assert(DT.dominates(NewIDom, PrevIDom) &&
1061            "New idom should dominate old idom");
1062     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1063   }
1064 
1065   tryRemoveTrivialPhis(InsertedPhis);
1066   // Create the set of blocks that now have a definition. We'll use this to
1067   // compute IDF and add Phis there next.
1068   SmallVector<BasicBlock *, 8> BlocksToProcess;
1069   for (auto &VH : InsertedPhis)
1070     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1071       BlocksToProcess.push_back(MPhi->getBlock());
1072 
1073   // Compute IDF and add Phis in all IDF blocks that do not have one.
1074   SmallVector<BasicBlock *, 32> IDFBlocks;
1075   if (!BlocksToProcess.empty()) {
1076     ForwardIDFCalculator IDFs(DT, GD);
1077     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1078                                                  BlocksToProcess.end());
1079     IDFs.setDefiningBlocks(DefiningBlocks);
1080     IDFs.calculate(IDFBlocks);
1081 
1082     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1083     // First create all needed Phis.
1084     for (auto *BBIDF : IDFBlocks)
1085       if (!MSSA->getMemoryAccess(BBIDF)) {
1086         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1087         InsertedPhis.push_back(IDFPhi);
1088         PhisToFill.insert(IDFPhi);
1089       }
1090     // Then update or insert their correct incoming values.
1091     for (auto *BBIDF : IDFBlocks) {
1092       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1093       assert(IDFPhi && "Phi must exist");
1094       if (!PhisToFill.count(IDFPhi)) {
1095         // Update existing Phi.
1096         // FIXME: some updates may be redundant, try to optimize and skip some.
1097         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1098           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1099       } else {
1100         for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
1101           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1102       }
1103     }
1104   }
1105 
1106   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1107   // longer dominate, replace those with the closest dominating def.
1108   // This will also update optimized accesses, as they're also uses.
1109   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1110     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1111       for (auto &DefToReplaceUses : *DefsList) {
1112         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1113         for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) {
1114           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1115           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1116             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1117             if (!DT.dominates(DominatingBlock, DominatedBlock))
1118               U.set(GetLastDef(DominatedBlock));
1119           } else {
1120             BasicBlock *DominatedBlock = Usr->getBlock();
1121             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1122               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1123                 U.set(DomBlPhi);
1124               else {
1125                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1126                 assert(IDom && "Block must have a valid IDom.");
1127                 U.set(GetLastDef(IDom->getBlock()));
1128               }
1129               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1130             }
1131           }
1132         }
1133       }
1134     }
1135   }
1136   tryRemoveTrivialPhis(InsertedPhis);
1137 }
1138 
1139 // Move What before Where in the MemorySSA IR.
1140 template <class WhereType>
1141 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1142                               WhereType Where) {
1143   // Mark MemoryPhi users of What not to be optimized.
1144   for (auto *U : What->users())
1145     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1146       NonOptPhis.insert(PhiUser);
1147 
1148   // Replace all our users with our defining access.
1149   What->replaceAllUsesWith(What->getDefiningAccess());
1150 
1151   // Let MemorySSA take care of moving it around in the lists.
1152   MSSA->moveTo(What, BB, Where);
1153 
1154   // Now reinsert it into the IR and do whatever fixups needed.
1155   if (auto *MD = dyn_cast<MemoryDef>(What))
1156     insertDef(MD, /*RenameUses=*/true);
1157   else
1158     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1159 
1160   // Clear dangling pointers. We added all MemoryPhi users, but not all
1161   // of them are removed by fixupDefs().
1162   NonOptPhis.clear();
1163 }
1164 
1165 // Move What before Where in the MemorySSA IR.
1166 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1167   moveTo(What, Where->getBlock(), Where->getIterator());
1168 }
1169 
1170 // Move What after Where in the MemorySSA IR.
1171 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1172   moveTo(What, Where->getBlock(), ++Where->getIterator());
1173 }
1174 
1175 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1176                                    MemorySSA::InsertionPlace Where) {
1177   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1178     return moveTo(What, BB, Where);
1179 
1180   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1181     return moveBefore(What, Where);
1182   else
1183     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1184 }
1185 
1186 // All accesses in To used to be in From. Move to end and update access lists.
1187 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1188                                        Instruction *Start) {
1189 
1190   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1191   if (!Accs)
1192     return;
1193 
1194   assert(Start->getParent() == To && "Incorrect Start instruction");
1195   MemoryAccess *FirstInNew = nullptr;
1196   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1197     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1198       break;
1199   if (FirstInNew) {
1200     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1201     do {
1202       auto NextIt = ++MUD->getIterator();
1203       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1204                                     ? nullptr
1205                                     : cast<MemoryUseOrDef>(&*NextIt);
1206       MSSA->moveTo(MUD, To, MemorySSA::End);
1207       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1208       // to retrieve it again.
1209       Accs = MSSA->getWritableBlockAccesses(From);
1210       MUD = NextMUD;
1211     } while (MUD);
1212   }
1213 
1214   // If all accesses were moved and only a trivial Phi remains, we try to remove
1215   // that Phi. This is needed when From is going to be deleted.
1216   auto *Defs = MSSA->getWritableBlockDefs(From);
1217   if (Defs && !Defs->empty())
1218     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1219       tryRemoveTrivialPhi(Phi);
1220 }
1221 
1222 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1223                                                 BasicBlock *To,
1224                                                 Instruction *Start) {
1225   assert(MSSA->getBlockAccesses(To) == nullptr &&
1226          "To block is expected to be free of MemoryAccesses.");
1227   moveAllAccesses(From, To, Start);
1228   for (BasicBlock *Succ : successors(To))
1229     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1230       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1231 }
1232 
1233 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1234                                                Instruction *Start) {
1235   assert(From->getUniquePredecessor() == To &&
1236          "From block is expected to have a single predecessor (To).");
1237   moveAllAccesses(From, To, Start);
1238   for (BasicBlock *Succ : successors(From))
1239     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1240       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1241 }
1242 
1243 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1244     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1245     bool IdenticalEdgesWereMerged) {
1246   assert(!MSSA->getWritableBlockAccesses(New) &&
1247          "Access list should be null for a new block.");
1248   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1249   if (!Phi)
1250     return;
1251   if (Old->hasNPredecessors(1)) {
1252     assert(pred_size(New) == Preds.size() &&
1253            "Should have moved all predecessors.");
1254     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1255   } else {
1256     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1257                              "new immediate predecessor.");
1258     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1259     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1260     // Currently only support the case of removing a single incoming edge when
1261     // identical edges were not merged.
1262     if (!IdenticalEdgesWereMerged)
1263       assert(PredsSet.size() == Preds.size() &&
1264              "If identical edges were not merged, we cannot have duplicate "
1265              "blocks in the predecessors");
1266     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1267       if (PredsSet.count(B)) {
1268         NewPhi->addIncoming(MA, B);
1269         if (!IdenticalEdgesWereMerged)
1270           PredsSet.erase(B);
1271         return true;
1272       }
1273       return false;
1274     });
1275     Phi->addIncoming(NewPhi, New);
1276     tryRemoveTrivialPhi(NewPhi);
1277   }
1278 }
1279 
1280 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1281   assert(!MSSA->isLiveOnEntryDef(MA) &&
1282          "Trying to remove the live on entry def");
1283   // We can only delete phi nodes if they have no uses, or we can replace all
1284   // uses with a single definition.
1285   MemoryAccess *NewDefTarget = nullptr;
1286   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1287     // Note that it is sufficient to know that all edges of the phi node have
1288     // the same argument.  If they do, by the definition of dominance frontiers
1289     // (which we used to place this phi), that argument must dominate this phi,
1290     // and thus, must dominate the phi's uses, and so we will not hit the assert
1291     // below.
1292     NewDefTarget = onlySingleValue(MP);
1293     assert((NewDefTarget || MP->use_empty()) &&
1294            "We can't delete this memory phi");
1295   } else {
1296     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1297   }
1298 
1299   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1300 
1301   // Re-point the uses at our defining access
1302   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1303     // Reset optimized on users of this store, and reset the uses.
1304     // A few notes:
1305     // 1. This is a slightly modified version of RAUW to avoid walking the
1306     // uses twice here.
1307     // 2. If we wanted to be complete, we would have to reset the optimized
1308     // flags on users of phi nodes if doing the below makes a phi node have all
1309     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1310     // phi nodes, because doing it here would be N^3.
1311     if (MA->hasValueHandle())
1312       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1313     // Note: We assume MemorySSA is not used in metadata since it's not really
1314     // part of the IR.
1315 
1316     assert(NewDefTarget != MA && "Going into an infinite loop");
1317     while (!MA->use_empty()) {
1318       Use &U = *MA->use_begin();
1319       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1320         MUD->resetOptimized();
1321       if (OptimizePhis)
1322         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1323           PhisToCheck.insert(MP);
1324       U.set(NewDefTarget);
1325     }
1326   }
1327 
1328   // The call below to erase will destroy MA, so we can't change the order we
1329   // are doing things here
1330   MSSA->removeFromLookups(MA);
1331   MSSA->removeFromLists(MA);
1332 
1333   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1334   if (!PhisToCheck.empty()) {
1335     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1336                                            PhisToCheck.end()};
1337     PhisToCheck.clear();
1338 
1339     unsigned PhisSize = PhisToOptimize.size();
1340     while (PhisSize-- > 0)
1341       if (MemoryPhi *MP =
1342               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1343         tryRemoveTrivialPhi(MP);
1344   }
1345 }
1346 
1347 void MemorySSAUpdater::removeBlocks(
1348     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1349   // First delete all uses of BB in MemoryPhis.
1350   for (BasicBlock *BB : DeadBlocks) {
1351     Instruction *TI = BB->getTerminator();
1352     assert(TI && "Basic block expected to have a terminator instruction");
1353     for (BasicBlock *Succ : successors(TI))
1354       if (!DeadBlocks.count(Succ))
1355         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1356           MP->unorderedDeleteIncomingBlock(BB);
1357           tryRemoveTrivialPhi(MP);
1358         }
1359     // Drop all references of all accesses in BB
1360     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1361       for (MemoryAccess &MA : *Acc)
1362         MA.dropAllReferences();
1363   }
1364 
1365   // Next, delete all memory accesses in each block
1366   for (BasicBlock *BB : DeadBlocks) {
1367     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1368     if (!Acc)
1369       continue;
1370     for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) {
1371       MSSA->removeFromLookups(&MA);
1372       MSSA->removeFromLists(&MA);
1373     }
1374   }
1375 }
1376 
1377 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1378   for (const auto &VH : UpdatedPHIs)
1379     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1380       tryRemoveTrivialPhi(MPhi);
1381 }
1382 
1383 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1384   const BasicBlock *BB = I->getParent();
1385   // Remove memory accesses in BB for I and all following instructions.
1386   auto BBI = I->getIterator(), BBE = BB->end();
1387   // FIXME: If this becomes too expensive, iterate until the first instruction
1388   // with a memory access, then iterate over MemoryAccesses.
1389   while (BBI != BBE)
1390     removeMemoryAccess(&*(BBI++));
1391   // Update phis in BB's successors to remove BB.
1392   SmallVector<WeakVH, 16> UpdatedPHIs;
1393   for (const BasicBlock *Successor : successors(BB)) {
1394     removeDuplicatePhiEdgesBetween(BB, Successor);
1395     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1396       MPhi->unorderedDeleteIncomingBlock(BB);
1397       UpdatedPHIs.push_back(MPhi);
1398     }
1399   }
1400   // Optimize trivial phis.
1401   tryRemoveTrivialPhis(UpdatedPHIs);
1402 }
1403 
1404 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1405     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1406     MemorySSA::InsertionPlace Point) {
1407   return createMemoryAccessInBB(I, Definition, BB, Point,
1408                                 /*CreationMustSucceed=*/true);
1409 }
1410 
1411 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1412     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1413     MemorySSA::InsertionPlace Point, bool CreationMustSucceed) {
1414   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(
1415       I, Definition, /*Template=*/nullptr, CreationMustSucceed);
1416   if (NewAccess)
1417     MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1418   return NewAccess;
1419 }
1420 
1421 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1422     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1423   assert(I->getParent() == InsertPt->getBlock() &&
1424          "New and old access must be in the same block");
1425   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1426   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1427                               InsertPt->getIterator());
1428   return NewAccess;
1429 }
1430 
1431 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1432     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1433   assert(I->getParent() == InsertPt->getBlock() &&
1434          "New and old access must be in the same block");
1435   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1436   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1437                               ++InsertPt->getIterator());
1438   return NewAccess;
1439 }
1440