xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSAUpdater.cpp (revision 1e4896b176ff664dc9c2fce5426bf2fdf8017a7d)
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
10 //
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/Analysis/LoopIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/Analysis/IteratedDominanceFrontier.h"
18 #include "llvm/Analysis/MemorySSA.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/GlobalVariable.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Metadata.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/FormattedStream.h"
29 #include <algorithm>
30 
31 #define DEBUG_TYPE "memoryssa"
32 using namespace llvm;
33 
34 // This is the marker algorithm from "Simple and Efficient Construction of
35 // Static Single Assignment Form"
36 // The simple, non-marker algorithm places phi nodes at any join
37 // Here, we place markers, and only place phi nodes if they end up necessary.
38 // They are only necessary if they break a cycle (IE we recursively visit
39 // ourselves again), or we discover, while getting the value of the operands,
40 // that there are two or more definitions needing to be merged.
41 // This still will leave non-minimal form in the case of irreducible control
42 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
43 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
44     BasicBlock *BB,
45     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
46   // First, do a cache lookup. Without this cache, certain CFG structures
47   // (like a series of if statements) take exponential time to visit.
48   auto Cached = CachedPreviousDef.find(BB);
49   if (Cached != CachedPreviousDef.end())
50     return Cached->second;
51 
52   // If this method is called from an unreachable block, return LoE.
53   if (!MSSA->DT->isReachableFromEntry(BB))
54     return MSSA->getLiveOnEntryDef();
55 
56   if (BasicBlock *Pred = BB->getUniquePredecessor()) {
57     VisitedBlocks.insert(BB);
58     // Single predecessor case, just recurse, we can only have one definition.
59     MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
60     CachedPreviousDef.insert({BB, Result});
61     return Result;
62   }
63 
64   if (VisitedBlocks.count(BB)) {
65     // We hit our node again, meaning we had a cycle, we must insert a phi
66     // node to break it so we have an operand. The only case this will
67     // insert useless phis is if we have irreducible control flow.
68     MemoryAccess *Result = MSSA->createMemoryPhi(BB);
69     CachedPreviousDef.insert({BB, Result});
70     return Result;
71   }
72 
73   if (VisitedBlocks.insert(BB).second) {
74     // Mark us visited so we can detect a cycle
75     SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
76 
77     // Recurse to get the values in our predecessors for placement of a
78     // potential phi node. This will insert phi nodes if we cycle in order to
79     // break the cycle and have an operand.
80     bool UniqueIncomingAccess = true;
81     MemoryAccess *SingleAccess = nullptr;
82     for (auto *Pred : predecessors(BB)) {
83       if (MSSA->DT->isReachableFromEntry(Pred)) {
84         auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
85         if (!SingleAccess)
86           SingleAccess = IncomingAccess;
87         else if (IncomingAccess != SingleAccess)
88           UniqueIncomingAccess = false;
89         PhiOps.push_back(IncomingAccess);
90       } else
91         PhiOps.push_back(MSSA->getLiveOnEntryDef());
92     }
93 
94     // Now try to simplify the ops to avoid placing a phi.
95     // This may return null if we never created a phi yet, that's okay
96     MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
97 
98     // See if we can avoid the phi by simplifying it.
99     auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
100     // If we couldn't simplify, we may have to create a phi
101     if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
102       // A concrete Phi only exists if we created an empty one to break a cycle.
103       if (Phi) {
104         assert(Phi->operands().empty() && "Expected empty Phi");
105         Phi->replaceAllUsesWith(SingleAccess);
106         removeMemoryAccess(Phi);
107       }
108       Result = SingleAccess;
109     } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
110       if (!Phi)
111         Phi = MSSA->createMemoryPhi(BB);
112 
113       // See if the existing phi operands match what we need.
114       // Unlike normal SSA, we only allow one phi node per block, so we can't just
115       // create a new one.
116       if (Phi->getNumOperands() != 0) {
117         // FIXME: Figure out whether this is dead code and if so remove it.
118         if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
119           // These will have been filled in by the recursive read we did above.
120           llvm::copy(PhiOps, Phi->op_begin());
121           std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
122         }
123       } else {
124         unsigned i = 0;
125         for (auto *Pred : predecessors(BB))
126           Phi->addIncoming(&*PhiOps[i++], Pred);
127         InsertedPHIs.push_back(Phi);
128       }
129       Result = Phi;
130     }
131 
132     // Set ourselves up for the next variable by resetting visited state.
133     VisitedBlocks.erase(BB);
134     CachedPreviousDef.insert({BB, Result});
135     return Result;
136   }
137   llvm_unreachable("Should have hit one of the three cases above");
138 }
139 
140 // This starts at the memory access, and goes backwards in the block to find the
141 // previous definition. If a definition is not found the block of the access,
142 // it continues globally, creating phi nodes to ensure we have a single
143 // definition.
144 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
145   if (auto *LocalResult = getPreviousDefInBlock(MA))
146     return LocalResult;
147   DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
148   return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
149 }
150 
151 // This starts at the memory access, and goes backwards in the block to the find
152 // the previous definition. If the definition is not found in the block of the
153 // access, it returns nullptr.
154 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
155   auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
156 
157   // It's possible there are no defs, or we got handed the first def to start.
158   if (Defs) {
159     // If this is a def, we can just use the def iterators.
160     if (!isa<MemoryUse>(MA)) {
161       auto Iter = MA->getReverseDefsIterator();
162       ++Iter;
163       if (Iter != Defs->rend())
164         return &*Iter;
165     } else {
166       // Otherwise, have to walk the all access iterator.
167       auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
168       for (auto &U : make_range(++MA->getReverseIterator(), End))
169         if (!isa<MemoryUse>(U))
170           return cast<MemoryAccess>(&U);
171       // Note that if MA comes before Defs->begin(), we won't hit a def.
172       return nullptr;
173     }
174   }
175   return nullptr;
176 }
177 
178 // This starts at the end of block
179 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
180     BasicBlock *BB,
181     DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
182   auto *Defs = MSSA->getWritableBlockDefs(BB);
183 
184   if (Defs) {
185     CachedPreviousDef.insert({BB, &*Defs->rbegin()});
186     return &*Defs->rbegin();
187   }
188 
189   return getPreviousDefRecursive(BB, CachedPreviousDef);
190 }
191 // Recurse over a set of phi uses to eliminate the trivial ones
192 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
193   if (!Phi)
194     return nullptr;
195   TrackingVH<MemoryAccess> Res(Phi);
196   SmallVector<TrackingVH<Value>, 8> Uses;
197   std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
198   for (auto &U : Uses)
199     if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
200       tryRemoveTrivialPhi(UsePhi);
201   return Res;
202 }
203 
204 // Eliminate trivial phis
205 // Phis are trivial if they are defined either by themselves, or all the same
206 // argument.
207 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
208 // We recursively try to remove them.
209 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
210   assert(Phi && "Can only remove concrete Phi.");
211   auto OperRange = Phi->operands();
212   return tryRemoveTrivialPhi(Phi, OperRange);
213 }
214 template <class RangeType>
215 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
216                                                     RangeType &Operands) {
217   // Bail out on non-opt Phis.
218   if (NonOptPhis.count(Phi))
219     return Phi;
220 
221   // Detect equal or self arguments
222   MemoryAccess *Same = nullptr;
223   for (auto &Op : Operands) {
224     // If the same or self, good so far
225     if (Op == Phi || Op == Same)
226       continue;
227     // not the same, return the phi since it's not eliminatable by us
228     if (Same)
229       return Phi;
230     Same = cast<MemoryAccess>(&*Op);
231   }
232   // Never found a non-self reference, the phi is undef
233   if (Same == nullptr)
234     return MSSA->getLiveOnEntryDef();
235   if (Phi) {
236     Phi->replaceAllUsesWith(Same);
237     removeMemoryAccess(Phi);
238   }
239 
240   // We should only end up recursing in case we replaced something, in which
241   // case, we may have made other Phis trivial.
242   return recursePhi(Same);
243 }
244 
245 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
246   InsertedPHIs.clear();
247   MU->setDefiningAccess(getPreviousDef(MU));
248 
249   // In cases without unreachable blocks, because uses do not create new
250   // may-defs, there are only two cases:
251   // 1. There was a def already below us, and therefore, we should not have
252   // created a phi node because it was already needed for the def.
253   //
254   // 2. There is no def below us, and therefore, there is no extra renaming work
255   // to do.
256 
257   // In cases with unreachable blocks, where the unnecessary Phis were
258   // optimized out, adding the Use may re-insert those Phis. Hence, when
259   // inserting Uses outside of the MSSA creation process, and new Phis were
260   // added, rename all uses if we are asked.
261 
262   if (!RenameUses && !InsertedPHIs.empty()) {
263     auto *Defs = MSSA->getBlockDefs(MU->getBlock());
264     (void)Defs;
265     assert((!Defs || (++Defs->begin() == Defs->end())) &&
266            "Block may have only a Phi or no defs");
267   }
268 
269   if (RenameUses && InsertedPHIs.size()) {
270     SmallPtrSet<BasicBlock *, 16> Visited;
271     BasicBlock *StartBlock = MU->getBlock();
272 
273     if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
274       MemoryAccess *FirstDef = &*Defs->begin();
275       // Convert to incoming value if it's a memorydef. A phi *is* already an
276       // incoming value.
277       if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
278         FirstDef = MD->getDefiningAccess();
279 
280       MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
281     }
282     // We just inserted a phi into this block, so the incoming value will
283     // become the phi anyway, so it does not matter what we pass.
284     for (auto &MP : InsertedPHIs)
285       if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
286         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
287   }
288 }
289 
290 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
291 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
292                                       MemoryAccess *NewDef) {
293   // Replace any operand with us an incoming block with the new defining
294   // access.
295   int i = MP->getBasicBlockIndex(BB);
296   assert(i != -1 && "Should have found the basic block in the phi");
297   // We can't just compare i against getNumOperands since one is signed and the
298   // other not. So use it to index into the block iterator.
299   for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
300        ++BBIter) {
301     if (*BBIter != BB)
302       break;
303     MP->setIncomingValue(i, NewDef);
304     ++i;
305   }
306 }
307 
308 // A brief description of the algorithm:
309 // First, we compute what should define the new def, using the SSA
310 // construction algorithm.
311 // Then, we update the defs below us (and any new phi nodes) in the graph to
312 // point to the correct new defs, to ensure we only have one variable, and no
313 // disconnected stores.
314 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
315   InsertedPHIs.clear();
316 
317   // See if we had a local def, and if not, go hunting.
318   MemoryAccess *DefBefore = getPreviousDef(MD);
319   bool DefBeforeSameBlock = false;
320   if (DefBefore->getBlock() == MD->getBlock() &&
321       !(isa<MemoryPhi>(DefBefore) &&
322         std::find(InsertedPHIs.begin(), InsertedPHIs.end(), DefBefore) !=
323             InsertedPHIs.end()))
324     DefBeforeSameBlock = true;
325 
326   // There is a def before us, which means we can replace any store/phi uses
327   // of that thing with us, since we are in the way of whatever was there
328   // before.
329   // We now define that def's memorydefs and memoryphis
330   if (DefBeforeSameBlock) {
331     DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
332       // Leave the MemoryUses alone.
333       // Also make sure we skip ourselves to avoid self references.
334       User *Usr = U.getUser();
335       return !isa<MemoryUse>(Usr) && Usr != MD;
336       // Defs are automatically unoptimized when the user is set to MD below,
337       // because the isOptimized() call will fail to find the same ID.
338     });
339   }
340 
341   // and that def is now our defining access.
342   MD->setDefiningAccess(DefBefore);
343 
344   SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
345 
346   // Remember the index where we may insert new phis.
347   unsigned NewPhiIndex = InsertedPHIs.size();
348   if (!DefBeforeSameBlock) {
349     // If there was a local def before us, we must have the same effect it
350     // did. Because every may-def is the same, any phis/etc we would create, it
351     // would also have created.  If there was no local def before us, we
352     // performed a global update, and have to search all successors and make
353     // sure we update the first def in each of them (following all paths until
354     // we hit the first def along each path). This may also insert phi nodes.
355     // TODO: There are other cases we can skip this work, such as when we have a
356     // single successor, and only used a straight line of single pred blocks
357     // backwards to find the def.  To make that work, we'd have to track whether
358     // getDefRecursive only ever used the single predecessor case.  These types
359     // of paths also only exist in between CFG simplifications.
360 
361     // If this is the first def in the block and this insert is in an arbitrary
362     // place, compute IDF and place phis.
363     SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
364 
365     // If this is the last Def in the block, also compute IDF based on MD, since
366     // this may a new Def added, and we may need additional Phis.
367     auto Iter = MD->getDefsIterator();
368     ++Iter;
369     auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
370     if (Iter == IterEnd)
371       DefiningBlocks.insert(MD->getBlock());
372 
373     for (const auto &VH : InsertedPHIs)
374       if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
375         DefiningBlocks.insert(RealPHI->getBlock());
376     ForwardIDFCalculator IDFs(*MSSA->DT);
377     SmallVector<BasicBlock *, 32> IDFBlocks;
378     IDFs.setDefiningBlocks(DefiningBlocks);
379     IDFs.calculate(IDFBlocks);
380     SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
381     for (auto *BBIDF : IDFBlocks) {
382       auto *MPhi = MSSA->getMemoryAccess(BBIDF);
383       if (!MPhi) {
384         MPhi = MSSA->createMemoryPhi(BBIDF);
385         NewInsertedPHIs.push_back(MPhi);
386       }
387       // Add the phis created into the IDF blocks to NonOptPhis, so they are not
388       // optimized out as trivial by the call to getPreviousDefFromEnd below.
389       // Once they are complete, all these Phis are added to the FixupList, and
390       // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
391       // need fixing as well, and potentially be trivial before this insertion,
392       // hence add all IDF Phis. See PR43044.
393       NonOptPhis.insert(MPhi);
394     }
395     for (auto &MPhi : NewInsertedPHIs) {
396       auto *BBIDF = MPhi->getBlock();
397       for (auto *Pred : predecessors(BBIDF)) {
398         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
399         MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
400       }
401     }
402 
403     // Re-take the index where we're adding the new phis, because the above call
404     // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
405     NewPhiIndex = InsertedPHIs.size();
406     for (auto &MPhi : NewInsertedPHIs) {
407       InsertedPHIs.push_back(&*MPhi);
408       FixupList.push_back(&*MPhi);
409     }
410 
411     FixupList.push_back(MD);
412   }
413 
414   // Remember the index where we stopped inserting new phis above, since the
415   // fixupDefs call in the loop below may insert more, that are already minimal.
416   unsigned NewPhiIndexEnd = InsertedPHIs.size();
417 
418   while (!FixupList.empty()) {
419     unsigned StartingPHISize = InsertedPHIs.size();
420     fixupDefs(FixupList);
421     FixupList.clear();
422     // Put any new phis on the fixup list, and process them
423     FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
424   }
425 
426   // Optimize potentially non-minimal phis added in this method.
427   unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
428   if (NewPhiSize)
429     tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
430 
431   // Now that all fixups are done, rename all uses if we are asked.
432   if (RenameUses) {
433     SmallPtrSet<BasicBlock *, 16> Visited;
434     BasicBlock *StartBlock = MD->getBlock();
435     // We are guaranteed there is a def in the block, because we just got it
436     // handed to us in this function.
437     MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
438     // Convert to incoming value if it's a memorydef. A phi *is* already an
439     // incoming value.
440     if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
441       FirstDef = MD->getDefiningAccess();
442 
443     MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
444     // We just inserted a phi into this block, so the incoming value will become
445     // the phi anyway, so it does not matter what we pass.
446     for (auto &MP : InsertedPHIs) {
447       MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
448       if (Phi)
449         MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
450     }
451   }
452 }
453 
454 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
455   SmallPtrSet<const BasicBlock *, 8> Seen;
456   SmallVector<const BasicBlock *, 16> Worklist;
457   for (auto &Var : Vars) {
458     MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
459     if (!NewDef)
460       continue;
461     // First, see if there is a local def after the operand.
462     auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
463     auto DefIter = NewDef->getDefsIterator();
464 
465     // The temporary Phi is being fixed, unmark it for not to optimize.
466     if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
467       NonOptPhis.erase(Phi);
468 
469     // If there is a local def after us, we only have to rename that.
470     if (++DefIter != Defs->end()) {
471       cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
472       continue;
473     }
474 
475     // Otherwise, we need to search down through the CFG.
476     // For each of our successors, handle it directly if their is a phi, or
477     // place on the fixup worklist.
478     for (const auto *S : successors(NewDef->getBlock())) {
479       if (auto *MP = MSSA->getMemoryAccess(S))
480         setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
481       else
482         Worklist.push_back(S);
483     }
484 
485     while (!Worklist.empty()) {
486       const BasicBlock *FixupBlock = Worklist.back();
487       Worklist.pop_back();
488 
489       // Get the first def in the block that isn't a phi node.
490       if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
491         auto *FirstDef = &*Defs->begin();
492         // The loop above and below should have taken care of phi nodes
493         assert(!isa<MemoryPhi>(FirstDef) &&
494                "Should have already handled phi nodes!");
495         // We are now this def's defining access, make sure we actually dominate
496         // it
497         assert(MSSA->dominates(NewDef, FirstDef) &&
498                "Should have dominated the new access");
499 
500         // This may insert new phi nodes, because we are not guaranteed the
501         // block we are processing has a single pred, and depending where the
502         // store was inserted, it may require phi nodes below it.
503         cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
504         return;
505       }
506       // We didn't find a def, so we must continue.
507       for (const auto *S : successors(FixupBlock)) {
508         // If there is a phi node, handle it.
509         // Otherwise, put the block on the worklist
510         if (auto *MP = MSSA->getMemoryAccess(S))
511           setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
512         else {
513           // If we cycle, we should have ended up at a phi node that we already
514           // processed.  FIXME: Double check this
515           if (!Seen.insert(S).second)
516             continue;
517           Worklist.push_back(S);
518         }
519       }
520     }
521   }
522 }
523 
524 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
525   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
526     MPhi->unorderedDeleteIncomingBlock(From);
527     tryRemoveTrivialPhi(MPhi);
528   }
529 }
530 
531 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
532                                                       const BasicBlock *To) {
533   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
534     bool Found = false;
535     MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
536       if (From != B)
537         return false;
538       if (Found)
539         return true;
540       Found = true;
541       return false;
542     });
543     tryRemoveTrivialPhi(MPhi);
544   }
545 }
546 
547 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
548                                                   const ValueToValueMapTy &VMap,
549                                                   PhiToDefMap &MPhiMap,
550                                                   bool CloneWasSimplified,
551                                                   MemorySSA *MSSA) {
552   MemoryAccess *InsnDefining = MA;
553   if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
554     if (!MSSA->isLiveOnEntryDef(DefMUD)) {
555       Instruction *DefMUDI = DefMUD->getMemoryInst();
556       assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
557       if (Instruction *NewDefMUDI =
558               cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
559         InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
560         if (!CloneWasSimplified)
561           assert(InsnDefining && "Defining instruction cannot be nullptr.");
562         else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
563           // The clone was simplified, it's no longer a MemoryDef, look up.
564           auto DefIt = DefMUD->getDefsIterator();
565           // Since simplified clones only occur in single block cloning, a
566           // previous definition must exist, otherwise NewDefMUDI would not
567           // have been found in VMap.
568           assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
569                  "Previous def must exist");
570           InsnDefining = getNewDefiningAccessForClone(
571               &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
572         }
573       }
574     }
575   } else {
576     MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
577     if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
578       InsnDefining = NewDefPhi;
579   }
580   assert(InsnDefining && "Defining instruction cannot be nullptr.");
581   return InsnDefining;
582 }
583 
584 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
585                                         const ValueToValueMapTy &VMap,
586                                         PhiToDefMap &MPhiMap,
587                                         bool CloneWasSimplified) {
588   const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
589   if (!Acc)
590     return;
591   for (const MemoryAccess &MA : *Acc) {
592     if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
593       Instruction *Insn = MUD->getMemoryInst();
594       // Entry does not exist if the clone of the block did not clone all
595       // instructions. This occurs in LoopRotate when cloning instructions
596       // from the old header to the old preheader. The cloned instruction may
597       // also be a simplified Value, not an Instruction (see LoopRotate).
598       // Also in LoopRotate, even when it's an instruction, due to it being
599       // simplified, it may be a Use rather than a Def, so we cannot use MUD as
600       // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
601       if (Instruction *NewInsn =
602               dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
603         MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
604             NewInsn,
605             getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
606                                          MPhiMap, CloneWasSimplified, MSSA),
607             /*Template=*/CloneWasSimplified ? nullptr : MUD,
608             /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
609         if (NewUseOrDef)
610           MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
611       }
612     }
613   }
614 }
615 
616 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
617     BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
618   auto *MPhi = MSSA->getMemoryAccess(Header);
619   if (!MPhi)
620     return;
621 
622   // Create phi node in the backedge block and populate it with the same
623   // incoming values as MPhi. Skip incoming values coming from Preheader.
624   auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
625   bool HasUniqueIncomingValue = true;
626   MemoryAccess *UniqueValue = nullptr;
627   for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
628     BasicBlock *IBB = MPhi->getIncomingBlock(I);
629     MemoryAccess *IV = MPhi->getIncomingValue(I);
630     if (IBB != Preheader) {
631       NewMPhi->addIncoming(IV, IBB);
632       if (HasUniqueIncomingValue) {
633         if (!UniqueValue)
634           UniqueValue = IV;
635         else if (UniqueValue != IV)
636           HasUniqueIncomingValue = false;
637       }
638     }
639   }
640 
641   // Update incoming edges into MPhi. Remove all but the incoming edge from
642   // Preheader. Add an edge from NewMPhi
643   auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
644   MPhi->setIncomingValue(0, AccFromPreheader);
645   MPhi->setIncomingBlock(0, Preheader);
646   for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
647     MPhi->unorderedDeleteIncoming(I);
648   MPhi->addIncoming(NewMPhi, BEBlock);
649 
650   // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
651   // replaced with the unique value.
652   tryRemoveTrivialPhi(NewMPhi);
653 }
654 
655 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
656                                            ArrayRef<BasicBlock *> ExitBlocks,
657                                            const ValueToValueMapTy &VMap,
658                                            bool IgnoreIncomingWithNoClones) {
659   PhiToDefMap MPhiMap;
660 
661   auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
662     assert(Phi && NewPhi && "Invalid Phi nodes.");
663     BasicBlock *NewPhiBB = NewPhi->getBlock();
664     SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
665                                                pred_end(NewPhiBB));
666     for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
667       MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
668       BasicBlock *IncBB = Phi->getIncomingBlock(It);
669 
670       if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
671         IncBB = NewIncBB;
672       else if (IgnoreIncomingWithNoClones)
673         continue;
674 
675       // Now we have IncBB, and will need to add incoming from it to NewPhi.
676 
677       // If IncBB is not a predecessor of NewPhiBB, then do not add it.
678       // NewPhiBB was cloned without that edge.
679       if (!NewPhiBBPreds.count(IncBB))
680         continue;
681 
682       // Determine incoming value and add it as incoming from IncBB.
683       if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
684         if (!MSSA->isLiveOnEntryDef(IncMUD)) {
685           Instruction *IncI = IncMUD->getMemoryInst();
686           assert(IncI && "Found MemoryUseOrDef with no Instruction.");
687           if (Instruction *NewIncI =
688                   cast_or_null<Instruction>(VMap.lookup(IncI))) {
689             IncMUD = MSSA->getMemoryAccess(NewIncI);
690             assert(IncMUD &&
691                    "MemoryUseOrDef cannot be null, all preds processed.");
692           }
693         }
694         NewPhi->addIncoming(IncMUD, IncBB);
695       } else {
696         MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
697         if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
698           NewPhi->addIncoming(NewDefPhi, IncBB);
699         else
700           NewPhi->addIncoming(IncPhi, IncBB);
701       }
702     }
703   };
704 
705   auto ProcessBlock = [&](BasicBlock *BB) {
706     BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
707     if (!NewBlock)
708       return;
709 
710     assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
711            "Cloned block should have no accesses");
712 
713     // Add MemoryPhi.
714     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
715       MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
716       MPhiMap[MPhi] = NewPhi;
717     }
718     // Update Uses and Defs.
719     cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
720   };
721 
722   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
723     ProcessBlock(BB);
724 
725   for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
726     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
727       if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
728         FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
729 }
730 
731 void MemorySSAUpdater::updateForClonedBlockIntoPred(
732     BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
733   // All defs/phis from outside BB that are used in BB, are valid uses in P1.
734   // Since those defs/phis must have dominated BB, and also dominate P1.
735   // Defs from BB being used in BB will be replaced with the cloned defs from
736   // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
737   // incoming def into the Phi from P1.
738   // Instructions cloned into the predecessor are in practice sometimes
739   // simplified, so disable the use of the template, and create an access from
740   // scratch.
741   PhiToDefMap MPhiMap;
742   if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
743     MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
744   cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
745 }
746 
747 template <typename Iter>
748 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
749     ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
750     DominatorTree &DT) {
751   SmallVector<CFGUpdate, 4> Updates;
752   // Update/insert phis in all successors of exit blocks.
753   for (auto *Exit : ExitBlocks)
754     for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
755       if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
756         BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
757         Updates.push_back({DT.Insert, NewExit, ExitSucc});
758       }
759   applyInsertUpdates(Updates, DT);
760 }
761 
762 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
763     ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
764     DominatorTree &DT) {
765   const ValueToValueMapTy *const Arr[] = {&VMap};
766   privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
767                                        std::end(Arr), DT);
768 }
769 
770 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
771     ArrayRef<BasicBlock *> ExitBlocks,
772     ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
773   auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
774     return I.get();
775   };
776   using MappedIteratorType =
777       mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
778                       decltype(GetPtr)>;
779   auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
780   auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
781   privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
782 }
783 
784 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
785                                     DominatorTree &DT) {
786   SmallVector<CFGUpdate, 4> DeleteUpdates;
787   SmallVector<CFGUpdate, 4> InsertUpdates;
788   for (auto &Update : Updates) {
789     if (Update.getKind() == DT.Insert)
790       InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
791     else
792       DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
793   }
794 
795   if (!DeleteUpdates.empty()) {
796     // Update for inserted edges: use newDT and snapshot CFG as if deletes had
797     // not occurred.
798     // FIXME: This creates a new DT, so it's more expensive to do mix
799     // delete/inserts vs just inserts. We can do an incremental update on the DT
800     // to revert deletes, than re-delete the edges. Teaching DT to do this, is
801     // part of a pending cleanup.
802     DominatorTree NewDT(DT, DeleteUpdates);
803     GraphDiff<BasicBlock *> GD(DeleteUpdates, /*ReverseApplyUpdates=*/true);
804     applyInsertUpdates(InsertUpdates, NewDT, &GD);
805   } else {
806     GraphDiff<BasicBlock *> GD;
807     applyInsertUpdates(InsertUpdates, DT, &GD);
808   }
809 
810   // Update for deleted edges
811   for (auto &Update : DeleteUpdates)
812     removeEdge(Update.getFrom(), Update.getTo());
813 }
814 
815 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
816                                           DominatorTree &DT) {
817   GraphDiff<BasicBlock *> GD;
818   applyInsertUpdates(Updates, DT, &GD);
819 }
820 
821 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
822                                           DominatorTree &DT,
823                                           const GraphDiff<BasicBlock *> *GD) {
824   // Get recursive last Def, assuming well formed MSSA and updated DT.
825   auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
826     while (true) {
827       MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
828       // Return last Def or Phi in BB, if it exists.
829       if (Defs)
830         return &*(--Defs->end());
831 
832       // Check number of predecessors, we only care if there's more than one.
833       unsigned Count = 0;
834       BasicBlock *Pred = nullptr;
835       for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
836         Pred = Pair.second;
837         Count++;
838         if (Count == 2)
839           break;
840       }
841 
842       // If BB has multiple predecessors, get last definition from IDom.
843       if (Count != 1) {
844         // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
845         // DT is invalidated. Return LoE as its last def. This will be added to
846         // MemoryPhi node, and later deleted when the block is deleted.
847         if (!DT.getNode(BB))
848           return MSSA->getLiveOnEntryDef();
849         if (auto *IDom = DT.getNode(BB)->getIDom())
850           if (IDom->getBlock() != BB) {
851             BB = IDom->getBlock();
852             continue;
853           }
854         return MSSA->getLiveOnEntryDef();
855       } else {
856         // Single predecessor, BB cannot be dead. GetLastDef of Pred.
857         assert(Count == 1 && Pred && "Single predecessor expected.");
858         // BB can be unreachable though, return LoE if that is the case.
859         if (!DT.getNode(BB))
860           return MSSA->getLiveOnEntryDef();
861         BB = Pred;
862       }
863     };
864     llvm_unreachable("Unable to get last definition.");
865   };
866 
867   // Get nearest IDom given a set of blocks.
868   // TODO: this can be optimized by starting the search at the node with the
869   // lowest level (highest in the tree).
870   auto FindNearestCommonDominator =
871       [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
872     BasicBlock *PrevIDom = *BBSet.begin();
873     for (auto *BB : BBSet)
874       PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
875     return PrevIDom;
876   };
877 
878   // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
879   // include CurrIDom.
880   auto GetNoLongerDomBlocks =
881       [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
882           SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
883         if (PrevIDom == CurrIDom)
884           return;
885         BlocksPrevDom.push_back(PrevIDom);
886         BasicBlock *NextIDom = PrevIDom;
887         while (BasicBlock *UpIDom =
888                    DT.getNode(NextIDom)->getIDom()->getBlock()) {
889           if (UpIDom == CurrIDom)
890             break;
891           BlocksPrevDom.push_back(UpIDom);
892           NextIDom = UpIDom;
893         }
894       };
895 
896   // Map a BB to its predecessors: added + previously existing. To get a
897   // deterministic order, store predecessors as SetVectors. The order in each
898   // will be defined by the order in Updates (fixed) and the order given by
899   // children<> (also fixed). Since we further iterate over these ordered sets,
900   // we lose the information of multiple edges possibly existing between two
901   // blocks, so we'll keep and EdgeCount map for that.
902   // An alternate implementation could keep unordered set for the predecessors,
903   // traverse either Updates or children<> each time to get  the deterministic
904   // order, and drop the usage of EdgeCount. This alternate approach would still
905   // require querying the maps for each predecessor, and children<> call has
906   // additional computation inside for creating the snapshot-graph predecessors.
907   // As such, we favor using a little additional storage and less compute time.
908   // This decision can be revisited if we find the alternative more favorable.
909 
910   struct PredInfo {
911     SmallSetVector<BasicBlock *, 2> Added;
912     SmallSetVector<BasicBlock *, 2> Prev;
913   };
914   SmallDenseMap<BasicBlock *, PredInfo> PredMap;
915 
916   for (auto &Edge : Updates) {
917     BasicBlock *BB = Edge.getTo();
918     auto &AddedBlockSet = PredMap[BB].Added;
919     AddedBlockSet.insert(Edge.getFrom());
920   }
921 
922   // Store all existing predecessor for each BB, at least one must exist.
923   SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
924   SmallPtrSet<BasicBlock *, 2> NewBlocks;
925   for (auto &BBPredPair : PredMap) {
926     auto *BB = BBPredPair.first;
927     const auto &AddedBlockSet = BBPredPair.second.Added;
928     auto &PrevBlockSet = BBPredPair.second.Prev;
929     for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
930       BasicBlock *Pi = Pair.second;
931       if (!AddedBlockSet.count(Pi))
932         PrevBlockSet.insert(Pi);
933       EdgeCountMap[{Pi, BB}]++;
934     }
935 
936     if (PrevBlockSet.empty()) {
937       assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
938       LLVM_DEBUG(
939           dbgs()
940           << "Adding a predecessor to a block with no predecessors. "
941              "This must be an edge added to a new, likely cloned, block. "
942              "Its memory accesses must be already correct, assuming completed "
943              "via the updateExitBlocksForClonedLoop API. "
944              "Assert a single such edge is added so no phi addition or "
945              "additional processing is required.\n");
946       assert(AddedBlockSet.size() == 1 &&
947              "Can only handle adding one predecessor to a new block.");
948       // Need to remove new blocks from PredMap. Remove below to not invalidate
949       // iterator here.
950       NewBlocks.insert(BB);
951     }
952   }
953   // Nothing to process for new/cloned blocks.
954   for (auto *BB : NewBlocks)
955     PredMap.erase(BB);
956 
957   SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
958   SmallVector<WeakVH, 8> InsertedPhis;
959 
960   // First create MemoryPhis in all blocks that don't have one. Create in the
961   // order found in Updates, not in PredMap, to get deterministic numbering.
962   for (auto &Edge : Updates) {
963     BasicBlock *BB = Edge.getTo();
964     if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
965       InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
966   }
967 
968   // Now we'll fill in the MemoryPhis with the right incoming values.
969   for (auto &BBPredPair : PredMap) {
970     auto *BB = BBPredPair.first;
971     const auto &PrevBlockSet = BBPredPair.second.Prev;
972     const auto &AddedBlockSet = BBPredPair.second.Added;
973     assert(!PrevBlockSet.empty() &&
974            "At least one previous predecessor must exist.");
975 
976     // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
977     // keeping this map before the loop. We can reuse already populated entries
978     // if an edge is added from the same predecessor to two different blocks,
979     // and this does happen in rotate. Note that the map needs to be updated
980     // when deleting non-necessary phis below, if the phi is in the map by
981     // replacing the value with DefP1.
982     SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
983     for (auto *AddedPred : AddedBlockSet) {
984       auto *DefPn = GetLastDef(AddedPred);
985       assert(DefPn != nullptr && "Unable to find last definition.");
986       LastDefAddedPred[AddedPred] = DefPn;
987     }
988 
989     MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
990     // If Phi is not empty, add an incoming edge from each added pred. Must
991     // still compute blocks with defs to replace for this block below.
992     if (NewPhi->getNumOperands()) {
993       for (auto *Pred : AddedBlockSet) {
994         auto *LastDefForPred = LastDefAddedPred[Pred];
995         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
996           NewPhi->addIncoming(LastDefForPred, Pred);
997       }
998     } else {
999       // Pick any existing predecessor and get its definition. All other
1000       // existing predecessors should have the same one, since no phi existed.
1001       auto *P1 = *PrevBlockSet.begin();
1002       MemoryAccess *DefP1 = GetLastDef(P1);
1003 
1004       // Check DefP1 against all Defs in LastDefPredPair. If all the same,
1005       // nothing to add.
1006       bool InsertPhi = false;
1007       for (auto LastDefPredPair : LastDefAddedPred)
1008         if (DefP1 != LastDefPredPair.second) {
1009           InsertPhi = true;
1010           break;
1011         }
1012       if (!InsertPhi) {
1013         // Since NewPhi may be used in other newly added Phis, replace all uses
1014         // of NewPhi with the definition coming from all predecessors (DefP1),
1015         // before deleting it.
1016         NewPhi->replaceAllUsesWith(DefP1);
1017         removeMemoryAccess(NewPhi);
1018         continue;
1019       }
1020 
1021       // Update Phi with new values for new predecessors and old value for all
1022       // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
1023       // sets, the order of entries in NewPhi is deterministic.
1024       for (auto *Pred : AddedBlockSet) {
1025         auto *LastDefForPred = LastDefAddedPred[Pred];
1026         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1027           NewPhi->addIncoming(LastDefForPred, Pred);
1028       }
1029       for (auto *Pred : PrevBlockSet)
1030         for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
1031           NewPhi->addIncoming(DefP1, Pred);
1032     }
1033 
1034     // Get all blocks that used to dominate BB and no longer do after adding
1035     // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1036     assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1037     BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1038     assert(PrevIDom && "Previous IDom should exists");
1039     BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1040     assert(NewIDom && "BB should have a new valid idom");
1041     assert(DT.dominates(NewIDom, PrevIDom) &&
1042            "New idom should dominate old idom");
1043     GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1044   }
1045 
1046   tryRemoveTrivialPhis(InsertedPhis);
1047   // Create the set of blocks that now have a definition. We'll use this to
1048   // compute IDF and add Phis there next.
1049   SmallVector<BasicBlock *, 8> BlocksToProcess;
1050   for (auto &VH : InsertedPhis)
1051     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1052       BlocksToProcess.push_back(MPhi->getBlock());
1053 
1054   // Compute IDF and add Phis in all IDF blocks that do not have one.
1055   SmallVector<BasicBlock *, 32> IDFBlocks;
1056   if (!BlocksToProcess.empty()) {
1057     ForwardIDFCalculator IDFs(DT, GD);
1058     SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1059                                                  BlocksToProcess.end());
1060     IDFs.setDefiningBlocks(DefiningBlocks);
1061     IDFs.calculate(IDFBlocks);
1062 
1063     SmallSetVector<MemoryPhi *, 4> PhisToFill;
1064     // First create all needed Phis.
1065     for (auto *BBIDF : IDFBlocks)
1066       if (!MSSA->getMemoryAccess(BBIDF)) {
1067         auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1068         InsertedPhis.push_back(IDFPhi);
1069         PhisToFill.insert(IDFPhi);
1070       }
1071     // Then update or insert their correct incoming values.
1072     for (auto *BBIDF : IDFBlocks) {
1073       auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1074       assert(IDFPhi && "Phi must exist");
1075       if (!PhisToFill.count(IDFPhi)) {
1076         // Update existing Phi.
1077         // FIXME: some updates may be redundant, try to optimize and skip some.
1078         for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1079           IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1080       } else {
1081         for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1082           BasicBlock *Pi = Pair.second;
1083           IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1084         }
1085       }
1086     }
1087   }
1088 
1089   // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1090   // longer dominate, replace those with the closest dominating def.
1091   // This will also update optimized accesses, as they're also uses.
1092   for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1093     if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1094       for (auto &DefToReplaceUses : *DefsList) {
1095         BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1096         Value::use_iterator UI = DefToReplaceUses.use_begin(),
1097                             E = DefToReplaceUses.use_end();
1098         for (; UI != E;) {
1099           Use &U = *UI;
1100           ++UI;
1101           MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
1102           if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1103             BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1104             if (!DT.dominates(DominatingBlock, DominatedBlock))
1105               U.set(GetLastDef(DominatedBlock));
1106           } else {
1107             BasicBlock *DominatedBlock = Usr->getBlock();
1108             if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1109               if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1110                 U.set(DomBlPhi);
1111               else {
1112                 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1113                 assert(IDom && "Block must have a valid IDom.");
1114                 U.set(GetLastDef(IDom->getBlock()));
1115               }
1116               cast<MemoryUseOrDef>(Usr)->resetOptimized();
1117             }
1118           }
1119         }
1120       }
1121     }
1122   }
1123   tryRemoveTrivialPhis(InsertedPhis);
1124 }
1125 
1126 // Move What before Where in the MemorySSA IR.
1127 template <class WhereType>
1128 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1129                               WhereType Where) {
1130   // Mark MemoryPhi users of What not to be optimized.
1131   for (auto *U : What->users())
1132     if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1133       NonOptPhis.insert(PhiUser);
1134 
1135   // Replace all our users with our defining access.
1136   What->replaceAllUsesWith(What->getDefiningAccess());
1137 
1138   // Let MemorySSA take care of moving it around in the lists.
1139   MSSA->moveTo(What, BB, Where);
1140 
1141   // Now reinsert it into the IR and do whatever fixups needed.
1142   if (auto *MD = dyn_cast<MemoryDef>(What))
1143     insertDef(MD, /*RenameUses=*/true);
1144   else
1145     insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1146 
1147   // Clear dangling pointers. We added all MemoryPhi users, but not all
1148   // of them are removed by fixupDefs().
1149   NonOptPhis.clear();
1150 }
1151 
1152 // Move What before Where in the MemorySSA IR.
1153 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1154   moveTo(What, Where->getBlock(), Where->getIterator());
1155 }
1156 
1157 // Move What after Where in the MemorySSA IR.
1158 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1159   moveTo(What, Where->getBlock(), ++Where->getIterator());
1160 }
1161 
1162 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1163                                    MemorySSA::InsertionPlace Where) {
1164   if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
1165     return moveTo(What, BB, Where);
1166 
1167   if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
1168     return moveBefore(What, Where);
1169   else
1170     return moveTo(What, BB, MemorySSA::InsertionPlace::End);
1171 }
1172 
1173 // All accesses in To used to be in From. Move to end and update access lists.
1174 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1175                                        Instruction *Start) {
1176 
1177   MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1178   if (!Accs)
1179     return;
1180 
1181   assert(Start->getParent() == To && "Incorrect Start instruction");
1182   MemoryAccess *FirstInNew = nullptr;
1183   for (Instruction &I : make_range(Start->getIterator(), To->end()))
1184     if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1185       break;
1186   if (FirstInNew) {
1187     auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1188     do {
1189       auto NextIt = ++MUD->getIterator();
1190       MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1191                                     ? nullptr
1192                                     : cast<MemoryUseOrDef>(&*NextIt);
1193       MSSA->moveTo(MUD, To, MemorySSA::End);
1194       // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
1195       // to retrieve it again.
1196       Accs = MSSA->getWritableBlockAccesses(From);
1197       MUD = NextMUD;
1198     } while (MUD);
1199   }
1200 
1201   // If all accesses were moved and only a trivial Phi remains, we try to remove
1202   // that Phi. This is needed when From is going to be deleted.
1203   auto *Defs = MSSA->getWritableBlockDefs(From);
1204   if (Defs && !Defs->empty())
1205     if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
1206       tryRemoveTrivialPhi(Phi);
1207 }
1208 
1209 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1210                                                 BasicBlock *To,
1211                                                 Instruction *Start) {
1212   assert(MSSA->getBlockAccesses(To) == nullptr &&
1213          "To block is expected to be free of MemoryAccesses.");
1214   moveAllAccesses(From, To, Start);
1215   for (BasicBlock *Succ : successors(To))
1216     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1217       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1218 }
1219 
1220 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1221                                                Instruction *Start) {
1222   assert(From->getUniquePredecessor() == To &&
1223          "From block is expected to have a single predecessor (To).");
1224   moveAllAccesses(From, To, Start);
1225   for (BasicBlock *Succ : successors(From))
1226     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1227       MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1228 }
1229 
1230 /// If all arguments of a MemoryPHI are defined by the same incoming
1231 /// argument, return that argument.
1232 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1233   MemoryAccess *MA = nullptr;
1234 
1235   for (auto &Arg : MP->operands()) {
1236     if (!MA)
1237       MA = cast<MemoryAccess>(Arg);
1238     else if (MA != Arg)
1239       return nullptr;
1240   }
1241   return MA;
1242 }
1243 
1244 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1245     BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1246     bool IdenticalEdgesWereMerged) {
1247   assert(!MSSA->getWritableBlockAccesses(New) &&
1248          "Access list should be null for a new block.");
1249   MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1250   if (!Phi)
1251     return;
1252   if (Old->hasNPredecessors(1)) {
1253     assert(pred_size(New) == Preds.size() &&
1254            "Should have moved all predecessors.");
1255     MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1256   } else {
1257     assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1258                              "new immediate predecessor.");
1259     MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1260     SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1261     // Currently only support the case of removing a single incoming edge when
1262     // identical edges were not merged.
1263     if (!IdenticalEdgesWereMerged)
1264       assert(PredsSet.size() == Preds.size() &&
1265              "If identical edges were not merged, we cannot have duplicate "
1266              "blocks in the predecessors");
1267     Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1268       if (PredsSet.count(B)) {
1269         NewPhi->addIncoming(MA, B);
1270         if (!IdenticalEdgesWereMerged)
1271           PredsSet.erase(B);
1272         return true;
1273       }
1274       return false;
1275     });
1276     Phi->addIncoming(NewPhi, New);
1277     tryRemoveTrivialPhi(NewPhi);
1278   }
1279 }
1280 
1281 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1282   assert(!MSSA->isLiveOnEntryDef(MA) &&
1283          "Trying to remove the live on entry def");
1284   // We can only delete phi nodes if they have no uses, or we can replace all
1285   // uses with a single definition.
1286   MemoryAccess *NewDefTarget = nullptr;
1287   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1288     // Note that it is sufficient to know that all edges of the phi node have
1289     // the same argument.  If they do, by the definition of dominance frontiers
1290     // (which we used to place this phi), that argument must dominate this phi,
1291     // and thus, must dominate the phi's uses, and so we will not hit the assert
1292     // below.
1293     NewDefTarget = onlySingleValue(MP);
1294     assert((NewDefTarget || MP->use_empty()) &&
1295            "We can't delete this memory phi");
1296   } else {
1297     NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1298   }
1299 
1300   SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1301 
1302   // Re-point the uses at our defining access
1303   if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1304     // Reset optimized on users of this store, and reset the uses.
1305     // A few notes:
1306     // 1. This is a slightly modified version of RAUW to avoid walking the
1307     // uses twice here.
1308     // 2. If we wanted to be complete, we would have to reset the optimized
1309     // flags on users of phi nodes if doing the below makes a phi node have all
1310     // the same arguments. Instead, we prefer users to removeMemoryAccess those
1311     // phi nodes, because doing it here would be N^3.
1312     if (MA->hasValueHandle())
1313       ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1314     // Note: We assume MemorySSA is not used in metadata since it's not really
1315     // part of the IR.
1316 
1317     while (!MA->use_empty()) {
1318       Use &U = *MA->use_begin();
1319       if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1320         MUD->resetOptimized();
1321       if (OptimizePhis)
1322         if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1323           PhisToCheck.insert(MP);
1324       U.set(NewDefTarget);
1325     }
1326   }
1327 
1328   // The call below to erase will destroy MA, so we can't change the order we
1329   // are doing things here
1330   MSSA->removeFromLookups(MA);
1331   MSSA->removeFromLists(MA);
1332 
1333   // Optionally optimize Phi uses. This will recursively remove trivial phis.
1334   if (!PhisToCheck.empty()) {
1335     SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1336                                            PhisToCheck.end()};
1337     PhisToCheck.clear();
1338 
1339     unsigned PhisSize = PhisToOptimize.size();
1340     while (PhisSize-- > 0)
1341       if (MemoryPhi *MP =
1342               cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1343         tryRemoveTrivialPhi(MP);
1344   }
1345 }
1346 
1347 void MemorySSAUpdater::removeBlocks(
1348     const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1349   // First delete all uses of BB in MemoryPhis.
1350   for (BasicBlock *BB : DeadBlocks) {
1351     Instruction *TI = BB->getTerminator();
1352     assert(TI && "Basic block expected to have a terminator instruction");
1353     for (BasicBlock *Succ : successors(TI))
1354       if (!DeadBlocks.count(Succ))
1355         if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1356           MP->unorderedDeleteIncomingBlock(BB);
1357           tryRemoveTrivialPhi(MP);
1358         }
1359     // Drop all references of all accesses in BB
1360     if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1361       for (MemoryAccess &MA : *Acc)
1362         MA.dropAllReferences();
1363   }
1364 
1365   // Next, delete all memory accesses in each block
1366   for (BasicBlock *BB : DeadBlocks) {
1367     MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1368     if (!Acc)
1369       continue;
1370     for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1371       MemoryAccess *MA = &*AB;
1372       ++AB;
1373       MSSA->removeFromLookups(MA);
1374       MSSA->removeFromLists(MA);
1375     }
1376   }
1377 }
1378 
1379 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1380   for (auto &VH : UpdatedPHIs)
1381     if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1382       tryRemoveTrivialPhi(MPhi);
1383 }
1384 
1385 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1386   const BasicBlock *BB = I->getParent();
1387   // Remove memory accesses in BB for I and all following instructions.
1388   auto BBI = I->getIterator(), BBE = BB->end();
1389   // FIXME: If this becomes too expensive, iterate until the first instruction
1390   // with a memory access, then iterate over MemoryAccesses.
1391   while (BBI != BBE)
1392     removeMemoryAccess(&*(BBI++));
1393   // Update phis in BB's successors to remove BB.
1394   SmallVector<WeakVH, 16> UpdatedPHIs;
1395   for (const BasicBlock *Successor : successors(BB)) {
1396     removeDuplicatePhiEdgesBetween(BB, Successor);
1397     if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1398       MPhi->unorderedDeleteIncomingBlock(BB);
1399       UpdatedPHIs.push_back(MPhi);
1400     }
1401   }
1402   // Optimize trivial phis.
1403   tryRemoveTrivialPhis(UpdatedPHIs);
1404 }
1405 
1406 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1407                                                          const BasicBlock *To) {
1408   const BasicBlock *BB = BI->getParent();
1409   SmallVector<WeakVH, 16> UpdatedPHIs;
1410   for (const BasicBlock *Succ : successors(BB)) {
1411     removeDuplicatePhiEdgesBetween(BB, Succ);
1412     if (Succ != To)
1413       if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1414         MPhi->unorderedDeleteIncomingBlock(BB);
1415         UpdatedPHIs.push_back(MPhi);
1416       }
1417   }
1418   // Optimize trivial phis.
1419   tryRemoveTrivialPhis(UpdatedPHIs);
1420 }
1421 
1422 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1423     Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1424     MemorySSA::InsertionPlace Point) {
1425   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1426   MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1427   return NewAccess;
1428 }
1429 
1430 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1431     Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1432   assert(I->getParent() == InsertPt->getBlock() &&
1433          "New and old access must be in the same block");
1434   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1435   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1436                               InsertPt->getIterator());
1437   return NewAccess;
1438 }
1439 
1440 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1441     Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1442   assert(I->getParent() == InsertPt->getBlock() &&
1443          "New and old access must be in the same block");
1444   MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1445   MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1446                               ++InsertPt->getIterator());
1447   return NewAccess;
1448 }
1449