1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSAUpdater class. 10 // 11 //===----------------------------------------------------------------===// 12 #include "llvm/Analysis/MemorySSAUpdater.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/Analysis/IteratedDominanceFrontier.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/Dominators.h" 20 #include "llvm/IR/GlobalVariable.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/FormattedStream.h" 27 #include <algorithm> 28 29 #define DEBUG_TYPE "memoryssa" 30 using namespace llvm; 31 32 // This is the marker algorithm from "Simple and Efficient Construction of 33 // Static Single Assignment Form" 34 // The simple, non-marker algorithm places phi nodes at any join 35 // Here, we place markers, and only place phi nodes if they end up necessary. 36 // They are only necessary if they break a cycle (IE we recursively visit 37 // ourselves again), or we discover, while getting the value of the operands, 38 // that there are two or more definitions needing to be merged. 39 // This still will leave non-minimal form in the case of irreducible control 40 // flow, where phi nodes may be in cycles with themselves, but unnecessary. 41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( 42 BasicBlock *BB, 43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 44 // First, do a cache lookup. Without this cache, certain CFG structures 45 // (like a series of if statements) take exponential time to visit. 46 auto Cached = CachedPreviousDef.find(BB); 47 if (Cached != CachedPreviousDef.end()) { 48 return Cached->second; 49 } 50 51 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 52 // Single predecessor case, just recurse, we can only have one definition. 53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); 54 CachedPreviousDef.insert({BB, Result}); 55 return Result; 56 } 57 58 if (VisitedBlocks.count(BB)) { 59 // We hit our node again, meaning we had a cycle, we must insert a phi 60 // node to break it so we have an operand. The only case this will 61 // insert useless phis is if we have irreducible control flow. 62 MemoryAccess *Result = MSSA->createMemoryPhi(BB); 63 CachedPreviousDef.insert({BB, Result}); 64 return Result; 65 } 66 67 if (VisitedBlocks.insert(BB).second) { 68 // Mark us visited so we can detect a cycle 69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps; 70 71 // Recurse to get the values in our predecessors for placement of a 72 // potential phi node. This will insert phi nodes if we cycle in order to 73 // break the cycle and have an operand. 74 for (auto *Pred : predecessors(BB)) 75 if (MSSA->DT->isReachableFromEntry(Pred)) 76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); 77 else 78 PhiOps.push_back(MSSA->getLiveOnEntryDef()); 79 80 // Now try to simplify the ops to avoid placing a phi. 81 // This may return null if we never created a phi yet, that's okay 82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); 83 84 // See if we can avoid the phi by simplifying it. 85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); 86 // If we couldn't simplify, we may have to create a phi 87 if (Result == Phi) { 88 if (!Phi) 89 Phi = MSSA->createMemoryPhi(BB); 90 91 // See if the existing phi operands match what we need. 92 // Unlike normal SSA, we only allow one phi node per block, so we can't just 93 // create a new one. 94 if (Phi->getNumOperands() != 0) { 95 // FIXME: Figure out whether this is dead code and if so remove it. 96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { 97 // These will have been filled in by the recursive read we did above. 98 llvm::copy(PhiOps, Phi->op_begin()); 99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); 100 } 101 } else { 102 unsigned i = 0; 103 for (auto *Pred : predecessors(BB)) 104 Phi->addIncoming(&*PhiOps[i++], Pred); 105 InsertedPHIs.push_back(Phi); 106 } 107 Result = Phi; 108 } 109 110 // Set ourselves up for the next variable by resetting visited state. 111 VisitedBlocks.erase(BB); 112 CachedPreviousDef.insert({BB, Result}); 113 return Result; 114 } 115 llvm_unreachable("Should have hit one of the three cases above"); 116 } 117 118 // This starts at the memory access, and goes backwards in the block to find the 119 // previous definition. If a definition is not found the block of the access, 120 // it continues globally, creating phi nodes to ensure we have a single 121 // definition. 122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { 123 if (auto *LocalResult = getPreviousDefInBlock(MA)) 124 return LocalResult; 125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); 127 } 128 129 // This starts at the memory access, and goes backwards in the block to the find 130 // the previous definition. If the definition is not found in the block of the 131 // access, it returns nullptr. 132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { 133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); 134 135 // It's possible there are no defs, or we got handed the first def to start. 136 if (Defs) { 137 // If this is a def, we can just use the def iterators. 138 if (!isa<MemoryUse>(MA)) { 139 auto Iter = MA->getReverseDefsIterator(); 140 ++Iter; 141 if (Iter != Defs->rend()) 142 return &*Iter; 143 } else { 144 // Otherwise, have to walk the all access iterator. 145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); 146 for (auto &U : make_range(++MA->getReverseIterator(), End)) 147 if (!isa<MemoryUse>(U)) 148 return cast<MemoryAccess>(&U); 149 // Note that if MA comes before Defs->begin(), we won't hit a def. 150 return nullptr; 151 } 152 } 153 return nullptr; 154 } 155 156 // This starts at the end of block 157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( 158 BasicBlock *BB, 159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) { 160 auto *Defs = MSSA->getWritableBlockDefs(BB); 161 162 if (Defs) { 163 CachedPreviousDef.insert({BB, &*Defs->rbegin()}); 164 return &*Defs->rbegin(); 165 } 166 167 return getPreviousDefRecursive(BB, CachedPreviousDef); 168 } 169 // Recurse over a set of phi uses to eliminate the trivial ones 170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { 171 if (!Phi) 172 return nullptr; 173 TrackingVH<MemoryAccess> Res(Phi); 174 SmallVector<TrackingVH<Value>, 8> Uses; 175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); 176 for (auto &U : Uses) { 177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { 178 auto OperRange = UsePhi->operands(); 179 tryRemoveTrivialPhi(UsePhi, OperRange); 180 } 181 } 182 return Res; 183 } 184 185 // Eliminate trivial phis 186 // Phis are trivial if they are defined either by themselves, or all the same 187 // argument. 188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) 189 // We recursively try to remove them. 190 template <class RangeType> 191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, 192 RangeType &Operands) { 193 // Bail out on non-opt Phis. 194 if (NonOptPhis.count(Phi)) 195 return Phi; 196 197 // Detect equal or self arguments 198 MemoryAccess *Same = nullptr; 199 for (auto &Op : Operands) { 200 // If the same or self, good so far 201 if (Op == Phi || Op == Same) 202 continue; 203 // not the same, return the phi since it's not eliminatable by us 204 if (Same) 205 return Phi; 206 Same = cast<MemoryAccess>(&*Op); 207 } 208 // Never found a non-self reference, the phi is undef 209 if (Same == nullptr) 210 return MSSA->getLiveOnEntryDef(); 211 if (Phi) { 212 Phi->replaceAllUsesWith(Same); 213 removeMemoryAccess(Phi); 214 } 215 216 // We should only end up recursing in case we replaced something, in which 217 // case, we may have made other Phis trivial. 218 return recursePhi(Same); 219 } 220 221 void MemorySSAUpdater::insertUse(MemoryUse *MU) { 222 InsertedPHIs.clear(); 223 MU->setDefiningAccess(getPreviousDef(MU)); 224 // Unlike for defs, there is no extra work to do. Because uses do not create 225 // new may-defs, there are only two cases: 226 // 227 // 1. There was a def already below us, and therefore, we should not have 228 // created a phi node because it was already needed for the def. 229 // 230 // 2. There is no def below us, and therefore, there is no extra renaming work 231 // to do. 232 } 233 234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. 235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, 236 MemoryAccess *NewDef) { 237 // Replace any operand with us an incoming block with the new defining 238 // access. 239 int i = MP->getBasicBlockIndex(BB); 240 assert(i != -1 && "Should have found the basic block in the phi"); 241 // We can't just compare i against getNumOperands since one is signed and the 242 // other not. So use it to index into the block iterator. 243 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); 244 ++BBIter) { 245 if (*BBIter != BB) 246 break; 247 MP->setIncomingValue(i, NewDef); 248 ++i; 249 } 250 } 251 252 // A brief description of the algorithm: 253 // First, we compute what should define the new def, using the SSA 254 // construction algorithm. 255 // Then, we update the defs below us (and any new phi nodes) in the graph to 256 // point to the correct new defs, to ensure we only have one variable, and no 257 // disconnected stores. 258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { 259 InsertedPHIs.clear(); 260 261 // See if we had a local def, and if not, go hunting. 262 MemoryAccess *DefBefore = getPreviousDef(MD); 263 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); 264 265 // There is a def before us, which means we can replace any store/phi uses 266 // of that thing with us, since we are in the way of whatever was there 267 // before. 268 // We now define that def's memorydefs and memoryphis 269 if (DefBeforeSameBlock) { 270 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); 271 UI != UE;) { 272 Use &U = *UI++; 273 // Leave the MemoryUses alone. 274 // Also make sure we skip ourselves to avoid self references. 275 if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD) 276 continue; 277 // Defs are automatically unoptimized when the user is set to MD below, 278 // because the isOptimized() call will fail to find the same ID. 279 U.set(MD); 280 } 281 } 282 283 // and that def is now our defining access. 284 MD->setDefiningAccess(DefBefore); 285 286 // Remember the index where we may insert new phis below. 287 unsigned NewPhiIndex = InsertedPHIs.size(); 288 289 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); 290 if (!DefBeforeSameBlock) { 291 // If there was a local def before us, we must have the same effect it 292 // did. Because every may-def is the same, any phis/etc we would create, it 293 // would also have created. If there was no local def before us, we 294 // performed a global update, and have to search all successors and make 295 // sure we update the first def in each of them (following all paths until 296 // we hit the first def along each path). This may also insert phi nodes. 297 // TODO: There are other cases we can skip this work, such as when we have a 298 // single successor, and only used a straight line of single pred blocks 299 // backwards to find the def. To make that work, we'd have to track whether 300 // getDefRecursive only ever used the single predecessor case. These types 301 // of paths also only exist in between CFG simplifications. 302 303 // If this is the first def in the block and this insert is in an arbitrary 304 // place, compute IDF and place phis. 305 auto Iter = MD->getDefsIterator(); 306 ++Iter; 307 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); 308 if (Iter == IterEnd) { 309 ForwardIDFCalculator IDFs(*MSSA->DT); 310 SmallVector<BasicBlock *, 32> IDFBlocks; 311 SmallPtrSet<BasicBlock *, 2> DefiningBlocks; 312 DefiningBlocks.insert(MD->getBlock()); 313 IDFs.setDefiningBlocks(DefiningBlocks); 314 IDFs.calculate(IDFBlocks); 315 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs; 316 for (auto *BBIDF : IDFBlocks) 317 if (!MSSA->getMemoryAccess(BBIDF)) { 318 auto *MPhi = MSSA->createMemoryPhi(BBIDF); 319 NewInsertedPHIs.push_back(MPhi); 320 // Add the phis created into the IDF blocks to NonOptPhis, so they are 321 // not optimized out as trivial by the call to getPreviousDefFromEnd 322 // below. Once they are complete, all these Phis are added to the 323 // FixupList, and removed from NonOptPhis inside fixupDefs(). 324 NonOptPhis.insert(MPhi); 325 } 326 327 for (auto &MPhi : NewInsertedPHIs) { 328 auto *BBIDF = MPhi->getBlock(); 329 for (auto *Pred : predecessors(BBIDF)) { 330 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef; 331 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), 332 Pred); 333 } 334 } 335 336 // Re-take the index where we're adding the new phis, because the above 337 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. 338 NewPhiIndex = InsertedPHIs.size(); 339 for (auto &MPhi : NewInsertedPHIs) { 340 InsertedPHIs.push_back(&*MPhi); 341 FixupList.push_back(&*MPhi); 342 } 343 } 344 345 FixupList.push_back(MD); 346 } 347 348 // Remember the index where we stopped inserting new phis above, since the 349 // fixupDefs call in the loop below may insert more, that are already minimal. 350 unsigned NewPhiIndexEnd = InsertedPHIs.size(); 351 352 while (!FixupList.empty()) { 353 unsigned StartingPHISize = InsertedPHIs.size(); 354 fixupDefs(FixupList); 355 FixupList.clear(); 356 // Put any new phis on the fixup list, and process them 357 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); 358 } 359 360 // Optimize potentially non-minimal phis added in this method. 361 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; 362 if (NewPhiSize) 363 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize)); 364 365 // Now that all fixups are done, rename all uses if we are asked. 366 if (RenameUses) { 367 SmallPtrSet<BasicBlock *, 16> Visited; 368 BasicBlock *StartBlock = MD->getBlock(); 369 // We are guaranteed there is a def in the block, because we just got it 370 // handed to us in this function. 371 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); 372 // Convert to incoming value if it's a memorydef. A phi *is* already an 373 // incoming value. 374 if (auto *MD = dyn_cast<MemoryDef>(FirstDef)) 375 FirstDef = MD->getDefiningAccess(); 376 377 MSSA->renamePass(MD->getBlock(), FirstDef, Visited); 378 // We just inserted a phi into this block, so the incoming value will become 379 // the phi anyway, so it does not matter what we pass. 380 for (auto &MP : InsertedPHIs) { 381 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP); 382 if (Phi) 383 MSSA->renamePass(Phi->getBlock(), nullptr, Visited); 384 } 385 } 386 } 387 388 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) { 389 SmallPtrSet<const BasicBlock *, 8> Seen; 390 SmallVector<const BasicBlock *, 16> Worklist; 391 for (auto &Var : Vars) { 392 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var); 393 if (!NewDef) 394 continue; 395 // First, see if there is a local def after the operand. 396 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); 397 auto DefIter = NewDef->getDefsIterator(); 398 399 // The temporary Phi is being fixed, unmark it for not to optimize. 400 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef)) 401 NonOptPhis.erase(Phi); 402 403 // If there is a local def after us, we only have to rename that. 404 if (++DefIter != Defs->end()) { 405 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); 406 continue; 407 } 408 409 // Otherwise, we need to search down through the CFG. 410 // For each of our successors, handle it directly if their is a phi, or 411 // place on the fixup worklist. 412 for (const auto *S : successors(NewDef->getBlock())) { 413 if (auto *MP = MSSA->getMemoryAccess(S)) 414 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); 415 else 416 Worklist.push_back(S); 417 } 418 419 while (!Worklist.empty()) { 420 const BasicBlock *FixupBlock = Worklist.back(); 421 Worklist.pop_back(); 422 423 // Get the first def in the block that isn't a phi node. 424 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { 425 auto *FirstDef = &*Defs->begin(); 426 // The loop above and below should have taken care of phi nodes 427 assert(!isa<MemoryPhi>(FirstDef) && 428 "Should have already handled phi nodes!"); 429 // We are now this def's defining access, make sure we actually dominate 430 // it 431 assert(MSSA->dominates(NewDef, FirstDef) && 432 "Should have dominated the new access"); 433 434 // This may insert new phi nodes, because we are not guaranteed the 435 // block we are processing has a single pred, and depending where the 436 // store was inserted, it may require phi nodes below it. 437 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); 438 return; 439 } 440 // We didn't find a def, so we must continue. 441 for (const auto *S : successors(FixupBlock)) { 442 // If there is a phi node, handle it. 443 // Otherwise, put the block on the worklist 444 if (auto *MP = MSSA->getMemoryAccess(S)) 445 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); 446 else { 447 // If we cycle, we should have ended up at a phi node that we already 448 // processed. FIXME: Double check this 449 if (!Seen.insert(S).second) 450 continue; 451 Worklist.push_back(S); 452 } 453 } 454 } 455 } 456 } 457 458 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { 459 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 460 MPhi->unorderedDeleteIncomingBlock(From); 461 if (MPhi->getNumIncomingValues() == 1) 462 removeMemoryAccess(MPhi); 463 } 464 } 465 466 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, 467 const BasicBlock *To) { 468 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { 469 bool Found = false; 470 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { 471 if (From != B) 472 return false; 473 if (Found) 474 return true; 475 Found = true; 476 return false; 477 }); 478 if (MPhi->getNumIncomingValues() == 1) 479 removeMemoryAccess(MPhi); 480 } 481 } 482 483 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, 484 const ValueToValueMapTy &VMap, 485 PhiToDefMap &MPhiMap, 486 bool CloneWasSimplified) { 487 auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * { 488 MemoryAccess *InsnDefining = MA; 489 if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) { 490 if (!MSSA->isLiveOnEntryDef(DefMUD)) { 491 Instruction *DefMUDI = DefMUD->getMemoryInst(); 492 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); 493 if (Instruction *NewDefMUDI = 494 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) 495 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); 496 } 497 } else { 498 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining); 499 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) 500 InsnDefining = NewDefPhi; 501 } 502 assert(InsnDefining && "Defining instruction cannot be nullptr."); 503 return InsnDefining; 504 }; 505 506 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 507 if (!Acc) 508 return; 509 for (const MemoryAccess &MA : *Acc) { 510 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) { 511 Instruction *Insn = MUD->getMemoryInst(); 512 // Entry does not exist if the clone of the block did not clone all 513 // instructions. This occurs in LoopRotate when cloning instructions 514 // from the old header to the old preheader. The cloned instruction may 515 // also be a simplified Value, not an Instruction (see LoopRotate). 516 // Also in LoopRotate, even when it's an instruction, due to it being 517 // simplified, it may be a Use rather than a Def, so we cannot use MUD as 518 // template. Calls coming from updateForClonedBlockIntoPred, ensure this. 519 if (Instruction *NewInsn = 520 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) { 521 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( 522 NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), 523 CloneWasSimplified ? nullptr : MUD); 524 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); 525 } 526 } 527 } 528 } 529 530 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( 531 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { 532 auto *MPhi = MSSA->getMemoryAccess(Header); 533 if (!MPhi) 534 return; 535 536 // Create phi node in the backedge block and populate it with the same 537 // incoming values as MPhi. Skip incoming values coming from Preheader. 538 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); 539 bool HasUniqueIncomingValue = true; 540 MemoryAccess *UniqueValue = nullptr; 541 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { 542 BasicBlock *IBB = MPhi->getIncomingBlock(I); 543 MemoryAccess *IV = MPhi->getIncomingValue(I); 544 if (IBB != Preheader) { 545 NewMPhi->addIncoming(IV, IBB); 546 if (HasUniqueIncomingValue) { 547 if (!UniqueValue) 548 UniqueValue = IV; 549 else if (UniqueValue != IV) 550 HasUniqueIncomingValue = false; 551 } 552 } 553 } 554 555 // Update incoming edges into MPhi. Remove all but the incoming edge from 556 // Preheader. Add an edge from NewMPhi 557 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); 558 MPhi->setIncomingValue(0, AccFromPreheader); 559 MPhi->setIncomingBlock(0, Preheader); 560 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) 561 MPhi->unorderedDeleteIncoming(I); 562 MPhi->addIncoming(NewMPhi, BEBlock); 563 564 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be 565 // replaced with the unique value. 566 if (HasUniqueIncomingValue) 567 removeMemoryAccess(NewMPhi); 568 } 569 570 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, 571 ArrayRef<BasicBlock *> ExitBlocks, 572 const ValueToValueMapTy &VMap, 573 bool IgnoreIncomingWithNoClones) { 574 PhiToDefMap MPhiMap; 575 576 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { 577 assert(Phi && NewPhi && "Invalid Phi nodes."); 578 BasicBlock *NewPhiBB = NewPhi->getBlock(); 579 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB), 580 pred_end(NewPhiBB)); 581 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { 582 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); 583 BasicBlock *IncBB = Phi->getIncomingBlock(It); 584 585 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB))) 586 IncBB = NewIncBB; 587 else if (IgnoreIncomingWithNoClones) 588 continue; 589 590 // Now we have IncBB, and will need to add incoming from it to NewPhi. 591 592 // If IncBB is not a predecessor of NewPhiBB, then do not add it. 593 // NewPhiBB was cloned without that edge. 594 if (!NewPhiBBPreds.count(IncBB)) 595 continue; 596 597 // Determine incoming value and add it as incoming from IncBB. 598 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) { 599 if (!MSSA->isLiveOnEntryDef(IncMUD)) { 600 Instruction *IncI = IncMUD->getMemoryInst(); 601 assert(IncI && "Found MemoryUseOrDef with no Instruction."); 602 if (Instruction *NewIncI = 603 cast_or_null<Instruction>(VMap.lookup(IncI))) { 604 IncMUD = MSSA->getMemoryAccess(NewIncI); 605 assert(IncMUD && 606 "MemoryUseOrDef cannot be null, all preds processed."); 607 } 608 } 609 NewPhi->addIncoming(IncMUD, IncBB); 610 } else { 611 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess); 612 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) 613 NewPhi->addIncoming(NewDefPhi, IncBB); 614 else 615 NewPhi->addIncoming(IncPhi, IncBB); 616 } 617 } 618 }; 619 620 auto ProcessBlock = [&](BasicBlock *BB) { 621 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB)); 622 if (!NewBlock) 623 return; 624 625 assert(!MSSA->getWritableBlockAccesses(NewBlock) && 626 "Cloned block should have no accesses"); 627 628 // Add MemoryPhi. 629 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { 630 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); 631 MPhiMap[MPhi] = NewPhi; 632 } 633 // Update Uses and Defs. 634 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); 635 }; 636 637 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 638 ProcessBlock(BB); 639 640 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks)) 641 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 642 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) 643 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi)); 644 } 645 646 void MemorySSAUpdater::updateForClonedBlockIntoPred( 647 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { 648 // All defs/phis from outside BB that are used in BB, are valid uses in P1. 649 // Since those defs/phis must have dominated BB, and also dominate P1. 650 // Defs from BB being used in BB will be replaced with the cloned defs from 651 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the 652 // incoming def into the Phi from P1. 653 // Instructions cloned into the predecessor are in practice sometimes 654 // simplified, so disable the use of the template, and create an access from 655 // scratch. 656 PhiToDefMap MPhiMap; 657 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) 658 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); 659 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); 660 } 661 662 template <typename Iter> 663 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( 664 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, 665 DominatorTree &DT) { 666 SmallVector<CFGUpdate, 4> Updates; 667 // Update/insert phis in all successors of exit blocks. 668 for (auto *Exit : ExitBlocks) 669 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) 670 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) { 671 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); 672 Updates.push_back({DT.Insert, NewExit, ExitSucc}); 673 } 674 applyInsertUpdates(Updates, DT); 675 } 676 677 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 678 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap, 679 DominatorTree &DT) { 680 const ValueToValueMapTy *const Arr[] = {&VMap}; 681 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), 682 std::end(Arr), DT); 683 } 684 685 void MemorySSAUpdater::updateExitBlocksForClonedLoop( 686 ArrayRef<BasicBlock *> ExitBlocks, 687 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) { 688 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) { 689 return I.get(); 690 }; 691 using MappedIteratorType = 692 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *, 693 decltype(GetPtr)>; 694 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); 695 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); 696 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); 697 } 698 699 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates, 700 DominatorTree &DT) { 701 SmallVector<CFGUpdate, 4> RevDeleteUpdates; 702 SmallVector<CFGUpdate, 4> InsertUpdates; 703 for (auto &Update : Updates) { 704 if (Update.getKind() == DT.Insert) 705 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 706 else 707 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); 708 } 709 710 if (!RevDeleteUpdates.empty()) { 711 // Update for inserted edges: use newDT and snapshot CFG as if deletes had 712 // not occurred. 713 // FIXME: This creates a new DT, so it's more expensive to do mix 714 // delete/inserts vs just inserts. We can do an incremental update on the DT 715 // to revert deletes, than re-delete the edges. Teaching DT to do this, is 716 // part of a pending cleanup. 717 DominatorTree NewDT(DT, RevDeleteUpdates); 718 GraphDiff<BasicBlock *> GD(RevDeleteUpdates); 719 applyInsertUpdates(InsertUpdates, NewDT, &GD); 720 } else { 721 GraphDiff<BasicBlock *> GD; 722 applyInsertUpdates(InsertUpdates, DT, &GD); 723 } 724 725 // Update for deleted edges 726 for (auto &Update : RevDeleteUpdates) 727 removeEdge(Update.getFrom(), Update.getTo()); 728 } 729 730 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 731 DominatorTree &DT) { 732 GraphDiff<BasicBlock *> GD; 733 applyInsertUpdates(Updates, DT, &GD); 734 } 735 736 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates, 737 DominatorTree &DT, 738 const GraphDiff<BasicBlock *> *GD) { 739 // Get recursive last Def, assuming well formed MSSA and updated DT. 740 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { 741 while (true) { 742 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); 743 // Return last Def or Phi in BB, if it exists. 744 if (Defs) 745 return &*(--Defs->end()); 746 747 // Check number of predecessors, we only care if there's more than one. 748 unsigned Count = 0; 749 BasicBlock *Pred = nullptr; 750 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 751 Pred = Pair.second; 752 Count++; 753 if (Count == 2) 754 break; 755 } 756 757 // If BB has multiple predecessors, get last definition from IDom. 758 if (Count != 1) { 759 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its 760 // DT is invalidated. Return LoE as its last def. This will be added to 761 // MemoryPhi node, and later deleted when the block is deleted. 762 if (!DT.getNode(BB)) 763 return MSSA->getLiveOnEntryDef(); 764 if (auto *IDom = DT.getNode(BB)->getIDom()) 765 if (IDom->getBlock() != BB) { 766 BB = IDom->getBlock(); 767 continue; 768 } 769 return MSSA->getLiveOnEntryDef(); 770 } else { 771 // Single predecessor, BB cannot be dead. GetLastDef of Pred. 772 assert(Count == 1 && Pred && "Single predecessor expected."); 773 BB = Pred; 774 } 775 }; 776 llvm_unreachable("Unable to get last definition."); 777 }; 778 779 // Get nearest IDom given a set of blocks. 780 // TODO: this can be optimized by starting the search at the node with the 781 // lowest level (highest in the tree). 782 auto FindNearestCommonDominator = 783 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * { 784 BasicBlock *PrevIDom = *BBSet.begin(); 785 for (auto *BB : BBSet) 786 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); 787 return PrevIDom; 788 }; 789 790 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not 791 // include CurrIDom. 792 auto GetNoLongerDomBlocks = 793 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, 794 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) { 795 if (PrevIDom == CurrIDom) 796 return; 797 BlocksPrevDom.push_back(PrevIDom); 798 BasicBlock *NextIDom = PrevIDom; 799 while (BasicBlock *UpIDom = 800 DT.getNode(NextIDom)->getIDom()->getBlock()) { 801 if (UpIDom == CurrIDom) 802 break; 803 BlocksPrevDom.push_back(UpIDom); 804 NextIDom = UpIDom; 805 } 806 }; 807 808 // Map a BB to its predecessors: added + previously existing. To get a 809 // deterministic order, store predecessors as SetVectors. The order in each 810 // will be defined by the order in Updates (fixed) and the order given by 811 // children<> (also fixed). Since we further iterate over these ordered sets, 812 // we lose the information of multiple edges possibly existing between two 813 // blocks, so we'll keep and EdgeCount map for that. 814 // An alternate implementation could keep unordered set for the predecessors, 815 // traverse either Updates or children<> each time to get the deterministic 816 // order, and drop the usage of EdgeCount. This alternate approach would still 817 // require querying the maps for each predecessor, and children<> call has 818 // additional computation inside for creating the snapshot-graph predecessors. 819 // As such, we favor using a little additional storage and less compute time. 820 // This decision can be revisited if we find the alternative more favorable. 821 822 struct PredInfo { 823 SmallSetVector<BasicBlock *, 2> Added; 824 SmallSetVector<BasicBlock *, 2> Prev; 825 }; 826 SmallDenseMap<BasicBlock *, PredInfo> PredMap; 827 828 for (auto &Edge : Updates) { 829 BasicBlock *BB = Edge.getTo(); 830 auto &AddedBlockSet = PredMap[BB].Added; 831 AddedBlockSet.insert(Edge.getFrom()); 832 } 833 834 // Store all existing predecessor for each BB, at least one must exist. 835 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap; 836 SmallPtrSet<BasicBlock *, 2> NewBlocks; 837 for (auto &BBPredPair : PredMap) { 838 auto *BB = BBPredPair.first; 839 const auto &AddedBlockSet = BBPredPair.second.Added; 840 auto &PrevBlockSet = BBPredPair.second.Prev; 841 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) { 842 BasicBlock *Pi = Pair.second; 843 if (!AddedBlockSet.count(Pi)) 844 PrevBlockSet.insert(Pi); 845 EdgeCountMap[{Pi, BB}]++; 846 } 847 848 if (PrevBlockSet.empty()) { 849 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); 850 LLVM_DEBUG( 851 dbgs() 852 << "Adding a predecessor to a block with no predecessors. " 853 "This must be an edge added to a new, likely cloned, block. " 854 "Its memory accesses must be already correct, assuming completed " 855 "via the updateExitBlocksForClonedLoop API. " 856 "Assert a single such edge is added so no phi addition or " 857 "additional processing is required.\n"); 858 assert(AddedBlockSet.size() == 1 && 859 "Can only handle adding one predecessor to a new block."); 860 // Need to remove new blocks from PredMap. Remove below to not invalidate 861 // iterator here. 862 NewBlocks.insert(BB); 863 } 864 } 865 // Nothing to process for new/cloned blocks. 866 for (auto *BB : NewBlocks) 867 PredMap.erase(BB); 868 869 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace; 870 SmallVector<WeakVH, 8> InsertedPhis; 871 872 // First create MemoryPhis in all blocks that don't have one. Create in the 873 // order found in Updates, not in PredMap, to get deterministic numbering. 874 for (auto &Edge : Updates) { 875 BasicBlock *BB = Edge.getTo(); 876 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) 877 InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); 878 } 879 880 // Now we'll fill in the MemoryPhis with the right incoming values. 881 for (auto &BBPredPair : PredMap) { 882 auto *BB = BBPredPair.first; 883 const auto &PrevBlockSet = BBPredPair.second.Prev; 884 const auto &AddedBlockSet = BBPredPair.second.Added; 885 assert(!PrevBlockSet.empty() && 886 "At least one previous predecessor must exist."); 887 888 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by 889 // keeping this map before the loop. We can reuse already populated entries 890 // if an edge is added from the same predecessor to two different blocks, 891 // and this does happen in rotate. Note that the map needs to be updated 892 // when deleting non-necessary phis below, if the phi is in the map by 893 // replacing the value with DefP1. 894 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred; 895 for (auto *AddedPred : AddedBlockSet) { 896 auto *DefPn = GetLastDef(AddedPred); 897 assert(DefPn != nullptr && "Unable to find last definition."); 898 LastDefAddedPred[AddedPred] = DefPn; 899 } 900 901 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); 902 // If Phi is not empty, add an incoming edge from each added pred. Must 903 // still compute blocks with defs to replace for this block below. 904 if (NewPhi->getNumOperands()) { 905 for (auto *Pred : AddedBlockSet) { 906 auto *LastDefForPred = LastDefAddedPred[Pred]; 907 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 908 NewPhi->addIncoming(LastDefForPred, Pred); 909 } 910 } else { 911 // Pick any existing predecessor and get its definition. All other 912 // existing predecessors should have the same one, since no phi existed. 913 auto *P1 = *PrevBlockSet.begin(); 914 MemoryAccess *DefP1 = GetLastDef(P1); 915 916 // Check DefP1 against all Defs in LastDefPredPair. If all the same, 917 // nothing to add. 918 bool InsertPhi = false; 919 for (auto LastDefPredPair : LastDefAddedPred) 920 if (DefP1 != LastDefPredPair.second) { 921 InsertPhi = true; 922 break; 923 } 924 if (!InsertPhi) { 925 // Since NewPhi may be used in other newly added Phis, replace all uses 926 // of NewPhi with the definition coming from all predecessors (DefP1), 927 // before deleting it. 928 NewPhi->replaceAllUsesWith(DefP1); 929 removeMemoryAccess(NewPhi); 930 continue; 931 } 932 933 // Update Phi with new values for new predecessors and old value for all 934 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered 935 // sets, the order of entries in NewPhi is deterministic. 936 for (auto *Pred : AddedBlockSet) { 937 auto *LastDefForPred = LastDefAddedPred[Pred]; 938 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 939 NewPhi->addIncoming(LastDefForPred, Pred); 940 } 941 for (auto *Pred : PrevBlockSet) 942 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) 943 NewPhi->addIncoming(DefP1, Pred); 944 } 945 946 // Get all blocks that used to dominate BB and no longer do after adding 947 // AddedBlockSet, where PrevBlockSet are the previously known predecessors. 948 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); 949 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); 950 assert(PrevIDom && "Previous IDom should exists"); 951 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); 952 assert(NewIDom && "BB should have a new valid idom"); 953 assert(DT.dominates(NewIDom, PrevIDom) && 954 "New idom should dominate old idom"); 955 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); 956 } 957 958 tryRemoveTrivialPhis(InsertedPhis); 959 // Create the set of blocks that now have a definition. We'll use this to 960 // compute IDF and add Phis there next. 961 SmallVector<BasicBlock *, 8> BlocksToProcess; 962 for (auto &VH : InsertedPhis) 963 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) 964 BlocksToProcess.push_back(MPhi->getBlock()); 965 966 // Compute IDF and add Phis in all IDF blocks that do not have one. 967 SmallVector<BasicBlock *, 32> IDFBlocks; 968 if (!BlocksToProcess.empty()) { 969 ForwardIDFCalculator IDFs(DT, GD); 970 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(), 971 BlocksToProcess.end()); 972 IDFs.setDefiningBlocks(DefiningBlocks); 973 IDFs.calculate(IDFBlocks); 974 975 SmallSetVector<MemoryPhi *, 4> PhisToFill; 976 // First create all needed Phis. 977 for (auto *BBIDF : IDFBlocks) 978 if (!MSSA->getMemoryAccess(BBIDF)) { 979 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); 980 InsertedPhis.push_back(IDFPhi); 981 PhisToFill.insert(IDFPhi); 982 } 983 // Then update or insert their correct incoming values. 984 for (auto *BBIDF : IDFBlocks) { 985 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); 986 assert(IDFPhi && "Phi must exist"); 987 if (!PhisToFill.count(IDFPhi)) { 988 // Update existing Phi. 989 // FIXME: some updates may be redundant, try to optimize and skip some. 990 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) 991 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); 992 } else { 993 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) { 994 BasicBlock *Pi = Pair.second; 995 IDFPhi->addIncoming(GetLastDef(Pi), Pi); 996 } 997 } 998 } 999 } 1000 1001 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no 1002 // longer dominate, replace those with the closest dominating def. 1003 // This will also update optimized accesses, as they're also uses. 1004 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { 1005 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { 1006 for (auto &DefToReplaceUses : *DefsList) { 1007 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); 1008 Value::use_iterator UI = DefToReplaceUses.use_begin(), 1009 E = DefToReplaceUses.use_end(); 1010 for (; UI != E;) { 1011 Use &U = *UI; 1012 ++UI; 1013 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser()); 1014 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) { 1015 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); 1016 if (!DT.dominates(DominatingBlock, DominatedBlock)) 1017 U.set(GetLastDef(DominatedBlock)); 1018 } else { 1019 BasicBlock *DominatedBlock = Usr->getBlock(); 1020 if (!DT.dominates(DominatingBlock, DominatedBlock)) { 1021 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) 1022 U.set(DomBlPhi); 1023 else { 1024 auto *IDom = DT.getNode(DominatedBlock)->getIDom(); 1025 assert(IDom && "Block must have a valid IDom."); 1026 U.set(GetLastDef(IDom->getBlock())); 1027 } 1028 cast<MemoryUseOrDef>(Usr)->resetOptimized(); 1029 } 1030 } 1031 } 1032 } 1033 } 1034 } 1035 tryRemoveTrivialPhis(InsertedPhis); 1036 } 1037 1038 // Move What before Where in the MemorySSA IR. 1039 template <class WhereType> 1040 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1041 WhereType Where) { 1042 // Mark MemoryPhi users of What not to be optimized. 1043 for (auto *U : What->users()) 1044 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U)) 1045 NonOptPhis.insert(PhiUser); 1046 1047 // Replace all our users with our defining access. 1048 What->replaceAllUsesWith(What->getDefiningAccess()); 1049 1050 // Let MemorySSA take care of moving it around in the lists. 1051 MSSA->moveTo(What, BB, Where); 1052 1053 // Now reinsert it into the IR and do whatever fixups needed. 1054 if (auto *MD = dyn_cast<MemoryDef>(What)) 1055 insertDef(MD); 1056 else 1057 insertUse(cast<MemoryUse>(What)); 1058 1059 // Clear dangling pointers. We added all MemoryPhi users, but not all 1060 // of them are removed by fixupDefs(). 1061 NonOptPhis.clear(); 1062 } 1063 1064 // Move What before Where in the MemorySSA IR. 1065 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1066 moveTo(What, Where->getBlock(), Where->getIterator()); 1067 } 1068 1069 // Move What after Where in the MemorySSA IR. 1070 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { 1071 moveTo(What, Where->getBlock(), ++Where->getIterator()); 1072 } 1073 1074 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, 1075 MemorySSA::InsertionPlace Where) { 1076 return moveTo(What, BB, Where); 1077 } 1078 1079 // All accesses in To used to be in From. Move to end and update access lists. 1080 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, 1081 Instruction *Start) { 1082 1083 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); 1084 if (!Accs) 1085 return; 1086 1087 MemoryAccess *FirstInNew = nullptr; 1088 for (Instruction &I : make_range(Start->getIterator(), To->end())) 1089 if ((FirstInNew = MSSA->getMemoryAccess(&I))) 1090 break; 1091 if (!FirstInNew) 1092 return; 1093 1094 auto *MUD = cast<MemoryUseOrDef>(FirstInNew); 1095 do { 1096 auto NextIt = ++MUD->getIterator(); 1097 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) 1098 ? nullptr 1099 : cast<MemoryUseOrDef>(&*NextIt); 1100 MSSA->moveTo(MUD, To, MemorySSA::End); 1101 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to 1102 // retrieve it again. 1103 Accs = MSSA->getWritableBlockAccesses(From); 1104 MUD = NextMUD; 1105 } while (MUD); 1106 } 1107 1108 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, 1109 BasicBlock *To, 1110 Instruction *Start) { 1111 assert(MSSA->getBlockAccesses(To) == nullptr && 1112 "To block is expected to be free of MemoryAccesses."); 1113 moveAllAccesses(From, To, Start); 1114 for (BasicBlock *Succ : successors(To)) 1115 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1116 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1117 } 1118 1119 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, 1120 Instruction *Start) { 1121 assert(From->getSinglePredecessor() == To && 1122 "From block is expected to have a single predecessor (To)."); 1123 moveAllAccesses(From, To, Start); 1124 for (BasicBlock *Succ : successors(From)) 1125 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) 1126 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); 1127 } 1128 1129 /// If all arguments of a MemoryPHI are defined by the same incoming 1130 /// argument, return that argument. 1131 static MemoryAccess *onlySingleValue(MemoryPhi *MP) { 1132 MemoryAccess *MA = nullptr; 1133 1134 for (auto &Arg : MP->operands()) { 1135 if (!MA) 1136 MA = cast<MemoryAccess>(Arg); 1137 else if (MA != Arg) 1138 return nullptr; 1139 } 1140 return MA; 1141 } 1142 1143 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( 1144 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds, 1145 bool IdenticalEdgesWereMerged) { 1146 assert(!MSSA->getWritableBlockAccesses(New) && 1147 "Access list should be null for a new block."); 1148 MemoryPhi *Phi = MSSA->getMemoryAccess(Old); 1149 if (!Phi) 1150 return; 1151 if (Old->hasNPredecessors(1)) { 1152 assert(pred_size(New) == Preds.size() && 1153 "Should have moved all predecessors."); 1154 MSSA->moveTo(Phi, New, MemorySSA::Beginning); 1155 } else { 1156 assert(!Preds.empty() && "Must be moving at least one predecessor to the " 1157 "new immediate predecessor."); 1158 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); 1159 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end()); 1160 // Currently only support the case of removing a single incoming edge when 1161 // identical edges were not merged. 1162 if (!IdenticalEdgesWereMerged) 1163 assert(PredsSet.size() == Preds.size() && 1164 "If identical edges were not merged, we cannot have duplicate " 1165 "blocks in the predecessors"); 1166 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { 1167 if (PredsSet.count(B)) { 1168 NewPhi->addIncoming(MA, B); 1169 if (!IdenticalEdgesWereMerged) 1170 PredsSet.erase(B); 1171 return true; 1172 } 1173 return false; 1174 }); 1175 Phi->addIncoming(NewPhi, New); 1176 if (onlySingleValue(NewPhi)) 1177 removeMemoryAccess(NewPhi); 1178 } 1179 } 1180 1181 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { 1182 assert(!MSSA->isLiveOnEntryDef(MA) && 1183 "Trying to remove the live on entry def"); 1184 // We can only delete phi nodes if they have no uses, or we can replace all 1185 // uses with a single definition. 1186 MemoryAccess *NewDefTarget = nullptr; 1187 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { 1188 // Note that it is sufficient to know that all edges of the phi node have 1189 // the same argument. If they do, by the definition of dominance frontiers 1190 // (which we used to place this phi), that argument must dominate this phi, 1191 // and thus, must dominate the phi's uses, and so we will not hit the assert 1192 // below. 1193 NewDefTarget = onlySingleValue(MP); 1194 assert((NewDefTarget || MP->use_empty()) && 1195 "We can't delete this memory phi"); 1196 } else { 1197 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); 1198 } 1199 1200 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 1201 1202 // Re-point the uses at our defining access 1203 if (!isa<MemoryUse>(MA) && !MA->use_empty()) { 1204 // Reset optimized on users of this store, and reset the uses. 1205 // A few notes: 1206 // 1. This is a slightly modified version of RAUW to avoid walking the 1207 // uses twice here. 1208 // 2. If we wanted to be complete, we would have to reset the optimized 1209 // flags on users of phi nodes if doing the below makes a phi node have all 1210 // the same arguments. Instead, we prefer users to removeMemoryAccess those 1211 // phi nodes, because doing it here would be N^3. 1212 if (MA->hasValueHandle()) 1213 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); 1214 // Note: We assume MemorySSA is not used in metadata since it's not really 1215 // part of the IR. 1216 1217 while (!MA->use_empty()) { 1218 Use &U = *MA->use_begin(); 1219 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser())) 1220 MUD->resetOptimized(); 1221 if (OptimizePhis) 1222 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser())) 1223 PhisToCheck.insert(MP); 1224 U.set(NewDefTarget); 1225 } 1226 } 1227 1228 // The call below to erase will destroy MA, so we can't change the order we 1229 // are doing things here 1230 MSSA->removeFromLookups(MA); 1231 MSSA->removeFromLists(MA); 1232 1233 // Optionally optimize Phi uses. This will recursively remove trivial phis. 1234 if (!PhisToCheck.empty()) { 1235 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(), 1236 PhisToCheck.end()}; 1237 PhisToCheck.clear(); 1238 1239 unsigned PhisSize = PhisToOptimize.size(); 1240 while (PhisSize-- > 0) 1241 if (MemoryPhi *MP = 1242 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) { 1243 auto OperRange = MP->operands(); 1244 tryRemoveTrivialPhi(MP, OperRange); 1245 } 1246 } 1247 } 1248 1249 void MemorySSAUpdater::removeBlocks( 1250 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) { 1251 // First delete all uses of BB in MemoryPhis. 1252 for (BasicBlock *BB : DeadBlocks) { 1253 Instruction *TI = BB->getTerminator(); 1254 assert(TI && "Basic block expected to have a terminator instruction"); 1255 for (BasicBlock *Succ : successors(TI)) 1256 if (!DeadBlocks.count(Succ)) 1257 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { 1258 MP->unorderedDeleteIncomingBlock(BB); 1259 if (MP->getNumIncomingValues() == 1) 1260 removeMemoryAccess(MP); 1261 } 1262 // Drop all references of all accesses in BB 1263 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) 1264 for (MemoryAccess &MA : *Acc) 1265 MA.dropAllReferences(); 1266 } 1267 1268 // Next, delete all memory accesses in each block 1269 for (BasicBlock *BB : DeadBlocks) { 1270 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); 1271 if (!Acc) 1272 continue; 1273 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { 1274 MemoryAccess *MA = &*AB; 1275 ++AB; 1276 MSSA->removeFromLookups(MA); 1277 MSSA->removeFromLists(MA); 1278 } 1279 } 1280 } 1281 1282 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) { 1283 for (auto &VH : UpdatedPHIs) 1284 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) { 1285 auto OperRange = MPhi->operands(); 1286 tryRemoveTrivialPhi(MPhi, OperRange); 1287 } 1288 } 1289 1290 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { 1291 const BasicBlock *BB = I->getParent(); 1292 // Remove memory accesses in BB for I and all following instructions. 1293 auto BBI = I->getIterator(), BBE = BB->end(); 1294 // FIXME: If this becomes too expensive, iterate until the first instruction 1295 // with a memory access, then iterate over MemoryAccesses. 1296 while (BBI != BBE) 1297 removeMemoryAccess(&*(BBI++)); 1298 // Update phis in BB's successors to remove BB. 1299 SmallVector<WeakVH, 16> UpdatedPHIs; 1300 for (const BasicBlock *Successor : successors(BB)) { 1301 removeDuplicatePhiEdgesBetween(BB, Successor); 1302 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { 1303 MPhi->unorderedDeleteIncomingBlock(BB); 1304 UpdatedPHIs.push_back(MPhi); 1305 } 1306 } 1307 // Optimize trivial phis. 1308 tryRemoveTrivialPhis(UpdatedPHIs); 1309 } 1310 1311 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, 1312 const BasicBlock *To) { 1313 const BasicBlock *BB = BI->getParent(); 1314 SmallVector<WeakVH, 16> UpdatedPHIs; 1315 for (const BasicBlock *Succ : successors(BB)) { 1316 removeDuplicatePhiEdgesBetween(BB, Succ); 1317 if (Succ != To) 1318 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { 1319 MPhi->unorderedDeleteIncomingBlock(BB); 1320 UpdatedPHIs.push_back(MPhi); 1321 } 1322 } 1323 // Optimize trivial phis. 1324 tryRemoveTrivialPhis(UpdatedPHIs); 1325 } 1326 1327 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( 1328 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, 1329 MemorySSA::InsertionPlace Point) { 1330 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1331 MSSA->insertIntoListsForBlock(NewAccess, BB, Point); 1332 return NewAccess; 1333 } 1334 1335 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( 1336 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { 1337 assert(I->getParent() == InsertPt->getBlock() && 1338 "New and old access must be in the same block"); 1339 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1340 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1341 InsertPt->getIterator()); 1342 return NewAccess; 1343 } 1344 1345 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( 1346 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { 1347 assert(I->getParent() == InsertPt->getBlock() && 1348 "New and old access must be in the same block"); 1349 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); 1350 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), 1351 ++InsertPt->getIterator()); 1352 return NewAccess; 1353 } 1354