1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <memory> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "memoryssa" 59 60 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 61 true) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 64 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 65 true) 66 67 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 68 "Memory SSA Printer", false, false) 69 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 70 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 71 "Memory SSA Printer", false, false) 72 73 static cl::opt<unsigned> MaxCheckLimit( 74 "memssa-check-limit", cl::Hidden, cl::init(100), 75 cl::desc("The maximum number of stores/phis MemorySSA" 76 "will consider trying to walk past (default = 100)")); 77 78 // Always verify MemorySSA if expensive checking is enabled. 79 #ifdef EXPENSIVE_CHECKS 80 bool llvm::VerifyMemorySSA = true; 81 #else 82 bool llvm::VerifyMemorySSA = false; 83 #endif 84 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 85 cl::opt<bool> llvm::EnableMSSALoopDependency( 86 "enable-mssa-loop-dependency", cl::Hidden, cl::init(false), 87 cl::desc("Enable MemorySSA dependency for loop pass manager")); 88 89 static cl::opt<bool, true> 90 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 91 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 92 93 namespace llvm { 94 95 /// An assembly annotator class to print Memory SSA information in 96 /// comments. 97 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 98 friend class MemorySSA; 99 100 const MemorySSA *MSSA; 101 102 public: 103 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 104 105 void emitBasicBlockStartAnnot(const BasicBlock *BB, 106 formatted_raw_ostream &OS) override { 107 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 108 OS << "; " << *MA << "\n"; 109 } 110 111 void emitInstructionAnnot(const Instruction *I, 112 formatted_raw_ostream &OS) override { 113 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 114 OS << "; " << *MA << "\n"; 115 } 116 }; 117 118 } // end namespace llvm 119 120 namespace { 121 122 /// Our current alias analysis API differentiates heavily between calls and 123 /// non-calls, and functions called on one usually assert on the other. 124 /// This class encapsulates the distinction to simplify other code that wants 125 /// "Memory affecting instructions and related data" to use as a key. 126 /// For example, this class is used as a densemap key in the use optimizer. 127 class MemoryLocOrCall { 128 public: 129 bool IsCall = false; 130 131 MemoryLocOrCall(MemoryUseOrDef *MUD) 132 : MemoryLocOrCall(MUD->getMemoryInst()) {} 133 MemoryLocOrCall(const MemoryUseOrDef *MUD) 134 : MemoryLocOrCall(MUD->getMemoryInst()) {} 135 136 MemoryLocOrCall(Instruction *Inst) { 137 if (auto *C = dyn_cast<CallBase>(Inst)) { 138 IsCall = true; 139 Call = C; 140 } else { 141 IsCall = false; 142 // There is no such thing as a memorylocation for a fence inst, and it is 143 // unique in that regard. 144 if (!isa<FenceInst>(Inst)) 145 Loc = MemoryLocation::get(Inst); 146 } 147 } 148 149 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 150 151 const CallBase *getCall() const { 152 assert(IsCall); 153 return Call; 154 } 155 156 MemoryLocation getLoc() const { 157 assert(!IsCall); 158 return Loc; 159 } 160 161 bool operator==(const MemoryLocOrCall &Other) const { 162 if (IsCall != Other.IsCall) 163 return false; 164 165 if (!IsCall) 166 return Loc == Other.Loc; 167 168 if (Call->getCalledValue() != Other.Call->getCalledValue()) 169 return false; 170 171 return Call->arg_size() == Other.Call->arg_size() && 172 std::equal(Call->arg_begin(), Call->arg_end(), 173 Other.Call->arg_begin()); 174 } 175 176 private: 177 union { 178 const CallBase *Call; 179 MemoryLocation Loc; 180 }; 181 }; 182 183 } // end anonymous namespace 184 185 namespace llvm { 186 187 template <> struct DenseMapInfo<MemoryLocOrCall> { 188 static inline MemoryLocOrCall getEmptyKey() { 189 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 190 } 191 192 static inline MemoryLocOrCall getTombstoneKey() { 193 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 194 } 195 196 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 197 if (!MLOC.IsCall) 198 return hash_combine( 199 MLOC.IsCall, 200 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 201 202 hash_code hash = 203 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 204 MLOC.getCall()->getCalledValue())); 205 206 for (const Value *Arg : MLOC.getCall()->args()) 207 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 208 return hash; 209 } 210 211 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 212 return LHS == RHS; 213 } 214 }; 215 216 } // end namespace llvm 217 218 /// This does one-way checks to see if Use could theoretically be hoisted above 219 /// MayClobber. This will not check the other way around. 220 /// 221 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 222 /// MayClobber, with no potentially clobbering operations in between them. 223 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 224 static bool areLoadsReorderable(const LoadInst *Use, 225 const LoadInst *MayClobber) { 226 bool VolatileUse = Use->isVolatile(); 227 bool VolatileClobber = MayClobber->isVolatile(); 228 // Volatile operations may never be reordered with other volatile operations. 229 if (VolatileUse && VolatileClobber) 230 return false; 231 // Otherwise, volatile doesn't matter here. From the language reference: 232 // 'optimizers may change the order of volatile operations relative to 233 // non-volatile operations.'" 234 235 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 236 // is weaker, it can be moved above other loads. We just need to be sure that 237 // MayClobber isn't an acquire load, because loads can't be moved above 238 // acquire loads. 239 // 240 // Note that this explicitly *does* allow the free reordering of monotonic (or 241 // weaker) loads of the same address. 242 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 243 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 244 AtomicOrdering::Acquire); 245 return !(SeqCstUse || MayClobberIsAcquire); 246 } 247 248 namespace { 249 250 struct ClobberAlias { 251 bool IsClobber; 252 Optional<AliasResult> AR; 253 }; 254 255 } // end anonymous namespace 256 257 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 258 // ignored if IsClobber = false. 259 template <typename AliasAnalysisType> 260 static ClobberAlias 261 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 262 const Instruction *UseInst, AliasAnalysisType &AA) { 263 Instruction *DefInst = MD->getMemoryInst(); 264 assert(DefInst && "Defining instruction not actually an instruction"); 265 const auto *UseCall = dyn_cast<CallBase>(UseInst); 266 Optional<AliasResult> AR; 267 268 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 269 // These intrinsics will show up as affecting memory, but they are just 270 // markers, mostly. 271 // 272 // FIXME: We probably don't actually want MemorySSA to model these at all 273 // (including creating MemoryAccesses for them): we just end up inventing 274 // clobbers where they don't really exist at all. Please see D43269 for 275 // context. 276 switch (II->getIntrinsicID()) { 277 case Intrinsic::lifetime_start: 278 if (UseCall) 279 return {false, NoAlias}; 280 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 281 return {AR != NoAlias, AR}; 282 case Intrinsic::lifetime_end: 283 case Intrinsic::invariant_start: 284 case Intrinsic::invariant_end: 285 case Intrinsic::assume: 286 return {false, NoAlias}; 287 default: 288 break; 289 } 290 } 291 292 if (UseCall) { 293 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 294 AR = isMustSet(I) ? MustAlias : MayAlias; 295 return {isModOrRefSet(I), AR}; 296 } 297 298 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 299 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 300 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 301 302 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 303 AR = isMustSet(I) ? MustAlias : MayAlias; 304 return {isModSet(I), AR}; 305 } 306 307 template <typename AliasAnalysisType> 308 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 309 const MemoryUseOrDef *MU, 310 const MemoryLocOrCall &UseMLOC, 311 AliasAnalysisType &AA) { 312 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 313 // to exist while MemoryLocOrCall is pushed through places. 314 if (UseMLOC.IsCall) 315 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 316 AA); 317 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 318 AA); 319 } 320 321 // Return true when MD may alias MU, return false otherwise. 322 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 323 AliasAnalysis &AA) { 324 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 325 } 326 327 namespace { 328 329 struct UpwardsMemoryQuery { 330 // True if our original query started off as a call 331 bool IsCall = false; 332 // The pointer location we started the query with. This will be empty if 333 // IsCall is true. 334 MemoryLocation StartingLoc; 335 // This is the instruction we were querying about. 336 const Instruction *Inst = nullptr; 337 // The MemoryAccess we actually got called with, used to test local domination 338 const MemoryAccess *OriginalAccess = nullptr; 339 Optional<AliasResult> AR = MayAlias; 340 bool SkipSelfAccess = false; 341 342 UpwardsMemoryQuery() = default; 343 344 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 345 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 346 if (!IsCall) 347 StartingLoc = MemoryLocation::get(Inst); 348 } 349 }; 350 351 } // end anonymous namespace 352 353 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 354 BatchAAResults &AA) { 355 Instruction *Inst = MD->getMemoryInst(); 356 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 357 switch (II->getIntrinsicID()) { 358 case Intrinsic::lifetime_end: 359 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 360 default: 361 return false; 362 } 363 } 364 return false; 365 } 366 367 template <typename AliasAnalysisType> 368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 369 const Instruction *I) { 370 // If the memory can't be changed, then loads of the memory can't be 371 // clobbered. 372 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || 373 AA.pointsToConstantMemory(MemoryLocation( 374 cast<LoadInst>(I)->getPointerOperand()))); 375 } 376 377 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 378 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 379 /// 380 /// This is meant to be as simple and self-contained as possible. Because it 381 /// uses no cache, etc., it can be relatively expensive. 382 /// 383 /// \param Start The MemoryAccess that we want to walk from. 384 /// \param ClobberAt A clobber for Start. 385 /// \param StartLoc The MemoryLocation for Start. 386 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 387 /// \param Query The UpwardsMemoryQuery we used for our search. 388 /// \param AA The AliasAnalysis we used for our search. 389 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 390 391 template <typename AliasAnalysisType> 392 LLVM_ATTRIBUTE_UNUSED static void 393 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 394 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 395 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 396 bool AllowImpreciseClobber = false) { 397 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 398 399 if (MSSA.isLiveOnEntryDef(Start)) { 400 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 401 "liveOnEntry must clobber itself"); 402 return; 403 } 404 405 bool FoundClobber = false; 406 DenseSet<ConstMemoryAccessPair> VisitedPhis; 407 SmallVector<ConstMemoryAccessPair, 8> Worklist; 408 Worklist.emplace_back(Start, StartLoc); 409 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 410 // is found, complain. 411 while (!Worklist.empty()) { 412 auto MAP = Worklist.pop_back_val(); 413 // All we care about is that nothing from Start to ClobberAt clobbers Start. 414 // We learn nothing from revisiting nodes. 415 if (!VisitedPhis.insert(MAP).second) 416 continue; 417 418 for (const auto *MA : def_chain(MAP.first)) { 419 if (MA == ClobberAt) { 420 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 421 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 422 // since it won't let us short-circuit. 423 // 424 // Also, note that this can't be hoisted out of the `Worklist` loop, 425 // since MD may only act as a clobber for 1 of N MemoryLocations. 426 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 427 if (!FoundClobber) { 428 ClobberAlias CA = 429 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 430 if (CA.IsClobber) { 431 FoundClobber = true; 432 // Not used: CA.AR; 433 } 434 } 435 } 436 break; 437 } 438 439 // We should never hit liveOnEntry, unless it's the clobber. 440 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 441 442 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 443 // If Start is a Def, skip self. 444 if (MD == Start) 445 continue; 446 447 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 448 .IsClobber && 449 "Found clobber before reaching ClobberAt!"); 450 continue; 451 } 452 453 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 454 (void)MU; 455 assert (MU == Start && 456 "Can only find use in def chain if Start is a use"); 457 continue; 458 } 459 460 assert(isa<MemoryPhi>(MA)); 461 Worklist.append( 462 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 463 upward_defs_end()); 464 } 465 } 466 467 // If the verify is done following an optimization, it's possible that 468 // ClobberAt was a conservative clobbering, that we can now infer is not a 469 // true clobbering access. Don't fail the verify if that's the case. 470 // We do have accesses that claim they're optimized, but could be optimized 471 // further. Updating all these can be expensive, so allow it for now (FIXME). 472 if (AllowImpreciseClobber) 473 return; 474 475 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 476 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 477 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 478 "ClobberAt never acted as a clobber"); 479 } 480 481 namespace { 482 483 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 484 /// in one class. 485 template <class AliasAnalysisType> class ClobberWalker { 486 /// Save a few bytes by using unsigned instead of size_t. 487 using ListIndex = unsigned; 488 489 /// Represents a span of contiguous MemoryDefs, potentially ending in a 490 /// MemoryPhi. 491 struct DefPath { 492 MemoryLocation Loc; 493 // Note that, because we always walk in reverse, Last will always dominate 494 // First. Also note that First and Last are inclusive. 495 MemoryAccess *First; 496 MemoryAccess *Last; 497 Optional<ListIndex> Previous; 498 499 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 500 Optional<ListIndex> Previous) 501 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 502 503 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 504 Optional<ListIndex> Previous) 505 : DefPath(Loc, Init, Init, Previous) {} 506 }; 507 508 const MemorySSA &MSSA; 509 AliasAnalysisType &AA; 510 DominatorTree &DT; 511 UpwardsMemoryQuery *Query; 512 unsigned *UpwardWalkLimit; 513 514 // Phi optimization bookkeeping 515 SmallVector<DefPath, 32> Paths; 516 DenseSet<ConstMemoryAccessPair> VisitedPhis; 517 518 /// Find the nearest def or phi that `From` can legally be optimized to. 519 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 520 assert(From->getNumOperands() && "Phi with no operands?"); 521 522 BasicBlock *BB = From->getBlock(); 523 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 524 DomTreeNode *Node = DT.getNode(BB); 525 while ((Node = Node->getIDom())) { 526 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 527 if (Defs) 528 return &*Defs->rbegin(); 529 } 530 return Result; 531 } 532 533 /// Result of calling walkToPhiOrClobber. 534 struct UpwardsWalkResult { 535 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 536 /// both. Include alias info when clobber found. 537 MemoryAccess *Result; 538 bool IsKnownClobber; 539 Optional<AliasResult> AR; 540 }; 541 542 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 543 /// This will update Desc.Last as it walks. It will (optionally) also stop at 544 /// StopAt. 545 /// 546 /// This does not test for whether StopAt is a clobber 547 UpwardsWalkResult 548 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 549 const MemoryAccess *SkipStopAt = nullptr) const { 550 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 551 assert(UpwardWalkLimit && "Need a valid walk limit"); 552 bool LimitAlreadyReached = false; 553 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 554 // it to 1. This will not do any alias() calls. It either returns in the 555 // first iteration in the loop below, or is set back to 0 if all def chains 556 // are free of MemoryDefs. 557 if (!*UpwardWalkLimit) { 558 *UpwardWalkLimit = 1; 559 LimitAlreadyReached = true; 560 } 561 562 for (MemoryAccess *Current : def_chain(Desc.Last)) { 563 Desc.Last = Current; 564 if (Current == StopAt || Current == SkipStopAt) 565 return {Current, false, MayAlias}; 566 567 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 568 if (MSSA.isLiveOnEntryDef(MD)) 569 return {MD, true, MustAlias}; 570 571 if (!--*UpwardWalkLimit) 572 return {Current, true, MayAlias}; 573 574 ClobberAlias CA = 575 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 576 if (CA.IsClobber) 577 return {MD, true, CA.AR}; 578 } 579 } 580 581 if (LimitAlreadyReached) 582 *UpwardWalkLimit = 0; 583 584 assert(isa<MemoryPhi>(Desc.Last) && 585 "Ended at a non-clobber that's not a phi?"); 586 return {Desc.Last, false, MayAlias}; 587 } 588 589 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 590 ListIndex PriorNode) { 591 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 592 upward_defs_end()); 593 for (const MemoryAccessPair &P : UpwardDefs) { 594 PausedSearches.push_back(Paths.size()); 595 Paths.emplace_back(P.second, P.first, PriorNode); 596 } 597 } 598 599 /// Represents a search that terminated after finding a clobber. This clobber 600 /// may or may not be present in the path of defs from LastNode..SearchStart, 601 /// since it may have been retrieved from cache. 602 struct TerminatedPath { 603 MemoryAccess *Clobber; 604 ListIndex LastNode; 605 }; 606 607 /// Get an access that keeps us from optimizing to the given phi. 608 /// 609 /// PausedSearches is an array of indices into the Paths array. Its incoming 610 /// value is the indices of searches that stopped at the last phi optimization 611 /// target. It's left in an unspecified state. 612 /// 613 /// If this returns None, NewPaused is a vector of searches that terminated 614 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 615 Optional<TerminatedPath> 616 getBlockingAccess(const MemoryAccess *StopWhere, 617 SmallVectorImpl<ListIndex> &PausedSearches, 618 SmallVectorImpl<ListIndex> &NewPaused, 619 SmallVectorImpl<TerminatedPath> &Terminated) { 620 assert(!PausedSearches.empty() && "No searches to continue?"); 621 622 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 623 // PausedSearches as our stack. 624 while (!PausedSearches.empty()) { 625 ListIndex PathIndex = PausedSearches.pop_back_val(); 626 DefPath &Node = Paths[PathIndex]; 627 628 // If we've already visited this path with this MemoryLocation, we don't 629 // need to do so again. 630 // 631 // NOTE: That we just drop these paths on the ground makes caching 632 // behavior sporadic. e.g. given a diamond: 633 // A 634 // B C 635 // D 636 // 637 // ...If we walk D, B, A, C, we'll only cache the result of phi 638 // optimization for A, B, and D; C will be skipped because it dies here. 639 // This arguably isn't the worst thing ever, since: 640 // - We generally query things in a top-down order, so if we got below D 641 // without needing cache entries for {C, MemLoc}, then chances are 642 // that those cache entries would end up ultimately unused. 643 // - We still cache things for A, so C only needs to walk up a bit. 644 // If this behavior becomes problematic, we can fix without a ton of extra 645 // work. 646 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 647 continue; 648 649 const MemoryAccess *SkipStopWhere = nullptr; 650 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 651 assert(isa<MemoryDef>(Query->OriginalAccess)); 652 SkipStopWhere = Query->OriginalAccess; 653 } 654 655 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 656 /*StopAt=*/StopWhere, 657 /*SkipStopAt=*/SkipStopWhere); 658 if (Res.IsKnownClobber) { 659 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 660 661 // If this wasn't a cache hit, we hit a clobber when walking. That's a 662 // failure. 663 TerminatedPath Term{Res.Result, PathIndex}; 664 if (!MSSA.dominates(Res.Result, StopWhere)) 665 return Term; 666 667 // Otherwise, it's a valid thing to potentially optimize to. 668 Terminated.push_back(Term); 669 continue; 670 } 671 672 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 673 // We've hit our target. Save this path off for if we want to continue 674 // walking. If we are in the mode of skipping the OriginalAccess, and 675 // we've reached back to the OriginalAccess, do not save path, we've 676 // just looped back to self. 677 if (Res.Result != SkipStopWhere) 678 NewPaused.push_back(PathIndex); 679 continue; 680 } 681 682 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 683 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 684 } 685 686 return None; 687 } 688 689 template <typename T, typename Walker> 690 struct generic_def_path_iterator 691 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 692 std::forward_iterator_tag, T *> { 693 generic_def_path_iterator() {} 694 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 695 696 T &operator*() const { return curNode(); } 697 698 generic_def_path_iterator &operator++() { 699 N = curNode().Previous; 700 return *this; 701 } 702 703 bool operator==(const generic_def_path_iterator &O) const { 704 if (N.hasValue() != O.N.hasValue()) 705 return false; 706 return !N.hasValue() || *N == *O.N; 707 } 708 709 private: 710 T &curNode() const { return W->Paths[*N]; } 711 712 Walker *W = nullptr; 713 Optional<ListIndex> N = None; 714 }; 715 716 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 717 using const_def_path_iterator = 718 generic_def_path_iterator<const DefPath, const ClobberWalker>; 719 720 iterator_range<def_path_iterator> def_path(ListIndex From) { 721 return make_range(def_path_iterator(this, From), def_path_iterator()); 722 } 723 724 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 725 return make_range(const_def_path_iterator(this, From), 726 const_def_path_iterator()); 727 } 728 729 struct OptznResult { 730 /// The path that contains our result. 731 TerminatedPath PrimaryClobber; 732 /// The paths that we can legally cache back from, but that aren't 733 /// necessarily the result of the Phi optimization. 734 SmallVector<TerminatedPath, 4> OtherClobbers; 735 }; 736 737 ListIndex defPathIndex(const DefPath &N) const { 738 // The assert looks nicer if we don't need to do &N 739 const DefPath *NP = &N; 740 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 741 "Out of bounds DefPath!"); 742 return NP - &Paths.front(); 743 } 744 745 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 746 /// that act as legal clobbers. Note that this won't return *all* clobbers. 747 /// 748 /// Phi optimization algorithm tl;dr: 749 /// - Find the earliest def/phi, A, we can optimize to 750 /// - Find if all paths from the starting memory access ultimately reach A 751 /// - If not, optimization isn't possible. 752 /// - Otherwise, walk from A to another clobber or phi, A'. 753 /// - If A' is a def, we're done. 754 /// - If A' is a phi, try to optimize it. 755 /// 756 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 757 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 758 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 759 const MemoryLocation &Loc) { 760 assert(Paths.empty() && VisitedPhis.empty() && 761 "Reset the optimization state."); 762 763 Paths.emplace_back(Loc, Start, Phi, None); 764 // Stores how many "valid" optimization nodes we had prior to calling 765 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 766 auto PriorPathsSize = Paths.size(); 767 768 SmallVector<ListIndex, 16> PausedSearches; 769 SmallVector<ListIndex, 8> NewPaused; 770 SmallVector<TerminatedPath, 4> TerminatedPaths; 771 772 addSearches(Phi, PausedSearches, 0); 773 774 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 775 // Paths. 776 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 777 assert(!Paths.empty() && "Need a path to move"); 778 auto Dom = Paths.begin(); 779 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 780 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 781 Dom = I; 782 auto Last = Paths.end() - 1; 783 if (Last != Dom) 784 std::iter_swap(Last, Dom); 785 }; 786 787 MemoryPhi *Current = Phi; 788 while (true) { 789 assert(!MSSA.isLiveOnEntryDef(Current) && 790 "liveOnEntry wasn't treated as a clobber?"); 791 792 const auto *Target = getWalkTarget(Current); 793 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 794 // optimization for the prior phi. 795 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 796 return MSSA.dominates(P.Clobber, Target); 797 })); 798 799 // FIXME: This is broken, because the Blocker may be reported to be 800 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 801 // For the moment, this is fine, since we do nothing with blocker info. 802 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 803 Target, PausedSearches, NewPaused, TerminatedPaths)) { 804 805 // Find the node we started at. We can't search based on N->Last, since 806 // we may have gone around a loop with a different MemoryLocation. 807 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 808 return defPathIndex(N) < PriorPathsSize; 809 }); 810 assert(Iter != def_path_iterator()); 811 812 DefPath &CurNode = *Iter; 813 assert(CurNode.Last == Current); 814 815 // Two things: 816 // A. We can't reliably cache all of NewPaused back. Consider a case 817 // where we have two paths in NewPaused; one of which can't optimize 818 // above this phi, whereas the other can. If we cache the second path 819 // back, we'll end up with suboptimal cache entries. We can handle 820 // cases like this a bit better when we either try to find all 821 // clobbers that block phi optimization, or when our cache starts 822 // supporting unfinished searches. 823 // B. We can't reliably cache TerminatedPaths back here without doing 824 // extra checks; consider a case like: 825 // T 826 // / \ 827 // D C 828 // \ / 829 // S 830 // Where T is our target, C is a node with a clobber on it, D is a 831 // diamond (with a clobber *only* on the left or right node, N), and 832 // S is our start. Say we walk to D, through the node opposite N 833 // (read: ignoring the clobber), and see a cache entry in the top 834 // node of D. That cache entry gets put into TerminatedPaths. We then 835 // walk up to C (N is later in our worklist), find the clobber, and 836 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 837 // the bottom part of D to the cached clobber, ignoring the clobber 838 // in N. Again, this problem goes away if we start tracking all 839 // blockers for a given phi optimization. 840 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 841 return {Result, {}}; 842 } 843 844 // If there's nothing left to search, then all paths led to valid clobbers 845 // that we got from our cache; pick the nearest to the start, and allow 846 // the rest to be cached back. 847 if (NewPaused.empty()) { 848 MoveDominatedPathToEnd(TerminatedPaths); 849 TerminatedPath Result = TerminatedPaths.pop_back_val(); 850 return {Result, std::move(TerminatedPaths)}; 851 } 852 853 MemoryAccess *DefChainEnd = nullptr; 854 SmallVector<TerminatedPath, 4> Clobbers; 855 for (ListIndex Paused : NewPaused) { 856 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 857 if (WR.IsKnownClobber) 858 Clobbers.push_back({WR.Result, Paused}); 859 else 860 // Micro-opt: If we hit the end of the chain, save it. 861 DefChainEnd = WR.Result; 862 } 863 864 if (!TerminatedPaths.empty()) { 865 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 866 // do it now. 867 if (!DefChainEnd) 868 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 869 DefChainEnd = MA; 870 871 // If any of the terminated paths don't dominate the phi we'll try to 872 // optimize, we need to figure out what they are and quit. 873 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 874 for (const TerminatedPath &TP : TerminatedPaths) { 875 // Because we know that DefChainEnd is as "high" as we can go, we 876 // don't need local dominance checks; BB dominance is sufficient. 877 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 878 Clobbers.push_back(TP); 879 } 880 } 881 882 // If we have clobbers in the def chain, find the one closest to Current 883 // and quit. 884 if (!Clobbers.empty()) { 885 MoveDominatedPathToEnd(Clobbers); 886 TerminatedPath Result = Clobbers.pop_back_val(); 887 return {Result, std::move(Clobbers)}; 888 } 889 890 assert(all_of(NewPaused, 891 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 892 893 // Because liveOnEntry is a clobber, this must be a phi. 894 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 895 896 PriorPathsSize = Paths.size(); 897 PausedSearches.clear(); 898 for (ListIndex I : NewPaused) 899 addSearches(DefChainPhi, PausedSearches, I); 900 NewPaused.clear(); 901 902 Current = DefChainPhi; 903 } 904 } 905 906 void verifyOptResult(const OptznResult &R) const { 907 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 908 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 909 })); 910 } 911 912 void resetPhiOptznState() { 913 Paths.clear(); 914 VisitedPhis.clear(); 915 } 916 917 public: 918 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 919 : MSSA(MSSA), AA(AA), DT(DT) {} 920 921 AliasAnalysisType *getAA() { return &AA; } 922 /// Finds the nearest clobber for the given query, optimizing phis if 923 /// possible. 924 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 925 unsigned &UpWalkLimit) { 926 Query = &Q; 927 UpwardWalkLimit = &UpWalkLimit; 928 // Starting limit must be > 0. 929 if (!UpWalkLimit) 930 UpWalkLimit++; 931 932 MemoryAccess *Current = Start; 933 // This walker pretends uses don't exist. If we're handed one, silently grab 934 // its def. (This has the nice side-effect of ensuring we never cache uses) 935 if (auto *MU = dyn_cast<MemoryUse>(Start)) 936 Current = MU->getDefiningAccess(); 937 938 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 939 // Fast path for the overly-common case (no crazy phi optimization 940 // necessary) 941 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 942 MemoryAccess *Result; 943 if (WalkResult.IsKnownClobber) { 944 Result = WalkResult.Result; 945 Q.AR = WalkResult.AR; 946 } else { 947 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 948 Current, Q.StartingLoc); 949 verifyOptResult(OptRes); 950 resetPhiOptznState(); 951 Result = OptRes.PrimaryClobber.Clobber; 952 } 953 954 #ifdef EXPENSIVE_CHECKS 955 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 956 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 957 #endif 958 return Result; 959 } 960 }; 961 962 struct RenamePassData { 963 DomTreeNode *DTN; 964 DomTreeNode::const_iterator ChildIt; 965 MemoryAccess *IncomingVal; 966 967 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 968 MemoryAccess *M) 969 : DTN(D), ChildIt(It), IncomingVal(M) {} 970 971 void swap(RenamePassData &RHS) { 972 std::swap(DTN, RHS.DTN); 973 std::swap(ChildIt, RHS.ChildIt); 974 std::swap(IncomingVal, RHS.IncomingVal); 975 } 976 }; 977 978 } // end anonymous namespace 979 980 namespace llvm { 981 982 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 983 ClobberWalker<AliasAnalysisType> Walker; 984 MemorySSA *MSSA; 985 986 public: 987 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 988 : Walker(*M, *A, *D), MSSA(M) {} 989 990 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 991 const MemoryLocation &, 992 unsigned &); 993 // Third argument (bool), defines whether the clobber search should skip the 994 // original queried access. If true, there will be a follow-up query searching 995 // for a clobber access past "self". Note that the Optimized access is not 996 // updated if a new clobber is found by this SkipSelf search. If this 997 // additional query becomes heavily used we may decide to cache the result. 998 // Walker instantiations will decide how to set the SkipSelf bool. 999 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1000 }; 1001 1002 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1003 /// longer does caching on its own, but the name has been retained for the 1004 /// moment. 1005 template <class AliasAnalysisType> 1006 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1007 ClobberWalkerBase<AliasAnalysisType> *Walker; 1008 1009 public: 1010 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1011 : MemorySSAWalker(M), Walker(W) {} 1012 ~CachingWalker() override = default; 1013 1014 using MemorySSAWalker::getClobberingMemoryAccess; 1015 1016 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1017 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1018 } 1019 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1020 const MemoryLocation &Loc, 1021 unsigned &UWL) { 1022 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1023 } 1024 1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1026 unsigned UpwardWalkLimit = MaxCheckLimit; 1027 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1028 } 1029 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1030 const MemoryLocation &Loc) override { 1031 unsigned UpwardWalkLimit = MaxCheckLimit; 1032 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1033 } 1034 1035 void invalidateInfo(MemoryAccess *MA) override { 1036 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1037 MUD->resetOptimized(); 1038 } 1039 }; 1040 1041 template <class AliasAnalysisType> 1042 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1043 ClobberWalkerBase<AliasAnalysisType> *Walker; 1044 1045 public: 1046 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1047 : MemorySSAWalker(M), Walker(W) {} 1048 ~SkipSelfWalker() override = default; 1049 1050 using MemorySSAWalker::getClobberingMemoryAccess; 1051 1052 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1053 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1054 } 1055 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1056 const MemoryLocation &Loc, 1057 unsigned &UWL) { 1058 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1059 } 1060 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1062 unsigned UpwardWalkLimit = MaxCheckLimit; 1063 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1064 } 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1066 const MemoryLocation &Loc) override { 1067 unsigned UpwardWalkLimit = MaxCheckLimit; 1068 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1069 } 1070 1071 void invalidateInfo(MemoryAccess *MA) override { 1072 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1073 MUD->resetOptimized(); 1074 } 1075 }; 1076 1077 } // end namespace llvm 1078 1079 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1080 bool RenameAllUses) { 1081 // Pass through values to our successors 1082 for (const BasicBlock *S : successors(BB)) { 1083 auto It = PerBlockAccesses.find(S); 1084 // Rename the phi nodes in our successor block 1085 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1086 continue; 1087 AccessList *Accesses = It->second.get(); 1088 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1089 if (RenameAllUses) { 1090 int PhiIndex = Phi->getBasicBlockIndex(BB); 1091 assert(PhiIndex != -1 && "Incomplete phi during partial rename"); 1092 Phi->setIncomingValue(PhiIndex, IncomingVal); 1093 } else 1094 Phi->addIncoming(IncomingVal, BB); 1095 } 1096 } 1097 1098 /// Rename a single basic block into MemorySSA form. 1099 /// Uses the standard SSA renaming algorithm. 1100 /// \returns The new incoming value. 1101 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1102 bool RenameAllUses) { 1103 auto It = PerBlockAccesses.find(BB); 1104 // Skip most processing if the list is empty. 1105 if (It != PerBlockAccesses.end()) { 1106 AccessList *Accesses = It->second.get(); 1107 for (MemoryAccess &L : *Accesses) { 1108 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1109 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1110 MUD->setDefiningAccess(IncomingVal); 1111 if (isa<MemoryDef>(&L)) 1112 IncomingVal = &L; 1113 } else { 1114 IncomingVal = &L; 1115 } 1116 } 1117 } 1118 return IncomingVal; 1119 } 1120 1121 /// This is the standard SSA renaming algorithm. 1122 /// 1123 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1124 /// in phi nodes in our successors. 1125 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1126 SmallPtrSetImpl<BasicBlock *> &Visited, 1127 bool SkipVisited, bool RenameAllUses) { 1128 assert(Root && "Trying to rename accesses in an unreachable block"); 1129 1130 SmallVector<RenamePassData, 32> WorkStack; 1131 // Skip everything if we already renamed this block and we are skipping. 1132 // Note: You can't sink this into the if, because we need it to occur 1133 // regardless of whether we skip blocks or not. 1134 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1135 if (SkipVisited && AlreadyVisited) 1136 return; 1137 1138 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1139 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1140 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1141 1142 while (!WorkStack.empty()) { 1143 DomTreeNode *Node = WorkStack.back().DTN; 1144 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1145 IncomingVal = WorkStack.back().IncomingVal; 1146 1147 if (ChildIt == Node->end()) { 1148 WorkStack.pop_back(); 1149 } else { 1150 DomTreeNode *Child = *ChildIt; 1151 ++WorkStack.back().ChildIt; 1152 BasicBlock *BB = Child->getBlock(); 1153 // Note: You can't sink this into the if, because we need it to occur 1154 // regardless of whether we skip blocks or not. 1155 AlreadyVisited = !Visited.insert(BB).second; 1156 if (SkipVisited && AlreadyVisited) { 1157 // We already visited this during our renaming, which can happen when 1158 // being asked to rename multiple blocks. Figure out the incoming val, 1159 // which is the last def. 1160 // Incoming value can only change if there is a block def, and in that 1161 // case, it's the last block def in the list. 1162 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1163 IncomingVal = &*BlockDefs->rbegin(); 1164 } else 1165 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1166 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1167 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1168 } 1169 } 1170 } 1171 1172 /// This handles unreachable block accesses by deleting phi nodes in 1173 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1174 /// being uses of the live on entry definition. 1175 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1176 assert(!DT->isReachableFromEntry(BB) && 1177 "Reachable block found while handling unreachable blocks"); 1178 1179 // Make sure phi nodes in our reachable successors end up with a 1180 // LiveOnEntryDef for our incoming edge, even though our block is forward 1181 // unreachable. We could just disconnect these blocks from the CFG fully, 1182 // but we do not right now. 1183 for (const BasicBlock *S : successors(BB)) { 1184 if (!DT->isReachableFromEntry(S)) 1185 continue; 1186 auto It = PerBlockAccesses.find(S); 1187 // Rename the phi nodes in our successor block 1188 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1189 continue; 1190 AccessList *Accesses = It->second.get(); 1191 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1192 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1193 } 1194 1195 auto It = PerBlockAccesses.find(BB); 1196 if (It == PerBlockAccesses.end()) 1197 return; 1198 1199 auto &Accesses = It->second; 1200 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1201 auto Next = std::next(AI); 1202 // If we have a phi, just remove it. We are going to replace all 1203 // users with live on entry. 1204 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1205 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1206 else 1207 Accesses->erase(AI); 1208 AI = Next; 1209 } 1210 } 1211 1212 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1213 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1214 SkipWalker(nullptr), NextID(0) { 1215 // Build MemorySSA using a batch alias analysis. This reuses the internal 1216 // state that AA collects during an alias()/getModRefInfo() call. This is 1217 // safe because there are no CFG changes while building MemorySSA and can 1218 // significantly reduce the time spent by the compiler in AA, because we will 1219 // make queries about all the instructions in the Function. 1220 BatchAAResults BatchAA(*AA); 1221 buildMemorySSA(BatchAA); 1222 // Intentionally leave AA to nullptr while building so we don't accidently 1223 // use non-batch AliasAnalysis. 1224 this->AA = AA; 1225 // Also create the walker here. 1226 getWalker(); 1227 } 1228 1229 MemorySSA::~MemorySSA() { 1230 // Drop all our references 1231 for (const auto &Pair : PerBlockAccesses) 1232 for (MemoryAccess &MA : *Pair.second) 1233 MA.dropAllReferences(); 1234 } 1235 1236 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1237 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1238 1239 if (Res.second) 1240 Res.first->second = llvm::make_unique<AccessList>(); 1241 return Res.first->second.get(); 1242 } 1243 1244 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1245 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1246 1247 if (Res.second) 1248 Res.first->second = llvm::make_unique<DefsList>(); 1249 return Res.first->second.get(); 1250 } 1251 1252 namespace llvm { 1253 1254 /// This class is a batch walker of all MemoryUse's in the program, and points 1255 /// their defining access at the thing that actually clobbers them. Because it 1256 /// is a batch walker that touches everything, it does not operate like the 1257 /// other walkers. This walker is basically performing a top-down SSA renaming 1258 /// pass, where the version stack is used as the cache. This enables it to be 1259 /// significantly more time and memory efficient than using the regular walker, 1260 /// which is walking bottom-up. 1261 class MemorySSA::OptimizeUses { 1262 public: 1263 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1264 BatchAAResults *BAA, DominatorTree *DT) 1265 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1266 1267 void optimizeUses(); 1268 1269 private: 1270 /// This represents where a given memorylocation is in the stack. 1271 struct MemlocStackInfo { 1272 // This essentially is keeping track of versions of the stack. Whenever 1273 // the stack changes due to pushes or pops, these versions increase. 1274 unsigned long StackEpoch; 1275 unsigned long PopEpoch; 1276 // This is the lower bound of places on the stack to check. It is equal to 1277 // the place the last stack walk ended. 1278 // Note: Correctness depends on this being initialized to 0, which densemap 1279 // does 1280 unsigned long LowerBound; 1281 const BasicBlock *LowerBoundBlock; 1282 // This is where the last walk for this memory location ended. 1283 unsigned long LastKill; 1284 bool LastKillValid; 1285 Optional<AliasResult> AR; 1286 }; 1287 1288 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1289 SmallVectorImpl<MemoryAccess *> &, 1290 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1291 1292 MemorySSA *MSSA; 1293 CachingWalker<BatchAAResults> *Walker; 1294 BatchAAResults *AA; 1295 DominatorTree *DT; 1296 }; 1297 1298 } // end namespace llvm 1299 1300 /// Optimize the uses in a given block This is basically the SSA renaming 1301 /// algorithm, with one caveat: We are able to use a single stack for all 1302 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1303 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1304 /// going to be some position in that stack of possible ones. 1305 /// 1306 /// We track the stack positions that each MemoryLocation needs 1307 /// to check, and last ended at. This is because we only want to check the 1308 /// things that changed since last time. The same MemoryLocation should 1309 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1310 /// things like this, and if they start, we can modify MemoryLocOrCall to 1311 /// include relevant data) 1312 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1313 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1314 SmallVectorImpl<MemoryAccess *> &VersionStack, 1315 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1316 1317 /// If no accesses, nothing to do. 1318 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1319 if (Accesses == nullptr) 1320 return; 1321 1322 // Pop everything that doesn't dominate the current block off the stack, 1323 // increment the PopEpoch to account for this. 1324 while (true) { 1325 assert( 1326 !VersionStack.empty() && 1327 "Version stack should have liveOnEntry sentinel dominating everything"); 1328 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1329 if (DT->dominates(BackBlock, BB)) 1330 break; 1331 while (VersionStack.back()->getBlock() == BackBlock) 1332 VersionStack.pop_back(); 1333 ++PopEpoch; 1334 } 1335 1336 for (MemoryAccess &MA : *Accesses) { 1337 auto *MU = dyn_cast<MemoryUse>(&MA); 1338 if (!MU) { 1339 VersionStack.push_back(&MA); 1340 ++StackEpoch; 1341 continue; 1342 } 1343 1344 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1345 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1346 continue; 1347 } 1348 1349 MemoryLocOrCall UseMLOC(MU); 1350 auto &LocInfo = LocStackInfo[UseMLOC]; 1351 // If the pop epoch changed, it means we've removed stuff from top of 1352 // stack due to changing blocks. We may have to reset the lower bound or 1353 // last kill info. 1354 if (LocInfo.PopEpoch != PopEpoch) { 1355 LocInfo.PopEpoch = PopEpoch; 1356 LocInfo.StackEpoch = StackEpoch; 1357 // If the lower bound was in something that no longer dominates us, we 1358 // have to reset it. 1359 // We can't simply track stack size, because the stack may have had 1360 // pushes/pops in the meantime. 1361 // XXX: This is non-optimal, but only is slower cases with heavily 1362 // branching dominator trees. To get the optimal number of queries would 1363 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1364 // the top of that stack dominates us. This does not seem worth it ATM. 1365 // A much cheaper optimization would be to always explore the deepest 1366 // branch of the dominator tree first. This will guarantee this resets on 1367 // the smallest set of blocks. 1368 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1369 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1370 // Reset the lower bound of things to check. 1371 // TODO: Some day we should be able to reset to last kill, rather than 1372 // 0. 1373 LocInfo.LowerBound = 0; 1374 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1375 LocInfo.LastKillValid = false; 1376 } 1377 } else if (LocInfo.StackEpoch != StackEpoch) { 1378 // If all that has changed is the StackEpoch, we only have to check the 1379 // new things on the stack, because we've checked everything before. In 1380 // this case, the lower bound of things to check remains the same. 1381 LocInfo.PopEpoch = PopEpoch; 1382 LocInfo.StackEpoch = StackEpoch; 1383 } 1384 if (!LocInfo.LastKillValid) { 1385 LocInfo.LastKill = VersionStack.size() - 1; 1386 LocInfo.LastKillValid = true; 1387 LocInfo.AR = MayAlias; 1388 } 1389 1390 // At this point, we should have corrected last kill and LowerBound to be 1391 // in bounds. 1392 assert(LocInfo.LowerBound < VersionStack.size() && 1393 "Lower bound out of range"); 1394 assert(LocInfo.LastKill < VersionStack.size() && 1395 "Last kill info out of range"); 1396 // In any case, the new upper bound is the top of the stack. 1397 unsigned long UpperBound = VersionStack.size() - 1; 1398 1399 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1400 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1401 << *(MU->getMemoryInst()) << ")" 1402 << " because there are " 1403 << UpperBound - LocInfo.LowerBound 1404 << " stores to disambiguate\n"); 1405 // Because we did not walk, LastKill is no longer valid, as this may 1406 // have been a kill. 1407 LocInfo.LastKillValid = false; 1408 continue; 1409 } 1410 bool FoundClobberResult = false; 1411 unsigned UpwardWalkLimit = MaxCheckLimit; 1412 while (UpperBound > LocInfo.LowerBound) { 1413 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1414 // For phis, use the walker, see where we ended up, go there 1415 MemoryAccess *Result = 1416 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1417 // We are guaranteed to find it or something is wrong 1418 while (VersionStack[UpperBound] != Result) { 1419 assert(UpperBound != 0); 1420 --UpperBound; 1421 } 1422 FoundClobberResult = true; 1423 break; 1424 } 1425 1426 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1427 // If the lifetime of the pointer ends at this instruction, it's live on 1428 // entry. 1429 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1430 // Reset UpperBound to liveOnEntryDef's place in the stack 1431 UpperBound = 0; 1432 FoundClobberResult = true; 1433 LocInfo.AR = MustAlias; 1434 break; 1435 } 1436 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1437 if (CA.IsClobber) { 1438 FoundClobberResult = true; 1439 LocInfo.AR = CA.AR; 1440 break; 1441 } 1442 --UpperBound; 1443 } 1444 1445 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1446 1447 // At the end of this loop, UpperBound is either a clobber, or lower bound 1448 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1449 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1450 // We were last killed now by where we got to 1451 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1452 LocInfo.AR = None; 1453 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1454 LocInfo.LastKill = UpperBound; 1455 } else { 1456 // Otherwise, we checked all the new ones, and now we know we can get to 1457 // LastKill. 1458 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1459 } 1460 LocInfo.LowerBound = VersionStack.size() - 1; 1461 LocInfo.LowerBoundBlock = BB; 1462 } 1463 } 1464 1465 /// Optimize uses to point to their actual clobbering definitions. 1466 void MemorySSA::OptimizeUses::optimizeUses() { 1467 SmallVector<MemoryAccess *, 16> VersionStack; 1468 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1469 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1470 1471 unsigned long StackEpoch = 1; 1472 unsigned long PopEpoch = 1; 1473 // We perform a non-recursive top-down dominator tree walk. 1474 for (const auto *DomNode : depth_first(DT->getRootNode())) 1475 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1476 LocStackInfo); 1477 } 1478 1479 void MemorySSA::placePHINodes( 1480 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1481 // Determine where our MemoryPhi's should go 1482 ForwardIDFCalculator IDFs(*DT); 1483 IDFs.setDefiningBlocks(DefiningBlocks); 1484 SmallVector<BasicBlock *, 32> IDFBlocks; 1485 IDFs.calculate(IDFBlocks); 1486 1487 // Now place MemoryPhi nodes. 1488 for (auto &BB : IDFBlocks) 1489 createMemoryPhi(BB); 1490 } 1491 1492 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1493 // We create an access to represent "live on entry", for things like 1494 // arguments or users of globals, where the memory they use is defined before 1495 // the beginning of the function. We do not actually insert it into the IR. 1496 // We do not define a live on exit for the immediate uses, and thus our 1497 // semantics do *not* imply that something with no immediate uses can simply 1498 // be removed. 1499 BasicBlock &StartingPoint = F.getEntryBlock(); 1500 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1501 &StartingPoint, NextID++)); 1502 1503 // We maintain lists of memory accesses per-block, trading memory for time. We 1504 // could just look up the memory access for every possible instruction in the 1505 // stream. 1506 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1507 // Go through each block, figure out where defs occur, and chain together all 1508 // the accesses. 1509 for (BasicBlock &B : F) { 1510 bool InsertIntoDef = false; 1511 AccessList *Accesses = nullptr; 1512 DefsList *Defs = nullptr; 1513 for (Instruction &I : B) { 1514 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1515 if (!MUD) 1516 continue; 1517 1518 if (!Accesses) 1519 Accesses = getOrCreateAccessList(&B); 1520 Accesses->push_back(MUD); 1521 if (isa<MemoryDef>(MUD)) { 1522 InsertIntoDef = true; 1523 if (!Defs) 1524 Defs = getOrCreateDefsList(&B); 1525 Defs->push_back(*MUD); 1526 } 1527 } 1528 if (InsertIntoDef) 1529 DefiningBlocks.insert(&B); 1530 } 1531 placePHINodes(DefiningBlocks); 1532 1533 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1534 // filled in with all blocks. 1535 SmallPtrSet<BasicBlock *, 16> Visited; 1536 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1537 1538 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1539 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1540 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1541 1542 // Mark the uses in unreachable blocks as live on entry, so that they go 1543 // somewhere. 1544 for (auto &BB : F) 1545 if (!Visited.count(&BB)) 1546 markUnreachableAsLiveOnEntry(&BB); 1547 } 1548 1549 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1550 1551 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1552 if (Walker) 1553 return Walker.get(); 1554 1555 if (!WalkerBase) 1556 WalkerBase = 1557 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1558 1559 Walker = 1560 llvm::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1561 return Walker.get(); 1562 } 1563 1564 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1565 if (SkipWalker) 1566 return SkipWalker.get(); 1567 1568 if (!WalkerBase) 1569 WalkerBase = 1570 llvm::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1571 1572 SkipWalker = 1573 llvm::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1574 return SkipWalker.get(); 1575 } 1576 1577 1578 // This is a helper function used by the creation routines. It places NewAccess 1579 // into the access and defs lists for a given basic block, at the given 1580 // insertion point. 1581 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1582 const BasicBlock *BB, 1583 InsertionPlace Point) { 1584 auto *Accesses = getOrCreateAccessList(BB); 1585 if (Point == Beginning) { 1586 // If it's a phi node, it goes first, otherwise, it goes after any phi 1587 // nodes. 1588 if (isa<MemoryPhi>(NewAccess)) { 1589 Accesses->push_front(NewAccess); 1590 auto *Defs = getOrCreateDefsList(BB); 1591 Defs->push_front(*NewAccess); 1592 } else { 1593 auto AI = find_if_not( 1594 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1595 Accesses->insert(AI, NewAccess); 1596 if (!isa<MemoryUse>(NewAccess)) { 1597 auto *Defs = getOrCreateDefsList(BB); 1598 auto DI = find_if_not( 1599 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1600 Defs->insert(DI, *NewAccess); 1601 } 1602 } 1603 } else { 1604 Accesses->push_back(NewAccess); 1605 if (!isa<MemoryUse>(NewAccess)) { 1606 auto *Defs = getOrCreateDefsList(BB); 1607 Defs->push_back(*NewAccess); 1608 } 1609 } 1610 BlockNumberingValid.erase(BB); 1611 } 1612 1613 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1614 AccessList::iterator InsertPt) { 1615 auto *Accesses = getWritableBlockAccesses(BB); 1616 bool WasEnd = InsertPt == Accesses->end(); 1617 Accesses->insert(AccessList::iterator(InsertPt), What); 1618 if (!isa<MemoryUse>(What)) { 1619 auto *Defs = getOrCreateDefsList(BB); 1620 // If we got asked to insert at the end, we have an easy job, just shove it 1621 // at the end. If we got asked to insert before an existing def, we also get 1622 // an iterator. If we got asked to insert before a use, we have to hunt for 1623 // the next def. 1624 if (WasEnd) { 1625 Defs->push_back(*What); 1626 } else if (isa<MemoryDef>(InsertPt)) { 1627 Defs->insert(InsertPt->getDefsIterator(), *What); 1628 } else { 1629 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1630 ++InsertPt; 1631 // Either we found a def, or we are inserting at the end 1632 if (InsertPt == Accesses->end()) 1633 Defs->push_back(*What); 1634 else 1635 Defs->insert(InsertPt->getDefsIterator(), *What); 1636 } 1637 } 1638 BlockNumberingValid.erase(BB); 1639 } 1640 1641 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1642 // Keep it in the lookup tables, remove from the lists 1643 removeFromLists(What, false); 1644 1645 // Note that moving should implicitly invalidate the optimized state of a 1646 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1647 // MemoryDef. 1648 if (auto *MD = dyn_cast<MemoryDef>(What)) 1649 MD->resetOptimized(); 1650 What->setBlock(BB); 1651 } 1652 1653 // Move What before Where in the IR. The end result is that What will belong to 1654 // the right lists and have the right Block set, but will not otherwise be 1655 // correct. It will not have the right defining access, and if it is a def, 1656 // things below it will not properly be updated. 1657 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1658 AccessList::iterator Where) { 1659 prepareForMoveTo(What, BB); 1660 insertIntoListsBefore(What, BB, Where); 1661 } 1662 1663 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1664 InsertionPlace Point) { 1665 if (isa<MemoryPhi>(What)) { 1666 assert(Point == Beginning && 1667 "Can only move a Phi at the beginning of the block"); 1668 // Update lookup table entry 1669 ValueToMemoryAccess.erase(What->getBlock()); 1670 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1671 (void)Inserted; 1672 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1673 } 1674 1675 prepareForMoveTo(What, BB); 1676 insertIntoListsForBlock(What, BB, Point); 1677 } 1678 1679 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1680 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1681 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1682 // Phi's always are placed at the front of the block. 1683 insertIntoListsForBlock(Phi, BB, Beginning); 1684 ValueToMemoryAccess[BB] = Phi; 1685 return Phi; 1686 } 1687 1688 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1689 MemoryAccess *Definition, 1690 const MemoryUseOrDef *Template) { 1691 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1692 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1693 assert( 1694 NewAccess != nullptr && 1695 "Tried to create a memory access for a non-memory touching instruction"); 1696 NewAccess->setDefiningAccess(Definition); 1697 return NewAccess; 1698 } 1699 1700 // Return true if the instruction has ordering constraints. 1701 // Note specifically that this only considers stores and loads 1702 // because others are still considered ModRef by getModRefInfo. 1703 static inline bool isOrdered(const Instruction *I) { 1704 if (auto *SI = dyn_cast<StoreInst>(I)) { 1705 if (!SI->isUnordered()) 1706 return true; 1707 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1708 if (!LI->isUnordered()) 1709 return true; 1710 } 1711 return false; 1712 } 1713 1714 /// Helper function to create new memory accesses 1715 template <typename AliasAnalysisType> 1716 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1717 AliasAnalysisType *AAP, 1718 const MemoryUseOrDef *Template) { 1719 // The assume intrinsic has a control dependency which we model by claiming 1720 // that it writes arbitrarily. Ignore that fake memory dependency here. 1721 // FIXME: Replace this special casing with a more accurate modelling of 1722 // assume's control dependency. 1723 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1724 if (II->getIntrinsicID() == Intrinsic::assume) 1725 return nullptr; 1726 1727 bool Def, Use; 1728 if (Template) { 1729 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1730 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1731 #if !defined(NDEBUG) 1732 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1733 bool DefCheck, UseCheck; 1734 DefCheck = isModSet(ModRef) || isOrdered(I); 1735 UseCheck = isRefSet(ModRef); 1736 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1737 #endif 1738 } else { 1739 // Find out what affect this instruction has on memory. 1740 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1741 // The isOrdered check is used to ensure that volatiles end up as defs 1742 // (atomics end up as ModRef right now anyway). Until we separate the 1743 // ordering chain from the memory chain, this enables people to see at least 1744 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1745 // will still give an answer that bypasses other volatile loads. TODO: 1746 // Separate memory aliasing and ordering into two different chains so that 1747 // we can precisely represent both "what memory will this read/write/is 1748 // clobbered by" and "what instructions can I move this past". 1749 Def = isModSet(ModRef) || isOrdered(I); 1750 Use = isRefSet(ModRef); 1751 } 1752 1753 // It's possible for an instruction to not modify memory at all. During 1754 // construction, we ignore them. 1755 if (!Def && !Use) 1756 return nullptr; 1757 1758 MemoryUseOrDef *MUD; 1759 if (Def) 1760 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1761 else 1762 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1763 ValueToMemoryAccess[I] = MUD; 1764 return MUD; 1765 } 1766 1767 /// Returns true if \p Replacer dominates \p Replacee . 1768 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1769 const MemoryAccess *Replacee) const { 1770 if (isa<MemoryUseOrDef>(Replacee)) 1771 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1772 const auto *MP = cast<MemoryPhi>(Replacee); 1773 // For a phi node, the use occurs in the predecessor block of the phi node. 1774 // Since we may occur multiple times in the phi node, we have to check each 1775 // operand to ensure Replacer dominates each operand where Replacee occurs. 1776 for (const Use &Arg : MP->operands()) { 1777 if (Arg.get() != Replacee && 1778 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1779 return false; 1780 } 1781 return true; 1782 } 1783 1784 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1785 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1786 assert(MA->use_empty() && 1787 "Trying to remove memory access that still has uses"); 1788 BlockNumbering.erase(MA); 1789 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1790 MUD->setDefiningAccess(nullptr); 1791 // Invalidate our walker's cache if necessary 1792 if (!isa<MemoryUse>(MA)) 1793 getWalker()->invalidateInfo(MA); 1794 1795 Value *MemoryInst; 1796 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1797 MemoryInst = MUD->getMemoryInst(); 1798 else 1799 MemoryInst = MA->getBlock(); 1800 1801 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1802 if (VMA->second == MA) 1803 ValueToMemoryAccess.erase(VMA); 1804 } 1805 1806 /// Properly remove \p MA from all of MemorySSA's lists. 1807 /// 1808 /// Because of the way the intrusive list and use lists work, it is important to 1809 /// do removal in the right order. 1810 /// ShouldDelete defaults to true, and will cause the memory access to also be 1811 /// deleted, not just removed. 1812 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1813 BasicBlock *BB = MA->getBlock(); 1814 // The access list owns the reference, so we erase it from the non-owning list 1815 // first. 1816 if (!isa<MemoryUse>(MA)) { 1817 auto DefsIt = PerBlockDefs.find(BB); 1818 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1819 Defs->remove(*MA); 1820 if (Defs->empty()) 1821 PerBlockDefs.erase(DefsIt); 1822 } 1823 1824 // The erase call here will delete it. If we don't want it deleted, we call 1825 // remove instead. 1826 auto AccessIt = PerBlockAccesses.find(BB); 1827 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1828 if (ShouldDelete) 1829 Accesses->erase(MA); 1830 else 1831 Accesses->remove(MA); 1832 1833 if (Accesses->empty()) { 1834 PerBlockAccesses.erase(AccessIt); 1835 BlockNumberingValid.erase(BB); 1836 } 1837 } 1838 1839 void MemorySSA::print(raw_ostream &OS) const { 1840 MemorySSAAnnotatedWriter Writer(this); 1841 F.print(OS, &Writer); 1842 } 1843 1844 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1845 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1846 #endif 1847 1848 void MemorySSA::verifyMemorySSA() const { 1849 verifyDefUses(F); 1850 verifyDomination(F); 1851 verifyOrdering(F); 1852 verifyDominationNumbers(F); 1853 // Previously, the verification used to also verify that the clobberingAccess 1854 // cached by MemorySSA is the same as the clobberingAccess found at a later 1855 // query to AA. This does not hold true in general due to the current fragility 1856 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1857 // up. As a result, transformations that are correct, will lead to BasicAA 1858 // returning different Alias answers before and after that transformation. 1859 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1860 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1861 // every transformation, which defeats the purpose of using it. For such an 1862 // example, see test4 added in D51960. 1863 } 1864 1865 /// Verify that all of the blocks we believe to have valid domination numbers 1866 /// actually have valid domination numbers. 1867 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1868 #ifndef NDEBUG 1869 if (BlockNumberingValid.empty()) 1870 return; 1871 1872 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1873 for (const BasicBlock &BB : F) { 1874 if (!ValidBlocks.count(&BB)) 1875 continue; 1876 1877 ValidBlocks.erase(&BB); 1878 1879 const AccessList *Accesses = getBlockAccesses(&BB); 1880 // It's correct to say an empty block has valid numbering. 1881 if (!Accesses) 1882 continue; 1883 1884 // Block numbering starts at 1. 1885 unsigned long LastNumber = 0; 1886 for (const MemoryAccess &MA : *Accesses) { 1887 auto ThisNumberIter = BlockNumbering.find(&MA); 1888 assert(ThisNumberIter != BlockNumbering.end() && 1889 "MemoryAccess has no domination number in a valid block!"); 1890 1891 unsigned long ThisNumber = ThisNumberIter->second; 1892 assert(ThisNumber > LastNumber && 1893 "Domination numbers should be strictly increasing!"); 1894 LastNumber = ThisNumber; 1895 } 1896 } 1897 1898 assert(ValidBlocks.empty() && 1899 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1900 #endif 1901 } 1902 1903 /// Verify that the order and existence of MemoryAccesses matches the 1904 /// order and existence of memory affecting instructions. 1905 void MemorySSA::verifyOrdering(Function &F) const { 1906 #ifndef NDEBUG 1907 // Walk all the blocks, comparing what the lookups think and what the access 1908 // lists think, as well as the order in the blocks vs the order in the access 1909 // lists. 1910 SmallVector<MemoryAccess *, 32> ActualAccesses; 1911 SmallVector<MemoryAccess *, 32> ActualDefs; 1912 for (BasicBlock &B : F) { 1913 const AccessList *AL = getBlockAccesses(&B); 1914 const auto *DL = getBlockDefs(&B); 1915 MemoryAccess *Phi = getMemoryAccess(&B); 1916 if (Phi) { 1917 ActualAccesses.push_back(Phi); 1918 ActualDefs.push_back(Phi); 1919 } 1920 1921 for (Instruction &I : B) { 1922 MemoryAccess *MA = getMemoryAccess(&I); 1923 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1924 "We have memory affecting instructions " 1925 "in this block but they are not in the " 1926 "access list or defs list"); 1927 if (MA) { 1928 ActualAccesses.push_back(MA); 1929 if (isa<MemoryDef>(MA)) 1930 ActualDefs.push_back(MA); 1931 } 1932 } 1933 // Either we hit the assert, really have no accesses, or we have both 1934 // accesses and an access list. 1935 // Same with defs. 1936 if (!AL && !DL) 1937 continue; 1938 assert(AL->size() == ActualAccesses.size() && 1939 "We don't have the same number of accesses in the block as on the " 1940 "access list"); 1941 assert((DL || ActualDefs.size() == 0) && 1942 "Either we should have a defs list, or we should have no defs"); 1943 assert((!DL || DL->size() == ActualDefs.size()) && 1944 "We don't have the same number of defs in the block as on the " 1945 "def list"); 1946 auto ALI = AL->begin(); 1947 auto AAI = ActualAccesses.begin(); 1948 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 1949 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 1950 ++ALI; 1951 ++AAI; 1952 } 1953 ActualAccesses.clear(); 1954 if (DL) { 1955 auto DLI = DL->begin(); 1956 auto ADI = ActualDefs.begin(); 1957 while (DLI != DL->end() && ADI != ActualDefs.end()) { 1958 assert(&*DLI == *ADI && "Not the same defs in the same order"); 1959 ++DLI; 1960 ++ADI; 1961 } 1962 } 1963 ActualDefs.clear(); 1964 } 1965 #endif 1966 } 1967 1968 /// Verify the domination properties of MemorySSA by checking that each 1969 /// definition dominates all of its uses. 1970 void MemorySSA::verifyDomination(Function &F) const { 1971 #ifndef NDEBUG 1972 for (BasicBlock &B : F) { 1973 // Phi nodes are attached to basic blocks 1974 if (MemoryPhi *MP = getMemoryAccess(&B)) 1975 for (const Use &U : MP->uses()) 1976 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 1977 1978 for (Instruction &I : B) { 1979 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 1980 if (!MD) 1981 continue; 1982 1983 for (const Use &U : MD->uses()) 1984 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 1985 } 1986 } 1987 #endif 1988 } 1989 1990 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 1991 /// appears in the use list of \p Def. 1992 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 1993 #ifndef NDEBUG 1994 // The live on entry use may cause us to get a NULL def here 1995 if (!Def) 1996 assert(isLiveOnEntryDef(Use) && 1997 "Null def but use not point to live on entry def"); 1998 else 1999 assert(is_contained(Def->users(), Use) && 2000 "Did not find use in def's use list"); 2001 #endif 2002 } 2003 2004 /// Verify the immediate use information, by walking all the memory 2005 /// accesses and verifying that, for each use, it appears in the 2006 /// appropriate def's use list 2007 void MemorySSA::verifyDefUses(Function &F) const { 2008 #ifndef NDEBUG 2009 for (BasicBlock &B : F) { 2010 // Phi nodes are attached to basic blocks 2011 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2012 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2013 pred_begin(&B), pred_end(&B))) && 2014 "Incomplete MemoryPhi Node"); 2015 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2016 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2017 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2018 pred_end(&B) && 2019 "Incoming phi block not a block predecessor"); 2020 } 2021 } 2022 2023 for (Instruction &I : B) { 2024 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2025 verifyUseInDefs(MA->getDefiningAccess(), MA); 2026 } 2027 } 2028 } 2029 #endif 2030 } 2031 2032 /// Perform a local numbering on blocks so that instruction ordering can be 2033 /// determined in constant time. 2034 /// TODO: We currently just number in order. If we numbered by N, we could 2035 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2036 /// log2(N) sequences of mixed before and after) without needing to invalidate 2037 /// the numbering. 2038 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2039 // The pre-increment ensures the numbers really start at 1. 2040 unsigned long CurrentNumber = 0; 2041 const AccessList *AL = getBlockAccesses(B); 2042 assert(AL != nullptr && "Asking to renumber an empty block"); 2043 for (const auto &I : *AL) 2044 BlockNumbering[&I] = ++CurrentNumber; 2045 BlockNumberingValid.insert(B); 2046 } 2047 2048 /// Determine, for two memory accesses in the same block, 2049 /// whether \p Dominator dominates \p Dominatee. 2050 /// \returns True if \p Dominator dominates \p Dominatee. 2051 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2052 const MemoryAccess *Dominatee) const { 2053 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2054 2055 assert((DominatorBlock == Dominatee->getBlock()) && 2056 "Asking for local domination when accesses are in different blocks!"); 2057 // A node dominates itself. 2058 if (Dominatee == Dominator) 2059 return true; 2060 2061 // When Dominatee is defined on function entry, it is not dominated by another 2062 // memory access. 2063 if (isLiveOnEntryDef(Dominatee)) 2064 return false; 2065 2066 // When Dominator is defined on function entry, it dominates the other memory 2067 // access. 2068 if (isLiveOnEntryDef(Dominator)) 2069 return true; 2070 2071 if (!BlockNumberingValid.count(DominatorBlock)) 2072 renumberBlock(DominatorBlock); 2073 2074 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2075 // All numbers start with 1 2076 assert(DominatorNum != 0 && "Block was not numbered properly"); 2077 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2078 assert(DominateeNum != 0 && "Block was not numbered properly"); 2079 return DominatorNum < DominateeNum; 2080 } 2081 2082 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2083 const MemoryAccess *Dominatee) const { 2084 if (Dominator == Dominatee) 2085 return true; 2086 2087 if (isLiveOnEntryDef(Dominatee)) 2088 return false; 2089 2090 if (Dominator->getBlock() != Dominatee->getBlock()) 2091 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2092 return locallyDominates(Dominator, Dominatee); 2093 } 2094 2095 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2096 const Use &Dominatee) const { 2097 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2098 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2099 // The def must dominate the incoming block of the phi. 2100 if (UseBB != Dominator->getBlock()) 2101 return DT->dominates(Dominator->getBlock(), UseBB); 2102 // If the UseBB and the DefBB are the same, compare locally. 2103 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2104 } 2105 // If it's not a PHI node use, the normal dominates can already handle it. 2106 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2107 } 2108 2109 const static char LiveOnEntryStr[] = "liveOnEntry"; 2110 2111 void MemoryAccess::print(raw_ostream &OS) const { 2112 switch (getValueID()) { 2113 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2114 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2115 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2116 } 2117 llvm_unreachable("invalid value id"); 2118 } 2119 2120 void MemoryDef::print(raw_ostream &OS) const { 2121 MemoryAccess *UO = getDefiningAccess(); 2122 2123 auto printID = [&OS](MemoryAccess *A) { 2124 if (A && A->getID()) 2125 OS << A->getID(); 2126 else 2127 OS << LiveOnEntryStr; 2128 }; 2129 2130 OS << getID() << " = MemoryDef("; 2131 printID(UO); 2132 OS << ")"; 2133 2134 if (isOptimized()) { 2135 OS << "->"; 2136 printID(getOptimized()); 2137 2138 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2139 OS << " " << *AR; 2140 } 2141 } 2142 2143 void MemoryPhi::print(raw_ostream &OS) const { 2144 bool First = true; 2145 OS << getID() << " = MemoryPhi("; 2146 for (const auto &Op : operands()) { 2147 BasicBlock *BB = getIncomingBlock(Op); 2148 MemoryAccess *MA = cast<MemoryAccess>(Op); 2149 if (!First) 2150 OS << ','; 2151 else 2152 First = false; 2153 2154 OS << '{'; 2155 if (BB->hasName()) 2156 OS << BB->getName(); 2157 else 2158 BB->printAsOperand(OS, false); 2159 OS << ','; 2160 if (unsigned ID = MA->getID()) 2161 OS << ID; 2162 else 2163 OS << LiveOnEntryStr; 2164 OS << '}'; 2165 } 2166 OS << ')'; 2167 } 2168 2169 void MemoryUse::print(raw_ostream &OS) const { 2170 MemoryAccess *UO = getDefiningAccess(); 2171 OS << "MemoryUse("; 2172 if (UO && UO->getID()) 2173 OS << UO->getID(); 2174 else 2175 OS << LiveOnEntryStr; 2176 OS << ')'; 2177 2178 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2179 OS << " " << *AR; 2180 } 2181 2182 void MemoryAccess::dump() const { 2183 // Cannot completely remove virtual function even in release mode. 2184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2185 print(dbgs()); 2186 dbgs() << "\n"; 2187 #endif 2188 } 2189 2190 char MemorySSAPrinterLegacyPass::ID = 0; 2191 2192 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2193 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2194 } 2195 2196 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2197 AU.setPreservesAll(); 2198 AU.addRequired<MemorySSAWrapperPass>(); 2199 } 2200 2201 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2202 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2203 MSSA.print(dbgs()); 2204 if (VerifyMemorySSA) 2205 MSSA.verifyMemorySSA(); 2206 return false; 2207 } 2208 2209 AnalysisKey MemorySSAAnalysis::Key; 2210 2211 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2212 FunctionAnalysisManager &AM) { 2213 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2214 auto &AA = AM.getResult<AAManager>(F); 2215 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT)); 2216 } 2217 2218 bool MemorySSAAnalysis::Result::invalidate( 2219 Function &F, const PreservedAnalyses &PA, 2220 FunctionAnalysisManager::Invalidator &Inv) { 2221 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2222 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2223 Inv.invalidate<AAManager>(F, PA) || 2224 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2225 } 2226 2227 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2228 FunctionAnalysisManager &AM) { 2229 OS << "MemorySSA for function: " << F.getName() << "\n"; 2230 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2231 2232 return PreservedAnalyses::all(); 2233 } 2234 2235 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2236 FunctionAnalysisManager &AM) { 2237 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2238 2239 return PreservedAnalyses::all(); 2240 } 2241 2242 char MemorySSAWrapperPass::ID = 0; 2243 2244 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2245 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2246 } 2247 2248 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2249 2250 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2251 AU.setPreservesAll(); 2252 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2253 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2254 } 2255 2256 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2257 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2258 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2259 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2260 return false; 2261 } 2262 2263 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2264 2265 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2266 MSSA->print(OS); 2267 } 2268 2269 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2270 2271 /// Walk the use-def chains starting at \p StartingAccess and find 2272 /// the MemoryAccess that actually clobbers Loc. 2273 /// 2274 /// \returns our clobbering memory access 2275 template <typename AliasAnalysisType> 2276 MemoryAccess * 2277 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2278 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2279 unsigned &UpwardWalkLimit) { 2280 if (isa<MemoryPhi>(StartingAccess)) 2281 return StartingAccess; 2282 2283 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2284 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2285 return StartingUseOrDef; 2286 2287 Instruction *I = StartingUseOrDef->getMemoryInst(); 2288 2289 // Conservatively, fences are always clobbers, so don't perform the walk if we 2290 // hit a fence. 2291 if (!isa<CallBase>(I) && I->isFenceLike()) 2292 return StartingUseOrDef; 2293 2294 UpwardsMemoryQuery Q; 2295 Q.OriginalAccess = StartingUseOrDef; 2296 Q.StartingLoc = Loc; 2297 Q.Inst = I; 2298 Q.IsCall = false; 2299 2300 // Unlike the other function, do not walk to the def of a def, because we are 2301 // handed something we already believe is the clobbering access. 2302 // We never set SkipSelf to true in Q in this method. 2303 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2304 ? StartingUseOrDef->getDefiningAccess() 2305 : StartingUseOrDef; 2306 2307 MemoryAccess *Clobber = 2308 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2309 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2310 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2311 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2312 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2313 return Clobber; 2314 } 2315 2316 template <typename AliasAnalysisType> 2317 MemoryAccess * 2318 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2319 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2320 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2321 // If this is a MemoryPhi, we can't do anything. 2322 if (!StartingAccess) 2323 return MA; 2324 2325 bool IsOptimized = false; 2326 2327 // If this is an already optimized use or def, return the optimized result. 2328 // Note: Currently, we store the optimized def result in a separate field, 2329 // since we can't use the defining access. 2330 if (StartingAccess->isOptimized()) { 2331 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2332 return StartingAccess->getOptimized(); 2333 IsOptimized = true; 2334 } 2335 2336 const Instruction *I = StartingAccess->getMemoryInst(); 2337 // We can't sanely do anything with a fence, since they conservatively clobber 2338 // all memory, and have no locations to get pointers from to try to 2339 // disambiguate. 2340 if (!isa<CallBase>(I) && I->isFenceLike()) 2341 return StartingAccess; 2342 2343 UpwardsMemoryQuery Q(I, StartingAccess); 2344 2345 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2346 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2347 StartingAccess->setOptimized(LiveOnEntry); 2348 StartingAccess->setOptimizedAccessType(None); 2349 return LiveOnEntry; 2350 } 2351 2352 MemoryAccess *OptimizedAccess; 2353 if (!IsOptimized) { 2354 // Start with the thing we already think clobbers this location 2355 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2356 2357 // At this point, DefiningAccess may be the live on entry def. 2358 // If it is, we will not get a better result. 2359 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2360 StartingAccess->setOptimized(DefiningAccess); 2361 StartingAccess->setOptimizedAccessType(None); 2362 return DefiningAccess; 2363 } 2364 2365 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2366 StartingAccess->setOptimized(OptimizedAccess); 2367 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2368 StartingAccess->setOptimizedAccessType(None); 2369 else if (Q.AR == MustAlias) 2370 StartingAccess->setOptimizedAccessType(MustAlias); 2371 } else 2372 OptimizedAccess = StartingAccess->getOptimized(); 2373 2374 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2375 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2376 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2377 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2378 2379 MemoryAccess *Result; 2380 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2381 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2382 assert(isa<MemoryDef>(Q.OriginalAccess)); 2383 Q.SkipSelfAccess = true; 2384 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2385 } else 2386 Result = OptimizedAccess; 2387 2388 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2389 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2390 2391 return Result; 2392 } 2393 2394 MemoryAccess * 2395 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2396 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2397 return Use->getDefiningAccess(); 2398 return MA; 2399 } 2400 2401 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2402 MemoryAccess *StartingAccess, const MemoryLocation &) { 2403 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2404 return Use->getDefiningAccess(); 2405 return StartingAccess; 2406 } 2407 2408 void MemoryPhi::deleteMe(DerivedUser *Self) { 2409 delete static_cast<MemoryPhi *>(Self); 2410 } 2411 2412 void MemoryDef::deleteMe(DerivedUser *Self) { 2413 delete static_cast<MemoryDef *>(Self); 2414 } 2415 2416 void MemoryUse::deleteMe(DerivedUser *Self) { 2417 delete static_cast<MemoryUse *>(Self); 2418 } 2419