1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/iterator.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/CFGPrinter.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PassManager.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/GraphWriter.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <memory> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "memoryssa" 62 63 static cl::opt<std::string> 64 DotCFGMSSA("dot-cfg-mssa", 65 cl::value_desc("file name for generated dot file"), 66 cl::desc("file name for generated dot file"), cl::init("")); 67 68 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 69 true) 70 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 71 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 72 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 73 true) 74 75 static cl::opt<unsigned> MaxCheckLimit( 76 "memssa-check-limit", cl::Hidden, cl::init(100), 77 cl::desc("The maximum number of stores/phis MemorySSA" 78 "will consider trying to walk past (default = 100)")); 79 80 // Always verify MemorySSA if expensive checking is enabled. 81 #ifdef EXPENSIVE_CHECKS 82 bool llvm::VerifyMemorySSA = true; 83 #else 84 bool llvm::VerifyMemorySSA = false; 85 #endif 86 87 static cl::opt<bool, true> 88 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 89 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 90 91 const static char LiveOnEntryStr[] = "liveOnEntry"; 92 93 namespace { 94 95 /// An assembly annotator class to print Memory SSA information in 96 /// comments. 97 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 98 const MemorySSA *MSSA; 99 100 public: 101 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 102 103 void emitBasicBlockStartAnnot(const BasicBlock *BB, 104 formatted_raw_ostream &OS) override { 105 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 106 OS << "; " << *MA << "\n"; 107 } 108 109 void emitInstructionAnnot(const Instruction *I, 110 formatted_raw_ostream &OS) override { 111 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 112 OS << "; " << *MA << "\n"; 113 } 114 }; 115 116 /// An assembly annotator class to print Memory SSA information in 117 /// comments. 118 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 119 MemorySSA *MSSA; 120 MemorySSAWalker *Walker; 121 BatchAAResults BAA; 122 123 public: 124 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 125 : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {} 126 127 void emitBasicBlockStartAnnot(const BasicBlock *BB, 128 formatted_raw_ostream &OS) override { 129 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 130 OS << "; " << *MA << "\n"; 131 } 132 133 void emitInstructionAnnot(const Instruction *I, 134 formatted_raw_ostream &OS) override { 135 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 136 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA); 137 OS << "; " << *MA; 138 if (Clobber) { 139 OS << " - clobbered by "; 140 if (MSSA->isLiveOnEntryDef(Clobber)) 141 OS << LiveOnEntryStr; 142 else 143 OS << *Clobber; 144 } 145 OS << "\n"; 146 } 147 } 148 }; 149 150 } // namespace 151 152 namespace { 153 154 /// Our current alias analysis API differentiates heavily between calls and 155 /// non-calls, and functions called on one usually assert on the other. 156 /// This class encapsulates the distinction to simplify other code that wants 157 /// "Memory affecting instructions and related data" to use as a key. 158 /// For example, this class is used as a densemap key in the use optimizer. 159 class MemoryLocOrCall { 160 public: 161 bool IsCall = false; 162 163 MemoryLocOrCall(MemoryUseOrDef *MUD) 164 : MemoryLocOrCall(MUD->getMemoryInst()) {} 165 MemoryLocOrCall(const MemoryUseOrDef *MUD) 166 : MemoryLocOrCall(MUD->getMemoryInst()) {} 167 168 MemoryLocOrCall(Instruction *Inst) { 169 if (auto *C = dyn_cast<CallBase>(Inst)) { 170 IsCall = true; 171 Call = C; 172 } else { 173 IsCall = false; 174 // There is no such thing as a memorylocation for a fence inst, and it is 175 // unique in that regard. 176 if (!isa<FenceInst>(Inst)) 177 Loc = MemoryLocation::get(Inst); 178 } 179 } 180 181 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 182 183 const CallBase *getCall() const { 184 assert(IsCall); 185 return Call; 186 } 187 188 MemoryLocation getLoc() const { 189 assert(!IsCall); 190 return Loc; 191 } 192 193 bool operator==(const MemoryLocOrCall &Other) const { 194 if (IsCall != Other.IsCall) 195 return false; 196 197 if (!IsCall) 198 return Loc == Other.Loc; 199 200 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 201 return false; 202 203 return Call->arg_size() == Other.Call->arg_size() && 204 std::equal(Call->arg_begin(), Call->arg_end(), 205 Other.Call->arg_begin()); 206 } 207 208 private: 209 union { 210 const CallBase *Call; 211 MemoryLocation Loc; 212 }; 213 }; 214 215 } // end anonymous namespace 216 217 namespace llvm { 218 219 template <> struct DenseMapInfo<MemoryLocOrCall> { 220 static inline MemoryLocOrCall getEmptyKey() { 221 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 222 } 223 224 static inline MemoryLocOrCall getTombstoneKey() { 225 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 226 } 227 228 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 229 if (!MLOC.IsCall) 230 return hash_combine( 231 MLOC.IsCall, 232 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 233 234 hash_code hash = 235 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 236 MLOC.getCall()->getCalledOperand())); 237 238 for (const Value *Arg : MLOC.getCall()->args()) 239 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 240 return hash; 241 } 242 243 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 244 return LHS == RHS; 245 } 246 }; 247 248 } // end namespace llvm 249 250 /// This does one-way checks to see if Use could theoretically be hoisted above 251 /// MayClobber. This will not check the other way around. 252 /// 253 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 254 /// MayClobber, with no potentially clobbering operations in between them. 255 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 256 static bool areLoadsReorderable(const LoadInst *Use, 257 const LoadInst *MayClobber) { 258 bool VolatileUse = Use->isVolatile(); 259 bool VolatileClobber = MayClobber->isVolatile(); 260 // Volatile operations may never be reordered with other volatile operations. 261 if (VolatileUse && VolatileClobber) 262 return false; 263 // Otherwise, volatile doesn't matter here. From the language reference: 264 // 'optimizers may change the order of volatile operations relative to 265 // non-volatile operations.'" 266 267 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 268 // is weaker, it can be moved above other loads. We just need to be sure that 269 // MayClobber isn't an acquire load, because loads can't be moved above 270 // acquire loads. 271 // 272 // Note that this explicitly *does* allow the free reordering of monotonic (or 273 // weaker) loads of the same address. 274 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 275 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 276 AtomicOrdering::Acquire); 277 return !(SeqCstUse || MayClobberIsAcquire); 278 } 279 280 template <typename AliasAnalysisType> 281 static bool 282 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 283 const Instruction *UseInst, AliasAnalysisType &AA) { 284 Instruction *DefInst = MD->getMemoryInst(); 285 assert(DefInst && "Defining instruction not actually an instruction"); 286 287 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 288 // These intrinsics will show up as affecting memory, but they are just 289 // markers, mostly. 290 // 291 // FIXME: We probably don't actually want MemorySSA to model these at all 292 // (including creating MemoryAccesses for them): we just end up inventing 293 // clobbers where they don't really exist at all. Please see D43269 for 294 // context. 295 switch (II->getIntrinsicID()) { 296 case Intrinsic::allow_runtime_check: 297 case Intrinsic::allow_ubsan_check: 298 case Intrinsic::invariant_start: 299 case Intrinsic::invariant_end: 300 case Intrinsic::assume: 301 case Intrinsic::experimental_noalias_scope_decl: 302 case Intrinsic::pseudoprobe: 303 return false; 304 case Intrinsic::dbg_declare: 305 case Intrinsic::dbg_label: 306 case Intrinsic::dbg_value: 307 llvm_unreachable("debuginfo shouldn't have associated defs!"); 308 default: 309 break; 310 } 311 } 312 313 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 314 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 315 return isModOrRefSet(I); 316 } 317 318 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 319 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 320 return !areLoadsReorderable(UseLoad, DefLoad); 321 322 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 323 return isModSet(I); 324 } 325 326 template <typename AliasAnalysisType> 327 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 328 const MemoryLocOrCall &UseMLOC, 329 AliasAnalysisType &AA) { 330 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 331 // to exist while MemoryLocOrCall is pushed through places. 332 if (UseMLOC.IsCall) 333 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 334 AA); 335 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 336 AA); 337 } 338 339 // Return true when MD may alias MU, return false otherwise. 340 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 341 AliasAnalysis &AA) { 342 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 343 } 344 345 namespace { 346 347 struct UpwardsMemoryQuery { 348 // True if our original query started off as a call 349 bool IsCall = false; 350 // The pointer location we started the query with. This will be empty if 351 // IsCall is true. 352 MemoryLocation StartingLoc; 353 // This is the instruction we were querying about. 354 const Instruction *Inst = nullptr; 355 // The MemoryAccess we actually got called with, used to test local domination 356 const MemoryAccess *OriginalAccess = nullptr; 357 bool SkipSelfAccess = false; 358 359 UpwardsMemoryQuery() = default; 360 361 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 362 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 363 if (!IsCall) 364 StartingLoc = MemoryLocation::get(Inst); 365 } 366 }; 367 368 } // end anonymous namespace 369 370 template <typename AliasAnalysisType> 371 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 372 const Instruction *I) { 373 // If the memory can't be changed, then loads of the memory can't be 374 // clobbered. 375 if (auto *LI = dyn_cast<LoadInst>(I)) { 376 return I->hasMetadata(LLVMContext::MD_invariant_load) || 377 !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI))); 378 } 379 return false; 380 } 381 382 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 383 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 384 /// 385 /// This is meant to be as simple and self-contained as possible. Because it 386 /// uses no cache, etc., it can be relatively expensive. 387 /// 388 /// \param Start The MemoryAccess that we want to walk from. 389 /// \param ClobberAt A clobber for Start. 390 /// \param StartLoc The MemoryLocation for Start. 391 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 392 /// \param Query The UpwardsMemoryQuery we used for our search. 393 /// \param AA The AliasAnalysis we used for our search. 394 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 395 396 LLVM_ATTRIBUTE_UNUSED static void 397 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 398 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 399 const UpwardsMemoryQuery &Query, BatchAAResults &AA, 400 bool AllowImpreciseClobber = false) { 401 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 402 403 if (MSSA.isLiveOnEntryDef(Start)) { 404 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 405 "liveOnEntry must clobber itself"); 406 return; 407 } 408 409 bool FoundClobber = false; 410 DenseSet<ConstMemoryAccessPair> VisitedPhis; 411 SmallVector<ConstMemoryAccessPair, 8> Worklist; 412 Worklist.emplace_back(Start, StartLoc); 413 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 414 // is found, complain. 415 while (!Worklist.empty()) { 416 auto MAP = Worklist.pop_back_val(); 417 // All we care about is that nothing from Start to ClobberAt clobbers Start. 418 // We learn nothing from revisiting nodes. 419 if (!VisitedPhis.insert(MAP).second) 420 continue; 421 422 for (const auto *MA : def_chain(MAP.first)) { 423 if (MA == ClobberAt) { 424 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 425 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 426 // since it won't let us short-circuit. 427 // 428 // Also, note that this can't be hoisted out of the `Worklist` loop, 429 // since MD may only act as a clobber for 1 of N MemoryLocations. 430 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 431 if (!FoundClobber) { 432 if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)) 433 FoundClobber = true; 434 } 435 } 436 break; 437 } 438 439 // We should never hit liveOnEntry, unless it's the clobber. 440 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 441 442 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 443 // If Start is a Def, skip self. 444 if (MD == Start) 445 continue; 446 447 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 448 "Found clobber before reaching ClobberAt!"); 449 continue; 450 } 451 452 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 453 (void)MU; 454 assert (MU == Start && 455 "Can only find use in def chain if Start is a use"); 456 continue; 457 } 458 459 assert(isa<MemoryPhi>(MA)); 460 461 // Add reachable phi predecessors 462 for (auto ItB = upward_defs_begin( 463 {const_cast<MemoryAccess *>(MA), MAP.second}, 464 MSSA.getDomTree()), 465 ItE = upward_defs_end(); 466 ItB != ItE; ++ItB) 467 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 468 Worklist.emplace_back(*ItB); 469 } 470 } 471 472 // If the verify is done following an optimization, it's possible that 473 // ClobberAt was a conservative clobbering, that we can now infer is not a 474 // true clobbering access. Don't fail the verify if that's the case. 475 // We do have accesses that claim they're optimized, but could be optimized 476 // further. Updating all these can be expensive, so allow it for now (FIXME). 477 if (AllowImpreciseClobber) 478 return; 479 480 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 481 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 482 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 483 "ClobberAt never acted as a clobber"); 484 } 485 486 namespace { 487 488 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 489 /// in one class. 490 class ClobberWalker { 491 /// Save a few bytes by using unsigned instead of size_t. 492 using ListIndex = unsigned; 493 494 /// Represents a span of contiguous MemoryDefs, potentially ending in a 495 /// MemoryPhi. 496 struct DefPath { 497 MemoryLocation Loc; 498 // Note that, because we always walk in reverse, Last will always dominate 499 // First. Also note that First and Last are inclusive. 500 MemoryAccess *First; 501 MemoryAccess *Last; 502 std::optional<ListIndex> Previous; 503 504 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 505 std::optional<ListIndex> Previous) 506 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 507 508 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 509 std::optional<ListIndex> Previous) 510 : DefPath(Loc, Init, Init, Previous) {} 511 }; 512 513 const MemorySSA &MSSA; 514 DominatorTree &DT; 515 BatchAAResults *AA; 516 UpwardsMemoryQuery *Query; 517 unsigned *UpwardWalkLimit; 518 519 // Phi optimization bookkeeping: 520 // List of DefPath to process during the current phi optimization walk. 521 SmallVector<DefPath, 32> Paths; 522 // List of visited <Access, Location> pairs; we can skip paths already 523 // visited with the same memory location. 524 DenseSet<ConstMemoryAccessPair> VisitedPhis; 525 526 /// Find the nearest def or phi that `From` can legally be optimized to. 527 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 528 assert(From->getNumOperands() && "Phi with no operands?"); 529 530 BasicBlock *BB = From->getBlock(); 531 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 532 DomTreeNode *Node = DT.getNode(BB); 533 while ((Node = Node->getIDom())) { 534 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 535 if (Defs) 536 return &*Defs->rbegin(); 537 } 538 return Result; 539 } 540 541 /// Result of calling walkToPhiOrClobber. 542 struct UpwardsWalkResult { 543 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 544 /// both. Include alias info when clobber found. 545 MemoryAccess *Result; 546 bool IsKnownClobber; 547 }; 548 549 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 550 /// This will update Desc.Last as it walks. It will (optionally) also stop at 551 /// StopAt. 552 /// 553 /// This does not test for whether StopAt is a clobber 554 UpwardsWalkResult 555 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 556 const MemoryAccess *SkipStopAt = nullptr) const { 557 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 558 assert(UpwardWalkLimit && "Need a valid walk limit"); 559 bool LimitAlreadyReached = false; 560 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 561 // it to 1. This will not do any alias() calls. It either returns in the 562 // first iteration in the loop below, or is set back to 0 if all def chains 563 // are free of MemoryDefs. 564 if (!*UpwardWalkLimit) { 565 *UpwardWalkLimit = 1; 566 LimitAlreadyReached = true; 567 } 568 569 for (MemoryAccess *Current : def_chain(Desc.Last)) { 570 Desc.Last = Current; 571 if (Current == StopAt || Current == SkipStopAt) 572 return {Current, false}; 573 574 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 575 if (MSSA.isLiveOnEntryDef(MD)) 576 return {MD, true}; 577 578 if (!--*UpwardWalkLimit) 579 return {Current, true}; 580 581 if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA)) 582 return {MD, true}; 583 } 584 } 585 586 if (LimitAlreadyReached) 587 *UpwardWalkLimit = 0; 588 589 assert(isa<MemoryPhi>(Desc.Last) && 590 "Ended at a non-clobber that's not a phi?"); 591 return {Desc.Last, false}; 592 } 593 594 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 595 ListIndex PriorNode) { 596 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT); 597 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 598 for (const MemoryAccessPair &P : UpwardDefs) { 599 PausedSearches.push_back(Paths.size()); 600 Paths.emplace_back(P.second, P.first, PriorNode); 601 } 602 } 603 604 /// Represents a search that terminated after finding a clobber. This clobber 605 /// may or may not be present in the path of defs from LastNode..SearchStart, 606 /// since it may have been retrieved from cache. 607 struct TerminatedPath { 608 MemoryAccess *Clobber; 609 ListIndex LastNode; 610 }; 611 612 /// Get an access that keeps us from optimizing to the given phi. 613 /// 614 /// PausedSearches is an array of indices into the Paths array. Its incoming 615 /// value is the indices of searches that stopped at the last phi optimization 616 /// target. It's left in an unspecified state. 617 /// 618 /// If this returns std::nullopt, NewPaused is a vector of searches that 619 /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified 620 /// state. 621 std::optional<TerminatedPath> 622 getBlockingAccess(const MemoryAccess *StopWhere, 623 SmallVectorImpl<ListIndex> &PausedSearches, 624 SmallVectorImpl<ListIndex> &NewPaused, 625 SmallVectorImpl<TerminatedPath> &Terminated) { 626 assert(!PausedSearches.empty() && "No searches to continue?"); 627 628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 629 // PausedSearches as our stack. 630 while (!PausedSearches.empty()) { 631 ListIndex PathIndex = PausedSearches.pop_back_val(); 632 DefPath &Node = Paths[PathIndex]; 633 634 // If we've already visited this path with this MemoryLocation, we don't 635 // need to do so again. 636 // 637 // NOTE: That we just drop these paths on the ground makes caching 638 // behavior sporadic. e.g. given a diamond: 639 // A 640 // B C 641 // D 642 // 643 // ...If we walk D, B, A, C, we'll only cache the result of phi 644 // optimization for A, B, and D; C will be skipped because it dies here. 645 // This arguably isn't the worst thing ever, since: 646 // - We generally query things in a top-down order, so if we got below D 647 // without needing cache entries for {C, MemLoc}, then chances are 648 // that those cache entries would end up ultimately unused. 649 // - We still cache things for A, so C only needs to walk up a bit. 650 // If this behavior becomes problematic, we can fix without a ton of extra 651 // work. 652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 653 continue; 654 655 const MemoryAccess *SkipStopWhere = nullptr; 656 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 657 assert(isa<MemoryDef>(Query->OriginalAccess)); 658 SkipStopWhere = Query->OriginalAccess; 659 } 660 661 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 662 /*StopAt=*/StopWhere, 663 /*SkipStopAt=*/SkipStopWhere); 664 if (Res.IsKnownClobber) { 665 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 666 667 // If this wasn't a cache hit, we hit a clobber when walking. That's a 668 // failure. 669 TerminatedPath Term{Res.Result, PathIndex}; 670 if (!MSSA.dominates(Res.Result, StopWhere)) 671 return Term; 672 673 // Otherwise, it's a valid thing to potentially optimize to. 674 Terminated.push_back(Term); 675 continue; 676 } 677 678 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 679 // We've hit our target. Save this path off for if we want to continue 680 // walking. If we are in the mode of skipping the OriginalAccess, and 681 // we've reached back to the OriginalAccess, do not save path, we've 682 // just looped back to self. 683 if (Res.Result != SkipStopWhere) 684 NewPaused.push_back(PathIndex); 685 continue; 686 } 687 688 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 689 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 690 } 691 692 return std::nullopt; 693 } 694 695 template <typename T, typename Walker> 696 struct generic_def_path_iterator 697 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 698 std::forward_iterator_tag, T *> { 699 generic_def_path_iterator() = default; 700 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 701 702 T &operator*() const { return curNode(); } 703 704 generic_def_path_iterator &operator++() { 705 N = curNode().Previous; 706 return *this; 707 } 708 709 bool operator==(const generic_def_path_iterator &O) const { 710 if (N.has_value() != O.N.has_value()) 711 return false; 712 return !N || *N == *O.N; 713 } 714 715 private: 716 T &curNode() const { return W->Paths[*N]; } 717 718 Walker *W = nullptr; 719 std::optional<ListIndex> N; 720 }; 721 722 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 723 using const_def_path_iterator = 724 generic_def_path_iterator<const DefPath, const ClobberWalker>; 725 726 iterator_range<def_path_iterator> def_path(ListIndex From) { 727 return make_range(def_path_iterator(this, From), def_path_iterator()); 728 } 729 730 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 731 return make_range(const_def_path_iterator(this, From), 732 const_def_path_iterator()); 733 } 734 735 struct OptznResult { 736 /// The path that contains our result. 737 TerminatedPath PrimaryClobber; 738 /// The paths that we can legally cache back from, but that aren't 739 /// necessarily the result of the Phi optimization. 740 SmallVector<TerminatedPath, 4> OtherClobbers; 741 }; 742 743 ListIndex defPathIndex(const DefPath &N) const { 744 // The assert looks nicer if we don't need to do &N 745 const DefPath *NP = &N; 746 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 747 "Out of bounds DefPath!"); 748 return NP - &Paths.front(); 749 } 750 751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 752 /// that act as legal clobbers. Note that this won't return *all* clobbers. 753 /// 754 /// Phi optimization algorithm tl;dr: 755 /// - Find the earliest def/phi, A, we can optimize to 756 /// - Find if all paths from the starting memory access ultimately reach A 757 /// - If not, optimization isn't possible. 758 /// - Otherwise, walk from A to another clobber or phi, A'. 759 /// - If A' is a def, we're done. 760 /// - If A' is a phi, try to optimize it. 761 /// 762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 764 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 765 const MemoryLocation &Loc) { 766 assert(Paths.empty() && VisitedPhis.empty() && 767 "Reset the optimization state."); 768 769 Paths.emplace_back(Loc, Start, Phi, std::nullopt); 770 // Stores how many "valid" optimization nodes we had prior to calling 771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 772 auto PriorPathsSize = Paths.size(); 773 774 SmallVector<ListIndex, 16> PausedSearches; 775 SmallVector<ListIndex, 8> NewPaused; 776 SmallVector<TerminatedPath, 4> TerminatedPaths; 777 778 addSearches(Phi, PausedSearches, 0); 779 780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 781 // Paths. 782 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 783 assert(!Paths.empty() && "Need a path to move"); 784 auto Dom = Paths.begin(); 785 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 786 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 787 Dom = I; 788 auto Last = Paths.end() - 1; 789 if (Last != Dom) 790 std::iter_swap(Last, Dom); 791 }; 792 793 MemoryPhi *Current = Phi; 794 while (true) { 795 assert(!MSSA.isLiveOnEntryDef(Current) && 796 "liveOnEntry wasn't treated as a clobber?"); 797 798 const auto *Target = getWalkTarget(Current); 799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 800 // optimization for the prior phi. 801 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 802 return MSSA.dominates(P.Clobber, Target); 803 })); 804 805 // FIXME: This is broken, because the Blocker may be reported to be 806 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 807 // For the moment, this is fine, since we do nothing with blocker info. 808 if (std::optional<TerminatedPath> Blocker = getBlockingAccess( 809 Target, PausedSearches, NewPaused, TerminatedPaths)) { 810 811 // Find the node we started at. We can't search based on N->Last, since 812 // we may have gone around a loop with a different MemoryLocation. 813 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 814 return defPathIndex(N) < PriorPathsSize; 815 }); 816 assert(Iter != def_path_iterator()); 817 818 DefPath &CurNode = *Iter; 819 assert(CurNode.Last == Current); 820 821 // Two things: 822 // A. We can't reliably cache all of NewPaused back. Consider a case 823 // where we have two paths in NewPaused; one of which can't optimize 824 // above this phi, whereas the other can. If we cache the second path 825 // back, we'll end up with suboptimal cache entries. We can handle 826 // cases like this a bit better when we either try to find all 827 // clobbers that block phi optimization, or when our cache starts 828 // supporting unfinished searches. 829 // B. We can't reliably cache TerminatedPaths back here without doing 830 // extra checks; consider a case like: 831 // T 832 // / \ 833 // D C 834 // \ / 835 // S 836 // Where T is our target, C is a node with a clobber on it, D is a 837 // diamond (with a clobber *only* on the left or right node, N), and 838 // S is our start. Say we walk to D, through the node opposite N 839 // (read: ignoring the clobber), and see a cache entry in the top 840 // node of D. That cache entry gets put into TerminatedPaths. We then 841 // walk up to C (N is later in our worklist), find the clobber, and 842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 843 // the bottom part of D to the cached clobber, ignoring the clobber 844 // in N. Again, this problem goes away if we start tracking all 845 // blockers for a given phi optimization. 846 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 847 return {Result, {}}; 848 } 849 850 // If there's nothing left to search, then all paths led to valid clobbers 851 // that we got from our cache; pick the nearest to the start, and allow 852 // the rest to be cached back. 853 if (NewPaused.empty()) { 854 MoveDominatedPathToEnd(TerminatedPaths); 855 TerminatedPath Result = TerminatedPaths.pop_back_val(); 856 return {Result, std::move(TerminatedPaths)}; 857 } 858 859 MemoryAccess *DefChainEnd = nullptr; 860 SmallVector<TerminatedPath, 4> Clobbers; 861 for (ListIndex Paused : NewPaused) { 862 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 863 if (WR.IsKnownClobber) 864 Clobbers.push_back({WR.Result, Paused}); 865 else 866 // Micro-opt: If we hit the end of the chain, save it. 867 DefChainEnd = WR.Result; 868 } 869 870 if (!TerminatedPaths.empty()) { 871 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 872 // do it now. 873 if (!DefChainEnd) 874 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 875 DefChainEnd = MA; 876 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 877 878 // If any of the terminated paths don't dominate the phi we'll try to 879 // optimize, we need to figure out what they are and quit. 880 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 881 for (const TerminatedPath &TP : TerminatedPaths) { 882 // Because we know that DefChainEnd is as "high" as we can go, we 883 // don't need local dominance checks; BB dominance is sufficient. 884 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 885 Clobbers.push_back(TP); 886 } 887 } 888 889 // If we have clobbers in the def chain, find the one closest to Current 890 // and quit. 891 if (!Clobbers.empty()) { 892 MoveDominatedPathToEnd(Clobbers); 893 TerminatedPath Result = Clobbers.pop_back_val(); 894 return {Result, std::move(Clobbers)}; 895 } 896 897 assert(all_of(NewPaused, 898 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 899 900 // Because liveOnEntry is a clobber, this must be a phi. 901 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 902 903 PriorPathsSize = Paths.size(); 904 PausedSearches.clear(); 905 for (ListIndex I : NewPaused) 906 addSearches(DefChainPhi, PausedSearches, I); 907 NewPaused.clear(); 908 909 Current = DefChainPhi; 910 } 911 } 912 913 void verifyOptResult(const OptznResult &R) const { 914 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 915 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 916 })); 917 } 918 919 void resetPhiOptznState() { 920 Paths.clear(); 921 VisitedPhis.clear(); 922 } 923 924 public: 925 ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT) 926 : MSSA(MSSA), DT(DT) {} 927 928 /// Finds the nearest clobber for the given query, optimizing phis if 929 /// possible. 930 MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start, 931 UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) { 932 AA = &BAA; 933 Query = &Q; 934 UpwardWalkLimit = &UpWalkLimit; 935 // Starting limit must be > 0. 936 if (!UpWalkLimit) 937 UpWalkLimit++; 938 939 MemoryAccess *Current = Start; 940 // This walker pretends uses don't exist. If we're handed one, silently grab 941 // its def. (This has the nice side-effect of ensuring we never cache uses) 942 if (auto *MU = dyn_cast<MemoryUse>(Start)) 943 Current = MU->getDefiningAccess(); 944 945 DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt); 946 // Fast path for the overly-common case (no crazy phi optimization 947 // necessary) 948 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 949 MemoryAccess *Result; 950 if (WalkResult.IsKnownClobber) { 951 Result = WalkResult.Result; 952 } else { 953 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 954 Current, Q.StartingLoc); 955 verifyOptResult(OptRes); 956 resetPhiOptznState(); 957 Result = OptRes.PrimaryClobber.Clobber; 958 } 959 960 #ifdef EXPENSIVE_CHECKS 961 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 962 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA); 963 #endif 964 return Result; 965 } 966 }; 967 968 struct RenamePassData { 969 DomTreeNode *DTN; 970 DomTreeNode::const_iterator ChildIt; 971 MemoryAccess *IncomingVal; 972 973 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 974 MemoryAccess *M) 975 : DTN(D), ChildIt(It), IncomingVal(M) {} 976 977 void swap(RenamePassData &RHS) { 978 std::swap(DTN, RHS.DTN); 979 std::swap(ChildIt, RHS.ChildIt); 980 std::swap(IncomingVal, RHS.IncomingVal); 981 } 982 }; 983 984 } // end anonymous namespace 985 986 namespace llvm { 987 988 class MemorySSA::ClobberWalkerBase { 989 ClobberWalker Walker; 990 MemorySSA *MSSA; 991 992 public: 993 ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {} 994 995 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 996 const MemoryLocation &, 997 BatchAAResults &, unsigned &); 998 // Third argument (bool), defines whether the clobber search should skip the 999 // original queried access. If true, there will be a follow-up query searching 1000 // for a clobber access past "self". Note that the Optimized access is not 1001 // updated if a new clobber is found by this SkipSelf search. If this 1002 // additional query becomes heavily used we may decide to cache the result. 1003 // Walker instantiations will decide how to set the SkipSelf bool. 1004 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &, 1005 unsigned &, bool, 1006 bool UseInvariantGroup = true); 1007 }; 1008 1009 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1010 /// longer does caching on its own, but the name has been retained for the 1011 /// moment. 1012 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1013 ClobberWalkerBase *Walker; 1014 1015 public: 1016 CachingWalker(MemorySSA *M, ClobberWalkerBase *W) 1017 : MemorySSAWalker(M), Walker(W) {} 1018 ~CachingWalker() override = default; 1019 1020 using MemorySSAWalker::getClobberingMemoryAccess; 1021 1022 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, 1023 unsigned &UWL) { 1024 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false); 1025 } 1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1027 const MemoryLocation &Loc, 1028 BatchAAResults &BAA, unsigned &UWL) { 1029 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); 1030 } 1031 // This method is not accessible outside of this file. 1032 MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup( 1033 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) { 1034 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false); 1035 } 1036 1037 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1038 BatchAAResults &BAA) override { 1039 unsigned UpwardWalkLimit = MaxCheckLimit; 1040 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit); 1041 } 1042 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1043 const MemoryLocation &Loc, 1044 BatchAAResults &BAA) override { 1045 unsigned UpwardWalkLimit = MaxCheckLimit; 1046 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit); 1047 } 1048 1049 void invalidateInfo(MemoryAccess *MA) override { 1050 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1051 MUD->resetOptimized(); 1052 } 1053 }; 1054 1055 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1056 ClobberWalkerBase *Walker; 1057 1058 public: 1059 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) 1060 : MemorySSAWalker(M), Walker(W) {} 1061 ~SkipSelfWalker() override = default; 1062 1063 using MemorySSAWalker::getClobberingMemoryAccess; 1064 1065 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, 1066 unsigned &UWL) { 1067 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true); 1068 } 1069 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1070 const MemoryLocation &Loc, 1071 BatchAAResults &BAA, unsigned &UWL) { 1072 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); 1073 } 1074 1075 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1076 BatchAAResults &BAA) override { 1077 unsigned UpwardWalkLimit = MaxCheckLimit; 1078 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit); 1079 } 1080 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1081 const MemoryLocation &Loc, 1082 BatchAAResults &BAA) override { 1083 unsigned UpwardWalkLimit = MaxCheckLimit; 1084 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit); 1085 } 1086 1087 void invalidateInfo(MemoryAccess *MA) override { 1088 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1089 MUD->resetOptimized(); 1090 } 1091 }; 1092 1093 } // end namespace llvm 1094 1095 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1096 bool RenameAllUses) { 1097 // Pass through values to our successors 1098 for (const BasicBlock *S : successors(BB)) { 1099 auto It = PerBlockAccesses.find(S); 1100 // Rename the phi nodes in our successor block 1101 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1102 continue; 1103 AccessList *Accesses = It->second.get(); 1104 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1105 if (RenameAllUses) { 1106 bool ReplacementDone = false; 1107 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1108 if (Phi->getIncomingBlock(I) == BB) { 1109 Phi->setIncomingValue(I, IncomingVal); 1110 ReplacementDone = true; 1111 } 1112 (void) ReplacementDone; 1113 assert(ReplacementDone && "Incomplete phi during partial rename"); 1114 } else 1115 Phi->addIncoming(IncomingVal, BB); 1116 } 1117 } 1118 1119 /// Rename a single basic block into MemorySSA form. 1120 /// Uses the standard SSA renaming algorithm. 1121 /// \returns The new incoming value. 1122 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1123 bool RenameAllUses) { 1124 auto It = PerBlockAccesses.find(BB); 1125 // Skip most processing if the list is empty. 1126 if (It != PerBlockAccesses.end()) { 1127 AccessList *Accesses = It->second.get(); 1128 for (MemoryAccess &L : *Accesses) { 1129 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1130 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1131 MUD->setDefiningAccess(IncomingVal); 1132 if (isa<MemoryDef>(&L)) 1133 IncomingVal = &L; 1134 } else { 1135 IncomingVal = &L; 1136 } 1137 } 1138 } 1139 return IncomingVal; 1140 } 1141 1142 /// This is the standard SSA renaming algorithm. 1143 /// 1144 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1145 /// in phi nodes in our successors. 1146 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1147 SmallPtrSetImpl<BasicBlock *> &Visited, 1148 bool SkipVisited, bool RenameAllUses) { 1149 assert(Root && "Trying to rename accesses in an unreachable block"); 1150 1151 SmallVector<RenamePassData, 32> WorkStack; 1152 // Skip everything if we already renamed this block and we are skipping. 1153 // Note: You can't sink this into the if, because we need it to occur 1154 // regardless of whether we skip blocks or not. 1155 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1156 if (SkipVisited && AlreadyVisited) 1157 return; 1158 1159 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1160 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1161 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1162 1163 while (!WorkStack.empty()) { 1164 DomTreeNode *Node = WorkStack.back().DTN; 1165 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1166 IncomingVal = WorkStack.back().IncomingVal; 1167 1168 if (ChildIt == Node->end()) { 1169 WorkStack.pop_back(); 1170 } else { 1171 DomTreeNode *Child = *ChildIt; 1172 ++WorkStack.back().ChildIt; 1173 BasicBlock *BB = Child->getBlock(); 1174 // Note: You can't sink this into the if, because we need it to occur 1175 // regardless of whether we skip blocks or not. 1176 AlreadyVisited = !Visited.insert(BB).second; 1177 if (SkipVisited && AlreadyVisited) { 1178 // We already visited this during our renaming, which can happen when 1179 // being asked to rename multiple blocks. Figure out the incoming val, 1180 // which is the last def. 1181 // Incoming value can only change if there is a block def, and in that 1182 // case, it's the last block def in the list. 1183 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1184 IncomingVal = &*BlockDefs->rbegin(); 1185 } else 1186 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1187 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1188 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1189 } 1190 } 1191 } 1192 1193 /// This handles unreachable block accesses by deleting phi nodes in 1194 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1195 /// being uses of the live on entry definition. 1196 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1197 assert(!DT->isReachableFromEntry(BB) && 1198 "Reachable block found while handling unreachable blocks"); 1199 1200 // Make sure phi nodes in our reachable successors end up with a 1201 // LiveOnEntryDef for our incoming edge, even though our block is forward 1202 // unreachable. We could just disconnect these blocks from the CFG fully, 1203 // but we do not right now. 1204 for (const BasicBlock *S : successors(BB)) { 1205 if (!DT->isReachableFromEntry(S)) 1206 continue; 1207 auto It = PerBlockAccesses.find(S); 1208 // Rename the phi nodes in our successor block 1209 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1210 continue; 1211 AccessList *Accesses = It->second.get(); 1212 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1213 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1214 } 1215 1216 auto It = PerBlockAccesses.find(BB); 1217 if (It == PerBlockAccesses.end()) 1218 return; 1219 1220 auto &Accesses = It->second; 1221 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1222 auto Next = std::next(AI); 1223 // If we have a phi, just remove it. We are going to replace all 1224 // users with live on entry. 1225 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1226 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1227 else 1228 Accesses->erase(AI); 1229 AI = Next; 1230 } 1231 } 1232 1233 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1234 : DT(DT), F(&Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1235 SkipWalker(nullptr) { 1236 // Build MemorySSA using a batch alias analysis. This reuses the internal 1237 // state that AA collects during an alias()/getModRefInfo() call. This is 1238 // safe because there are no CFG changes while building MemorySSA and can 1239 // significantly reduce the time spent by the compiler in AA, because we will 1240 // make queries about all the instructions in the Function. 1241 assert(AA && "No alias analysis?"); 1242 BatchAAResults BatchAA(*AA); 1243 buildMemorySSA(BatchAA, iterator_range(F->begin(), F->end())); 1244 // Intentionally leave AA to nullptr while building so we don't accidentally 1245 // use non-batch AliasAnalysis. 1246 this->AA = AA; 1247 // Also create the walker here. 1248 getWalker(); 1249 } 1250 1251 MemorySSA::MemorySSA(Loop &L, AliasAnalysis *AA, DominatorTree *DT) 1252 : DT(DT), L(&L), LiveOnEntryDef(nullptr), Walker(nullptr), 1253 SkipWalker(nullptr) { 1254 // Build MemorySSA using a batch alias analysis. This reuses the internal 1255 // state that AA collects during an alias()/getModRefInfo() call. This is 1256 // safe because there are no CFG changes while building MemorySSA and can 1257 // significantly reduce the time spent by the compiler in AA, because we will 1258 // make queries about all the instructions in the Function. 1259 assert(AA && "No alias analysis?"); 1260 BatchAAResults BatchAA(*AA); 1261 buildMemorySSA( 1262 BatchAA, map_range(L.blocks(), [](const BasicBlock *BB) -> BasicBlock & { 1263 return *const_cast<BasicBlock *>(BB); 1264 })); 1265 // Intentionally leave AA to nullptr while building so we don't accidentally 1266 // use non-batch AliasAnalysis. 1267 this->AA = AA; 1268 // Also create the walker here. 1269 getWalker(); 1270 } 1271 1272 MemorySSA::~MemorySSA() { 1273 // Drop all our references 1274 for (const auto &Pair : PerBlockAccesses) 1275 for (MemoryAccess &MA : *Pair.second) 1276 MA.dropAllReferences(); 1277 } 1278 1279 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1280 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1281 1282 if (Res.second) 1283 Res.first->second = std::make_unique<AccessList>(); 1284 return Res.first->second.get(); 1285 } 1286 1287 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1288 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1289 1290 if (Res.second) 1291 Res.first->second = std::make_unique<DefsList>(); 1292 return Res.first->second.get(); 1293 } 1294 1295 namespace llvm { 1296 1297 /// This class is a batch walker of all MemoryUse's in the program, and points 1298 /// their defining access at the thing that actually clobbers them. Because it 1299 /// is a batch walker that touches everything, it does not operate like the 1300 /// other walkers. This walker is basically performing a top-down SSA renaming 1301 /// pass, where the version stack is used as the cache. This enables it to be 1302 /// significantly more time and memory efficient than using the regular walker, 1303 /// which is walking bottom-up. 1304 class MemorySSA::OptimizeUses { 1305 public: 1306 OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA, 1307 DominatorTree *DT) 1308 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1309 1310 void optimizeUses(); 1311 1312 private: 1313 /// This represents where a given memorylocation is in the stack. 1314 struct MemlocStackInfo { 1315 // This essentially is keeping track of versions of the stack. Whenever 1316 // the stack changes due to pushes or pops, these versions increase. 1317 unsigned long StackEpoch; 1318 unsigned long PopEpoch; 1319 // This is the lower bound of places on the stack to check. It is equal to 1320 // the place the last stack walk ended. 1321 // Note: Correctness depends on this being initialized to 0, which densemap 1322 // does 1323 unsigned long LowerBound; 1324 const BasicBlock *LowerBoundBlock; 1325 // This is where the last walk for this memory location ended. 1326 unsigned long LastKill; 1327 bool LastKillValid; 1328 }; 1329 1330 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1331 SmallVectorImpl<MemoryAccess *> &, 1332 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1333 1334 MemorySSA *MSSA; 1335 CachingWalker *Walker; 1336 BatchAAResults *AA; 1337 DominatorTree *DT; 1338 }; 1339 1340 } // end namespace llvm 1341 1342 /// Optimize the uses in a given block This is basically the SSA renaming 1343 /// algorithm, with one caveat: We are able to use a single stack for all 1344 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1345 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1346 /// going to be some position in that stack of possible ones. 1347 /// 1348 /// We track the stack positions that each MemoryLocation needs 1349 /// to check, and last ended at. This is because we only want to check the 1350 /// things that changed since last time. The same MemoryLocation should 1351 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1352 /// things like this, and if they start, we can modify MemoryLocOrCall to 1353 /// include relevant data) 1354 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1355 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1356 SmallVectorImpl<MemoryAccess *> &VersionStack, 1357 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1358 1359 /// If no accesses, nothing to do. 1360 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1361 if (Accesses == nullptr) 1362 return; 1363 1364 // Pop everything that doesn't dominate the current block off the stack, 1365 // increment the PopEpoch to account for this. 1366 while (true) { 1367 assert( 1368 !VersionStack.empty() && 1369 "Version stack should have liveOnEntry sentinel dominating everything"); 1370 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1371 if (DT->dominates(BackBlock, BB)) 1372 break; 1373 while (VersionStack.back()->getBlock() == BackBlock) 1374 VersionStack.pop_back(); 1375 ++PopEpoch; 1376 } 1377 1378 for (MemoryAccess &MA : *Accesses) { 1379 auto *MU = dyn_cast<MemoryUse>(&MA); 1380 if (!MU) { 1381 VersionStack.push_back(&MA); 1382 ++StackEpoch; 1383 continue; 1384 } 1385 1386 if (MU->isOptimized()) 1387 continue; 1388 1389 MemoryLocOrCall UseMLOC(MU); 1390 auto &LocInfo = LocStackInfo[UseMLOC]; 1391 // If the pop epoch changed, it means we've removed stuff from top of 1392 // stack due to changing blocks. We may have to reset the lower bound or 1393 // last kill info. 1394 if (LocInfo.PopEpoch != PopEpoch) { 1395 LocInfo.PopEpoch = PopEpoch; 1396 LocInfo.StackEpoch = StackEpoch; 1397 // If the lower bound was in something that no longer dominates us, we 1398 // have to reset it. 1399 // We can't simply track stack size, because the stack may have had 1400 // pushes/pops in the meantime. 1401 // XXX: This is non-optimal, but only is slower cases with heavily 1402 // branching dominator trees. To get the optimal number of queries would 1403 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1404 // the top of that stack dominates us. This does not seem worth it ATM. 1405 // A much cheaper optimization would be to always explore the deepest 1406 // branch of the dominator tree first. This will guarantee this resets on 1407 // the smallest set of blocks. 1408 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1409 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1410 // Reset the lower bound of things to check. 1411 // TODO: Some day we should be able to reset to last kill, rather than 1412 // 0. 1413 LocInfo.LowerBound = 0; 1414 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1415 LocInfo.LastKillValid = false; 1416 } 1417 } else if (LocInfo.StackEpoch != StackEpoch) { 1418 // If all that has changed is the StackEpoch, we only have to check the 1419 // new things on the stack, because we've checked everything before. In 1420 // this case, the lower bound of things to check remains the same. 1421 LocInfo.PopEpoch = PopEpoch; 1422 LocInfo.StackEpoch = StackEpoch; 1423 } 1424 if (!LocInfo.LastKillValid) { 1425 LocInfo.LastKill = VersionStack.size() - 1; 1426 LocInfo.LastKillValid = true; 1427 } 1428 1429 // At this point, we should have corrected last kill and LowerBound to be 1430 // in bounds. 1431 assert(LocInfo.LowerBound < VersionStack.size() && 1432 "Lower bound out of range"); 1433 assert(LocInfo.LastKill < VersionStack.size() && 1434 "Last kill info out of range"); 1435 // In any case, the new upper bound is the top of the stack. 1436 unsigned long UpperBound = VersionStack.size() - 1; 1437 1438 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1439 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1440 << *(MU->getMemoryInst()) << ")" 1441 << " because there are " 1442 << UpperBound - LocInfo.LowerBound 1443 << " stores to disambiguate\n"); 1444 // Because we did not walk, LastKill is no longer valid, as this may 1445 // have been a kill. 1446 LocInfo.LastKillValid = false; 1447 continue; 1448 } 1449 bool FoundClobberResult = false; 1450 unsigned UpwardWalkLimit = MaxCheckLimit; 1451 while (UpperBound > LocInfo.LowerBound) { 1452 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1453 // For phis, use the walker, see where we ended up, go there. 1454 // The invariant.group handling in MemorySSA is ad-hoc and doesn't 1455 // support updates, so don't use it to optimize uses. 1456 MemoryAccess *Result = 1457 Walker->getClobberingMemoryAccessWithoutInvariantGroup( 1458 MU, *AA, UpwardWalkLimit); 1459 // We are guaranteed to find it or something is wrong. 1460 while (VersionStack[UpperBound] != Result) { 1461 assert(UpperBound != 0); 1462 --UpperBound; 1463 } 1464 FoundClobberResult = true; 1465 break; 1466 } 1467 1468 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1469 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1470 FoundClobberResult = true; 1471 break; 1472 } 1473 --UpperBound; 1474 } 1475 1476 // At the end of this loop, UpperBound is either a clobber, or lower bound 1477 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1478 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1479 MU->setDefiningAccess(VersionStack[UpperBound], true); 1480 LocInfo.LastKill = UpperBound; 1481 } else { 1482 // Otherwise, we checked all the new ones, and now we know we can get to 1483 // LastKill. 1484 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1485 } 1486 LocInfo.LowerBound = VersionStack.size() - 1; 1487 LocInfo.LowerBoundBlock = BB; 1488 } 1489 } 1490 1491 /// Optimize uses to point to their actual clobbering definitions. 1492 void MemorySSA::OptimizeUses::optimizeUses() { 1493 SmallVector<MemoryAccess *, 16> VersionStack; 1494 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1495 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1496 1497 unsigned long StackEpoch = 1; 1498 unsigned long PopEpoch = 1; 1499 // We perform a non-recursive top-down dominator tree walk. 1500 for (const auto *DomNode : depth_first(DT->getRootNode())) 1501 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1502 LocStackInfo); 1503 } 1504 1505 void MemorySSA::placePHINodes( 1506 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1507 // Determine where our MemoryPhi's should go 1508 ForwardIDFCalculator IDFs(*DT); 1509 IDFs.setDefiningBlocks(DefiningBlocks); 1510 SmallVector<BasicBlock *, 32> IDFBlocks; 1511 IDFs.calculate(IDFBlocks); 1512 1513 // Now place MemoryPhi nodes. 1514 for (auto &BB : IDFBlocks) 1515 createMemoryPhi(BB); 1516 } 1517 1518 template <typename IterT> 1519 void MemorySSA::buildMemorySSA(BatchAAResults &BAA, IterT Blocks) { 1520 // We create an access to represent "live on entry", for things like 1521 // arguments or users of globals, where the memory they use is defined before 1522 // the beginning of the function. We do not actually insert it into the IR. 1523 // We do not define a live on exit for the immediate uses, and thus our 1524 // semantics do *not* imply that something with no immediate uses can simply 1525 // be removed. 1526 BasicBlock &StartingPoint = *Blocks.begin(); 1527 LiveOnEntryDef.reset(new MemoryDef(StartingPoint.getContext(), nullptr, 1528 nullptr, &StartingPoint, NextID++)); 1529 1530 // We maintain lists of memory accesses per-block, trading memory for time. We 1531 // could just look up the memory access for every possible instruction in the 1532 // stream. 1533 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1534 // Go through each block, figure out where defs occur, and chain together all 1535 // the accesses. 1536 for (BasicBlock &B : Blocks) { 1537 bool InsertIntoDef = false; 1538 AccessList *Accesses = nullptr; 1539 DefsList *Defs = nullptr; 1540 for (Instruction &I : B) { 1541 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1542 if (!MUD) 1543 continue; 1544 1545 if (!Accesses) 1546 Accesses = getOrCreateAccessList(&B); 1547 Accesses->push_back(MUD); 1548 if (isa<MemoryDef>(MUD)) { 1549 InsertIntoDef = true; 1550 if (!Defs) 1551 Defs = getOrCreateDefsList(&B); 1552 Defs->push_back(*MUD); 1553 } 1554 } 1555 if (InsertIntoDef) 1556 DefiningBlocks.insert(&B); 1557 } 1558 placePHINodes(DefiningBlocks); 1559 1560 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1561 // filled in with all blocks. 1562 SmallPtrSet<BasicBlock *, 16> Visited; 1563 if (L) { 1564 // Only building MemorySSA for a single loop. placePHINodes may have 1565 // inserted a MemoryPhi in the loop's preheader. As this is outside the 1566 // scope of the loop, set them to LiveOnEntry. 1567 if (auto *P = getMemoryAccess(L->getLoopPreheader())) { 1568 for (Use &U : make_early_inc_range(P->uses())) 1569 U.set(LiveOnEntryDef.get()); 1570 removeFromLists(P); 1571 } 1572 // Now rename accesses in the loop. Populate Visited with the exit blocks of 1573 // the loop, to limit the scope of the renaming. 1574 SmallVector<BasicBlock *> ExitBlocks; 1575 L->getExitBlocks(ExitBlocks); 1576 Visited.insert(ExitBlocks.begin(), ExitBlocks.end()); 1577 renamePass(DT->getNode(L->getLoopPreheader()), LiveOnEntryDef.get(), 1578 Visited); 1579 } else { 1580 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1581 } 1582 1583 // Mark the uses in unreachable blocks as live on entry, so that they go 1584 // somewhere. 1585 for (auto &BB : Blocks) 1586 if (!Visited.count(&BB)) 1587 markUnreachableAsLiveOnEntry(&BB); 1588 } 1589 1590 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1591 1592 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1593 if (Walker) 1594 return Walker.get(); 1595 1596 if (!WalkerBase) 1597 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT); 1598 1599 Walker = std::make_unique<CachingWalker>(this, WalkerBase.get()); 1600 return Walker.get(); 1601 } 1602 1603 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1604 if (SkipWalker) 1605 return SkipWalker.get(); 1606 1607 if (!WalkerBase) 1608 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT); 1609 1610 SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get()); 1611 return SkipWalker.get(); 1612 } 1613 1614 1615 // This is a helper function used by the creation routines. It places NewAccess 1616 // into the access and defs lists for a given basic block, at the given 1617 // insertion point. 1618 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1619 const BasicBlock *BB, 1620 InsertionPlace Point) { 1621 auto *Accesses = getOrCreateAccessList(BB); 1622 if (Point == Beginning) { 1623 // If it's a phi node, it goes first, otherwise, it goes after any phi 1624 // nodes. 1625 if (isa<MemoryPhi>(NewAccess)) { 1626 Accesses->push_front(NewAccess); 1627 auto *Defs = getOrCreateDefsList(BB); 1628 Defs->push_front(*NewAccess); 1629 } else { 1630 auto AI = find_if_not( 1631 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1632 Accesses->insert(AI, NewAccess); 1633 if (!isa<MemoryUse>(NewAccess)) { 1634 auto *Defs = getOrCreateDefsList(BB); 1635 auto DI = find_if_not( 1636 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1637 Defs->insert(DI, *NewAccess); 1638 } 1639 } 1640 } else { 1641 Accesses->push_back(NewAccess); 1642 if (!isa<MemoryUse>(NewAccess)) { 1643 auto *Defs = getOrCreateDefsList(BB); 1644 Defs->push_back(*NewAccess); 1645 } 1646 } 1647 BlockNumberingValid.erase(BB); 1648 } 1649 1650 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1651 AccessList::iterator InsertPt) { 1652 auto *Accesses = getWritableBlockAccesses(BB); 1653 bool WasEnd = InsertPt == Accesses->end(); 1654 Accesses->insert(AccessList::iterator(InsertPt), What); 1655 if (!isa<MemoryUse>(What)) { 1656 auto *Defs = getOrCreateDefsList(BB); 1657 // If we got asked to insert at the end, we have an easy job, just shove it 1658 // at the end. If we got asked to insert before an existing def, we also get 1659 // an iterator. If we got asked to insert before a use, we have to hunt for 1660 // the next def. 1661 if (WasEnd) { 1662 Defs->push_back(*What); 1663 } else if (isa<MemoryDef>(InsertPt)) { 1664 Defs->insert(InsertPt->getDefsIterator(), *What); 1665 } else { 1666 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1667 ++InsertPt; 1668 // Either we found a def, or we are inserting at the end 1669 if (InsertPt == Accesses->end()) 1670 Defs->push_back(*What); 1671 else 1672 Defs->insert(InsertPt->getDefsIterator(), *What); 1673 } 1674 } 1675 BlockNumberingValid.erase(BB); 1676 } 1677 1678 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1679 // Keep it in the lookup tables, remove from the lists 1680 removeFromLists(What, false); 1681 1682 // Note that moving should implicitly invalidate the optimized state of a 1683 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1684 // MemoryDef. 1685 if (auto *MD = dyn_cast<MemoryDef>(What)) 1686 MD->resetOptimized(); 1687 What->setBlock(BB); 1688 } 1689 1690 // Move What before Where in the IR. The end result is that What will belong to 1691 // the right lists and have the right Block set, but will not otherwise be 1692 // correct. It will not have the right defining access, and if it is a def, 1693 // things below it will not properly be updated. 1694 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1695 AccessList::iterator Where) { 1696 prepareForMoveTo(What, BB); 1697 insertIntoListsBefore(What, BB, Where); 1698 } 1699 1700 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1701 InsertionPlace Point) { 1702 if (isa<MemoryPhi>(What)) { 1703 assert(Point == Beginning && 1704 "Can only move a Phi at the beginning of the block"); 1705 // Update lookup table entry 1706 ValueToMemoryAccess.erase(What->getBlock()); 1707 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1708 (void)Inserted; 1709 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1710 } 1711 1712 prepareForMoveTo(What, BB); 1713 insertIntoListsForBlock(What, BB, Point); 1714 } 1715 1716 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1717 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1718 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1719 // Phi's always are placed at the front of the block. 1720 insertIntoListsForBlock(Phi, BB, Beginning); 1721 ValueToMemoryAccess[BB] = Phi; 1722 return Phi; 1723 } 1724 1725 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1726 MemoryAccess *Definition, 1727 const MemoryUseOrDef *Template, 1728 bool CreationMustSucceed) { 1729 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1730 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1731 if (CreationMustSucceed) 1732 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1733 "non-memory touching instruction"); 1734 if (NewAccess) { 1735 assert((!Definition || !isa<MemoryUse>(Definition)) && 1736 "A use cannot be a defining access"); 1737 NewAccess->setDefiningAccess(Definition); 1738 } 1739 return NewAccess; 1740 } 1741 1742 // Return true if the instruction has ordering constraints. 1743 // Note specifically that this only considers stores and loads 1744 // because others are still considered ModRef by getModRefInfo. 1745 static inline bool isOrdered(const Instruction *I) { 1746 if (auto *SI = dyn_cast<StoreInst>(I)) { 1747 if (!SI->isUnordered()) 1748 return true; 1749 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1750 if (!LI->isUnordered()) 1751 return true; 1752 } 1753 return false; 1754 } 1755 1756 /// Helper function to create new memory accesses 1757 template <typename AliasAnalysisType> 1758 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1759 AliasAnalysisType *AAP, 1760 const MemoryUseOrDef *Template) { 1761 // The assume intrinsic has a control dependency which we model by claiming 1762 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1763 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1764 // dependencies here. 1765 // FIXME: Replace this special casing with a more accurate modelling of 1766 // assume's control dependency. 1767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1768 switch (II->getIntrinsicID()) { 1769 default: 1770 break; 1771 case Intrinsic::allow_runtime_check: 1772 case Intrinsic::allow_ubsan_check: 1773 case Intrinsic::assume: 1774 case Intrinsic::experimental_noalias_scope_decl: 1775 case Intrinsic::pseudoprobe: 1776 return nullptr; 1777 } 1778 } 1779 1780 // Using a nonstandard AA pipelines might leave us with unexpected modref 1781 // results for I, so add a check to not model instructions that may not read 1782 // from or write to memory. This is necessary for correctness. 1783 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1784 return nullptr; 1785 1786 bool Def, Use; 1787 if (Template) { 1788 Def = isa<MemoryDef>(Template); 1789 Use = isa<MemoryUse>(Template); 1790 #if !defined(NDEBUG) 1791 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); 1792 bool DefCheck, UseCheck; 1793 DefCheck = isModSet(ModRef) || isOrdered(I); 1794 UseCheck = isRefSet(ModRef); 1795 // Memory accesses should only be reduced and can not be increased since AA 1796 // just might return better results as a result of some transformations. 1797 assert((Def == DefCheck || !DefCheck) && 1798 "Memory accesses should only be reduced"); 1799 if (!Def && Use != UseCheck) { 1800 // New Access should not have more power than template access 1801 assert(!UseCheck && "Invalid template"); 1802 } 1803 #endif 1804 } else { 1805 // Find out what affect this instruction has on memory. 1806 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); 1807 // The isOrdered check is used to ensure that volatiles end up as defs 1808 // (atomics end up as ModRef right now anyway). Until we separate the 1809 // ordering chain from the memory chain, this enables people to see at least 1810 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1811 // will still give an answer that bypasses other volatile loads. TODO: 1812 // Separate memory aliasing and ordering into two different chains so that 1813 // we can precisely represent both "what memory will this read/write/is 1814 // clobbered by" and "what instructions can I move this past". 1815 Def = isModSet(ModRef) || isOrdered(I); 1816 Use = isRefSet(ModRef); 1817 } 1818 1819 // It's possible for an instruction to not modify memory at all. During 1820 // construction, we ignore them. 1821 if (!Def && !Use) 1822 return nullptr; 1823 1824 MemoryUseOrDef *MUD; 1825 if (Def) { 1826 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1827 } else { 1828 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1829 if (isUseTriviallyOptimizableToLiveOnEntry(*AAP, I)) { 1830 MemoryAccess *LiveOnEntry = getLiveOnEntryDef(); 1831 MUD->setOptimized(LiveOnEntry); 1832 } 1833 } 1834 ValueToMemoryAccess[I] = MUD; 1835 return MUD; 1836 } 1837 1838 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1839 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1840 assert(MA->use_empty() && 1841 "Trying to remove memory access that still has uses"); 1842 BlockNumbering.erase(MA); 1843 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1844 MUD->setDefiningAccess(nullptr); 1845 // Invalidate our walker's cache if necessary 1846 if (!isa<MemoryUse>(MA)) 1847 getWalker()->invalidateInfo(MA); 1848 1849 Value *MemoryInst; 1850 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1851 MemoryInst = MUD->getMemoryInst(); 1852 else 1853 MemoryInst = MA->getBlock(); 1854 1855 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1856 if (VMA->second == MA) 1857 ValueToMemoryAccess.erase(VMA); 1858 } 1859 1860 /// Properly remove \p MA from all of MemorySSA's lists. 1861 /// 1862 /// Because of the way the intrusive list and use lists work, it is important to 1863 /// do removal in the right order. 1864 /// ShouldDelete defaults to true, and will cause the memory access to also be 1865 /// deleted, not just removed. 1866 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1867 BasicBlock *BB = MA->getBlock(); 1868 // The access list owns the reference, so we erase it from the non-owning list 1869 // first. 1870 if (!isa<MemoryUse>(MA)) { 1871 auto DefsIt = PerBlockDefs.find(BB); 1872 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1873 Defs->remove(*MA); 1874 if (Defs->empty()) 1875 PerBlockDefs.erase(DefsIt); 1876 } 1877 1878 // The erase call here will delete it. If we don't want it deleted, we call 1879 // remove instead. 1880 auto AccessIt = PerBlockAccesses.find(BB); 1881 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1882 if (ShouldDelete) 1883 Accesses->erase(MA); 1884 else 1885 Accesses->remove(MA); 1886 1887 if (Accesses->empty()) { 1888 PerBlockAccesses.erase(AccessIt); 1889 BlockNumberingValid.erase(BB); 1890 } 1891 } 1892 1893 void MemorySSA::print(raw_ostream &OS) const { 1894 MemorySSAAnnotatedWriter Writer(this); 1895 Function *F = this->F; 1896 if (L) 1897 F = L->getHeader()->getParent(); 1898 F->print(OS, &Writer); 1899 } 1900 1901 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1902 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1903 #endif 1904 1905 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const { 1906 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1907 VL = VerificationLevel::Full; 1908 #endif 1909 1910 #ifndef NDEBUG 1911 if (F) { 1912 auto Blocks = iterator_range(F->begin(), F->end()); 1913 verifyOrderingDominationAndDefUses(Blocks, VL); 1914 verifyDominationNumbers(Blocks); 1915 if (VL == VerificationLevel::Full) 1916 verifyPrevDefInPhis(Blocks); 1917 } else { 1918 assert(L && "must either have loop or function"); 1919 auto Blocks = 1920 map_range(L->blocks(), [](const BasicBlock *BB) -> BasicBlock & { 1921 return *const_cast<BasicBlock *>(BB); 1922 }); 1923 verifyOrderingDominationAndDefUses(Blocks, VL); 1924 verifyDominationNumbers(Blocks); 1925 if (VL == VerificationLevel::Full) 1926 verifyPrevDefInPhis(Blocks); 1927 } 1928 #endif 1929 // Previously, the verification used to also verify that the clobberingAccess 1930 // cached by MemorySSA is the same as the clobberingAccess found at a later 1931 // query to AA. This does not hold true in general due to the current fragility 1932 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1933 // up. As a result, transformations that are correct, will lead to BasicAA 1934 // returning different Alias answers before and after that transformation. 1935 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1936 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1937 // every transformation, which defeats the purpose of using it. For such an 1938 // example, see test4 added in D51960. 1939 } 1940 1941 template <typename IterT> 1942 void MemorySSA::verifyPrevDefInPhis(IterT Blocks) const { 1943 for (const BasicBlock &BB : Blocks) { 1944 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1945 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1946 auto *Pred = Phi->getIncomingBlock(I); 1947 auto *IncAcc = Phi->getIncomingValue(I); 1948 // If Pred has no unreachable predecessors, get last def looking at 1949 // IDoms. If, while walkings IDoms, any of these has an unreachable 1950 // predecessor, then the incoming def can be any access. 1951 if (auto *DTNode = DT->getNode(Pred)) { 1952 while (DTNode) { 1953 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1954 auto *LastAcc = &*(--DefList->end()); 1955 assert(LastAcc == IncAcc && 1956 "Incorrect incoming access into phi."); 1957 (void)IncAcc; 1958 (void)LastAcc; 1959 break; 1960 } 1961 DTNode = DTNode->getIDom(); 1962 } 1963 } else { 1964 // If Pred has unreachable predecessors, but has at least a Def, the 1965 // incoming access can be the last Def in Pred, or it could have been 1966 // optimized to LoE. After an update, though, the LoE may have been 1967 // replaced by another access, so IncAcc may be any access. 1968 // If Pred has unreachable predecessors and no Defs, incoming access 1969 // should be LoE; However, after an update, it may be any access. 1970 } 1971 } 1972 } 1973 } 1974 } 1975 1976 /// Verify that all of the blocks we believe to have valid domination numbers 1977 /// actually have valid domination numbers. 1978 template <typename IterT> 1979 void MemorySSA::verifyDominationNumbers(IterT Blocks) const { 1980 if (BlockNumberingValid.empty()) 1981 return; 1982 1983 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1984 for (const BasicBlock &BB : Blocks) { 1985 if (!ValidBlocks.count(&BB)) 1986 continue; 1987 1988 ValidBlocks.erase(&BB); 1989 1990 const AccessList *Accesses = getBlockAccesses(&BB); 1991 // It's correct to say an empty block has valid numbering. 1992 if (!Accesses) 1993 continue; 1994 1995 // Block numbering starts at 1. 1996 unsigned long LastNumber = 0; 1997 for (const MemoryAccess &MA : *Accesses) { 1998 auto ThisNumberIter = BlockNumbering.find(&MA); 1999 assert(ThisNumberIter != BlockNumbering.end() && 2000 "MemoryAccess has no domination number in a valid block!"); 2001 2002 unsigned long ThisNumber = ThisNumberIter->second; 2003 assert(ThisNumber > LastNumber && 2004 "Domination numbers should be strictly increasing!"); 2005 (void)LastNumber; 2006 LastNumber = ThisNumber; 2007 } 2008 } 2009 2010 assert(ValidBlocks.empty() && 2011 "All valid BasicBlocks should exist in F -- dangling pointers?"); 2012 } 2013 2014 /// Verify ordering: the order and existence of MemoryAccesses matches the 2015 /// order and existence of memory affecting instructions. 2016 /// Verify domination: each definition dominates all of its uses. 2017 /// Verify def-uses: the immediate use information - walk all the memory 2018 /// accesses and verifying that, for each use, it appears in the appropriate 2019 /// def's use list 2020 template <typename IterT> 2021 void MemorySSA::verifyOrderingDominationAndDefUses(IterT Blocks, 2022 VerificationLevel VL) const { 2023 // Walk all the blocks, comparing what the lookups think and what the access 2024 // lists think, as well as the order in the blocks vs the order in the access 2025 // lists. 2026 SmallVector<MemoryAccess *, 32> ActualAccesses; 2027 SmallVector<MemoryAccess *, 32> ActualDefs; 2028 for (BasicBlock &B : Blocks) { 2029 const AccessList *AL = getBlockAccesses(&B); 2030 const auto *DL = getBlockDefs(&B); 2031 MemoryPhi *Phi = getMemoryAccess(&B); 2032 if (Phi) { 2033 // Verify ordering. 2034 ActualAccesses.push_back(Phi); 2035 ActualDefs.push_back(Phi); 2036 // Verify domination 2037 for (const Use &U : Phi->uses()) { 2038 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2039 (void)U; 2040 } 2041 // Verify def-uses for full verify. 2042 if (VL == VerificationLevel::Full) { 2043 assert(Phi->getNumOperands() == pred_size(&B) && 2044 "Incomplete MemoryPhi Node"); 2045 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2046 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2047 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2048 "Incoming phi block not a block predecessor"); 2049 } 2050 } 2051 } 2052 2053 for (Instruction &I : B) { 2054 MemoryUseOrDef *MA = getMemoryAccess(&I); 2055 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2056 "We have memory affecting instructions " 2057 "in this block but they are not in the " 2058 "access list or defs list"); 2059 if (MA) { 2060 // Verify ordering. 2061 ActualAccesses.push_back(MA); 2062 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2063 // Verify ordering. 2064 ActualDefs.push_back(MA); 2065 // Verify domination. 2066 for (const Use &U : MD->uses()) { 2067 assert(dominates(MD, U) && 2068 "Memory Def does not dominate it's uses"); 2069 (void)U; 2070 } 2071 } 2072 // Verify def-uses for full verify. 2073 if (VL == VerificationLevel::Full) 2074 verifyUseInDefs(MA->getDefiningAccess(), MA); 2075 } 2076 } 2077 // Either we hit the assert, really have no accesses, or we have both 2078 // accesses and an access list. Same with defs. 2079 if (!AL && !DL) 2080 continue; 2081 // Verify ordering. 2082 assert(AL->size() == ActualAccesses.size() && 2083 "We don't have the same number of accesses in the block as on the " 2084 "access list"); 2085 assert((DL || ActualDefs.size() == 0) && 2086 "Either we should have a defs list, or we should have no defs"); 2087 assert((!DL || DL->size() == ActualDefs.size()) && 2088 "We don't have the same number of defs in the block as on the " 2089 "def list"); 2090 auto ALI = AL->begin(); 2091 auto AAI = ActualAccesses.begin(); 2092 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2093 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2094 ++ALI; 2095 ++AAI; 2096 } 2097 ActualAccesses.clear(); 2098 if (DL) { 2099 auto DLI = DL->begin(); 2100 auto ADI = ActualDefs.begin(); 2101 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2102 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2103 ++DLI; 2104 ++ADI; 2105 } 2106 } 2107 ActualDefs.clear(); 2108 } 2109 } 2110 2111 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2112 /// appears in the use list of \p Def. 2113 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2114 // The live on entry use may cause us to get a NULL def here 2115 if (!Def) 2116 assert(isLiveOnEntryDef(Use) && 2117 "Null def but use not point to live on entry def"); 2118 else 2119 assert(is_contained(Def->users(), Use) && 2120 "Did not find use in def's use list"); 2121 } 2122 2123 /// Perform a local numbering on blocks so that instruction ordering can be 2124 /// determined in constant time. 2125 /// TODO: We currently just number in order. If we numbered by N, we could 2126 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2127 /// log2(N) sequences of mixed before and after) without needing to invalidate 2128 /// the numbering. 2129 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2130 // The pre-increment ensures the numbers really start at 1. 2131 unsigned long CurrentNumber = 0; 2132 const AccessList *AL = getBlockAccesses(B); 2133 assert(AL != nullptr && "Asking to renumber an empty block"); 2134 for (const auto &I : *AL) 2135 BlockNumbering[&I] = ++CurrentNumber; 2136 BlockNumberingValid.insert(B); 2137 } 2138 2139 /// Determine, for two memory accesses in the same block, 2140 /// whether \p Dominator dominates \p Dominatee. 2141 /// \returns True if \p Dominator dominates \p Dominatee. 2142 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2143 const MemoryAccess *Dominatee) const { 2144 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2145 2146 assert((DominatorBlock == Dominatee->getBlock()) && 2147 "Asking for local domination when accesses are in different blocks!"); 2148 // A node dominates itself. 2149 if (Dominatee == Dominator) 2150 return true; 2151 2152 // When Dominatee is defined on function entry, it is not dominated by another 2153 // memory access. 2154 if (isLiveOnEntryDef(Dominatee)) 2155 return false; 2156 2157 // When Dominator is defined on function entry, it dominates the other memory 2158 // access. 2159 if (isLiveOnEntryDef(Dominator)) 2160 return true; 2161 2162 if (!BlockNumberingValid.count(DominatorBlock)) 2163 renumberBlock(DominatorBlock); 2164 2165 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2166 // All numbers start with 1 2167 assert(DominatorNum != 0 && "Block was not numbered properly"); 2168 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2169 assert(DominateeNum != 0 && "Block was not numbered properly"); 2170 return DominatorNum < DominateeNum; 2171 } 2172 2173 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2174 const MemoryAccess *Dominatee) const { 2175 if (Dominator == Dominatee) 2176 return true; 2177 2178 if (isLiveOnEntryDef(Dominatee)) 2179 return false; 2180 2181 if (Dominator->getBlock() != Dominatee->getBlock()) 2182 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2183 return locallyDominates(Dominator, Dominatee); 2184 } 2185 2186 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2187 const Use &Dominatee) const { 2188 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2189 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2190 // The def must dominate the incoming block of the phi. 2191 if (UseBB != Dominator->getBlock()) 2192 return DT->dominates(Dominator->getBlock(), UseBB); 2193 // If the UseBB and the DefBB are the same, compare locally. 2194 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2195 } 2196 // If it's not a PHI node use, the normal dominates can already handle it. 2197 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2198 } 2199 2200 void MemorySSA::ensureOptimizedUses() { 2201 if (IsOptimized) 2202 return; 2203 2204 BatchAAResults BatchAA(*AA); 2205 ClobberWalkerBase WalkerBase(this, DT); 2206 CachingWalker WalkerLocal(this, &WalkerBase); 2207 OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses(); 2208 IsOptimized = true; 2209 } 2210 2211 void MemoryAccess::print(raw_ostream &OS) const { 2212 switch (getValueID()) { 2213 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2214 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2215 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2216 } 2217 llvm_unreachable("invalid value id"); 2218 } 2219 2220 void MemoryDef::print(raw_ostream &OS) const { 2221 MemoryAccess *UO = getDefiningAccess(); 2222 2223 auto printID = [&OS](MemoryAccess *A) { 2224 if (A && A->getID()) 2225 OS << A->getID(); 2226 else 2227 OS << LiveOnEntryStr; 2228 }; 2229 2230 OS << getID() << " = MemoryDef("; 2231 printID(UO); 2232 OS << ")"; 2233 2234 if (isOptimized()) { 2235 OS << "->"; 2236 printID(getOptimized()); 2237 } 2238 } 2239 2240 void MemoryPhi::print(raw_ostream &OS) const { 2241 ListSeparator LS(","); 2242 OS << getID() << " = MemoryPhi("; 2243 for (const auto &Op : operands()) { 2244 BasicBlock *BB = getIncomingBlock(Op); 2245 MemoryAccess *MA = cast<MemoryAccess>(Op); 2246 2247 OS << LS << '{'; 2248 if (BB->hasName()) 2249 OS << BB->getName(); 2250 else 2251 BB->printAsOperand(OS, false); 2252 OS << ','; 2253 if (unsigned ID = MA->getID()) 2254 OS << ID; 2255 else 2256 OS << LiveOnEntryStr; 2257 OS << '}'; 2258 } 2259 OS << ')'; 2260 } 2261 2262 void MemoryUse::print(raw_ostream &OS) const { 2263 MemoryAccess *UO = getDefiningAccess(); 2264 OS << "MemoryUse("; 2265 if (UO && UO->getID()) 2266 OS << UO->getID(); 2267 else 2268 OS << LiveOnEntryStr; 2269 OS << ')'; 2270 } 2271 2272 void MemoryAccess::dump() const { 2273 // Cannot completely remove virtual function even in release mode. 2274 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2275 print(dbgs()); 2276 dbgs() << "\n"; 2277 #endif 2278 } 2279 2280 class DOTFuncMSSAInfo { 2281 private: 2282 const Function &F; 2283 MemorySSAAnnotatedWriter MSSAWriter; 2284 2285 public: 2286 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2287 : F(F), MSSAWriter(&MSSA) {} 2288 2289 const Function *getFunction() { return &F; } 2290 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2291 }; 2292 2293 namespace llvm { 2294 2295 template <> 2296 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2297 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2298 return &(CFGInfo->getFunction()->getEntryBlock()); 2299 } 2300 2301 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2302 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2303 2304 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2305 return nodes_iterator(CFGInfo->getFunction()->begin()); 2306 } 2307 2308 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2309 return nodes_iterator(CFGInfo->getFunction()->end()); 2310 } 2311 2312 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2313 return CFGInfo->getFunction()->size(); 2314 } 2315 }; 2316 2317 template <> 2318 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2319 2320 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2321 2322 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2323 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2324 "' function"; 2325 } 2326 2327 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2328 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2329 Node, nullptr, 2330 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2331 BB.print(OS, &CFGInfo->getWriter(), true, true); 2332 }, 2333 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2334 std::string Str = S.substr(I, Idx - I); 2335 StringRef SR = Str; 2336 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2337 SR.count("MemoryUse(")) 2338 return; 2339 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2340 }); 2341 } 2342 2343 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2344 const_succ_iterator I) { 2345 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2346 } 2347 2348 /// Display the raw branch weights from PGO. 2349 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2350 DOTFuncMSSAInfo *CFGInfo) { 2351 return ""; 2352 } 2353 2354 std::string getNodeAttributes(const BasicBlock *Node, 2355 DOTFuncMSSAInfo *CFGInfo) { 2356 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2357 ? "style=filled, fillcolor=lightpink" 2358 : ""; 2359 } 2360 }; 2361 2362 } // namespace llvm 2363 2364 AnalysisKey MemorySSAAnalysis::Key; 2365 2366 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2367 FunctionAnalysisManager &AM) { 2368 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2369 auto &AA = AM.getResult<AAManager>(F); 2370 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2371 } 2372 2373 bool MemorySSAAnalysis::Result::invalidate( 2374 Function &F, const PreservedAnalyses &PA, 2375 FunctionAnalysisManager::Invalidator &Inv) { 2376 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2377 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2378 Inv.invalidate<AAManager>(F, PA) || 2379 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2380 } 2381 2382 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2383 FunctionAnalysisManager &AM) { 2384 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2385 if (EnsureOptimizedUses) 2386 MSSA.ensureOptimizedUses(); 2387 if (DotCFGMSSA != "") { 2388 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2389 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2390 } else { 2391 OS << "MemorySSA for function: " << F.getName() << "\n"; 2392 MSSA.print(OS); 2393 } 2394 2395 return PreservedAnalyses::all(); 2396 } 2397 2398 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2399 FunctionAnalysisManager &AM) { 2400 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2401 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2402 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2403 F.print(OS, &Writer); 2404 2405 return PreservedAnalyses::all(); 2406 } 2407 2408 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2409 FunctionAnalysisManager &AM) { 2410 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2411 2412 return PreservedAnalyses::all(); 2413 } 2414 2415 char MemorySSAWrapperPass::ID = 0; 2416 2417 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2418 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2419 } 2420 2421 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2422 2423 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2424 AU.setPreservesAll(); 2425 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2426 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2427 } 2428 2429 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2430 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2431 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2432 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2433 return false; 2434 } 2435 2436 void MemorySSAWrapperPass::verifyAnalysis() const { 2437 if (VerifyMemorySSA) 2438 MSSA->verifyMemorySSA(); 2439 } 2440 2441 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2442 MSSA->print(OS); 2443 } 2444 2445 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2446 2447 /// Walk the use-def chains starting at \p StartingAccess and find 2448 /// the MemoryAccess that actually clobbers Loc. 2449 /// 2450 /// \returns our clobbering memory access 2451 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( 2452 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2453 BatchAAResults &BAA, unsigned &UpwardWalkLimit) { 2454 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2455 2456 // If location is undefined, conservatively return starting access. 2457 if (Loc.Ptr == nullptr) 2458 return StartingAccess; 2459 2460 Instruction *I = nullptr; 2461 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2462 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2463 return StartingUseOrDef; 2464 2465 I = StartingUseOrDef->getMemoryInst(); 2466 2467 // Conservatively, fences are always clobbers, so don't perform the walk if 2468 // we hit a fence. 2469 if (!isa<CallBase>(I) && I->isFenceLike()) 2470 return StartingUseOrDef; 2471 } 2472 2473 UpwardsMemoryQuery Q; 2474 Q.OriginalAccess = StartingAccess; 2475 Q.StartingLoc = Loc; 2476 Q.Inst = nullptr; 2477 Q.IsCall = false; 2478 2479 // Unlike the other function, do not walk to the def of a def, because we are 2480 // handed something we already believe is the clobbering access. 2481 // We never set SkipSelf to true in Q in this method. 2482 MemoryAccess *Clobber = 2483 Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit); 2484 LLVM_DEBUG({ 2485 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2486 if (I) 2487 dbgs() << " for instruction " << *I << "\n"; 2488 dbgs() << " is " << *Clobber << "\n"; 2489 }); 2490 return Clobber; 2491 } 2492 2493 static const Instruction * 2494 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) { 2495 if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile()) 2496 return nullptr; 2497 2498 // We consider bitcasts and zero GEPs to be the same pointer value. Start by 2499 // stripping bitcasts and zero GEPs, then we will recursively look at loads 2500 // and stores through bitcasts and zero GEPs. 2501 Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts(); 2502 2503 // It's not safe to walk the use list of a global value because function 2504 // passes aren't allowed to look outside their functions. 2505 // FIXME: this could be fixed by filtering instructions from outside of 2506 // current function. 2507 if (isa<Constant>(PointerOperand)) 2508 return nullptr; 2509 2510 // Queue to process all pointers that are equivalent to load operand. 2511 SmallVector<const Value *, 8> PointerUsesQueue; 2512 PointerUsesQueue.push_back(PointerOperand); 2513 2514 const Instruction *MostDominatingInstruction = &I; 2515 2516 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case 2517 // we will see all the instructions. It may not matter in practice. If it 2518 // does, we will have to support MemorySSA construction and updates. 2519 while (!PointerUsesQueue.empty()) { 2520 const Value *Ptr = PointerUsesQueue.pop_back_val(); 2521 assert(Ptr && !isa<GlobalValue>(Ptr) && 2522 "Null or GlobalValue should not be inserted"); 2523 2524 for (const User *Us : Ptr->users()) { 2525 auto *U = dyn_cast<Instruction>(Us); 2526 if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction)) 2527 continue; 2528 2529 // Add bitcasts and zero GEPs to queue. 2530 if (isa<BitCastInst>(U)) { 2531 PointerUsesQueue.push_back(U); 2532 continue; 2533 } 2534 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 2535 if (GEP->hasAllZeroIndices()) 2536 PointerUsesQueue.push_back(U); 2537 continue; 2538 } 2539 2540 // If we hit a load/store with an invariant.group metadata and the same 2541 // pointer operand, we can assume that value pointed to by the pointer 2542 // operand didn't change. 2543 if (U->hasMetadata(LLVMContext::MD_invariant_group) && 2544 getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) { 2545 MostDominatingInstruction = U; 2546 } 2547 } 2548 } 2549 return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction; 2550 } 2551 2552 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( 2553 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit, 2554 bool SkipSelf, bool UseInvariantGroup) { 2555 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2556 // If this is a MemoryPhi, we can't do anything. 2557 if (!StartingAccess) 2558 return MA; 2559 2560 if (UseInvariantGroup) { 2561 if (auto *I = getInvariantGroupClobberingInstruction( 2562 *StartingAccess->getMemoryInst(), MSSA->getDomTree())) { 2563 assert(isa<LoadInst>(I) || isa<StoreInst>(I)); 2564 2565 auto *ClobberMA = MSSA->getMemoryAccess(I); 2566 assert(ClobberMA); 2567 if (isa<MemoryUse>(ClobberMA)) 2568 return ClobberMA->getDefiningAccess(); 2569 return ClobberMA; 2570 } 2571 } 2572 2573 bool IsOptimized = false; 2574 2575 // If this is an already optimized use or def, return the optimized result. 2576 // Note: Currently, we store the optimized def result in a separate field, 2577 // since we can't use the defining access. 2578 if (StartingAccess->isOptimized()) { 2579 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2580 return StartingAccess->getOptimized(); 2581 IsOptimized = true; 2582 } 2583 2584 const Instruction *I = StartingAccess->getMemoryInst(); 2585 // We can't sanely do anything with a fence, since they conservatively clobber 2586 // all memory, and have no locations to get pointers from to try to 2587 // disambiguate. 2588 if (!isa<CallBase>(I) && I->isFenceLike()) 2589 return StartingAccess; 2590 2591 UpwardsMemoryQuery Q(I, StartingAccess); 2592 2593 if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) { 2594 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2595 StartingAccess->setOptimized(LiveOnEntry); 2596 return LiveOnEntry; 2597 } 2598 2599 MemoryAccess *OptimizedAccess; 2600 if (!IsOptimized) { 2601 // Start with the thing we already think clobbers this location 2602 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2603 2604 // At this point, DefiningAccess may be the live on entry def. 2605 // If it is, we will not get a better result. 2606 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2607 StartingAccess->setOptimized(DefiningAccess); 2608 return DefiningAccess; 2609 } 2610 2611 OptimizedAccess = 2612 Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit); 2613 StartingAccess->setOptimized(OptimizedAccess); 2614 } else 2615 OptimizedAccess = StartingAccess->getOptimized(); 2616 2617 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2618 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2619 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2620 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2621 2622 MemoryAccess *Result; 2623 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2624 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2625 assert(isa<MemoryDef>(Q.OriginalAccess)); 2626 Q.SkipSelfAccess = true; 2627 Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit); 2628 } else 2629 Result = OptimizedAccess; 2630 2631 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2632 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2633 2634 return Result; 2635 } 2636 2637 MemoryAccess * 2638 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA, 2639 BatchAAResults &) { 2640 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2641 return Use->getDefiningAccess(); 2642 return MA; 2643 } 2644 2645 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2646 MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) { 2647 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2648 return Use->getDefiningAccess(); 2649 return StartingAccess; 2650 } 2651 2652 void MemoryPhi::deleteMe(DerivedUser *Self) { 2653 delete static_cast<MemoryPhi *>(Self); 2654 } 2655 2656 void MemoryDef::deleteMe(DerivedUser *Self) { 2657 delete static_cast<MemoryDef *>(Self); 2658 } 2659 2660 void MemoryUse::deleteMe(DerivedUser *Self) { 2661 delete static_cast<MemoryUse *>(Self); 2662 } 2663 2664 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const { 2665 auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) { 2666 Ptr = Ptr->stripPointerCasts(); 2667 if (!isa<Instruction>(Ptr)) 2668 return true; 2669 return isa<AllocaInst>(Ptr); 2670 }; 2671 2672 Ptr = Ptr->stripPointerCasts(); 2673 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2674 if (I->getParent()->isEntryBlock()) 2675 return true; 2676 } 2677 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2678 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2679 GEP->hasAllConstantIndices(); 2680 } 2681 return IsGuaranteedLoopInvariantBase(Ptr); 2682 } 2683