xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSA.cpp (revision da759cfa320d5076b075d15ff3f00ab3ba5634fd)
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdlib>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
63                       true)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67                     true)
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70                       "Memory SSA Printer", false, false)
71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73                     "Memory SSA Printer", false, false)
74 
75 static cl::opt<unsigned> MaxCheckLimit(
76     "memssa-check-limit", cl::Hidden, cl::init(100),
77     cl::desc("The maximum number of stores/phis MemorySSA"
78              "will consider trying to walk past (default = 100)"));
79 
80 // Always verify MemorySSA if expensive checking is enabled.
81 #ifdef EXPENSIVE_CHECKS
82 bool llvm::VerifyMemorySSA = true;
83 #else
84 bool llvm::VerifyMemorySSA = false;
85 #endif
86 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
87 cl::opt<bool> llvm::EnableMSSALoopDependency(
88     "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
89     cl::desc("Enable MemorySSA dependency for loop pass manager"));
90 
91 static cl::opt<bool, true>
92     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
93                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
94 
95 namespace llvm {
96 
97 /// An assembly annotator class to print Memory SSA information in
98 /// comments.
99 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
100   friend class MemorySSA;
101 
102   const MemorySSA *MSSA;
103 
104 public:
105   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
106 
107   void emitBasicBlockStartAnnot(const BasicBlock *BB,
108                                 formatted_raw_ostream &OS) override {
109     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
110       OS << "; " << *MA << "\n";
111   }
112 
113   void emitInstructionAnnot(const Instruction *I,
114                             formatted_raw_ostream &OS) override {
115     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
116       OS << "; " << *MA << "\n";
117   }
118 };
119 
120 } // end namespace llvm
121 
122 namespace {
123 
124 /// Our current alias analysis API differentiates heavily between calls and
125 /// non-calls, and functions called on one usually assert on the other.
126 /// This class encapsulates the distinction to simplify other code that wants
127 /// "Memory affecting instructions and related data" to use as a key.
128 /// For example, this class is used as a densemap key in the use optimizer.
129 class MemoryLocOrCall {
130 public:
131   bool IsCall = false;
132 
133   MemoryLocOrCall(MemoryUseOrDef *MUD)
134       : MemoryLocOrCall(MUD->getMemoryInst()) {}
135   MemoryLocOrCall(const MemoryUseOrDef *MUD)
136       : MemoryLocOrCall(MUD->getMemoryInst()) {}
137 
138   MemoryLocOrCall(Instruction *Inst) {
139     if (auto *C = dyn_cast<CallBase>(Inst)) {
140       IsCall = true;
141       Call = C;
142     } else {
143       IsCall = false;
144       // There is no such thing as a memorylocation for a fence inst, and it is
145       // unique in that regard.
146       if (!isa<FenceInst>(Inst))
147         Loc = MemoryLocation::get(Inst);
148     }
149   }
150 
151   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
152 
153   const CallBase *getCall() const {
154     assert(IsCall);
155     return Call;
156   }
157 
158   MemoryLocation getLoc() const {
159     assert(!IsCall);
160     return Loc;
161   }
162 
163   bool operator==(const MemoryLocOrCall &Other) const {
164     if (IsCall != Other.IsCall)
165       return false;
166 
167     if (!IsCall)
168       return Loc == Other.Loc;
169 
170     if (Call->getCalledValue() != Other.Call->getCalledValue())
171       return false;
172 
173     return Call->arg_size() == Other.Call->arg_size() &&
174            std::equal(Call->arg_begin(), Call->arg_end(),
175                       Other.Call->arg_begin());
176   }
177 
178 private:
179   union {
180     const CallBase *Call;
181     MemoryLocation Loc;
182   };
183 };
184 
185 } // end anonymous namespace
186 
187 namespace llvm {
188 
189 template <> struct DenseMapInfo<MemoryLocOrCall> {
190   static inline MemoryLocOrCall getEmptyKey() {
191     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
192   }
193 
194   static inline MemoryLocOrCall getTombstoneKey() {
195     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
196   }
197 
198   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
199     if (!MLOC.IsCall)
200       return hash_combine(
201           MLOC.IsCall,
202           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
203 
204     hash_code hash =
205         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
206                                       MLOC.getCall()->getCalledValue()));
207 
208     for (const Value *Arg : MLOC.getCall()->args())
209       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
210     return hash;
211   }
212 
213   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
214     return LHS == RHS;
215   }
216 };
217 
218 } // end namespace llvm
219 
220 /// This does one-way checks to see if Use could theoretically be hoisted above
221 /// MayClobber. This will not check the other way around.
222 ///
223 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
224 /// MayClobber, with no potentially clobbering operations in between them.
225 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
226 static bool areLoadsReorderable(const LoadInst *Use,
227                                 const LoadInst *MayClobber) {
228   bool VolatileUse = Use->isVolatile();
229   bool VolatileClobber = MayClobber->isVolatile();
230   // Volatile operations may never be reordered with other volatile operations.
231   if (VolatileUse && VolatileClobber)
232     return false;
233   // Otherwise, volatile doesn't matter here. From the language reference:
234   // 'optimizers may change the order of volatile operations relative to
235   // non-volatile operations.'"
236 
237   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
238   // is weaker, it can be moved above other loads. We just need to be sure that
239   // MayClobber isn't an acquire load, because loads can't be moved above
240   // acquire loads.
241   //
242   // Note that this explicitly *does* allow the free reordering of monotonic (or
243   // weaker) loads of the same address.
244   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
245   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
246                                                      AtomicOrdering::Acquire);
247   return !(SeqCstUse || MayClobberIsAcquire);
248 }
249 
250 namespace {
251 
252 struct ClobberAlias {
253   bool IsClobber;
254   Optional<AliasResult> AR;
255 };
256 
257 } // end anonymous namespace
258 
259 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
260 // ignored if IsClobber = false.
261 template <typename AliasAnalysisType>
262 static ClobberAlias
263 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
264                          const Instruction *UseInst, AliasAnalysisType &AA) {
265   Instruction *DefInst = MD->getMemoryInst();
266   assert(DefInst && "Defining instruction not actually an instruction");
267   const auto *UseCall = dyn_cast<CallBase>(UseInst);
268   Optional<AliasResult> AR;
269 
270   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
271     // These intrinsics will show up as affecting memory, but they are just
272     // markers, mostly.
273     //
274     // FIXME: We probably don't actually want MemorySSA to model these at all
275     // (including creating MemoryAccesses for them): we just end up inventing
276     // clobbers where they don't really exist at all. Please see D43269 for
277     // context.
278     switch (II->getIntrinsicID()) {
279     case Intrinsic::lifetime_start:
280       if (UseCall)
281         return {false, NoAlias};
282       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
283       return {AR != NoAlias, AR};
284     case Intrinsic::lifetime_end:
285     case Intrinsic::invariant_start:
286     case Intrinsic::invariant_end:
287     case Intrinsic::assume:
288       return {false, NoAlias};
289     case Intrinsic::dbg_addr:
290     case Intrinsic::dbg_declare:
291     case Intrinsic::dbg_label:
292     case Intrinsic::dbg_value:
293       llvm_unreachable("debuginfo shouldn't have associated defs!");
294     default:
295       break;
296     }
297   }
298 
299   if (UseCall) {
300     ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
301     AR = isMustSet(I) ? MustAlias : MayAlias;
302     return {isModOrRefSet(I), AR};
303   }
304 
305   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
306     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
307       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
308 
309   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
310   AR = isMustSet(I) ? MustAlias : MayAlias;
311   return {isModSet(I), AR};
312 }
313 
314 template <typename AliasAnalysisType>
315 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
316                                              const MemoryUseOrDef *MU,
317                                              const MemoryLocOrCall &UseMLOC,
318                                              AliasAnalysisType &AA) {
319   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
320   // to exist while MemoryLocOrCall is pushed through places.
321   if (UseMLOC.IsCall)
322     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
323                                     AA);
324   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
325                                   AA);
326 }
327 
328 // Return true when MD may alias MU, return false otherwise.
329 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
330                                         AliasAnalysis &AA) {
331   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
332 }
333 
334 namespace {
335 
336 struct UpwardsMemoryQuery {
337   // True if our original query started off as a call
338   bool IsCall = false;
339   // The pointer location we started the query with. This will be empty if
340   // IsCall is true.
341   MemoryLocation StartingLoc;
342   // This is the instruction we were querying about.
343   const Instruction *Inst = nullptr;
344   // The MemoryAccess we actually got called with, used to test local domination
345   const MemoryAccess *OriginalAccess = nullptr;
346   Optional<AliasResult> AR = MayAlias;
347   bool SkipSelfAccess = false;
348 
349   UpwardsMemoryQuery() = default;
350 
351   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
352       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
353     if (!IsCall)
354       StartingLoc = MemoryLocation::get(Inst);
355   }
356 };
357 
358 } // end anonymous namespace
359 
360 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
361                            BatchAAResults &AA) {
362   Instruction *Inst = MD->getMemoryInst();
363   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
364     switch (II->getIntrinsicID()) {
365     case Intrinsic::lifetime_end:
366       return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
367     default:
368       return false;
369     }
370   }
371   return false;
372 }
373 
374 template <typename AliasAnalysisType>
375 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
376                                                    const Instruction *I) {
377   // If the memory can't be changed, then loads of the memory can't be
378   // clobbered.
379   return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
380                               AA.pointsToConstantMemory(MemoryLocation(
381                                   cast<LoadInst>(I)->getPointerOperand())));
382 }
383 
384 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
385 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
386 ///
387 /// This is meant to be as simple and self-contained as possible. Because it
388 /// uses no cache, etc., it can be relatively expensive.
389 ///
390 /// \param Start     The MemoryAccess that we want to walk from.
391 /// \param ClobberAt A clobber for Start.
392 /// \param StartLoc  The MemoryLocation for Start.
393 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
394 /// \param Query     The UpwardsMemoryQuery we used for our search.
395 /// \param AA        The AliasAnalysis we used for our search.
396 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
397 
398 template <typename AliasAnalysisType>
399 LLVM_ATTRIBUTE_UNUSED static void
400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
401                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
402                    const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
403                    bool AllowImpreciseClobber = false) {
404   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
405 
406   if (MSSA.isLiveOnEntryDef(Start)) {
407     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
408            "liveOnEntry must clobber itself");
409     return;
410   }
411 
412   bool FoundClobber = false;
413   DenseSet<ConstMemoryAccessPair> VisitedPhis;
414   SmallVector<ConstMemoryAccessPair, 8> Worklist;
415   Worklist.emplace_back(Start, StartLoc);
416   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
417   // is found, complain.
418   while (!Worklist.empty()) {
419     auto MAP = Worklist.pop_back_val();
420     // All we care about is that nothing from Start to ClobberAt clobbers Start.
421     // We learn nothing from revisiting nodes.
422     if (!VisitedPhis.insert(MAP).second)
423       continue;
424 
425     for (const auto *MA : def_chain(MAP.first)) {
426       if (MA == ClobberAt) {
427         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
428           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
429           // since it won't let us short-circuit.
430           //
431           // Also, note that this can't be hoisted out of the `Worklist` loop,
432           // since MD may only act as a clobber for 1 of N MemoryLocations.
433           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
434           if (!FoundClobber) {
435             ClobberAlias CA =
436                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
437             if (CA.IsClobber) {
438               FoundClobber = true;
439               // Not used: CA.AR;
440             }
441           }
442         }
443         break;
444       }
445 
446       // We should never hit liveOnEntry, unless it's the clobber.
447       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
448 
449       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
450         // If Start is a Def, skip self.
451         if (MD == Start)
452           continue;
453 
454         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
455                     .IsClobber &&
456                "Found clobber before reaching ClobberAt!");
457         continue;
458       }
459 
460       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
461         (void)MU;
462         assert (MU == Start &&
463                 "Can only find use in def chain if Start is a use");
464         continue;
465       }
466 
467       assert(isa<MemoryPhi>(MA));
468       Worklist.append(
469           upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
470           upward_defs_end());
471     }
472   }
473 
474   // If the verify is done following an optimization, it's possible that
475   // ClobberAt was a conservative clobbering, that we can now infer is not a
476   // true clobbering access. Don't fail the verify if that's the case.
477   // We do have accesses that claim they're optimized, but could be optimized
478   // further. Updating all these can be expensive, so allow it for now (FIXME).
479   if (AllowImpreciseClobber)
480     return;
481 
482   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
483   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
484   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
485          "ClobberAt never acted as a clobber");
486 }
487 
488 namespace {
489 
490 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
491 /// in one class.
492 template <class AliasAnalysisType> class ClobberWalker {
493   /// Save a few bytes by using unsigned instead of size_t.
494   using ListIndex = unsigned;
495 
496   /// Represents a span of contiguous MemoryDefs, potentially ending in a
497   /// MemoryPhi.
498   struct DefPath {
499     MemoryLocation Loc;
500     // Note that, because we always walk in reverse, Last will always dominate
501     // First. Also note that First and Last are inclusive.
502     MemoryAccess *First;
503     MemoryAccess *Last;
504     Optional<ListIndex> Previous;
505 
506     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
507             Optional<ListIndex> Previous)
508         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
509 
510     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
511             Optional<ListIndex> Previous)
512         : DefPath(Loc, Init, Init, Previous) {}
513   };
514 
515   const MemorySSA &MSSA;
516   AliasAnalysisType &AA;
517   DominatorTree &DT;
518   UpwardsMemoryQuery *Query;
519   unsigned *UpwardWalkLimit;
520 
521   // Phi optimization bookkeeping
522   SmallVector<DefPath, 32> Paths;
523   DenseSet<ConstMemoryAccessPair> VisitedPhis;
524 
525   /// Find the nearest def or phi that `From` can legally be optimized to.
526   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
527     assert(From->getNumOperands() && "Phi with no operands?");
528 
529     BasicBlock *BB = From->getBlock();
530     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
531     DomTreeNode *Node = DT.getNode(BB);
532     while ((Node = Node->getIDom())) {
533       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
534       if (Defs)
535         return &*Defs->rbegin();
536     }
537     return Result;
538   }
539 
540   /// Result of calling walkToPhiOrClobber.
541   struct UpwardsWalkResult {
542     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
543     /// both. Include alias info when clobber found.
544     MemoryAccess *Result;
545     bool IsKnownClobber;
546     Optional<AliasResult> AR;
547   };
548 
549   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
550   /// This will update Desc.Last as it walks. It will (optionally) also stop at
551   /// StopAt.
552   ///
553   /// This does not test for whether StopAt is a clobber
554   UpwardsWalkResult
555   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
556                      const MemoryAccess *SkipStopAt = nullptr) const {
557     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
558     assert(UpwardWalkLimit && "Need a valid walk limit");
559     bool LimitAlreadyReached = false;
560     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
561     // it to 1. This will not do any alias() calls. It either returns in the
562     // first iteration in the loop below, or is set back to 0 if all def chains
563     // are free of MemoryDefs.
564     if (!*UpwardWalkLimit) {
565       *UpwardWalkLimit = 1;
566       LimitAlreadyReached = true;
567     }
568 
569     for (MemoryAccess *Current : def_chain(Desc.Last)) {
570       Desc.Last = Current;
571       if (Current == StopAt || Current == SkipStopAt)
572         return {Current, false, MayAlias};
573 
574       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
575         if (MSSA.isLiveOnEntryDef(MD))
576           return {MD, true, MustAlias};
577 
578         if (!--*UpwardWalkLimit)
579           return {Current, true, MayAlias};
580 
581         ClobberAlias CA =
582             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
583         if (CA.IsClobber)
584           return {MD, true, CA.AR};
585       }
586     }
587 
588     if (LimitAlreadyReached)
589       *UpwardWalkLimit = 0;
590 
591     assert(isa<MemoryPhi>(Desc.Last) &&
592            "Ended at a non-clobber that's not a phi?");
593     return {Desc.Last, false, MayAlias};
594   }
595 
596   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
597                    ListIndex PriorNode) {
598     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
599                                  upward_defs_end());
600     for (const MemoryAccessPair &P : UpwardDefs) {
601       PausedSearches.push_back(Paths.size());
602       Paths.emplace_back(P.second, P.first, PriorNode);
603     }
604   }
605 
606   /// Represents a search that terminated after finding a clobber. This clobber
607   /// may or may not be present in the path of defs from LastNode..SearchStart,
608   /// since it may have been retrieved from cache.
609   struct TerminatedPath {
610     MemoryAccess *Clobber;
611     ListIndex LastNode;
612   };
613 
614   /// Get an access that keeps us from optimizing to the given phi.
615   ///
616   /// PausedSearches is an array of indices into the Paths array. Its incoming
617   /// value is the indices of searches that stopped at the last phi optimization
618   /// target. It's left in an unspecified state.
619   ///
620   /// If this returns None, NewPaused is a vector of searches that terminated
621   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
622   Optional<TerminatedPath>
623   getBlockingAccess(const MemoryAccess *StopWhere,
624                     SmallVectorImpl<ListIndex> &PausedSearches,
625                     SmallVectorImpl<ListIndex> &NewPaused,
626                     SmallVectorImpl<TerminatedPath> &Terminated) {
627     assert(!PausedSearches.empty() && "No searches to continue?");
628 
629     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
630     // PausedSearches as our stack.
631     while (!PausedSearches.empty()) {
632       ListIndex PathIndex = PausedSearches.pop_back_val();
633       DefPath &Node = Paths[PathIndex];
634 
635       // If we've already visited this path with this MemoryLocation, we don't
636       // need to do so again.
637       //
638       // NOTE: That we just drop these paths on the ground makes caching
639       // behavior sporadic. e.g. given a diamond:
640       //  A
641       // B C
642       //  D
643       //
644       // ...If we walk D, B, A, C, we'll only cache the result of phi
645       // optimization for A, B, and D; C will be skipped because it dies here.
646       // This arguably isn't the worst thing ever, since:
647       //   - We generally query things in a top-down order, so if we got below D
648       //     without needing cache entries for {C, MemLoc}, then chances are
649       //     that those cache entries would end up ultimately unused.
650       //   - We still cache things for A, so C only needs to walk up a bit.
651       // If this behavior becomes problematic, we can fix without a ton of extra
652       // work.
653       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
654         continue;
655 
656       const MemoryAccess *SkipStopWhere = nullptr;
657       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
658         assert(isa<MemoryDef>(Query->OriginalAccess));
659         SkipStopWhere = Query->OriginalAccess;
660       }
661 
662       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
663                                                  /*StopAt=*/StopWhere,
664                                                  /*SkipStopAt=*/SkipStopWhere);
665       if (Res.IsKnownClobber) {
666         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
667 
668         // If this wasn't a cache hit, we hit a clobber when walking. That's a
669         // failure.
670         TerminatedPath Term{Res.Result, PathIndex};
671         if (!MSSA.dominates(Res.Result, StopWhere))
672           return Term;
673 
674         // Otherwise, it's a valid thing to potentially optimize to.
675         Terminated.push_back(Term);
676         continue;
677       }
678 
679       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
680         // We've hit our target. Save this path off for if we want to continue
681         // walking. If we are in the mode of skipping the OriginalAccess, and
682         // we've reached back to the OriginalAccess, do not save path, we've
683         // just looped back to self.
684         if (Res.Result != SkipStopWhere)
685           NewPaused.push_back(PathIndex);
686         continue;
687       }
688 
689       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
690       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
691     }
692 
693     return None;
694   }
695 
696   template <typename T, typename Walker>
697   struct generic_def_path_iterator
698       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
699                                     std::forward_iterator_tag, T *> {
700     generic_def_path_iterator() {}
701     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
702 
703     T &operator*() const { return curNode(); }
704 
705     generic_def_path_iterator &operator++() {
706       N = curNode().Previous;
707       return *this;
708     }
709 
710     bool operator==(const generic_def_path_iterator &O) const {
711       if (N.hasValue() != O.N.hasValue())
712         return false;
713       return !N.hasValue() || *N == *O.N;
714     }
715 
716   private:
717     T &curNode() const { return W->Paths[*N]; }
718 
719     Walker *W = nullptr;
720     Optional<ListIndex> N = None;
721   };
722 
723   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
724   using const_def_path_iterator =
725       generic_def_path_iterator<const DefPath, const ClobberWalker>;
726 
727   iterator_range<def_path_iterator> def_path(ListIndex From) {
728     return make_range(def_path_iterator(this, From), def_path_iterator());
729   }
730 
731   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
732     return make_range(const_def_path_iterator(this, From),
733                       const_def_path_iterator());
734   }
735 
736   struct OptznResult {
737     /// The path that contains our result.
738     TerminatedPath PrimaryClobber;
739     /// The paths that we can legally cache back from, but that aren't
740     /// necessarily the result of the Phi optimization.
741     SmallVector<TerminatedPath, 4> OtherClobbers;
742   };
743 
744   ListIndex defPathIndex(const DefPath &N) const {
745     // The assert looks nicer if we don't need to do &N
746     const DefPath *NP = &N;
747     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
748            "Out of bounds DefPath!");
749     return NP - &Paths.front();
750   }
751 
752   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
753   /// that act as legal clobbers. Note that this won't return *all* clobbers.
754   ///
755   /// Phi optimization algorithm tl;dr:
756   ///   - Find the earliest def/phi, A, we can optimize to
757   ///   - Find if all paths from the starting memory access ultimately reach A
758   ///     - If not, optimization isn't possible.
759   ///     - Otherwise, walk from A to another clobber or phi, A'.
760   ///       - If A' is a def, we're done.
761   ///       - If A' is a phi, try to optimize it.
762   ///
763   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
764   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
765   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
766                              const MemoryLocation &Loc) {
767     assert(Paths.empty() && VisitedPhis.empty() &&
768            "Reset the optimization state.");
769 
770     Paths.emplace_back(Loc, Start, Phi, None);
771     // Stores how many "valid" optimization nodes we had prior to calling
772     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
773     auto PriorPathsSize = Paths.size();
774 
775     SmallVector<ListIndex, 16> PausedSearches;
776     SmallVector<ListIndex, 8> NewPaused;
777     SmallVector<TerminatedPath, 4> TerminatedPaths;
778 
779     addSearches(Phi, PausedSearches, 0);
780 
781     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
782     // Paths.
783     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
784       assert(!Paths.empty() && "Need a path to move");
785       auto Dom = Paths.begin();
786       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
787         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
788           Dom = I;
789       auto Last = Paths.end() - 1;
790       if (Last != Dom)
791         std::iter_swap(Last, Dom);
792     };
793 
794     MemoryPhi *Current = Phi;
795     while (true) {
796       assert(!MSSA.isLiveOnEntryDef(Current) &&
797              "liveOnEntry wasn't treated as a clobber?");
798 
799       const auto *Target = getWalkTarget(Current);
800       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
801       // optimization for the prior phi.
802       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
803         return MSSA.dominates(P.Clobber, Target);
804       }));
805 
806       // FIXME: This is broken, because the Blocker may be reported to be
807       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
808       // For the moment, this is fine, since we do nothing with blocker info.
809       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
810               Target, PausedSearches, NewPaused, TerminatedPaths)) {
811 
812         // Find the node we started at. We can't search based on N->Last, since
813         // we may have gone around a loop with a different MemoryLocation.
814         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
815           return defPathIndex(N) < PriorPathsSize;
816         });
817         assert(Iter != def_path_iterator());
818 
819         DefPath &CurNode = *Iter;
820         assert(CurNode.Last == Current);
821 
822         // Two things:
823         // A. We can't reliably cache all of NewPaused back. Consider a case
824         //    where we have two paths in NewPaused; one of which can't optimize
825         //    above this phi, whereas the other can. If we cache the second path
826         //    back, we'll end up with suboptimal cache entries. We can handle
827         //    cases like this a bit better when we either try to find all
828         //    clobbers that block phi optimization, or when our cache starts
829         //    supporting unfinished searches.
830         // B. We can't reliably cache TerminatedPaths back here without doing
831         //    extra checks; consider a case like:
832         //       T
833         //      / \
834         //     D   C
835         //      \ /
836         //       S
837         //    Where T is our target, C is a node with a clobber on it, D is a
838         //    diamond (with a clobber *only* on the left or right node, N), and
839         //    S is our start. Say we walk to D, through the node opposite N
840         //    (read: ignoring the clobber), and see a cache entry in the top
841         //    node of D. That cache entry gets put into TerminatedPaths. We then
842         //    walk up to C (N is later in our worklist), find the clobber, and
843         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
844         //    the bottom part of D to the cached clobber, ignoring the clobber
845         //    in N. Again, this problem goes away if we start tracking all
846         //    blockers for a given phi optimization.
847         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
848         return {Result, {}};
849       }
850 
851       // If there's nothing left to search, then all paths led to valid clobbers
852       // that we got from our cache; pick the nearest to the start, and allow
853       // the rest to be cached back.
854       if (NewPaused.empty()) {
855         MoveDominatedPathToEnd(TerminatedPaths);
856         TerminatedPath Result = TerminatedPaths.pop_back_val();
857         return {Result, std::move(TerminatedPaths)};
858       }
859 
860       MemoryAccess *DefChainEnd = nullptr;
861       SmallVector<TerminatedPath, 4> Clobbers;
862       for (ListIndex Paused : NewPaused) {
863         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
864         if (WR.IsKnownClobber)
865           Clobbers.push_back({WR.Result, Paused});
866         else
867           // Micro-opt: If we hit the end of the chain, save it.
868           DefChainEnd = WR.Result;
869       }
870 
871       if (!TerminatedPaths.empty()) {
872         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
873         // do it now.
874         if (!DefChainEnd)
875           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
876             DefChainEnd = MA;
877         assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
878 
879         // If any of the terminated paths don't dominate the phi we'll try to
880         // optimize, we need to figure out what they are and quit.
881         const BasicBlock *ChainBB = DefChainEnd->getBlock();
882         for (const TerminatedPath &TP : TerminatedPaths) {
883           // Because we know that DefChainEnd is as "high" as we can go, we
884           // don't need local dominance checks; BB dominance is sufficient.
885           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
886             Clobbers.push_back(TP);
887         }
888       }
889 
890       // If we have clobbers in the def chain, find the one closest to Current
891       // and quit.
892       if (!Clobbers.empty()) {
893         MoveDominatedPathToEnd(Clobbers);
894         TerminatedPath Result = Clobbers.pop_back_val();
895         return {Result, std::move(Clobbers)};
896       }
897 
898       assert(all_of(NewPaused,
899                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
900 
901       // Because liveOnEntry is a clobber, this must be a phi.
902       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
903 
904       PriorPathsSize = Paths.size();
905       PausedSearches.clear();
906       for (ListIndex I : NewPaused)
907         addSearches(DefChainPhi, PausedSearches, I);
908       NewPaused.clear();
909 
910       Current = DefChainPhi;
911     }
912   }
913 
914   void verifyOptResult(const OptznResult &R) const {
915     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
916       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
917     }));
918   }
919 
920   void resetPhiOptznState() {
921     Paths.clear();
922     VisitedPhis.clear();
923   }
924 
925 public:
926   ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
927       : MSSA(MSSA), AA(AA), DT(DT) {}
928 
929   AliasAnalysisType *getAA() { return &AA; }
930   /// Finds the nearest clobber for the given query, optimizing phis if
931   /// possible.
932   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
933                             unsigned &UpWalkLimit) {
934     Query = &Q;
935     UpwardWalkLimit = &UpWalkLimit;
936     // Starting limit must be > 0.
937     if (!UpWalkLimit)
938       UpWalkLimit++;
939 
940     MemoryAccess *Current = Start;
941     // This walker pretends uses don't exist. If we're handed one, silently grab
942     // its def. (This has the nice side-effect of ensuring we never cache uses)
943     if (auto *MU = dyn_cast<MemoryUse>(Start))
944       Current = MU->getDefiningAccess();
945 
946     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
947     // Fast path for the overly-common case (no crazy phi optimization
948     // necessary)
949     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
950     MemoryAccess *Result;
951     if (WalkResult.IsKnownClobber) {
952       Result = WalkResult.Result;
953       Q.AR = WalkResult.AR;
954     } else {
955       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
956                                           Current, Q.StartingLoc);
957       verifyOptResult(OptRes);
958       resetPhiOptznState();
959       Result = OptRes.PrimaryClobber.Clobber;
960     }
961 
962 #ifdef EXPENSIVE_CHECKS
963     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
964       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
965 #endif
966     return Result;
967   }
968 };
969 
970 struct RenamePassData {
971   DomTreeNode *DTN;
972   DomTreeNode::const_iterator ChildIt;
973   MemoryAccess *IncomingVal;
974 
975   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
976                  MemoryAccess *M)
977       : DTN(D), ChildIt(It), IncomingVal(M) {}
978 
979   void swap(RenamePassData &RHS) {
980     std::swap(DTN, RHS.DTN);
981     std::swap(ChildIt, RHS.ChildIt);
982     std::swap(IncomingVal, RHS.IncomingVal);
983   }
984 };
985 
986 } // end anonymous namespace
987 
988 namespace llvm {
989 
990 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
991   ClobberWalker<AliasAnalysisType> Walker;
992   MemorySSA *MSSA;
993 
994 public:
995   ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
996       : Walker(*M, *A, *D), MSSA(M) {}
997 
998   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
999                                               const MemoryLocation &,
1000                                               unsigned &);
1001   // Third argument (bool), defines whether the clobber search should skip the
1002   // original queried access. If true, there will be a follow-up query searching
1003   // for a clobber access past "self". Note that the Optimized access is not
1004   // updated if a new clobber is found by this SkipSelf search. If this
1005   // additional query becomes heavily used we may decide to cache the result.
1006   // Walker instantiations will decide how to set the SkipSelf bool.
1007   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1008 };
1009 
1010 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1011 /// longer does caching on its own, but the name has been retained for the
1012 /// moment.
1013 template <class AliasAnalysisType>
1014 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1015   ClobberWalkerBase<AliasAnalysisType> *Walker;
1016 
1017 public:
1018   CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1019       : MemorySSAWalker(M), Walker(W) {}
1020   ~CachingWalker() override = default;
1021 
1022   using MemorySSAWalker::getClobberingMemoryAccess;
1023 
1024   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1025     return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1026   }
1027   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1028                                           const MemoryLocation &Loc,
1029                                           unsigned &UWL) {
1030     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1031   }
1032 
1033   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1034     unsigned UpwardWalkLimit = MaxCheckLimit;
1035     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1036   }
1037   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1038                                           const MemoryLocation &Loc) override {
1039     unsigned UpwardWalkLimit = MaxCheckLimit;
1040     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1041   }
1042 
1043   void invalidateInfo(MemoryAccess *MA) override {
1044     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1045       MUD->resetOptimized();
1046   }
1047 };
1048 
1049 template <class AliasAnalysisType>
1050 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1051   ClobberWalkerBase<AliasAnalysisType> *Walker;
1052 
1053 public:
1054   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1055       : MemorySSAWalker(M), Walker(W) {}
1056   ~SkipSelfWalker() override = default;
1057 
1058   using MemorySSAWalker::getClobberingMemoryAccess;
1059 
1060   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1061     return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1062   }
1063   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1064                                           const MemoryLocation &Loc,
1065                                           unsigned &UWL) {
1066     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1067   }
1068 
1069   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1070     unsigned UpwardWalkLimit = MaxCheckLimit;
1071     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1072   }
1073   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1074                                           const MemoryLocation &Loc) override {
1075     unsigned UpwardWalkLimit = MaxCheckLimit;
1076     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1077   }
1078 
1079   void invalidateInfo(MemoryAccess *MA) override {
1080     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1081       MUD->resetOptimized();
1082   }
1083 };
1084 
1085 } // end namespace llvm
1086 
1087 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1088                                     bool RenameAllUses) {
1089   // Pass through values to our successors
1090   for (const BasicBlock *S : successors(BB)) {
1091     auto It = PerBlockAccesses.find(S);
1092     // Rename the phi nodes in our successor block
1093     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1094       continue;
1095     AccessList *Accesses = It->second.get();
1096     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1097     if (RenameAllUses) {
1098       bool ReplacementDone = false;
1099       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1100         if (Phi->getIncomingBlock(I) == BB) {
1101           Phi->setIncomingValue(I, IncomingVal);
1102           ReplacementDone = true;
1103         }
1104       (void) ReplacementDone;
1105       assert(ReplacementDone && "Incomplete phi during partial rename");
1106     } else
1107       Phi->addIncoming(IncomingVal, BB);
1108   }
1109 }
1110 
1111 /// Rename a single basic block into MemorySSA form.
1112 /// Uses the standard SSA renaming algorithm.
1113 /// \returns The new incoming value.
1114 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1115                                      bool RenameAllUses) {
1116   auto It = PerBlockAccesses.find(BB);
1117   // Skip most processing if the list is empty.
1118   if (It != PerBlockAccesses.end()) {
1119     AccessList *Accesses = It->second.get();
1120     for (MemoryAccess &L : *Accesses) {
1121       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1122         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1123           MUD->setDefiningAccess(IncomingVal);
1124         if (isa<MemoryDef>(&L))
1125           IncomingVal = &L;
1126       } else {
1127         IncomingVal = &L;
1128       }
1129     }
1130   }
1131   return IncomingVal;
1132 }
1133 
1134 /// This is the standard SSA renaming algorithm.
1135 ///
1136 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1137 /// in phi nodes in our successors.
1138 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1139                            SmallPtrSetImpl<BasicBlock *> &Visited,
1140                            bool SkipVisited, bool RenameAllUses) {
1141   assert(Root && "Trying to rename accesses in an unreachable block");
1142 
1143   SmallVector<RenamePassData, 32> WorkStack;
1144   // Skip everything if we already renamed this block and we are skipping.
1145   // Note: You can't sink this into the if, because we need it to occur
1146   // regardless of whether we skip blocks or not.
1147   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1148   if (SkipVisited && AlreadyVisited)
1149     return;
1150 
1151   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1152   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1153   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1154 
1155   while (!WorkStack.empty()) {
1156     DomTreeNode *Node = WorkStack.back().DTN;
1157     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1158     IncomingVal = WorkStack.back().IncomingVal;
1159 
1160     if (ChildIt == Node->end()) {
1161       WorkStack.pop_back();
1162     } else {
1163       DomTreeNode *Child = *ChildIt;
1164       ++WorkStack.back().ChildIt;
1165       BasicBlock *BB = Child->getBlock();
1166       // Note: You can't sink this into the if, because we need it to occur
1167       // regardless of whether we skip blocks or not.
1168       AlreadyVisited = !Visited.insert(BB).second;
1169       if (SkipVisited && AlreadyVisited) {
1170         // We already visited this during our renaming, which can happen when
1171         // being asked to rename multiple blocks. Figure out the incoming val,
1172         // which is the last def.
1173         // Incoming value can only change if there is a block def, and in that
1174         // case, it's the last block def in the list.
1175         if (auto *BlockDefs = getWritableBlockDefs(BB))
1176           IncomingVal = &*BlockDefs->rbegin();
1177       } else
1178         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1179       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1180       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1181     }
1182   }
1183 }
1184 
1185 /// This handles unreachable block accesses by deleting phi nodes in
1186 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1187 /// being uses of the live on entry definition.
1188 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1189   assert(!DT->isReachableFromEntry(BB) &&
1190          "Reachable block found while handling unreachable blocks");
1191 
1192   // Make sure phi nodes in our reachable successors end up with a
1193   // LiveOnEntryDef for our incoming edge, even though our block is forward
1194   // unreachable.  We could just disconnect these blocks from the CFG fully,
1195   // but we do not right now.
1196   for (const BasicBlock *S : successors(BB)) {
1197     if (!DT->isReachableFromEntry(S))
1198       continue;
1199     auto It = PerBlockAccesses.find(S);
1200     // Rename the phi nodes in our successor block
1201     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1202       continue;
1203     AccessList *Accesses = It->second.get();
1204     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1205     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1206   }
1207 
1208   auto It = PerBlockAccesses.find(BB);
1209   if (It == PerBlockAccesses.end())
1210     return;
1211 
1212   auto &Accesses = It->second;
1213   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1214     auto Next = std::next(AI);
1215     // If we have a phi, just remove it. We are going to replace all
1216     // users with live on entry.
1217     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1218       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1219     else
1220       Accesses->erase(AI);
1221     AI = Next;
1222   }
1223 }
1224 
1225 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1226     : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1227       SkipWalker(nullptr), NextID(0) {
1228   // Build MemorySSA using a batch alias analysis. This reuses the internal
1229   // state that AA collects during an alias()/getModRefInfo() call. This is
1230   // safe because there are no CFG changes while building MemorySSA and can
1231   // significantly reduce the time spent by the compiler in AA, because we will
1232   // make queries about all the instructions in the Function.
1233   assert(AA && "No alias analysis?");
1234   BatchAAResults BatchAA(*AA);
1235   buildMemorySSA(BatchAA);
1236   // Intentionally leave AA to nullptr while building so we don't accidently
1237   // use non-batch AliasAnalysis.
1238   this->AA = AA;
1239   // Also create the walker here.
1240   getWalker();
1241 }
1242 
1243 MemorySSA::~MemorySSA() {
1244   // Drop all our references
1245   for (const auto &Pair : PerBlockAccesses)
1246     for (MemoryAccess &MA : *Pair.second)
1247       MA.dropAllReferences();
1248 }
1249 
1250 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1251   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1252 
1253   if (Res.second)
1254     Res.first->second = std::make_unique<AccessList>();
1255   return Res.first->second.get();
1256 }
1257 
1258 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1259   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1260 
1261   if (Res.second)
1262     Res.first->second = std::make_unique<DefsList>();
1263   return Res.first->second.get();
1264 }
1265 
1266 namespace llvm {
1267 
1268 /// This class is a batch walker of all MemoryUse's in the program, and points
1269 /// their defining access at the thing that actually clobbers them.  Because it
1270 /// is a batch walker that touches everything, it does not operate like the
1271 /// other walkers.  This walker is basically performing a top-down SSA renaming
1272 /// pass, where the version stack is used as the cache.  This enables it to be
1273 /// significantly more time and memory efficient than using the regular walker,
1274 /// which is walking bottom-up.
1275 class MemorySSA::OptimizeUses {
1276 public:
1277   OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1278                BatchAAResults *BAA, DominatorTree *DT)
1279       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1280 
1281   void optimizeUses();
1282 
1283 private:
1284   /// This represents where a given memorylocation is in the stack.
1285   struct MemlocStackInfo {
1286     // This essentially is keeping track of versions of the stack. Whenever
1287     // the stack changes due to pushes or pops, these versions increase.
1288     unsigned long StackEpoch;
1289     unsigned long PopEpoch;
1290     // This is the lower bound of places on the stack to check. It is equal to
1291     // the place the last stack walk ended.
1292     // Note: Correctness depends on this being initialized to 0, which densemap
1293     // does
1294     unsigned long LowerBound;
1295     const BasicBlock *LowerBoundBlock;
1296     // This is where the last walk for this memory location ended.
1297     unsigned long LastKill;
1298     bool LastKillValid;
1299     Optional<AliasResult> AR;
1300   };
1301 
1302   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1303                            SmallVectorImpl<MemoryAccess *> &,
1304                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1305 
1306   MemorySSA *MSSA;
1307   CachingWalker<BatchAAResults> *Walker;
1308   BatchAAResults *AA;
1309   DominatorTree *DT;
1310 };
1311 
1312 } // end namespace llvm
1313 
1314 /// Optimize the uses in a given block This is basically the SSA renaming
1315 /// algorithm, with one caveat: We are able to use a single stack for all
1316 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1317 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1318 /// going to be some position in that stack of possible ones.
1319 ///
1320 /// We track the stack positions that each MemoryLocation needs
1321 /// to check, and last ended at.  This is because we only want to check the
1322 /// things that changed since last time.  The same MemoryLocation should
1323 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1324 /// things like this, and if they start, we can modify MemoryLocOrCall to
1325 /// include relevant data)
1326 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1327     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1328     SmallVectorImpl<MemoryAccess *> &VersionStack,
1329     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1330 
1331   /// If no accesses, nothing to do.
1332   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1333   if (Accesses == nullptr)
1334     return;
1335 
1336   // Pop everything that doesn't dominate the current block off the stack,
1337   // increment the PopEpoch to account for this.
1338   while (true) {
1339     assert(
1340         !VersionStack.empty() &&
1341         "Version stack should have liveOnEntry sentinel dominating everything");
1342     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1343     if (DT->dominates(BackBlock, BB))
1344       break;
1345     while (VersionStack.back()->getBlock() == BackBlock)
1346       VersionStack.pop_back();
1347     ++PopEpoch;
1348   }
1349 
1350   for (MemoryAccess &MA : *Accesses) {
1351     auto *MU = dyn_cast<MemoryUse>(&MA);
1352     if (!MU) {
1353       VersionStack.push_back(&MA);
1354       ++StackEpoch;
1355       continue;
1356     }
1357 
1358     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1359       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1360       continue;
1361     }
1362 
1363     MemoryLocOrCall UseMLOC(MU);
1364     auto &LocInfo = LocStackInfo[UseMLOC];
1365     // If the pop epoch changed, it means we've removed stuff from top of
1366     // stack due to changing blocks. We may have to reset the lower bound or
1367     // last kill info.
1368     if (LocInfo.PopEpoch != PopEpoch) {
1369       LocInfo.PopEpoch = PopEpoch;
1370       LocInfo.StackEpoch = StackEpoch;
1371       // If the lower bound was in something that no longer dominates us, we
1372       // have to reset it.
1373       // We can't simply track stack size, because the stack may have had
1374       // pushes/pops in the meantime.
1375       // XXX: This is non-optimal, but only is slower cases with heavily
1376       // branching dominator trees.  To get the optimal number of queries would
1377       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1378       // the top of that stack dominates us.  This does not seem worth it ATM.
1379       // A much cheaper optimization would be to always explore the deepest
1380       // branch of the dominator tree first. This will guarantee this resets on
1381       // the smallest set of blocks.
1382       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1383           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1384         // Reset the lower bound of things to check.
1385         // TODO: Some day we should be able to reset to last kill, rather than
1386         // 0.
1387         LocInfo.LowerBound = 0;
1388         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1389         LocInfo.LastKillValid = false;
1390       }
1391     } else if (LocInfo.StackEpoch != StackEpoch) {
1392       // If all that has changed is the StackEpoch, we only have to check the
1393       // new things on the stack, because we've checked everything before.  In
1394       // this case, the lower bound of things to check remains the same.
1395       LocInfo.PopEpoch = PopEpoch;
1396       LocInfo.StackEpoch = StackEpoch;
1397     }
1398     if (!LocInfo.LastKillValid) {
1399       LocInfo.LastKill = VersionStack.size() - 1;
1400       LocInfo.LastKillValid = true;
1401       LocInfo.AR = MayAlias;
1402     }
1403 
1404     // At this point, we should have corrected last kill and LowerBound to be
1405     // in bounds.
1406     assert(LocInfo.LowerBound < VersionStack.size() &&
1407            "Lower bound out of range");
1408     assert(LocInfo.LastKill < VersionStack.size() &&
1409            "Last kill info out of range");
1410     // In any case, the new upper bound is the top of the stack.
1411     unsigned long UpperBound = VersionStack.size() - 1;
1412 
1413     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1414       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1415                         << *(MU->getMemoryInst()) << ")"
1416                         << " because there are "
1417                         << UpperBound - LocInfo.LowerBound
1418                         << " stores to disambiguate\n");
1419       // Because we did not walk, LastKill is no longer valid, as this may
1420       // have been a kill.
1421       LocInfo.LastKillValid = false;
1422       continue;
1423     }
1424     bool FoundClobberResult = false;
1425     unsigned UpwardWalkLimit = MaxCheckLimit;
1426     while (UpperBound > LocInfo.LowerBound) {
1427       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1428         // For phis, use the walker, see where we ended up, go there
1429         MemoryAccess *Result =
1430             Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1431         // We are guaranteed to find it or something is wrong
1432         while (VersionStack[UpperBound] != Result) {
1433           assert(UpperBound != 0);
1434           --UpperBound;
1435         }
1436         FoundClobberResult = true;
1437         break;
1438       }
1439 
1440       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1441       // If the lifetime of the pointer ends at this instruction, it's live on
1442       // entry.
1443       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1444         // Reset UpperBound to liveOnEntryDef's place in the stack
1445         UpperBound = 0;
1446         FoundClobberResult = true;
1447         LocInfo.AR = MustAlias;
1448         break;
1449       }
1450       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1451       if (CA.IsClobber) {
1452         FoundClobberResult = true;
1453         LocInfo.AR = CA.AR;
1454         break;
1455       }
1456       --UpperBound;
1457     }
1458 
1459     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1460 
1461     // At the end of this loop, UpperBound is either a clobber, or lower bound
1462     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1463     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1464       // We were last killed now by where we got to
1465       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1466         LocInfo.AR = None;
1467       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1468       LocInfo.LastKill = UpperBound;
1469     } else {
1470       // Otherwise, we checked all the new ones, and now we know we can get to
1471       // LastKill.
1472       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1473     }
1474     LocInfo.LowerBound = VersionStack.size() - 1;
1475     LocInfo.LowerBoundBlock = BB;
1476   }
1477 }
1478 
1479 /// Optimize uses to point to their actual clobbering definitions.
1480 void MemorySSA::OptimizeUses::optimizeUses() {
1481   SmallVector<MemoryAccess *, 16> VersionStack;
1482   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1483   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1484 
1485   unsigned long StackEpoch = 1;
1486   unsigned long PopEpoch = 1;
1487   // We perform a non-recursive top-down dominator tree walk.
1488   for (const auto *DomNode : depth_first(DT->getRootNode()))
1489     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1490                         LocStackInfo);
1491 }
1492 
1493 void MemorySSA::placePHINodes(
1494     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1495   // Determine where our MemoryPhi's should go
1496   ForwardIDFCalculator IDFs(*DT);
1497   IDFs.setDefiningBlocks(DefiningBlocks);
1498   SmallVector<BasicBlock *, 32> IDFBlocks;
1499   IDFs.calculate(IDFBlocks);
1500 
1501   // Now place MemoryPhi nodes.
1502   for (auto &BB : IDFBlocks)
1503     createMemoryPhi(BB);
1504 }
1505 
1506 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1507   // We create an access to represent "live on entry", for things like
1508   // arguments or users of globals, where the memory they use is defined before
1509   // the beginning of the function. We do not actually insert it into the IR.
1510   // We do not define a live on exit for the immediate uses, and thus our
1511   // semantics do *not* imply that something with no immediate uses can simply
1512   // be removed.
1513   BasicBlock &StartingPoint = F.getEntryBlock();
1514   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1515                                      &StartingPoint, NextID++));
1516 
1517   // We maintain lists of memory accesses per-block, trading memory for time. We
1518   // could just look up the memory access for every possible instruction in the
1519   // stream.
1520   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1521   // Go through each block, figure out where defs occur, and chain together all
1522   // the accesses.
1523   for (BasicBlock &B : F) {
1524     bool InsertIntoDef = false;
1525     AccessList *Accesses = nullptr;
1526     DefsList *Defs = nullptr;
1527     for (Instruction &I : B) {
1528       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1529       if (!MUD)
1530         continue;
1531 
1532       if (!Accesses)
1533         Accesses = getOrCreateAccessList(&B);
1534       Accesses->push_back(MUD);
1535       if (isa<MemoryDef>(MUD)) {
1536         InsertIntoDef = true;
1537         if (!Defs)
1538           Defs = getOrCreateDefsList(&B);
1539         Defs->push_back(*MUD);
1540       }
1541     }
1542     if (InsertIntoDef)
1543       DefiningBlocks.insert(&B);
1544   }
1545   placePHINodes(DefiningBlocks);
1546 
1547   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1548   // filled in with all blocks.
1549   SmallPtrSet<BasicBlock *, 16> Visited;
1550   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1551 
1552   ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1553   CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1554   OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1555 
1556   // Mark the uses in unreachable blocks as live on entry, so that they go
1557   // somewhere.
1558   for (auto &BB : F)
1559     if (!Visited.count(&BB))
1560       markUnreachableAsLiveOnEntry(&BB);
1561 }
1562 
1563 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1564 
1565 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1566   if (Walker)
1567     return Walker.get();
1568 
1569   if (!WalkerBase)
1570     WalkerBase =
1571         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1572 
1573   Walker =
1574       std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1575   return Walker.get();
1576 }
1577 
1578 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1579   if (SkipWalker)
1580     return SkipWalker.get();
1581 
1582   if (!WalkerBase)
1583     WalkerBase =
1584         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1585 
1586   SkipWalker =
1587       std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1588   return SkipWalker.get();
1589  }
1590 
1591 
1592 // This is a helper function used by the creation routines. It places NewAccess
1593 // into the access and defs lists for a given basic block, at the given
1594 // insertion point.
1595 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1596                                         const BasicBlock *BB,
1597                                         InsertionPlace Point) {
1598   auto *Accesses = getOrCreateAccessList(BB);
1599   if (Point == Beginning) {
1600     // If it's a phi node, it goes first, otherwise, it goes after any phi
1601     // nodes.
1602     if (isa<MemoryPhi>(NewAccess)) {
1603       Accesses->push_front(NewAccess);
1604       auto *Defs = getOrCreateDefsList(BB);
1605       Defs->push_front(*NewAccess);
1606     } else {
1607       auto AI = find_if_not(
1608           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1609       Accesses->insert(AI, NewAccess);
1610       if (!isa<MemoryUse>(NewAccess)) {
1611         auto *Defs = getOrCreateDefsList(BB);
1612         auto DI = find_if_not(
1613             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1614         Defs->insert(DI, *NewAccess);
1615       }
1616     }
1617   } else {
1618     Accesses->push_back(NewAccess);
1619     if (!isa<MemoryUse>(NewAccess)) {
1620       auto *Defs = getOrCreateDefsList(BB);
1621       Defs->push_back(*NewAccess);
1622     }
1623   }
1624   BlockNumberingValid.erase(BB);
1625 }
1626 
1627 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1628                                       AccessList::iterator InsertPt) {
1629   auto *Accesses = getWritableBlockAccesses(BB);
1630   bool WasEnd = InsertPt == Accesses->end();
1631   Accesses->insert(AccessList::iterator(InsertPt), What);
1632   if (!isa<MemoryUse>(What)) {
1633     auto *Defs = getOrCreateDefsList(BB);
1634     // If we got asked to insert at the end, we have an easy job, just shove it
1635     // at the end. If we got asked to insert before an existing def, we also get
1636     // an iterator. If we got asked to insert before a use, we have to hunt for
1637     // the next def.
1638     if (WasEnd) {
1639       Defs->push_back(*What);
1640     } else if (isa<MemoryDef>(InsertPt)) {
1641       Defs->insert(InsertPt->getDefsIterator(), *What);
1642     } else {
1643       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1644         ++InsertPt;
1645       // Either we found a def, or we are inserting at the end
1646       if (InsertPt == Accesses->end())
1647         Defs->push_back(*What);
1648       else
1649         Defs->insert(InsertPt->getDefsIterator(), *What);
1650     }
1651   }
1652   BlockNumberingValid.erase(BB);
1653 }
1654 
1655 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1656   // Keep it in the lookup tables, remove from the lists
1657   removeFromLists(What, false);
1658 
1659   // Note that moving should implicitly invalidate the optimized state of a
1660   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1661   // MemoryDef.
1662   if (auto *MD = dyn_cast<MemoryDef>(What))
1663     MD->resetOptimized();
1664   What->setBlock(BB);
1665 }
1666 
1667 // Move What before Where in the IR.  The end result is that What will belong to
1668 // the right lists and have the right Block set, but will not otherwise be
1669 // correct. It will not have the right defining access, and if it is a def,
1670 // things below it will not properly be updated.
1671 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1672                        AccessList::iterator Where) {
1673   prepareForMoveTo(What, BB);
1674   insertIntoListsBefore(What, BB, Where);
1675 }
1676 
1677 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1678                        InsertionPlace Point) {
1679   if (isa<MemoryPhi>(What)) {
1680     assert(Point == Beginning &&
1681            "Can only move a Phi at the beginning of the block");
1682     // Update lookup table entry
1683     ValueToMemoryAccess.erase(What->getBlock());
1684     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1685     (void)Inserted;
1686     assert(Inserted && "Cannot move a Phi to a block that already has one");
1687   }
1688 
1689   prepareForMoveTo(What, BB);
1690   insertIntoListsForBlock(What, BB, Point);
1691 }
1692 
1693 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1694   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1695   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1696   // Phi's always are placed at the front of the block.
1697   insertIntoListsForBlock(Phi, BB, Beginning);
1698   ValueToMemoryAccess[BB] = Phi;
1699   return Phi;
1700 }
1701 
1702 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1703                                                MemoryAccess *Definition,
1704                                                const MemoryUseOrDef *Template,
1705                                                bool CreationMustSucceed) {
1706   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1707   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1708   if (CreationMustSucceed)
1709     assert(NewAccess != nullptr && "Tried to create a memory access for a "
1710                                    "non-memory touching instruction");
1711   if (NewAccess)
1712     NewAccess->setDefiningAccess(Definition);
1713   return NewAccess;
1714 }
1715 
1716 // Return true if the instruction has ordering constraints.
1717 // Note specifically that this only considers stores and loads
1718 // because others are still considered ModRef by getModRefInfo.
1719 static inline bool isOrdered(const Instruction *I) {
1720   if (auto *SI = dyn_cast<StoreInst>(I)) {
1721     if (!SI->isUnordered())
1722       return true;
1723   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1724     if (!LI->isUnordered())
1725       return true;
1726   }
1727   return false;
1728 }
1729 
1730 /// Helper function to create new memory accesses
1731 template <typename AliasAnalysisType>
1732 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1733                                            AliasAnalysisType *AAP,
1734                                            const MemoryUseOrDef *Template) {
1735   // The assume intrinsic has a control dependency which we model by claiming
1736   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1737   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1738   // dependencies here.
1739   // FIXME: Replace this special casing with a more accurate modelling of
1740   // assume's control dependency.
1741   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1742     if (II->getIntrinsicID() == Intrinsic::assume)
1743       return nullptr;
1744 
1745   // Using a nonstandard AA pipelines might leave us with unexpected modref
1746   // results for I, so add a check to not model instructions that may not read
1747   // from or write to memory. This is necessary for correctness.
1748   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1749     return nullptr;
1750 
1751   bool Def, Use;
1752   if (Template) {
1753     Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1754     Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1755 #if !defined(NDEBUG)
1756     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1757     bool DefCheck, UseCheck;
1758     DefCheck = isModSet(ModRef) || isOrdered(I);
1759     UseCheck = isRefSet(ModRef);
1760     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1761 #endif
1762   } else {
1763     // Find out what affect this instruction has on memory.
1764     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1765     // The isOrdered check is used to ensure that volatiles end up as defs
1766     // (atomics end up as ModRef right now anyway).  Until we separate the
1767     // ordering chain from the memory chain, this enables people to see at least
1768     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1769     // will still give an answer that bypasses other volatile loads.  TODO:
1770     // Separate memory aliasing and ordering into two different chains so that
1771     // we can precisely represent both "what memory will this read/write/is
1772     // clobbered by" and "what instructions can I move this past".
1773     Def = isModSet(ModRef) || isOrdered(I);
1774     Use = isRefSet(ModRef);
1775   }
1776 
1777   // It's possible for an instruction to not modify memory at all. During
1778   // construction, we ignore them.
1779   if (!Def && !Use)
1780     return nullptr;
1781 
1782   MemoryUseOrDef *MUD;
1783   if (Def)
1784     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1785   else
1786     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1787   ValueToMemoryAccess[I] = MUD;
1788   return MUD;
1789 }
1790 
1791 /// Returns true if \p Replacer dominates \p Replacee .
1792 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1793                              const MemoryAccess *Replacee) const {
1794   if (isa<MemoryUseOrDef>(Replacee))
1795     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1796   const auto *MP = cast<MemoryPhi>(Replacee);
1797   // For a phi node, the use occurs in the predecessor block of the phi node.
1798   // Since we may occur multiple times in the phi node, we have to check each
1799   // operand to ensure Replacer dominates each operand where Replacee occurs.
1800   for (const Use &Arg : MP->operands()) {
1801     if (Arg.get() != Replacee &&
1802         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1803       return false;
1804   }
1805   return true;
1806 }
1807 
1808 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1809 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1810   assert(MA->use_empty() &&
1811          "Trying to remove memory access that still has uses");
1812   BlockNumbering.erase(MA);
1813   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1814     MUD->setDefiningAccess(nullptr);
1815   // Invalidate our walker's cache if necessary
1816   if (!isa<MemoryUse>(MA))
1817     getWalker()->invalidateInfo(MA);
1818 
1819   Value *MemoryInst;
1820   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1821     MemoryInst = MUD->getMemoryInst();
1822   else
1823     MemoryInst = MA->getBlock();
1824 
1825   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1826   if (VMA->second == MA)
1827     ValueToMemoryAccess.erase(VMA);
1828 }
1829 
1830 /// Properly remove \p MA from all of MemorySSA's lists.
1831 ///
1832 /// Because of the way the intrusive list and use lists work, it is important to
1833 /// do removal in the right order.
1834 /// ShouldDelete defaults to true, and will cause the memory access to also be
1835 /// deleted, not just removed.
1836 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1837   BasicBlock *BB = MA->getBlock();
1838   // The access list owns the reference, so we erase it from the non-owning list
1839   // first.
1840   if (!isa<MemoryUse>(MA)) {
1841     auto DefsIt = PerBlockDefs.find(BB);
1842     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1843     Defs->remove(*MA);
1844     if (Defs->empty())
1845       PerBlockDefs.erase(DefsIt);
1846   }
1847 
1848   // The erase call here will delete it. If we don't want it deleted, we call
1849   // remove instead.
1850   auto AccessIt = PerBlockAccesses.find(BB);
1851   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1852   if (ShouldDelete)
1853     Accesses->erase(MA);
1854   else
1855     Accesses->remove(MA);
1856 
1857   if (Accesses->empty()) {
1858     PerBlockAccesses.erase(AccessIt);
1859     BlockNumberingValid.erase(BB);
1860   }
1861 }
1862 
1863 void MemorySSA::print(raw_ostream &OS) const {
1864   MemorySSAAnnotatedWriter Writer(this);
1865   F.print(OS, &Writer);
1866 }
1867 
1868 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1869 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1870 #endif
1871 
1872 void MemorySSA::verifyMemorySSA() const {
1873   verifyOrderingDominationAndDefUses(F);
1874   verifyDominationNumbers(F);
1875   verifyPrevDefInPhis(F);
1876   // Previously, the verification used to also verify that the clobberingAccess
1877   // cached by MemorySSA is the same as the clobberingAccess found at a later
1878   // query to AA. This does not hold true in general due to the current fragility
1879   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1880   // up. As a result, transformations that are correct, will lead to BasicAA
1881   // returning different Alias answers before and after that transformation.
1882   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1883   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1884   // every transformation, which defeats the purpose of using it. For such an
1885   // example, see test4 added in D51960.
1886 }
1887 
1888 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1889 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1890   for (const BasicBlock &BB : F) {
1891     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1892       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1893         auto *Pred = Phi->getIncomingBlock(I);
1894         auto *IncAcc = Phi->getIncomingValue(I);
1895         // If Pred has no unreachable predecessors, get last def looking at
1896         // IDoms. If, while walkings IDoms, any of these has an unreachable
1897         // predecessor, then the incoming def can be any access.
1898         if (auto *DTNode = DT->getNode(Pred)) {
1899           while (DTNode) {
1900             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1901               auto *LastAcc = &*(--DefList->end());
1902               assert(LastAcc == IncAcc &&
1903                      "Incorrect incoming access into phi.");
1904               break;
1905             }
1906             DTNode = DTNode->getIDom();
1907           }
1908         } else {
1909           // If Pred has unreachable predecessors, but has at least a Def, the
1910           // incoming access can be the last Def in Pred, or it could have been
1911           // optimized to LoE. After an update, though, the LoE may have been
1912           // replaced by another access, so IncAcc may be any access.
1913           // If Pred has unreachable predecessors and no Defs, incoming access
1914           // should be LoE; However, after an update, it may be any access.
1915         }
1916       }
1917     }
1918   }
1919 #endif
1920 }
1921 
1922 /// Verify that all of the blocks we believe to have valid domination numbers
1923 /// actually have valid domination numbers.
1924 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1925 #ifndef NDEBUG
1926   if (BlockNumberingValid.empty())
1927     return;
1928 
1929   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1930   for (const BasicBlock &BB : F) {
1931     if (!ValidBlocks.count(&BB))
1932       continue;
1933 
1934     ValidBlocks.erase(&BB);
1935 
1936     const AccessList *Accesses = getBlockAccesses(&BB);
1937     // It's correct to say an empty block has valid numbering.
1938     if (!Accesses)
1939       continue;
1940 
1941     // Block numbering starts at 1.
1942     unsigned long LastNumber = 0;
1943     for (const MemoryAccess &MA : *Accesses) {
1944       auto ThisNumberIter = BlockNumbering.find(&MA);
1945       assert(ThisNumberIter != BlockNumbering.end() &&
1946              "MemoryAccess has no domination number in a valid block!");
1947 
1948       unsigned long ThisNumber = ThisNumberIter->second;
1949       assert(ThisNumber > LastNumber &&
1950              "Domination numbers should be strictly increasing!");
1951       LastNumber = ThisNumber;
1952     }
1953   }
1954 
1955   assert(ValidBlocks.empty() &&
1956          "All valid BasicBlocks should exist in F -- dangling pointers?");
1957 #endif
1958 }
1959 
1960 /// Verify ordering: the order and existence of MemoryAccesses matches the
1961 /// order and existence of memory affecting instructions.
1962 /// Verify domination: each definition dominates all of its uses.
1963 /// Verify def-uses: the immediate use information - walk all the memory
1964 /// accesses and verifying that, for each use, it appears in the appropriate
1965 /// def's use list
1966 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
1967 #if !defined(NDEBUG)
1968   // Walk all the blocks, comparing what the lookups think and what the access
1969   // lists think, as well as the order in the blocks vs the order in the access
1970   // lists.
1971   SmallVector<MemoryAccess *, 32> ActualAccesses;
1972   SmallVector<MemoryAccess *, 32> ActualDefs;
1973   for (BasicBlock &B : F) {
1974     const AccessList *AL = getBlockAccesses(&B);
1975     const auto *DL = getBlockDefs(&B);
1976     MemoryPhi *Phi = getMemoryAccess(&B);
1977     if (Phi) {
1978       // Verify ordering.
1979       ActualAccesses.push_back(Phi);
1980       ActualDefs.push_back(Phi);
1981       // Verify domination
1982       for (const Use &U : Phi->uses())
1983         assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1984 #if defined(EXPENSIVE_CHECKS)
1985       // Verify def-uses.
1986       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1987                                           pred_begin(&B), pred_end(&B))) &&
1988              "Incomplete MemoryPhi Node");
1989       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1990         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1991         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1992                    pred_end(&B) &&
1993                "Incoming phi block not a block predecessor");
1994       }
1995 #endif
1996     }
1997 
1998     for (Instruction &I : B) {
1999       MemoryUseOrDef *MA = getMemoryAccess(&I);
2000       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
2001              "We have memory affecting instructions "
2002              "in this block but they are not in the "
2003              "access list or defs list");
2004       if (MA) {
2005         // Verify ordering.
2006         ActualAccesses.push_back(MA);
2007         if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2008           // Verify ordering.
2009           ActualDefs.push_back(MA);
2010           // Verify domination.
2011           for (const Use &U : MD->uses())
2012             assert(dominates(MD, U) &&
2013                    "Memory Def does not dominate it's uses");
2014         }
2015 #if defined(EXPENSIVE_CHECKS)
2016         // Verify def-uses.
2017         verifyUseInDefs(MA->getDefiningAccess(), MA);
2018 #endif
2019       }
2020     }
2021     // Either we hit the assert, really have no accesses, or we have both
2022     // accesses and an access list. Same with defs.
2023     if (!AL && !DL)
2024       continue;
2025     // Verify ordering.
2026     assert(AL->size() == ActualAccesses.size() &&
2027            "We don't have the same number of accesses in the block as on the "
2028            "access list");
2029     assert((DL || ActualDefs.size() == 0) &&
2030            "Either we should have a defs list, or we should have no defs");
2031     assert((!DL || DL->size() == ActualDefs.size()) &&
2032            "We don't have the same number of defs in the block as on the "
2033            "def list");
2034     auto ALI = AL->begin();
2035     auto AAI = ActualAccesses.begin();
2036     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2037       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2038       ++ALI;
2039       ++AAI;
2040     }
2041     ActualAccesses.clear();
2042     if (DL) {
2043       auto DLI = DL->begin();
2044       auto ADI = ActualDefs.begin();
2045       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2046         assert(&*DLI == *ADI && "Not the same defs in the same order");
2047         ++DLI;
2048         ++ADI;
2049       }
2050     }
2051     ActualDefs.clear();
2052   }
2053 #endif
2054 }
2055 
2056 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2057 /// appears in the use list of \p Def.
2058 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2059 #ifndef NDEBUG
2060   // The live on entry use may cause us to get a NULL def here
2061   if (!Def)
2062     assert(isLiveOnEntryDef(Use) &&
2063            "Null def but use not point to live on entry def");
2064   else
2065     assert(is_contained(Def->users(), Use) &&
2066            "Did not find use in def's use list");
2067 #endif
2068 }
2069 
2070 /// Perform a local numbering on blocks so that instruction ordering can be
2071 /// determined in constant time.
2072 /// TODO: We currently just number in order.  If we numbered by N, we could
2073 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2074 /// log2(N) sequences of mixed before and after) without needing to invalidate
2075 /// the numbering.
2076 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2077   // The pre-increment ensures the numbers really start at 1.
2078   unsigned long CurrentNumber = 0;
2079   const AccessList *AL = getBlockAccesses(B);
2080   assert(AL != nullptr && "Asking to renumber an empty block");
2081   for (const auto &I : *AL)
2082     BlockNumbering[&I] = ++CurrentNumber;
2083   BlockNumberingValid.insert(B);
2084 }
2085 
2086 /// Determine, for two memory accesses in the same block,
2087 /// whether \p Dominator dominates \p Dominatee.
2088 /// \returns True if \p Dominator dominates \p Dominatee.
2089 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2090                                  const MemoryAccess *Dominatee) const {
2091   const BasicBlock *DominatorBlock = Dominator->getBlock();
2092 
2093   assert((DominatorBlock == Dominatee->getBlock()) &&
2094          "Asking for local domination when accesses are in different blocks!");
2095   // A node dominates itself.
2096   if (Dominatee == Dominator)
2097     return true;
2098 
2099   // When Dominatee is defined on function entry, it is not dominated by another
2100   // memory access.
2101   if (isLiveOnEntryDef(Dominatee))
2102     return false;
2103 
2104   // When Dominator is defined on function entry, it dominates the other memory
2105   // access.
2106   if (isLiveOnEntryDef(Dominator))
2107     return true;
2108 
2109   if (!BlockNumberingValid.count(DominatorBlock))
2110     renumberBlock(DominatorBlock);
2111 
2112   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2113   // All numbers start with 1
2114   assert(DominatorNum != 0 && "Block was not numbered properly");
2115   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2116   assert(DominateeNum != 0 && "Block was not numbered properly");
2117   return DominatorNum < DominateeNum;
2118 }
2119 
2120 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2121                           const MemoryAccess *Dominatee) const {
2122   if (Dominator == Dominatee)
2123     return true;
2124 
2125   if (isLiveOnEntryDef(Dominatee))
2126     return false;
2127 
2128   if (Dominator->getBlock() != Dominatee->getBlock())
2129     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2130   return locallyDominates(Dominator, Dominatee);
2131 }
2132 
2133 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2134                           const Use &Dominatee) const {
2135   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2136     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2137     // The def must dominate the incoming block of the phi.
2138     if (UseBB != Dominator->getBlock())
2139       return DT->dominates(Dominator->getBlock(), UseBB);
2140     // If the UseBB and the DefBB are the same, compare locally.
2141     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2142   }
2143   // If it's not a PHI node use, the normal dominates can already handle it.
2144   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2145 }
2146 
2147 const static char LiveOnEntryStr[] = "liveOnEntry";
2148 
2149 void MemoryAccess::print(raw_ostream &OS) const {
2150   switch (getValueID()) {
2151   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2152   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2153   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2154   }
2155   llvm_unreachable("invalid value id");
2156 }
2157 
2158 void MemoryDef::print(raw_ostream &OS) const {
2159   MemoryAccess *UO = getDefiningAccess();
2160 
2161   auto printID = [&OS](MemoryAccess *A) {
2162     if (A && A->getID())
2163       OS << A->getID();
2164     else
2165       OS << LiveOnEntryStr;
2166   };
2167 
2168   OS << getID() << " = MemoryDef(";
2169   printID(UO);
2170   OS << ")";
2171 
2172   if (isOptimized()) {
2173     OS << "->";
2174     printID(getOptimized());
2175 
2176     if (Optional<AliasResult> AR = getOptimizedAccessType())
2177       OS << " " << *AR;
2178   }
2179 }
2180 
2181 void MemoryPhi::print(raw_ostream &OS) const {
2182   bool First = true;
2183   OS << getID() << " = MemoryPhi(";
2184   for (const auto &Op : operands()) {
2185     BasicBlock *BB = getIncomingBlock(Op);
2186     MemoryAccess *MA = cast<MemoryAccess>(Op);
2187     if (!First)
2188       OS << ',';
2189     else
2190       First = false;
2191 
2192     OS << '{';
2193     if (BB->hasName())
2194       OS << BB->getName();
2195     else
2196       BB->printAsOperand(OS, false);
2197     OS << ',';
2198     if (unsigned ID = MA->getID())
2199       OS << ID;
2200     else
2201       OS << LiveOnEntryStr;
2202     OS << '}';
2203   }
2204   OS << ')';
2205 }
2206 
2207 void MemoryUse::print(raw_ostream &OS) const {
2208   MemoryAccess *UO = getDefiningAccess();
2209   OS << "MemoryUse(";
2210   if (UO && UO->getID())
2211     OS << UO->getID();
2212   else
2213     OS << LiveOnEntryStr;
2214   OS << ')';
2215 
2216   if (Optional<AliasResult> AR = getOptimizedAccessType())
2217     OS << " " << *AR;
2218 }
2219 
2220 void MemoryAccess::dump() const {
2221 // Cannot completely remove virtual function even in release mode.
2222 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2223   print(dbgs());
2224   dbgs() << "\n";
2225 #endif
2226 }
2227 
2228 char MemorySSAPrinterLegacyPass::ID = 0;
2229 
2230 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2231   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2232 }
2233 
2234 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2235   AU.setPreservesAll();
2236   AU.addRequired<MemorySSAWrapperPass>();
2237 }
2238 
2239 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2240   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2241   MSSA.print(dbgs());
2242   if (VerifyMemorySSA)
2243     MSSA.verifyMemorySSA();
2244   return false;
2245 }
2246 
2247 AnalysisKey MemorySSAAnalysis::Key;
2248 
2249 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2250                                                  FunctionAnalysisManager &AM) {
2251   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2252   auto &AA = AM.getResult<AAManager>(F);
2253   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2254 }
2255 
2256 bool MemorySSAAnalysis::Result::invalidate(
2257     Function &F, const PreservedAnalyses &PA,
2258     FunctionAnalysisManager::Invalidator &Inv) {
2259   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2260   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2261          Inv.invalidate<AAManager>(F, PA) ||
2262          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2263 }
2264 
2265 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2266                                             FunctionAnalysisManager &AM) {
2267   OS << "MemorySSA for function: " << F.getName() << "\n";
2268   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
2269 
2270   return PreservedAnalyses::all();
2271 }
2272 
2273 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2274                                              FunctionAnalysisManager &AM) {
2275   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2276 
2277   return PreservedAnalyses::all();
2278 }
2279 
2280 char MemorySSAWrapperPass::ID = 0;
2281 
2282 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2283   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2284 }
2285 
2286 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2287 
2288 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2289   AU.setPreservesAll();
2290   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2291   AU.addRequiredTransitive<AAResultsWrapperPass>();
2292 }
2293 
2294 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2295   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2296   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2297   MSSA.reset(new MemorySSA(F, &AA, &DT));
2298   return false;
2299 }
2300 
2301 void MemorySSAWrapperPass::verifyAnalysis() const {
2302   if (VerifyMemorySSA)
2303     MSSA->verifyMemorySSA();
2304 }
2305 
2306 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2307   MSSA->print(OS);
2308 }
2309 
2310 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2311 
2312 /// Walk the use-def chains starting at \p StartingAccess and find
2313 /// the MemoryAccess that actually clobbers Loc.
2314 ///
2315 /// \returns our clobbering memory access
2316 template <typename AliasAnalysisType>
2317 MemoryAccess *
2318 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2319     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2320     unsigned &UpwardWalkLimit) {
2321   if (isa<MemoryPhi>(StartingAccess))
2322     return StartingAccess;
2323 
2324   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2325   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2326     return StartingUseOrDef;
2327 
2328   Instruction *I = StartingUseOrDef->getMemoryInst();
2329 
2330   // Conservatively, fences are always clobbers, so don't perform the walk if we
2331   // hit a fence.
2332   if (!isa<CallBase>(I) && I->isFenceLike())
2333     return StartingUseOrDef;
2334 
2335   UpwardsMemoryQuery Q;
2336   Q.OriginalAccess = StartingUseOrDef;
2337   Q.StartingLoc = Loc;
2338   Q.Inst = I;
2339   Q.IsCall = false;
2340 
2341   // Unlike the other function, do not walk to the def of a def, because we are
2342   // handed something we already believe is the clobbering access.
2343   // We never set SkipSelf to true in Q in this method.
2344   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2345                                      ? StartingUseOrDef->getDefiningAccess()
2346                                      : StartingUseOrDef;
2347 
2348   MemoryAccess *Clobber =
2349       Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2350   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2351   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2352   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2353   LLVM_DEBUG(dbgs() << *Clobber << "\n");
2354   return Clobber;
2355 }
2356 
2357 template <typename AliasAnalysisType>
2358 MemoryAccess *
2359 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2360     MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2361   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2362   // If this is a MemoryPhi, we can't do anything.
2363   if (!StartingAccess)
2364     return MA;
2365 
2366   bool IsOptimized = false;
2367 
2368   // If this is an already optimized use or def, return the optimized result.
2369   // Note: Currently, we store the optimized def result in a separate field,
2370   // since we can't use the defining access.
2371   if (StartingAccess->isOptimized()) {
2372     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2373       return StartingAccess->getOptimized();
2374     IsOptimized = true;
2375   }
2376 
2377   const Instruction *I = StartingAccess->getMemoryInst();
2378   // We can't sanely do anything with a fence, since they conservatively clobber
2379   // all memory, and have no locations to get pointers from to try to
2380   // disambiguate.
2381   if (!isa<CallBase>(I) && I->isFenceLike())
2382     return StartingAccess;
2383 
2384   UpwardsMemoryQuery Q(I, StartingAccess);
2385 
2386   if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2387     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2388     StartingAccess->setOptimized(LiveOnEntry);
2389     StartingAccess->setOptimizedAccessType(None);
2390     return LiveOnEntry;
2391   }
2392 
2393   MemoryAccess *OptimizedAccess;
2394   if (!IsOptimized) {
2395     // Start with the thing we already think clobbers this location
2396     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2397 
2398     // At this point, DefiningAccess may be the live on entry def.
2399     // If it is, we will not get a better result.
2400     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2401       StartingAccess->setOptimized(DefiningAccess);
2402       StartingAccess->setOptimizedAccessType(None);
2403       return DefiningAccess;
2404     }
2405 
2406     OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2407     StartingAccess->setOptimized(OptimizedAccess);
2408     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2409       StartingAccess->setOptimizedAccessType(None);
2410     else if (Q.AR == MustAlias)
2411       StartingAccess->setOptimizedAccessType(MustAlias);
2412   } else
2413     OptimizedAccess = StartingAccess->getOptimized();
2414 
2415   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2416   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2417   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2418   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2419 
2420   MemoryAccess *Result;
2421   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2422       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2423     assert(isa<MemoryDef>(Q.OriginalAccess));
2424     Q.SkipSelfAccess = true;
2425     Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2426   } else
2427     Result = OptimizedAccess;
2428 
2429   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2430   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2431 
2432   return Result;
2433 }
2434 
2435 MemoryAccess *
2436 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2437   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2438     return Use->getDefiningAccess();
2439   return MA;
2440 }
2441 
2442 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2443     MemoryAccess *StartingAccess, const MemoryLocation &) {
2444   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2445     return Use->getDefiningAccess();
2446   return StartingAccess;
2447 }
2448 
2449 void MemoryPhi::deleteMe(DerivedUser *Self) {
2450   delete static_cast<MemoryPhi *>(Self);
2451 }
2452 
2453 void MemoryDef::deleteMe(DerivedUser *Self) {
2454   delete static_cast<MemoryDef *>(Self);
2455 }
2456 
2457 void MemoryUse::deleteMe(DerivedUser *Self) {
2458   delete static_cast<MemoryUse *>(Self);
2459 }
2460