xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSA.cpp (revision d54a7d337331d991e039e4f42f6b4dc64aedce08)
1  //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the MemorySSA class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/Analysis/MemorySSA.h"
14  #include "llvm/ADT/DenseMap.h"
15  #include "llvm/ADT/DenseMapInfo.h"
16  #include "llvm/ADT/DenseSet.h"
17  #include "llvm/ADT/DepthFirstIterator.h"
18  #include "llvm/ADT/Hashing.h"
19  #include "llvm/ADT/STLExtras.h"
20  #include "llvm/ADT/SmallPtrSet.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringExtras.h"
23  #include "llvm/ADT/iterator.h"
24  #include "llvm/ADT/iterator_range.h"
25  #include "llvm/Analysis/AliasAnalysis.h"
26  #include "llvm/Analysis/CFGPrinter.h"
27  #include "llvm/Analysis/IteratedDominanceFrontier.h"
28  #include "llvm/Analysis/MemoryLocation.h"
29  #include "llvm/Config/llvm-config.h"
30  #include "llvm/IR/AssemblyAnnotationWriter.h"
31  #include "llvm/IR/BasicBlock.h"
32  #include "llvm/IR/Dominators.h"
33  #include "llvm/IR/Function.h"
34  #include "llvm/IR/Instruction.h"
35  #include "llvm/IR/Instructions.h"
36  #include "llvm/IR/IntrinsicInst.h"
37  #include "llvm/IR/LLVMContext.h"
38  #include "llvm/IR/Operator.h"
39  #include "llvm/IR/PassManager.h"
40  #include "llvm/IR/Use.h"
41  #include "llvm/InitializePasses.h"
42  #include "llvm/Pass.h"
43  #include "llvm/Support/AtomicOrdering.h"
44  #include "llvm/Support/Casting.h"
45  #include "llvm/Support/CommandLine.h"
46  #include "llvm/Support/Compiler.h"
47  #include "llvm/Support/Debug.h"
48  #include "llvm/Support/ErrorHandling.h"
49  #include "llvm/Support/FormattedStream.h"
50  #include "llvm/Support/GraphWriter.h"
51  #include "llvm/Support/raw_ostream.h"
52  #include <algorithm>
53  #include <cassert>
54  #include <iterator>
55  #include <memory>
56  #include <utility>
57  
58  using namespace llvm;
59  
60  #define DEBUG_TYPE "memoryssa"
61  
62  static cl::opt<std::string>
63      DotCFGMSSA("dot-cfg-mssa",
64                 cl::value_desc("file name for generated dot file"),
65                 cl::desc("file name for generated dot file"), cl::init(""));
66  
67  INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
68                        true)
69  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70  INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
71  INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
72                      true)
73  
74  INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
75                        "Memory SSA Printer", false, false)
76  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
77  INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
78                      "Memory SSA Printer", false, false)
79  
80  static cl::opt<unsigned> MaxCheckLimit(
81      "memssa-check-limit", cl::Hidden, cl::init(100),
82      cl::desc("The maximum number of stores/phis MemorySSA"
83               "will consider trying to walk past (default = 100)"));
84  
85  // Always verify MemorySSA if expensive checking is enabled.
86  #ifdef EXPENSIVE_CHECKS
87  bool llvm::VerifyMemorySSA = true;
88  #else
89  bool llvm::VerifyMemorySSA = false;
90  #endif
91  
92  static cl::opt<bool, true>
93      VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
94                       cl::Hidden, cl::desc("Enable verification of MemorySSA."));
95  
96  const static char LiveOnEntryStr[] = "liveOnEntry";
97  
98  namespace {
99  
100  /// An assembly annotator class to print Memory SSA information in
101  /// comments.
102  class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
103    const MemorySSA *MSSA;
104  
105  public:
106    MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
107  
108    void emitBasicBlockStartAnnot(const BasicBlock *BB,
109                                  formatted_raw_ostream &OS) override {
110      if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
111        OS << "; " << *MA << "\n";
112    }
113  
114    void emitInstructionAnnot(const Instruction *I,
115                              formatted_raw_ostream &OS) override {
116      if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
117        OS << "; " << *MA << "\n";
118    }
119  };
120  
121  /// An assembly annotator class to print Memory SSA information in
122  /// comments.
123  class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
124    MemorySSA *MSSA;
125    MemorySSAWalker *Walker;
126    BatchAAResults BAA;
127  
128  public:
129    MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
130        : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {}
131  
132    void emitBasicBlockStartAnnot(const BasicBlock *BB,
133                                  formatted_raw_ostream &OS) override {
134      if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
135        OS << "; " << *MA << "\n";
136    }
137  
138    void emitInstructionAnnot(const Instruction *I,
139                              formatted_raw_ostream &OS) override {
140      if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
141        MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA);
142        OS << "; " << *MA;
143        if (Clobber) {
144          OS << " - clobbered by ";
145          if (MSSA->isLiveOnEntryDef(Clobber))
146            OS << LiveOnEntryStr;
147          else
148            OS << *Clobber;
149        }
150        OS << "\n";
151      }
152    }
153  };
154  
155  } // namespace
156  
157  namespace {
158  
159  /// Our current alias analysis API differentiates heavily between calls and
160  /// non-calls, and functions called on one usually assert on the other.
161  /// This class encapsulates the distinction to simplify other code that wants
162  /// "Memory affecting instructions and related data" to use as a key.
163  /// For example, this class is used as a densemap key in the use optimizer.
164  class MemoryLocOrCall {
165  public:
166    bool IsCall = false;
167  
168    MemoryLocOrCall(MemoryUseOrDef *MUD)
169        : MemoryLocOrCall(MUD->getMemoryInst()) {}
170    MemoryLocOrCall(const MemoryUseOrDef *MUD)
171        : MemoryLocOrCall(MUD->getMemoryInst()) {}
172  
173    MemoryLocOrCall(Instruction *Inst) {
174      if (auto *C = dyn_cast<CallBase>(Inst)) {
175        IsCall = true;
176        Call = C;
177      } else {
178        IsCall = false;
179        // There is no such thing as a memorylocation for a fence inst, and it is
180        // unique in that regard.
181        if (!isa<FenceInst>(Inst))
182          Loc = MemoryLocation::get(Inst);
183      }
184    }
185  
186    explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
187  
188    const CallBase *getCall() const {
189      assert(IsCall);
190      return Call;
191    }
192  
193    MemoryLocation getLoc() const {
194      assert(!IsCall);
195      return Loc;
196    }
197  
198    bool operator==(const MemoryLocOrCall &Other) const {
199      if (IsCall != Other.IsCall)
200        return false;
201  
202      if (!IsCall)
203        return Loc == Other.Loc;
204  
205      if (Call->getCalledOperand() != Other.Call->getCalledOperand())
206        return false;
207  
208      return Call->arg_size() == Other.Call->arg_size() &&
209             std::equal(Call->arg_begin(), Call->arg_end(),
210                        Other.Call->arg_begin());
211    }
212  
213  private:
214    union {
215      const CallBase *Call;
216      MemoryLocation Loc;
217    };
218  };
219  
220  } // end anonymous namespace
221  
222  namespace llvm {
223  
224  template <> struct DenseMapInfo<MemoryLocOrCall> {
225    static inline MemoryLocOrCall getEmptyKey() {
226      return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
227    }
228  
229    static inline MemoryLocOrCall getTombstoneKey() {
230      return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
231    }
232  
233    static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
234      if (!MLOC.IsCall)
235        return hash_combine(
236            MLOC.IsCall,
237            DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
238  
239      hash_code hash =
240          hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
241                                        MLOC.getCall()->getCalledOperand()));
242  
243      for (const Value *Arg : MLOC.getCall()->args())
244        hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
245      return hash;
246    }
247  
248    static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
249      return LHS == RHS;
250    }
251  };
252  
253  } // end namespace llvm
254  
255  /// This does one-way checks to see if Use could theoretically be hoisted above
256  /// MayClobber. This will not check the other way around.
257  ///
258  /// This assumes that, for the purposes of MemorySSA, Use comes directly after
259  /// MayClobber, with no potentially clobbering operations in between them.
260  /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
261  static bool areLoadsReorderable(const LoadInst *Use,
262                                  const LoadInst *MayClobber) {
263    bool VolatileUse = Use->isVolatile();
264    bool VolatileClobber = MayClobber->isVolatile();
265    // Volatile operations may never be reordered with other volatile operations.
266    if (VolatileUse && VolatileClobber)
267      return false;
268    // Otherwise, volatile doesn't matter here. From the language reference:
269    // 'optimizers may change the order of volatile operations relative to
270    // non-volatile operations.'"
271  
272    // If a load is seq_cst, it cannot be moved above other loads. If its ordering
273    // is weaker, it can be moved above other loads. We just need to be sure that
274    // MayClobber isn't an acquire load, because loads can't be moved above
275    // acquire loads.
276    //
277    // Note that this explicitly *does* allow the free reordering of monotonic (or
278    // weaker) loads of the same address.
279    bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
280    bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
281                                                       AtomicOrdering::Acquire);
282    return !(SeqCstUse || MayClobberIsAcquire);
283  }
284  
285  template <typename AliasAnalysisType>
286  static bool
287  instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
288                           const Instruction *UseInst, AliasAnalysisType &AA) {
289    Instruction *DefInst = MD->getMemoryInst();
290    assert(DefInst && "Defining instruction not actually an instruction");
291  
292    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
293      // These intrinsics will show up as affecting memory, but they are just
294      // markers, mostly.
295      //
296      // FIXME: We probably don't actually want MemorySSA to model these at all
297      // (including creating MemoryAccesses for them): we just end up inventing
298      // clobbers where they don't really exist at all. Please see D43269 for
299      // context.
300      switch (II->getIntrinsicID()) {
301      case Intrinsic::invariant_start:
302      case Intrinsic::invariant_end:
303      case Intrinsic::assume:
304      case Intrinsic::experimental_noalias_scope_decl:
305      case Intrinsic::pseudoprobe:
306        return false;
307      case Intrinsic::dbg_addr:
308      case Intrinsic::dbg_declare:
309      case Intrinsic::dbg_label:
310      case Intrinsic::dbg_value:
311        llvm_unreachable("debuginfo shouldn't have associated defs!");
312      default:
313        break;
314      }
315    }
316  
317    if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
318      ModRefInfo I = AA.getModRefInfo(DefInst, CB);
319      return isModOrRefSet(I);
320    }
321  
322    if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
323      if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
324        return !areLoadsReorderable(UseLoad, DefLoad);
325  
326    ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
327    return isModSet(I);
328  }
329  
330  template <typename AliasAnalysisType>
331  static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
332                                       const MemoryLocOrCall &UseMLOC,
333                                       AliasAnalysisType &AA) {
334    // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
335    // to exist while MemoryLocOrCall is pushed through places.
336    if (UseMLOC.IsCall)
337      return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
338                                      AA);
339    return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
340                                    AA);
341  }
342  
343  // Return true when MD may alias MU, return false otherwise.
344  bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
345                                          AliasAnalysis &AA) {
346    return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
347  }
348  
349  namespace {
350  
351  struct UpwardsMemoryQuery {
352    // True if our original query started off as a call
353    bool IsCall = false;
354    // The pointer location we started the query with. This will be empty if
355    // IsCall is true.
356    MemoryLocation StartingLoc;
357    // This is the instruction we were querying about.
358    const Instruction *Inst = nullptr;
359    // The MemoryAccess we actually got called with, used to test local domination
360    const MemoryAccess *OriginalAccess = nullptr;
361    bool SkipSelfAccess = false;
362  
363    UpwardsMemoryQuery() = default;
364  
365    UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
366        : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
367      if (!IsCall)
368        StartingLoc = MemoryLocation::get(Inst);
369    }
370  };
371  
372  } // end anonymous namespace
373  
374  static bool isUseTriviallyOptimizableToLiveOnEntry(BatchAAResults &AA,
375                                                     const Instruction *I) {
376    // If the memory can't be changed, then loads of the memory can't be
377    // clobbered.
378    if (auto *LI = dyn_cast<LoadInst>(I)) {
379      return I->hasMetadata(LLVMContext::MD_invariant_load) ||
380             !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI)));
381    }
382    return false;
383  }
384  
385  /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
386  /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
387  ///
388  /// This is meant to be as simple and self-contained as possible. Because it
389  /// uses no cache, etc., it can be relatively expensive.
390  ///
391  /// \param Start     The MemoryAccess that we want to walk from.
392  /// \param ClobberAt A clobber for Start.
393  /// \param StartLoc  The MemoryLocation for Start.
394  /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
395  /// \param Query     The UpwardsMemoryQuery we used for our search.
396  /// \param AA        The AliasAnalysis we used for our search.
397  /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
398  
399  LLVM_ATTRIBUTE_UNUSED static void
400  checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
401                     const MemoryLocation &StartLoc, const MemorySSA &MSSA,
402                     const UpwardsMemoryQuery &Query, BatchAAResults &AA,
403                     bool AllowImpreciseClobber = false) {
404    assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
405  
406    if (MSSA.isLiveOnEntryDef(Start)) {
407      assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
408             "liveOnEntry must clobber itself");
409      return;
410    }
411  
412    bool FoundClobber = false;
413    DenseSet<ConstMemoryAccessPair> VisitedPhis;
414    SmallVector<ConstMemoryAccessPair, 8> Worklist;
415    Worklist.emplace_back(Start, StartLoc);
416    // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
417    // is found, complain.
418    while (!Worklist.empty()) {
419      auto MAP = Worklist.pop_back_val();
420      // All we care about is that nothing from Start to ClobberAt clobbers Start.
421      // We learn nothing from revisiting nodes.
422      if (!VisitedPhis.insert(MAP).second)
423        continue;
424  
425      for (const auto *MA : def_chain(MAP.first)) {
426        if (MA == ClobberAt) {
427          if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
428            // instructionClobbersQuery isn't essentially free, so don't use `|=`,
429            // since it won't let us short-circuit.
430            //
431            // Also, note that this can't be hoisted out of the `Worklist` loop,
432            // since MD may only act as a clobber for 1 of N MemoryLocations.
433            FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
434            if (!FoundClobber) {
435              if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA))
436                FoundClobber = true;
437            }
438          }
439          break;
440        }
441  
442        // We should never hit liveOnEntry, unless it's the clobber.
443        assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
444  
445        if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
446          // If Start is a Def, skip self.
447          if (MD == Start)
448            continue;
449  
450          assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
451                 "Found clobber before reaching ClobberAt!");
452          continue;
453        }
454  
455        if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
456          (void)MU;
457          assert (MU == Start &&
458                  "Can only find use in def chain if Start is a use");
459          continue;
460        }
461  
462        assert(isa<MemoryPhi>(MA));
463  
464        // Add reachable phi predecessors
465        for (auto ItB = upward_defs_begin(
466                      {const_cast<MemoryAccess *>(MA), MAP.second},
467                      MSSA.getDomTree()),
468                  ItE = upward_defs_end();
469             ItB != ItE; ++ItB)
470          if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
471            Worklist.emplace_back(*ItB);
472      }
473    }
474  
475    // If the verify is done following an optimization, it's possible that
476    // ClobberAt was a conservative clobbering, that we can now infer is not a
477    // true clobbering access. Don't fail the verify if that's the case.
478    // We do have accesses that claim they're optimized, but could be optimized
479    // further. Updating all these can be expensive, so allow it for now (FIXME).
480    if (AllowImpreciseClobber)
481      return;
482  
483    // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
484    // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
485    assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
486           "ClobberAt never acted as a clobber");
487  }
488  
489  namespace {
490  
491  /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
492  /// in one class.
493  class ClobberWalker {
494    /// Save a few bytes by using unsigned instead of size_t.
495    using ListIndex = unsigned;
496  
497    /// Represents a span of contiguous MemoryDefs, potentially ending in a
498    /// MemoryPhi.
499    struct DefPath {
500      MemoryLocation Loc;
501      // Note that, because we always walk in reverse, Last will always dominate
502      // First. Also note that First and Last are inclusive.
503      MemoryAccess *First;
504      MemoryAccess *Last;
505      std::optional<ListIndex> Previous;
506  
507      DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
508              std::optional<ListIndex> Previous)
509          : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
510  
511      DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
512              std::optional<ListIndex> Previous)
513          : DefPath(Loc, Init, Init, Previous) {}
514    };
515  
516    const MemorySSA &MSSA;
517    DominatorTree &DT;
518    BatchAAResults *AA;
519    UpwardsMemoryQuery *Query;
520    unsigned *UpwardWalkLimit;
521  
522    // Phi optimization bookkeeping:
523    // List of DefPath to process during the current phi optimization walk.
524    SmallVector<DefPath, 32> Paths;
525    // List of visited <Access, Location> pairs; we can skip paths already
526    // visited with the same memory location.
527    DenseSet<ConstMemoryAccessPair> VisitedPhis;
528  
529    /// Find the nearest def or phi that `From` can legally be optimized to.
530    const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
531      assert(From->getNumOperands() && "Phi with no operands?");
532  
533      BasicBlock *BB = From->getBlock();
534      MemoryAccess *Result = MSSA.getLiveOnEntryDef();
535      DomTreeNode *Node = DT.getNode(BB);
536      while ((Node = Node->getIDom())) {
537        auto *Defs = MSSA.getBlockDefs(Node->getBlock());
538        if (Defs)
539          return &*Defs->rbegin();
540      }
541      return Result;
542    }
543  
544    /// Result of calling walkToPhiOrClobber.
545    struct UpwardsWalkResult {
546      /// The "Result" of the walk. Either a clobber, the last thing we walked, or
547      /// both. Include alias info when clobber found.
548      MemoryAccess *Result;
549      bool IsKnownClobber;
550    };
551  
552    /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
553    /// This will update Desc.Last as it walks. It will (optionally) also stop at
554    /// StopAt.
555    ///
556    /// This does not test for whether StopAt is a clobber
557    UpwardsWalkResult
558    walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
559                       const MemoryAccess *SkipStopAt = nullptr) const {
560      assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
561      assert(UpwardWalkLimit && "Need a valid walk limit");
562      bool LimitAlreadyReached = false;
563      // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
564      // it to 1. This will not do any alias() calls. It either returns in the
565      // first iteration in the loop below, or is set back to 0 if all def chains
566      // are free of MemoryDefs.
567      if (!*UpwardWalkLimit) {
568        *UpwardWalkLimit = 1;
569        LimitAlreadyReached = true;
570      }
571  
572      for (MemoryAccess *Current : def_chain(Desc.Last)) {
573        Desc.Last = Current;
574        if (Current == StopAt || Current == SkipStopAt)
575          return {Current, false};
576  
577        if (auto *MD = dyn_cast<MemoryDef>(Current)) {
578          if (MSSA.isLiveOnEntryDef(MD))
579            return {MD, true};
580  
581          if (!--*UpwardWalkLimit)
582            return {Current, true};
583  
584          if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA))
585            return {MD, true};
586        }
587      }
588  
589      if (LimitAlreadyReached)
590        *UpwardWalkLimit = 0;
591  
592      assert(isa<MemoryPhi>(Desc.Last) &&
593             "Ended at a non-clobber that's not a phi?");
594      return {Desc.Last, false};
595    }
596  
597    void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
598                     ListIndex PriorNode) {
599      auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT);
600      auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
601      for (const MemoryAccessPair &P : UpwardDefs) {
602        PausedSearches.push_back(Paths.size());
603        Paths.emplace_back(P.second, P.first, PriorNode);
604      }
605    }
606  
607    /// Represents a search that terminated after finding a clobber. This clobber
608    /// may or may not be present in the path of defs from LastNode..SearchStart,
609    /// since it may have been retrieved from cache.
610    struct TerminatedPath {
611      MemoryAccess *Clobber;
612      ListIndex LastNode;
613    };
614  
615    /// Get an access that keeps us from optimizing to the given phi.
616    ///
617    /// PausedSearches is an array of indices into the Paths array. Its incoming
618    /// value is the indices of searches that stopped at the last phi optimization
619    /// target. It's left in an unspecified state.
620    ///
621    /// If this returns std::nullopt, NewPaused is a vector of searches that
622    /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified
623    /// state.
624    std::optional<TerminatedPath>
625    getBlockingAccess(const MemoryAccess *StopWhere,
626                      SmallVectorImpl<ListIndex> &PausedSearches,
627                      SmallVectorImpl<ListIndex> &NewPaused,
628                      SmallVectorImpl<TerminatedPath> &Terminated) {
629      assert(!PausedSearches.empty() && "No searches to continue?");
630  
631      // BFS vs DFS really doesn't make a difference here, so just do a DFS with
632      // PausedSearches as our stack.
633      while (!PausedSearches.empty()) {
634        ListIndex PathIndex = PausedSearches.pop_back_val();
635        DefPath &Node = Paths[PathIndex];
636  
637        // If we've already visited this path with this MemoryLocation, we don't
638        // need to do so again.
639        //
640        // NOTE: That we just drop these paths on the ground makes caching
641        // behavior sporadic. e.g. given a diamond:
642        //  A
643        // B C
644        //  D
645        //
646        // ...If we walk D, B, A, C, we'll only cache the result of phi
647        // optimization for A, B, and D; C will be skipped because it dies here.
648        // This arguably isn't the worst thing ever, since:
649        //   - We generally query things in a top-down order, so if we got below D
650        //     without needing cache entries for {C, MemLoc}, then chances are
651        //     that those cache entries would end up ultimately unused.
652        //   - We still cache things for A, so C only needs to walk up a bit.
653        // If this behavior becomes problematic, we can fix without a ton of extra
654        // work.
655        if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
656          continue;
657  
658        const MemoryAccess *SkipStopWhere = nullptr;
659        if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
660          assert(isa<MemoryDef>(Query->OriginalAccess));
661          SkipStopWhere = Query->OriginalAccess;
662        }
663  
664        UpwardsWalkResult Res = walkToPhiOrClobber(Node,
665                                                   /*StopAt=*/StopWhere,
666                                                   /*SkipStopAt=*/SkipStopWhere);
667        if (Res.IsKnownClobber) {
668          assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
669  
670          // If this wasn't a cache hit, we hit a clobber when walking. That's a
671          // failure.
672          TerminatedPath Term{Res.Result, PathIndex};
673          if (!MSSA.dominates(Res.Result, StopWhere))
674            return Term;
675  
676          // Otherwise, it's a valid thing to potentially optimize to.
677          Terminated.push_back(Term);
678          continue;
679        }
680  
681        if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
682          // We've hit our target. Save this path off for if we want to continue
683          // walking. If we are in the mode of skipping the OriginalAccess, and
684          // we've reached back to the OriginalAccess, do not save path, we've
685          // just looped back to self.
686          if (Res.Result != SkipStopWhere)
687            NewPaused.push_back(PathIndex);
688          continue;
689        }
690  
691        assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
692        addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
693      }
694  
695      return std::nullopt;
696    }
697  
698    template <typename T, typename Walker>
699    struct generic_def_path_iterator
700        : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
701                                      std::forward_iterator_tag, T *> {
702      generic_def_path_iterator() = default;
703      generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
704  
705      T &operator*() const { return curNode(); }
706  
707      generic_def_path_iterator &operator++() {
708        N = curNode().Previous;
709        return *this;
710      }
711  
712      bool operator==(const generic_def_path_iterator &O) const {
713        if (N.has_value() != O.N.has_value())
714          return false;
715        return !N || *N == *O.N;
716      }
717  
718    private:
719      T &curNode() const { return W->Paths[*N]; }
720  
721      Walker *W = nullptr;
722      std::optional<ListIndex> N;
723    };
724  
725    using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
726    using const_def_path_iterator =
727        generic_def_path_iterator<const DefPath, const ClobberWalker>;
728  
729    iterator_range<def_path_iterator> def_path(ListIndex From) {
730      return make_range(def_path_iterator(this, From), def_path_iterator());
731    }
732  
733    iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
734      return make_range(const_def_path_iterator(this, From),
735                        const_def_path_iterator());
736    }
737  
738    struct OptznResult {
739      /// The path that contains our result.
740      TerminatedPath PrimaryClobber;
741      /// The paths that we can legally cache back from, but that aren't
742      /// necessarily the result of the Phi optimization.
743      SmallVector<TerminatedPath, 4> OtherClobbers;
744    };
745  
746    ListIndex defPathIndex(const DefPath &N) const {
747      // The assert looks nicer if we don't need to do &N
748      const DefPath *NP = &N;
749      assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
750             "Out of bounds DefPath!");
751      return NP - &Paths.front();
752    }
753  
754    /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
755    /// that act as legal clobbers. Note that this won't return *all* clobbers.
756    ///
757    /// Phi optimization algorithm tl;dr:
758    ///   - Find the earliest def/phi, A, we can optimize to
759    ///   - Find if all paths from the starting memory access ultimately reach A
760    ///     - If not, optimization isn't possible.
761    ///     - Otherwise, walk from A to another clobber or phi, A'.
762    ///       - If A' is a def, we're done.
763    ///       - If A' is a phi, try to optimize it.
764    ///
765    /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
766    /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
767    OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
768                               const MemoryLocation &Loc) {
769      assert(Paths.empty() && VisitedPhis.empty() &&
770             "Reset the optimization state.");
771  
772      Paths.emplace_back(Loc, Start, Phi, std::nullopt);
773      // Stores how many "valid" optimization nodes we had prior to calling
774      // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
775      auto PriorPathsSize = Paths.size();
776  
777      SmallVector<ListIndex, 16> PausedSearches;
778      SmallVector<ListIndex, 8> NewPaused;
779      SmallVector<TerminatedPath, 4> TerminatedPaths;
780  
781      addSearches(Phi, PausedSearches, 0);
782  
783      // Moves the TerminatedPath with the "most dominated" Clobber to the end of
784      // Paths.
785      auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
786        assert(!Paths.empty() && "Need a path to move");
787        auto Dom = Paths.begin();
788        for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
789          if (!MSSA.dominates(I->Clobber, Dom->Clobber))
790            Dom = I;
791        auto Last = Paths.end() - 1;
792        if (Last != Dom)
793          std::iter_swap(Last, Dom);
794      };
795  
796      MemoryPhi *Current = Phi;
797      while (true) {
798        assert(!MSSA.isLiveOnEntryDef(Current) &&
799               "liveOnEntry wasn't treated as a clobber?");
800  
801        const auto *Target = getWalkTarget(Current);
802        // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
803        // optimization for the prior phi.
804        assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
805          return MSSA.dominates(P.Clobber, Target);
806        }));
807  
808        // FIXME: This is broken, because the Blocker may be reported to be
809        // liveOnEntry, and we'll happily wait for that to disappear (read: never)
810        // For the moment, this is fine, since we do nothing with blocker info.
811        if (std::optional<TerminatedPath> Blocker = getBlockingAccess(
812                Target, PausedSearches, NewPaused, TerminatedPaths)) {
813  
814          // Find the node we started at. We can't search based on N->Last, since
815          // we may have gone around a loop with a different MemoryLocation.
816          auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
817            return defPathIndex(N) < PriorPathsSize;
818          });
819          assert(Iter != def_path_iterator());
820  
821          DefPath &CurNode = *Iter;
822          assert(CurNode.Last == Current);
823  
824          // Two things:
825          // A. We can't reliably cache all of NewPaused back. Consider a case
826          //    where we have two paths in NewPaused; one of which can't optimize
827          //    above this phi, whereas the other can. If we cache the second path
828          //    back, we'll end up with suboptimal cache entries. We can handle
829          //    cases like this a bit better when we either try to find all
830          //    clobbers that block phi optimization, or when our cache starts
831          //    supporting unfinished searches.
832          // B. We can't reliably cache TerminatedPaths back here without doing
833          //    extra checks; consider a case like:
834          //       T
835          //      / \
836          //     D   C
837          //      \ /
838          //       S
839          //    Where T is our target, C is a node with a clobber on it, D is a
840          //    diamond (with a clobber *only* on the left or right node, N), and
841          //    S is our start. Say we walk to D, through the node opposite N
842          //    (read: ignoring the clobber), and see a cache entry in the top
843          //    node of D. That cache entry gets put into TerminatedPaths. We then
844          //    walk up to C (N is later in our worklist), find the clobber, and
845          //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
846          //    the bottom part of D to the cached clobber, ignoring the clobber
847          //    in N. Again, this problem goes away if we start tracking all
848          //    blockers for a given phi optimization.
849          TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
850          return {Result, {}};
851        }
852  
853        // If there's nothing left to search, then all paths led to valid clobbers
854        // that we got from our cache; pick the nearest to the start, and allow
855        // the rest to be cached back.
856        if (NewPaused.empty()) {
857          MoveDominatedPathToEnd(TerminatedPaths);
858          TerminatedPath Result = TerminatedPaths.pop_back_val();
859          return {Result, std::move(TerminatedPaths)};
860        }
861  
862        MemoryAccess *DefChainEnd = nullptr;
863        SmallVector<TerminatedPath, 4> Clobbers;
864        for (ListIndex Paused : NewPaused) {
865          UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
866          if (WR.IsKnownClobber)
867            Clobbers.push_back({WR.Result, Paused});
868          else
869            // Micro-opt: If we hit the end of the chain, save it.
870            DefChainEnd = WR.Result;
871        }
872  
873        if (!TerminatedPaths.empty()) {
874          // If we couldn't find the dominating phi/liveOnEntry in the above loop,
875          // do it now.
876          if (!DefChainEnd)
877            for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
878              DefChainEnd = MA;
879          assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
880  
881          // If any of the terminated paths don't dominate the phi we'll try to
882          // optimize, we need to figure out what they are and quit.
883          const BasicBlock *ChainBB = DefChainEnd->getBlock();
884          for (const TerminatedPath &TP : TerminatedPaths) {
885            // Because we know that DefChainEnd is as "high" as we can go, we
886            // don't need local dominance checks; BB dominance is sufficient.
887            if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
888              Clobbers.push_back(TP);
889          }
890        }
891  
892        // If we have clobbers in the def chain, find the one closest to Current
893        // and quit.
894        if (!Clobbers.empty()) {
895          MoveDominatedPathToEnd(Clobbers);
896          TerminatedPath Result = Clobbers.pop_back_val();
897          return {Result, std::move(Clobbers)};
898        }
899  
900        assert(all_of(NewPaused,
901                      [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
902  
903        // Because liveOnEntry is a clobber, this must be a phi.
904        auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
905  
906        PriorPathsSize = Paths.size();
907        PausedSearches.clear();
908        for (ListIndex I : NewPaused)
909          addSearches(DefChainPhi, PausedSearches, I);
910        NewPaused.clear();
911  
912        Current = DefChainPhi;
913      }
914    }
915  
916    void verifyOptResult(const OptznResult &R) const {
917      assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
918        return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
919      }));
920    }
921  
922    void resetPhiOptznState() {
923      Paths.clear();
924      VisitedPhis.clear();
925    }
926  
927  public:
928    ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT)
929        : MSSA(MSSA), DT(DT) {}
930  
931    /// Finds the nearest clobber for the given query, optimizing phis if
932    /// possible.
933    MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start,
934                              UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) {
935      AA = &BAA;
936      Query = &Q;
937      UpwardWalkLimit = &UpWalkLimit;
938      // Starting limit must be > 0.
939      if (!UpWalkLimit)
940        UpWalkLimit++;
941  
942      MemoryAccess *Current = Start;
943      // This walker pretends uses don't exist. If we're handed one, silently grab
944      // its def. (This has the nice side-effect of ensuring we never cache uses)
945      if (auto *MU = dyn_cast<MemoryUse>(Start))
946        Current = MU->getDefiningAccess();
947  
948      DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt);
949      // Fast path for the overly-common case (no crazy phi optimization
950      // necessary)
951      UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
952      MemoryAccess *Result;
953      if (WalkResult.IsKnownClobber) {
954        Result = WalkResult.Result;
955      } else {
956        OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
957                                            Current, Q.StartingLoc);
958        verifyOptResult(OptRes);
959        resetPhiOptznState();
960        Result = OptRes.PrimaryClobber.Clobber;
961      }
962  
963  #ifdef EXPENSIVE_CHECKS
964      if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
965        checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA);
966  #endif
967      return Result;
968    }
969  };
970  
971  struct RenamePassData {
972    DomTreeNode *DTN;
973    DomTreeNode::const_iterator ChildIt;
974    MemoryAccess *IncomingVal;
975  
976    RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
977                   MemoryAccess *M)
978        : DTN(D), ChildIt(It), IncomingVal(M) {}
979  
980    void swap(RenamePassData &RHS) {
981      std::swap(DTN, RHS.DTN);
982      std::swap(ChildIt, RHS.ChildIt);
983      std::swap(IncomingVal, RHS.IncomingVal);
984    }
985  };
986  
987  } // end anonymous namespace
988  
989  namespace llvm {
990  
991  class MemorySSA::ClobberWalkerBase {
992    ClobberWalker Walker;
993    MemorySSA *MSSA;
994  
995  public:
996    ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {}
997  
998    MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
999                                                const MemoryLocation &,
1000                                                BatchAAResults &, unsigned &);
1001    // Third argument (bool), defines whether the clobber search should skip the
1002    // original queried access. If true, there will be a follow-up query searching
1003    // for a clobber access past "self". Note that the Optimized access is not
1004    // updated if a new clobber is found by this SkipSelf search. If this
1005    // additional query becomes heavily used we may decide to cache the result.
1006    // Walker instantiations will decide how to set the SkipSelf bool.
1007    MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &,
1008                                                unsigned &, bool,
1009                                                bool UseInvariantGroup = true);
1010  };
1011  
1012  /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1013  /// longer does caching on its own, but the name has been retained for the
1014  /// moment.
1015  class MemorySSA::CachingWalker final : public MemorySSAWalker {
1016    ClobberWalkerBase *Walker;
1017  
1018  public:
1019    CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
1020        : MemorySSAWalker(M), Walker(W) {}
1021    ~CachingWalker() override = default;
1022  
1023    using MemorySSAWalker::getClobberingMemoryAccess;
1024  
1025    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1026                                            unsigned &UWL) {
1027      return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false);
1028    }
1029    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1030                                            const MemoryLocation &Loc,
1031                                            BatchAAResults &BAA, unsigned &UWL) {
1032      return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1033    }
1034    // This method is not accessible outside of this file.
1035    MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(
1036        MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) {
1037      return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false);
1038    }
1039  
1040    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1041                                            BatchAAResults &BAA) override {
1042      unsigned UpwardWalkLimit = MaxCheckLimit;
1043      return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1044    }
1045    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1046                                            const MemoryLocation &Loc,
1047                                            BatchAAResults &BAA) override {
1048      unsigned UpwardWalkLimit = MaxCheckLimit;
1049      return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1050    }
1051  
1052    void invalidateInfo(MemoryAccess *MA) override {
1053      if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1054        MUD->resetOptimized();
1055    }
1056  };
1057  
1058  class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1059    ClobberWalkerBase *Walker;
1060  
1061  public:
1062    SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1063        : MemorySSAWalker(M), Walker(W) {}
1064    ~SkipSelfWalker() override = default;
1065  
1066    using MemorySSAWalker::getClobberingMemoryAccess;
1067  
1068    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1069                                            unsigned &UWL) {
1070      return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true);
1071    }
1072    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1073                                            const MemoryLocation &Loc,
1074                                            BatchAAResults &BAA, unsigned &UWL) {
1075      return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1076    }
1077  
1078    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1079                                            BatchAAResults &BAA) override {
1080      unsigned UpwardWalkLimit = MaxCheckLimit;
1081      return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1082    }
1083    MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1084                                            const MemoryLocation &Loc,
1085                                            BatchAAResults &BAA) override {
1086      unsigned UpwardWalkLimit = MaxCheckLimit;
1087      return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1088    }
1089  
1090    void invalidateInfo(MemoryAccess *MA) override {
1091      if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1092        MUD->resetOptimized();
1093    }
1094  };
1095  
1096  } // end namespace llvm
1097  
1098  void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1099                                      bool RenameAllUses) {
1100    // Pass through values to our successors
1101    for (const BasicBlock *S : successors(BB)) {
1102      auto It = PerBlockAccesses.find(S);
1103      // Rename the phi nodes in our successor block
1104      if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1105        continue;
1106      AccessList *Accesses = It->second.get();
1107      auto *Phi = cast<MemoryPhi>(&Accesses->front());
1108      if (RenameAllUses) {
1109        bool ReplacementDone = false;
1110        for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1111          if (Phi->getIncomingBlock(I) == BB) {
1112            Phi->setIncomingValue(I, IncomingVal);
1113            ReplacementDone = true;
1114          }
1115        (void) ReplacementDone;
1116        assert(ReplacementDone && "Incomplete phi during partial rename");
1117      } else
1118        Phi->addIncoming(IncomingVal, BB);
1119    }
1120  }
1121  
1122  /// Rename a single basic block into MemorySSA form.
1123  /// Uses the standard SSA renaming algorithm.
1124  /// \returns The new incoming value.
1125  MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1126                                       bool RenameAllUses) {
1127    auto It = PerBlockAccesses.find(BB);
1128    // Skip most processing if the list is empty.
1129    if (It != PerBlockAccesses.end()) {
1130      AccessList *Accesses = It->second.get();
1131      for (MemoryAccess &L : *Accesses) {
1132        if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1133          if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1134            MUD->setDefiningAccess(IncomingVal);
1135          if (isa<MemoryDef>(&L))
1136            IncomingVal = &L;
1137        } else {
1138          IncomingVal = &L;
1139        }
1140      }
1141    }
1142    return IncomingVal;
1143  }
1144  
1145  /// This is the standard SSA renaming algorithm.
1146  ///
1147  /// We walk the dominator tree in preorder, renaming accesses, and then filling
1148  /// in phi nodes in our successors.
1149  void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1150                             SmallPtrSetImpl<BasicBlock *> &Visited,
1151                             bool SkipVisited, bool RenameAllUses) {
1152    assert(Root && "Trying to rename accesses in an unreachable block");
1153  
1154    SmallVector<RenamePassData, 32> WorkStack;
1155    // Skip everything if we already renamed this block and we are skipping.
1156    // Note: You can't sink this into the if, because we need it to occur
1157    // regardless of whether we skip blocks or not.
1158    bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1159    if (SkipVisited && AlreadyVisited)
1160      return;
1161  
1162    IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1163    renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1164    WorkStack.push_back({Root, Root->begin(), IncomingVal});
1165  
1166    while (!WorkStack.empty()) {
1167      DomTreeNode *Node = WorkStack.back().DTN;
1168      DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1169      IncomingVal = WorkStack.back().IncomingVal;
1170  
1171      if (ChildIt == Node->end()) {
1172        WorkStack.pop_back();
1173      } else {
1174        DomTreeNode *Child = *ChildIt;
1175        ++WorkStack.back().ChildIt;
1176        BasicBlock *BB = Child->getBlock();
1177        // Note: You can't sink this into the if, because we need it to occur
1178        // regardless of whether we skip blocks or not.
1179        AlreadyVisited = !Visited.insert(BB).second;
1180        if (SkipVisited && AlreadyVisited) {
1181          // We already visited this during our renaming, which can happen when
1182          // being asked to rename multiple blocks. Figure out the incoming val,
1183          // which is the last def.
1184          // Incoming value can only change if there is a block def, and in that
1185          // case, it's the last block def in the list.
1186          if (auto *BlockDefs = getWritableBlockDefs(BB))
1187            IncomingVal = &*BlockDefs->rbegin();
1188        } else
1189          IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1190        renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1191        WorkStack.push_back({Child, Child->begin(), IncomingVal});
1192      }
1193    }
1194  }
1195  
1196  /// This handles unreachable block accesses by deleting phi nodes in
1197  /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1198  /// being uses of the live on entry definition.
1199  void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1200    assert(!DT->isReachableFromEntry(BB) &&
1201           "Reachable block found while handling unreachable blocks");
1202  
1203    // Make sure phi nodes in our reachable successors end up with a
1204    // LiveOnEntryDef for our incoming edge, even though our block is forward
1205    // unreachable.  We could just disconnect these blocks from the CFG fully,
1206    // but we do not right now.
1207    for (const BasicBlock *S : successors(BB)) {
1208      if (!DT->isReachableFromEntry(S))
1209        continue;
1210      auto It = PerBlockAccesses.find(S);
1211      // Rename the phi nodes in our successor block
1212      if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1213        continue;
1214      AccessList *Accesses = It->second.get();
1215      auto *Phi = cast<MemoryPhi>(&Accesses->front());
1216      Phi->addIncoming(LiveOnEntryDef.get(), BB);
1217    }
1218  
1219    auto It = PerBlockAccesses.find(BB);
1220    if (It == PerBlockAccesses.end())
1221      return;
1222  
1223    auto &Accesses = It->second;
1224    for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1225      auto Next = std::next(AI);
1226      // If we have a phi, just remove it. We are going to replace all
1227      // users with live on entry.
1228      if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1229        UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1230      else
1231        Accesses->erase(AI);
1232      AI = Next;
1233    }
1234  }
1235  
1236  MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1237      : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1238        SkipWalker(nullptr) {
1239    // Build MemorySSA using a batch alias analysis. This reuses the internal
1240    // state that AA collects during an alias()/getModRefInfo() call. This is
1241    // safe because there are no CFG changes while building MemorySSA and can
1242    // significantly reduce the time spent by the compiler in AA, because we will
1243    // make queries about all the instructions in the Function.
1244    assert(AA && "No alias analysis?");
1245    BatchAAResults BatchAA(*AA);
1246    buildMemorySSA(BatchAA);
1247    // Intentionally leave AA to nullptr while building so we don't accidently
1248    // use non-batch AliasAnalysis.
1249    this->AA = AA;
1250    // Also create the walker here.
1251    getWalker();
1252  }
1253  
1254  MemorySSA::~MemorySSA() {
1255    // Drop all our references
1256    for (const auto &Pair : PerBlockAccesses)
1257      for (MemoryAccess &MA : *Pair.second)
1258        MA.dropAllReferences();
1259  }
1260  
1261  MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1262    auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1263  
1264    if (Res.second)
1265      Res.first->second = std::make_unique<AccessList>();
1266    return Res.first->second.get();
1267  }
1268  
1269  MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1270    auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1271  
1272    if (Res.second)
1273      Res.first->second = std::make_unique<DefsList>();
1274    return Res.first->second.get();
1275  }
1276  
1277  namespace llvm {
1278  
1279  /// This class is a batch walker of all MemoryUse's in the program, and points
1280  /// their defining access at the thing that actually clobbers them.  Because it
1281  /// is a batch walker that touches everything, it does not operate like the
1282  /// other walkers.  This walker is basically performing a top-down SSA renaming
1283  /// pass, where the version stack is used as the cache.  This enables it to be
1284  /// significantly more time and memory efficient than using the regular walker,
1285  /// which is walking bottom-up.
1286  class MemorySSA::OptimizeUses {
1287  public:
1288    OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA,
1289                 DominatorTree *DT)
1290        : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1291  
1292    void optimizeUses();
1293  
1294  private:
1295    /// This represents where a given memorylocation is in the stack.
1296    struct MemlocStackInfo {
1297      // This essentially is keeping track of versions of the stack. Whenever
1298      // the stack changes due to pushes or pops, these versions increase.
1299      unsigned long StackEpoch;
1300      unsigned long PopEpoch;
1301      // This is the lower bound of places on the stack to check. It is equal to
1302      // the place the last stack walk ended.
1303      // Note: Correctness depends on this being initialized to 0, which densemap
1304      // does
1305      unsigned long LowerBound;
1306      const BasicBlock *LowerBoundBlock;
1307      // This is where the last walk for this memory location ended.
1308      unsigned long LastKill;
1309      bool LastKillValid;
1310    };
1311  
1312    void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1313                             SmallVectorImpl<MemoryAccess *> &,
1314                             DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1315  
1316    MemorySSA *MSSA;
1317    CachingWalker *Walker;
1318    BatchAAResults *AA;
1319    DominatorTree *DT;
1320  };
1321  
1322  } // end namespace llvm
1323  
1324  /// Optimize the uses in a given block This is basically the SSA renaming
1325  /// algorithm, with one caveat: We are able to use a single stack for all
1326  /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1327  /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1328  /// going to be some position in that stack of possible ones.
1329  ///
1330  /// We track the stack positions that each MemoryLocation needs
1331  /// to check, and last ended at.  This is because we only want to check the
1332  /// things that changed since last time.  The same MemoryLocation should
1333  /// get clobbered by the same store (getModRefInfo does not use invariantness or
1334  /// things like this, and if they start, we can modify MemoryLocOrCall to
1335  /// include relevant data)
1336  void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1337      const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1338      SmallVectorImpl<MemoryAccess *> &VersionStack,
1339      DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1340  
1341    /// If no accesses, nothing to do.
1342    MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1343    if (Accesses == nullptr)
1344      return;
1345  
1346    // Pop everything that doesn't dominate the current block off the stack,
1347    // increment the PopEpoch to account for this.
1348    while (true) {
1349      assert(
1350          !VersionStack.empty() &&
1351          "Version stack should have liveOnEntry sentinel dominating everything");
1352      BasicBlock *BackBlock = VersionStack.back()->getBlock();
1353      if (DT->dominates(BackBlock, BB))
1354        break;
1355      while (VersionStack.back()->getBlock() == BackBlock)
1356        VersionStack.pop_back();
1357      ++PopEpoch;
1358    }
1359  
1360    for (MemoryAccess &MA : *Accesses) {
1361      auto *MU = dyn_cast<MemoryUse>(&MA);
1362      if (!MU) {
1363        VersionStack.push_back(&MA);
1364        ++StackEpoch;
1365        continue;
1366      }
1367  
1368      if (MU->isOptimized())
1369        continue;
1370  
1371      if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1372        MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
1373        continue;
1374      }
1375  
1376      MemoryLocOrCall UseMLOC(MU);
1377      auto &LocInfo = LocStackInfo[UseMLOC];
1378      // If the pop epoch changed, it means we've removed stuff from top of
1379      // stack due to changing blocks. We may have to reset the lower bound or
1380      // last kill info.
1381      if (LocInfo.PopEpoch != PopEpoch) {
1382        LocInfo.PopEpoch = PopEpoch;
1383        LocInfo.StackEpoch = StackEpoch;
1384        // If the lower bound was in something that no longer dominates us, we
1385        // have to reset it.
1386        // We can't simply track stack size, because the stack may have had
1387        // pushes/pops in the meantime.
1388        // XXX: This is non-optimal, but only is slower cases with heavily
1389        // branching dominator trees.  To get the optimal number of queries would
1390        // be to make lowerbound and lastkill a per-loc stack, and pop it until
1391        // the top of that stack dominates us.  This does not seem worth it ATM.
1392        // A much cheaper optimization would be to always explore the deepest
1393        // branch of the dominator tree first. This will guarantee this resets on
1394        // the smallest set of blocks.
1395        if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1396            !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1397          // Reset the lower bound of things to check.
1398          // TODO: Some day we should be able to reset to last kill, rather than
1399          // 0.
1400          LocInfo.LowerBound = 0;
1401          LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1402          LocInfo.LastKillValid = false;
1403        }
1404      } else if (LocInfo.StackEpoch != StackEpoch) {
1405        // If all that has changed is the StackEpoch, we only have to check the
1406        // new things on the stack, because we've checked everything before.  In
1407        // this case, the lower bound of things to check remains the same.
1408        LocInfo.PopEpoch = PopEpoch;
1409        LocInfo.StackEpoch = StackEpoch;
1410      }
1411      if (!LocInfo.LastKillValid) {
1412        LocInfo.LastKill = VersionStack.size() - 1;
1413        LocInfo.LastKillValid = true;
1414      }
1415  
1416      // At this point, we should have corrected last kill and LowerBound to be
1417      // in bounds.
1418      assert(LocInfo.LowerBound < VersionStack.size() &&
1419             "Lower bound out of range");
1420      assert(LocInfo.LastKill < VersionStack.size() &&
1421             "Last kill info out of range");
1422      // In any case, the new upper bound is the top of the stack.
1423      unsigned long UpperBound = VersionStack.size() - 1;
1424  
1425      if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1426        LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1427                          << *(MU->getMemoryInst()) << ")"
1428                          << " because there are "
1429                          << UpperBound - LocInfo.LowerBound
1430                          << " stores to disambiguate\n");
1431        // Because we did not walk, LastKill is no longer valid, as this may
1432        // have been a kill.
1433        LocInfo.LastKillValid = false;
1434        continue;
1435      }
1436      bool FoundClobberResult = false;
1437      unsigned UpwardWalkLimit = MaxCheckLimit;
1438      while (UpperBound > LocInfo.LowerBound) {
1439        if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1440          // For phis, use the walker, see where we ended up, go there.
1441          // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1442          // support updates, so don't use it to optimize uses.
1443          MemoryAccess *Result =
1444              Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1445                  MU, *AA, UpwardWalkLimit);
1446          // We are guaranteed to find it or something is wrong.
1447          while (VersionStack[UpperBound] != Result) {
1448            assert(UpperBound != 0);
1449            --UpperBound;
1450          }
1451          FoundClobberResult = true;
1452          break;
1453        }
1454  
1455        MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1456        if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
1457          FoundClobberResult = true;
1458          break;
1459        }
1460        --UpperBound;
1461      }
1462  
1463      // At the end of this loop, UpperBound is either a clobber, or lower bound
1464      // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1465      if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1466        MU->setDefiningAccess(VersionStack[UpperBound], true);
1467        LocInfo.LastKill = UpperBound;
1468      } else {
1469        // Otherwise, we checked all the new ones, and now we know we can get to
1470        // LastKill.
1471        MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
1472      }
1473      LocInfo.LowerBound = VersionStack.size() - 1;
1474      LocInfo.LowerBoundBlock = BB;
1475    }
1476  }
1477  
1478  /// Optimize uses to point to their actual clobbering definitions.
1479  void MemorySSA::OptimizeUses::optimizeUses() {
1480    SmallVector<MemoryAccess *, 16> VersionStack;
1481    DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1482    VersionStack.push_back(MSSA->getLiveOnEntryDef());
1483  
1484    unsigned long StackEpoch = 1;
1485    unsigned long PopEpoch = 1;
1486    // We perform a non-recursive top-down dominator tree walk.
1487    for (const auto *DomNode : depth_first(DT->getRootNode()))
1488      optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1489                          LocStackInfo);
1490  }
1491  
1492  void MemorySSA::placePHINodes(
1493      const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1494    // Determine where our MemoryPhi's should go
1495    ForwardIDFCalculator IDFs(*DT);
1496    IDFs.setDefiningBlocks(DefiningBlocks);
1497    SmallVector<BasicBlock *, 32> IDFBlocks;
1498    IDFs.calculate(IDFBlocks);
1499  
1500    // Now place MemoryPhi nodes.
1501    for (auto &BB : IDFBlocks)
1502      createMemoryPhi(BB);
1503  }
1504  
1505  void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1506    // We create an access to represent "live on entry", for things like
1507    // arguments or users of globals, where the memory they use is defined before
1508    // the beginning of the function. We do not actually insert it into the IR.
1509    // We do not define a live on exit for the immediate uses, and thus our
1510    // semantics do *not* imply that something with no immediate uses can simply
1511    // be removed.
1512    BasicBlock &StartingPoint = F.getEntryBlock();
1513    LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1514                                       &StartingPoint, NextID++));
1515  
1516    // We maintain lists of memory accesses per-block, trading memory for time. We
1517    // could just look up the memory access for every possible instruction in the
1518    // stream.
1519    SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1520    // Go through each block, figure out where defs occur, and chain together all
1521    // the accesses.
1522    for (BasicBlock &B : F) {
1523      bool InsertIntoDef = false;
1524      AccessList *Accesses = nullptr;
1525      DefsList *Defs = nullptr;
1526      for (Instruction &I : B) {
1527        MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1528        if (!MUD)
1529          continue;
1530  
1531        if (!Accesses)
1532          Accesses = getOrCreateAccessList(&B);
1533        Accesses->push_back(MUD);
1534        if (isa<MemoryDef>(MUD)) {
1535          InsertIntoDef = true;
1536          if (!Defs)
1537            Defs = getOrCreateDefsList(&B);
1538          Defs->push_back(*MUD);
1539        }
1540      }
1541      if (InsertIntoDef)
1542        DefiningBlocks.insert(&B);
1543    }
1544    placePHINodes(DefiningBlocks);
1545  
1546    // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1547    // filled in with all blocks.
1548    SmallPtrSet<BasicBlock *, 16> Visited;
1549    renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1550  
1551    // Mark the uses in unreachable blocks as live on entry, so that they go
1552    // somewhere.
1553    for (auto &BB : F)
1554      if (!Visited.count(&BB))
1555        markUnreachableAsLiveOnEntry(&BB);
1556  }
1557  
1558  MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1559  
1560  MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1561    if (Walker)
1562      return Walker.get();
1563  
1564    if (!WalkerBase)
1565      WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1566  
1567    Walker = std::make_unique<CachingWalker>(this, WalkerBase.get());
1568    return Walker.get();
1569  }
1570  
1571  MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1572    if (SkipWalker)
1573      return SkipWalker.get();
1574  
1575    if (!WalkerBase)
1576      WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1577  
1578    SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1579    return SkipWalker.get();
1580   }
1581  
1582  
1583  // This is a helper function used by the creation routines. It places NewAccess
1584  // into the access and defs lists for a given basic block, at the given
1585  // insertion point.
1586  void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1587                                          const BasicBlock *BB,
1588                                          InsertionPlace Point) {
1589    auto *Accesses = getOrCreateAccessList(BB);
1590    if (Point == Beginning) {
1591      // If it's a phi node, it goes first, otherwise, it goes after any phi
1592      // nodes.
1593      if (isa<MemoryPhi>(NewAccess)) {
1594        Accesses->push_front(NewAccess);
1595        auto *Defs = getOrCreateDefsList(BB);
1596        Defs->push_front(*NewAccess);
1597      } else {
1598        auto AI = find_if_not(
1599            *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1600        Accesses->insert(AI, NewAccess);
1601        if (!isa<MemoryUse>(NewAccess)) {
1602          auto *Defs = getOrCreateDefsList(BB);
1603          auto DI = find_if_not(
1604              *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1605          Defs->insert(DI, *NewAccess);
1606        }
1607      }
1608    } else {
1609      Accesses->push_back(NewAccess);
1610      if (!isa<MemoryUse>(NewAccess)) {
1611        auto *Defs = getOrCreateDefsList(BB);
1612        Defs->push_back(*NewAccess);
1613      }
1614    }
1615    BlockNumberingValid.erase(BB);
1616  }
1617  
1618  void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1619                                        AccessList::iterator InsertPt) {
1620    auto *Accesses = getWritableBlockAccesses(BB);
1621    bool WasEnd = InsertPt == Accesses->end();
1622    Accesses->insert(AccessList::iterator(InsertPt), What);
1623    if (!isa<MemoryUse>(What)) {
1624      auto *Defs = getOrCreateDefsList(BB);
1625      // If we got asked to insert at the end, we have an easy job, just shove it
1626      // at the end. If we got asked to insert before an existing def, we also get
1627      // an iterator. If we got asked to insert before a use, we have to hunt for
1628      // the next def.
1629      if (WasEnd) {
1630        Defs->push_back(*What);
1631      } else if (isa<MemoryDef>(InsertPt)) {
1632        Defs->insert(InsertPt->getDefsIterator(), *What);
1633      } else {
1634        while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1635          ++InsertPt;
1636        // Either we found a def, or we are inserting at the end
1637        if (InsertPt == Accesses->end())
1638          Defs->push_back(*What);
1639        else
1640          Defs->insert(InsertPt->getDefsIterator(), *What);
1641      }
1642    }
1643    BlockNumberingValid.erase(BB);
1644  }
1645  
1646  void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1647    // Keep it in the lookup tables, remove from the lists
1648    removeFromLists(What, false);
1649  
1650    // Note that moving should implicitly invalidate the optimized state of a
1651    // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1652    // MemoryDef.
1653    if (auto *MD = dyn_cast<MemoryDef>(What))
1654      MD->resetOptimized();
1655    What->setBlock(BB);
1656  }
1657  
1658  // Move What before Where in the IR.  The end result is that What will belong to
1659  // the right lists and have the right Block set, but will not otherwise be
1660  // correct. It will not have the right defining access, and if it is a def,
1661  // things below it will not properly be updated.
1662  void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1663                         AccessList::iterator Where) {
1664    prepareForMoveTo(What, BB);
1665    insertIntoListsBefore(What, BB, Where);
1666  }
1667  
1668  void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1669                         InsertionPlace Point) {
1670    if (isa<MemoryPhi>(What)) {
1671      assert(Point == Beginning &&
1672             "Can only move a Phi at the beginning of the block");
1673      // Update lookup table entry
1674      ValueToMemoryAccess.erase(What->getBlock());
1675      bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1676      (void)Inserted;
1677      assert(Inserted && "Cannot move a Phi to a block that already has one");
1678    }
1679  
1680    prepareForMoveTo(What, BB);
1681    insertIntoListsForBlock(What, BB, Point);
1682  }
1683  
1684  MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1685    assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1686    MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1687    // Phi's always are placed at the front of the block.
1688    insertIntoListsForBlock(Phi, BB, Beginning);
1689    ValueToMemoryAccess[BB] = Phi;
1690    return Phi;
1691  }
1692  
1693  MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1694                                                 MemoryAccess *Definition,
1695                                                 const MemoryUseOrDef *Template,
1696                                                 bool CreationMustSucceed) {
1697    assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1698    MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1699    if (CreationMustSucceed)
1700      assert(NewAccess != nullptr && "Tried to create a memory access for a "
1701                                     "non-memory touching instruction");
1702    if (NewAccess) {
1703      assert((!Definition || !isa<MemoryUse>(Definition)) &&
1704             "A use cannot be a defining access");
1705      NewAccess->setDefiningAccess(Definition);
1706    }
1707    return NewAccess;
1708  }
1709  
1710  // Return true if the instruction has ordering constraints.
1711  // Note specifically that this only considers stores and loads
1712  // because others are still considered ModRef by getModRefInfo.
1713  static inline bool isOrdered(const Instruction *I) {
1714    if (auto *SI = dyn_cast<StoreInst>(I)) {
1715      if (!SI->isUnordered())
1716        return true;
1717    } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1718      if (!LI->isUnordered())
1719        return true;
1720    }
1721    return false;
1722  }
1723  
1724  /// Helper function to create new memory accesses
1725  template <typename AliasAnalysisType>
1726  MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1727                                             AliasAnalysisType *AAP,
1728                                             const MemoryUseOrDef *Template) {
1729    // The assume intrinsic has a control dependency which we model by claiming
1730    // that it writes arbitrarily. Debuginfo intrinsics may be considered
1731    // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1732    // dependencies here.
1733    // FIXME: Replace this special casing with a more accurate modelling of
1734    // assume's control dependency.
1735    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1736      switch (II->getIntrinsicID()) {
1737      default:
1738        break;
1739      case Intrinsic::assume:
1740      case Intrinsic::experimental_noalias_scope_decl:
1741      case Intrinsic::pseudoprobe:
1742        return nullptr;
1743      }
1744    }
1745  
1746    // Using a nonstandard AA pipelines might leave us with unexpected modref
1747    // results for I, so add a check to not model instructions that may not read
1748    // from or write to memory. This is necessary for correctness.
1749    if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1750      return nullptr;
1751  
1752    bool Def, Use;
1753    if (Template) {
1754      Def = isa<MemoryDef>(Template);
1755      Use = isa<MemoryUse>(Template);
1756  #if !defined(NDEBUG)
1757      ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1758      bool DefCheck, UseCheck;
1759      DefCheck = isModSet(ModRef) || isOrdered(I);
1760      UseCheck = isRefSet(ModRef);
1761      // Memory accesses should only be reduced and can not be increased since AA
1762      // just might return better results as a result of some transformations.
1763      assert((Def == DefCheck || !DefCheck) &&
1764             "Memory accesses should only be reduced");
1765      if (!Def && Use != UseCheck) {
1766        // New Access should not have more power than template access
1767        assert(!UseCheck && "Invalid template");
1768      }
1769  #endif
1770    } else {
1771      // Find out what affect this instruction has on memory.
1772      ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1773      // The isOrdered check is used to ensure that volatiles end up as defs
1774      // (atomics end up as ModRef right now anyway).  Until we separate the
1775      // ordering chain from the memory chain, this enables people to see at least
1776      // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1777      // will still give an answer that bypasses other volatile loads.  TODO:
1778      // Separate memory aliasing and ordering into two different chains so that
1779      // we can precisely represent both "what memory will this read/write/is
1780      // clobbered by" and "what instructions can I move this past".
1781      Def = isModSet(ModRef) || isOrdered(I);
1782      Use = isRefSet(ModRef);
1783    }
1784  
1785    // It's possible for an instruction to not modify memory at all. During
1786    // construction, we ignore them.
1787    if (!Def && !Use)
1788      return nullptr;
1789  
1790    MemoryUseOrDef *MUD;
1791    if (Def)
1792      MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1793    else
1794      MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1795    ValueToMemoryAccess[I] = MUD;
1796    return MUD;
1797  }
1798  
1799  /// Properly remove \p MA from all of MemorySSA's lookup tables.
1800  void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1801    assert(MA->use_empty() &&
1802           "Trying to remove memory access that still has uses");
1803    BlockNumbering.erase(MA);
1804    if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1805      MUD->setDefiningAccess(nullptr);
1806    // Invalidate our walker's cache if necessary
1807    if (!isa<MemoryUse>(MA))
1808      getWalker()->invalidateInfo(MA);
1809  
1810    Value *MemoryInst;
1811    if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1812      MemoryInst = MUD->getMemoryInst();
1813    else
1814      MemoryInst = MA->getBlock();
1815  
1816    auto VMA = ValueToMemoryAccess.find(MemoryInst);
1817    if (VMA->second == MA)
1818      ValueToMemoryAccess.erase(VMA);
1819  }
1820  
1821  /// Properly remove \p MA from all of MemorySSA's lists.
1822  ///
1823  /// Because of the way the intrusive list and use lists work, it is important to
1824  /// do removal in the right order.
1825  /// ShouldDelete defaults to true, and will cause the memory access to also be
1826  /// deleted, not just removed.
1827  void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1828    BasicBlock *BB = MA->getBlock();
1829    // The access list owns the reference, so we erase it from the non-owning list
1830    // first.
1831    if (!isa<MemoryUse>(MA)) {
1832      auto DefsIt = PerBlockDefs.find(BB);
1833      std::unique_ptr<DefsList> &Defs = DefsIt->second;
1834      Defs->remove(*MA);
1835      if (Defs->empty())
1836        PerBlockDefs.erase(DefsIt);
1837    }
1838  
1839    // The erase call here will delete it. If we don't want it deleted, we call
1840    // remove instead.
1841    auto AccessIt = PerBlockAccesses.find(BB);
1842    std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1843    if (ShouldDelete)
1844      Accesses->erase(MA);
1845    else
1846      Accesses->remove(MA);
1847  
1848    if (Accesses->empty()) {
1849      PerBlockAccesses.erase(AccessIt);
1850      BlockNumberingValid.erase(BB);
1851    }
1852  }
1853  
1854  void MemorySSA::print(raw_ostream &OS) const {
1855    MemorySSAAnnotatedWriter Writer(this);
1856    F.print(OS, &Writer);
1857  }
1858  
1859  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1860  LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1861  #endif
1862  
1863  void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1864  #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1865    VL = VerificationLevel::Full;
1866  #endif
1867  
1868  #ifndef NDEBUG
1869    verifyOrderingDominationAndDefUses(F, VL);
1870    verifyDominationNumbers(F);
1871    if (VL == VerificationLevel::Full)
1872      verifyPrevDefInPhis(F);
1873  #endif
1874    // Previously, the verification used to also verify that the clobberingAccess
1875    // cached by MemorySSA is the same as the clobberingAccess found at a later
1876    // query to AA. This does not hold true in general due to the current fragility
1877    // of BasicAA which has arbitrary caps on the things it analyzes before giving
1878    // up. As a result, transformations that are correct, will lead to BasicAA
1879    // returning different Alias answers before and after that transformation.
1880    // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1881    // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1882    // every transformation, which defeats the purpose of using it. For such an
1883    // example, see test4 added in D51960.
1884  }
1885  
1886  void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1887    for (const BasicBlock &BB : F) {
1888      if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1889        for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1890          auto *Pred = Phi->getIncomingBlock(I);
1891          auto *IncAcc = Phi->getIncomingValue(I);
1892          // If Pred has no unreachable predecessors, get last def looking at
1893          // IDoms. If, while walkings IDoms, any of these has an unreachable
1894          // predecessor, then the incoming def can be any access.
1895          if (auto *DTNode = DT->getNode(Pred)) {
1896            while (DTNode) {
1897              if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1898                auto *LastAcc = &*(--DefList->end());
1899                assert(LastAcc == IncAcc &&
1900                       "Incorrect incoming access into phi.");
1901                (void)IncAcc;
1902                (void)LastAcc;
1903                break;
1904              }
1905              DTNode = DTNode->getIDom();
1906            }
1907          } else {
1908            // If Pred has unreachable predecessors, but has at least a Def, the
1909            // incoming access can be the last Def in Pred, or it could have been
1910            // optimized to LoE. After an update, though, the LoE may have been
1911            // replaced by another access, so IncAcc may be any access.
1912            // If Pred has unreachable predecessors and no Defs, incoming access
1913            // should be LoE; However, after an update, it may be any access.
1914          }
1915        }
1916      }
1917    }
1918  }
1919  
1920  /// Verify that all of the blocks we believe to have valid domination numbers
1921  /// actually have valid domination numbers.
1922  void MemorySSA::verifyDominationNumbers(const Function &F) const {
1923    if (BlockNumberingValid.empty())
1924      return;
1925  
1926    SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1927    for (const BasicBlock &BB : F) {
1928      if (!ValidBlocks.count(&BB))
1929        continue;
1930  
1931      ValidBlocks.erase(&BB);
1932  
1933      const AccessList *Accesses = getBlockAccesses(&BB);
1934      // It's correct to say an empty block has valid numbering.
1935      if (!Accesses)
1936        continue;
1937  
1938      // Block numbering starts at 1.
1939      unsigned long LastNumber = 0;
1940      for (const MemoryAccess &MA : *Accesses) {
1941        auto ThisNumberIter = BlockNumbering.find(&MA);
1942        assert(ThisNumberIter != BlockNumbering.end() &&
1943               "MemoryAccess has no domination number in a valid block!");
1944  
1945        unsigned long ThisNumber = ThisNumberIter->second;
1946        assert(ThisNumber > LastNumber &&
1947               "Domination numbers should be strictly increasing!");
1948        (void)LastNumber;
1949        LastNumber = ThisNumber;
1950      }
1951    }
1952  
1953    assert(ValidBlocks.empty() &&
1954           "All valid BasicBlocks should exist in F -- dangling pointers?");
1955  }
1956  
1957  /// Verify ordering: the order and existence of MemoryAccesses matches the
1958  /// order and existence of memory affecting instructions.
1959  /// Verify domination: each definition dominates all of its uses.
1960  /// Verify def-uses: the immediate use information - walk all the memory
1961  /// accesses and verifying that, for each use, it appears in the appropriate
1962  /// def's use list
1963  void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
1964                                                     VerificationLevel VL) const {
1965    // Walk all the blocks, comparing what the lookups think and what the access
1966    // lists think, as well as the order in the blocks vs the order in the access
1967    // lists.
1968    SmallVector<MemoryAccess *, 32> ActualAccesses;
1969    SmallVector<MemoryAccess *, 32> ActualDefs;
1970    for (BasicBlock &B : F) {
1971      const AccessList *AL = getBlockAccesses(&B);
1972      const auto *DL = getBlockDefs(&B);
1973      MemoryPhi *Phi = getMemoryAccess(&B);
1974      if (Phi) {
1975        // Verify ordering.
1976        ActualAccesses.push_back(Phi);
1977        ActualDefs.push_back(Phi);
1978        // Verify domination
1979        for (const Use &U : Phi->uses()) {
1980          assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1981          (void)U;
1982        }
1983        // Verify def-uses for full verify.
1984        if (VL == VerificationLevel::Full) {
1985          assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1986                                              pred_begin(&B), pred_end(&B))) &&
1987                 "Incomplete MemoryPhi Node");
1988          for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1989            verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1990            assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1991                   "Incoming phi block not a block predecessor");
1992          }
1993        }
1994      }
1995  
1996      for (Instruction &I : B) {
1997        MemoryUseOrDef *MA = getMemoryAccess(&I);
1998        assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1999               "We have memory affecting instructions "
2000               "in this block but they are not in the "
2001               "access list or defs list");
2002        if (MA) {
2003          // Verify ordering.
2004          ActualAccesses.push_back(MA);
2005          if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2006            // Verify ordering.
2007            ActualDefs.push_back(MA);
2008            // Verify domination.
2009            for (const Use &U : MD->uses()) {
2010              assert(dominates(MD, U) &&
2011                     "Memory Def does not dominate it's uses");
2012              (void)U;
2013            }
2014          }
2015          // Verify def-uses for full verify.
2016          if (VL == VerificationLevel::Full)
2017            verifyUseInDefs(MA->getDefiningAccess(), MA);
2018        }
2019      }
2020      // Either we hit the assert, really have no accesses, or we have both
2021      // accesses and an access list. Same with defs.
2022      if (!AL && !DL)
2023        continue;
2024      // Verify ordering.
2025      assert(AL->size() == ActualAccesses.size() &&
2026             "We don't have the same number of accesses in the block as on the "
2027             "access list");
2028      assert((DL || ActualDefs.size() == 0) &&
2029             "Either we should have a defs list, or we should have no defs");
2030      assert((!DL || DL->size() == ActualDefs.size()) &&
2031             "We don't have the same number of defs in the block as on the "
2032             "def list");
2033      auto ALI = AL->begin();
2034      auto AAI = ActualAccesses.begin();
2035      while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2036        assert(&*ALI == *AAI && "Not the same accesses in the same order");
2037        ++ALI;
2038        ++AAI;
2039      }
2040      ActualAccesses.clear();
2041      if (DL) {
2042        auto DLI = DL->begin();
2043        auto ADI = ActualDefs.begin();
2044        while (DLI != DL->end() && ADI != ActualDefs.end()) {
2045          assert(&*DLI == *ADI && "Not the same defs in the same order");
2046          ++DLI;
2047          ++ADI;
2048        }
2049      }
2050      ActualDefs.clear();
2051    }
2052  }
2053  
2054  /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2055  /// appears in the use list of \p Def.
2056  void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2057    // The live on entry use may cause us to get a NULL def here
2058    if (!Def)
2059      assert(isLiveOnEntryDef(Use) &&
2060             "Null def but use not point to live on entry def");
2061    else
2062      assert(is_contained(Def->users(), Use) &&
2063             "Did not find use in def's use list");
2064  }
2065  
2066  /// Perform a local numbering on blocks so that instruction ordering can be
2067  /// determined in constant time.
2068  /// TODO: We currently just number in order.  If we numbered by N, we could
2069  /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2070  /// log2(N) sequences of mixed before and after) without needing to invalidate
2071  /// the numbering.
2072  void MemorySSA::renumberBlock(const BasicBlock *B) const {
2073    // The pre-increment ensures the numbers really start at 1.
2074    unsigned long CurrentNumber = 0;
2075    const AccessList *AL = getBlockAccesses(B);
2076    assert(AL != nullptr && "Asking to renumber an empty block");
2077    for (const auto &I : *AL)
2078      BlockNumbering[&I] = ++CurrentNumber;
2079    BlockNumberingValid.insert(B);
2080  }
2081  
2082  /// Determine, for two memory accesses in the same block,
2083  /// whether \p Dominator dominates \p Dominatee.
2084  /// \returns True if \p Dominator dominates \p Dominatee.
2085  bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2086                                   const MemoryAccess *Dominatee) const {
2087    const BasicBlock *DominatorBlock = Dominator->getBlock();
2088  
2089    assert((DominatorBlock == Dominatee->getBlock()) &&
2090           "Asking for local domination when accesses are in different blocks!");
2091    // A node dominates itself.
2092    if (Dominatee == Dominator)
2093      return true;
2094  
2095    // When Dominatee is defined on function entry, it is not dominated by another
2096    // memory access.
2097    if (isLiveOnEntryDef(Dominatee))
2098      return false;
2099  
2100    // When Dominator is defined on function entry, it dominates the other memory
2101    // access.
2102    if (isLiveOnEntryDef(Dominator))
2103      return true;
2104  
2105    if (!BlockNumberingValid.count(DominatorBlock))
2106      renumberBlock(DominatorBlock);
2107  
2108    unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2109    // All numbers start with 1
2110    assert(DominatorNum != 0 && "Block was not numbered properly");
2111    unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2112    assert(DominateeNum != 0 && "Block was not numbered properly");
2113    return DominatorNum < DominateeNum;
2114  }
2115  
2116  bool MemorySSA::dominates(const MemoryAccess *Dominator,
2117                            const MemoryAccess *Dominatee) const {
2118    if (Dominator == Dominatee)
2119      return true;
2120  
2121    if (isLiveOnEntryDef(Dominatee))
2122      return false;
2123  
2124    if (Dominator->getBlock() != Dominatee->getBlock())
2125      return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2126    return locallyDominates(Dominator, Dominatee);
2127  }
2128  
2129  bool MemorySSA::dominates(const MemoryAccess *Dominator,
2130                            const Use &Dominatee) const {
2131    if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2132      BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2133      // The def must dominate the incoming block of the phi.
2134      if (UseBB != Dominator->getBlock())
2135        return DT->dominates(Dominator->getBlock(), UseBB);
2136      // If the UseBB and the DefBB are the same, compare locally.
2137      return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2138    }
2139    // If it's not a PHI node use, the normal dominates can already handle it.
2140    return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2141  }
2142  
2143  void MemorySSA::ensureOptimizedUses() {
2144    if (IsOptimized)
2145      return;
2146  
2147    BatchAAResults BatchAA(*AA);
2148    ClobberWalkerBase WalkerBase(this, DT);
2149    CachingWalker WalkerLocal(this, &WalkerBase);
2150    OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2151    IsOptimized = true;
2152  }
2153  
2154  void MemoryAccess::print(raw_ostream &OS) const {
2155    switch (getValueID()) {
2156    case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2157    case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2158    case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2159    }
2160    llvm_unreachable("invalid value id");
2161  }
2162  
2163  void MemoryDef::print(raw_ostream &OS) const {
2164    MemoryAccess *UO = getDefiningAccess();
2165  
2166    auto printID = [&OS](MemoryAccess *A) {
2167      if (A && A->getID())
2168        OS << A->getID();
2169      else
2170        OS << LiveOnEntryStr;
2171    };
2172  
2173    OS << getID() << " = MemoryDef(";
2174    printID(UO);
2175    OS << ")";
2176  
2177    if (isOptimized()) {
2178      OS << "->";
2179      printID(getOptimized());
2180    }
2181  }
2182  
2183  void MemoryPhi::print(raw_ostream &OS) const {
2184    ListSeparator LS(",");
2185    OS << getID() << " = MemoryPhi(";
2186    for (const auto &Op : operands()) {
2187      BasicBlock *BB = getIncomingBlock(Op);
2188      MemoryAccess *MA = cast<MemoryAccess>(Op);
2189  
2190      OS << LS << '{';
2191      if (BB->hasName())
2192        OS << BB->getName();
2193      else
2194        BB->printAsOperand(OS, false);
2195      OS << ',';
2196      if (unsigned ID = MA->getID())
2197        OS << ID;
2198      else
2199        OS << LiveOnEntryStr;
2200      OS << '}';
2201    }
2202    OS << ')';
2203  }
2204  
2205  void MemoryUse::print(raw_ostream &OS) const {
2206    MemoryAccess *UO = getDefiningAccess();
2207    OS << "MemoryUse(";
2208    if (UO && UO->getID())
2209      OS << UO->getID();
2210    else
2211      OS << LiveOnEntryStr;
2212    OS << ')';
2213  }
2214  
2215  void MemoryAccess::dump() const {
2216  // Cannot completely remove virtual function even in release mode.
2217  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2218    print(dbgs());
2219    dbgs() << "\n";
2220  #endif
2221  }
2222  
2223  char MemorySSAPrinterLegacyPass::ID = 0;
2224  
2225  MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2226    initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2227  }
2228  
2229  void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2230    AU.setPreservesAll();
2231    AU.addRequired<MemorySSAWrapperPass>();
2232  }
2233  
2234  class DOTFuncMSSAInfo {
2235  private:
2236    const Function &F;
2237    MemorySSAAnnotatedWriter MSSAWriter;
2238  
2239  public:
2240    DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2241        : F(F), MSSAWriter(&MSSA) {}
2242  
2243    const Function *getFunction() { return &F; }
2244    MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2245  };
2246  
2247  namespace llvm {
2248  
2249  template <>
2250  struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2251    static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2252      return &(CFGInfo->getFunction()->getEntryBlock());
2253    }
2254  
2255    // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2256    using nodes_iterator = pointer_iterator<Function::const_iterator>;
2257  
2258    static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2259      return nodes_iterator(CFGInfo->getFunction()->begin());
2260    }
2261  
2262    static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2263      return nodes_iterator(CFGInfo->getFunction()->end());
2264    }
2265  
2266    static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2267      return CFGInfo->getFunction()->size();
2268    }
2269  };
2270  
2271  template <>
2272  struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2273  
2274    DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2275  
2276    static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2277      return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2278             "' function";
2279    }
2280  
2281    std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2282      return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2283          Node, nullptr,
2284          [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2285            BB.print(OS, &CFGInfo->getWriter(), true, true);
2286          },
2287          [](std::string &S, unsigned &I, unsigned Idx) -> void {
2288            std::string Str = S.substr(I, Idx - I);
2289            StringRef SR = Str;
2290            if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2291                SR.count("MemoryUse("))
2292              return;
2293            DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2294          });
2295    }
2296  
2297    static std::string getEdgeSourceLabel(const BasicBlock *Node,
2298                                          const_succ_iterator I) {
2299      return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2300    }
2301  
2302    /// Display the raw branch weights from PGO.
2303    std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2304                                  DOTFuncMSSAInfo *CFGInfo) {
2305      return "";
2306    }
2307  
2308    std::string getNodeAttributes(const BasicBlock *Node,
2309                                  DOTFuncMSSAInfo *CFGInfo) {
2310      return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2311                 ? "style=filled, fillcolor=lightpink"
2312                 : "";
2313    }
2314  };
2315  
2316  } // namespace llvm
2317  
2318  bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2319    auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2320    MSSA.ensureOptimizedUses();
2321    if (DotCFGMSSA != "") {
2322      DOTFuncMSSAInfo CFGInfo(F, MSSA);
2323      WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2324    } else
2325      MSSA.print(dbgs());
2326  
2327    if (VerifyMemorySSA)
2328      MSSA.verifyMemorySSA();
2329    return false;
2330  }
2331  
2332  AnalysisKey MemorySSAAnalysis::Key;
2333  
2334  MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2335                                                   FunctionAnalysisManager &AM) {
2336    auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2337    auto &AA = AM.getResult<AAManager>(F);
2338    return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2339  }
2340  
2341  bool MemorySSAAnalysis::Result::invalidate(
2342      Function &F, const PreservedAnalyses &PA,
2343      FunctionAnalysisManager::Invalidator &Inv) {
2344    auto PAC = PA.getChecker<MemorySSAAnalysis>();
2345    return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2346           Inv.invalidate<AAManager>(F, PA) ||
2347           Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2348  }
2349  
2350  PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2351                                              FunctionAnalysisManager &AM) {
2352    auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2353    MSSA.ensureOptimizedUses();
2354    if (DotCFGMSSA != "") {
2355      DOTFuncMSSAInfo CFGInfo(F, MSSA);
2356      WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2357    } else {
2358      OS << "MemorySSA for function: " << F.getName() << "\n";
2359      MSSA.print(OS);
2360    }
2361  
2362    return PreservedAnalyses::all();
2363  }
2364  
2365  PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
2366                                                    FunctionAnalysisManager &AM) {
2367    auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2368    OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
2369    MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
2370    F.print(OS, &Writer);
2371  
2372    return PreservedAnalyses::all();
2373  }
2374  
2375  PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2376                                               FunctionAnalysisManager &AM) {
2377    AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2378  
2379    return PreservedAnalyses::all();
2380  }
2381  
2382  char MemorySSAWrapperPass::ID = 0;
2383  
2384  MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2385    initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2386  }
2387  
2388  void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2389  
2390  void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2391    AU.setPreservesAll();
2392    AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2393    AU.addRequiredTransitive<AAResultsWrapperPass>();
2394  }
2395  
2396  bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2397    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2398    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2399    MSSA.reset(new MemorySSA(F, &AA, &DT));
2400    return false;
2401  }
2402  
2403  void MemorySSAWrapperPass::verifyAnalysis() const {
2404    if (VerifyMemorySSA)
2405      MSSA->verifyMemorySSA();
2406  }
2407  
2408  void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2409    MSSA->print(OS);
2410  }
2411  
2412  MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2413  
2414  /// Walk the use-def chains starting at \p StartingAccess and find
2415  /// the MemoryAccess that actually clobbers Loc.
2416  ///
2417  /// \returns our clobbering memory access
2418  MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2419      MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2420      BatchAAResults &BAA, unsigned &UpwardWalkLimit) {
2421    assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2422  
2423    Instruction *I = nullptr;
2424    if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2425      if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2426        return StartingUseOrDef;
2427  
2428      I = StartingUseOrDef->getMemoryInst();
2429  
2430      // Conservatively, fences are always clobbers, so don't perform the walk if
2431      // we hit a fence.
2432      if (!isa<CallBase>(I) && I->isFenceLike())
2433        return StartingUseOrDef;
2434    }
2435  
2436    UpwardsMemoryQuery Q;
2437    Q.OriginalAccess = StartingAccess;
2438    Q.StartingLoc = Loc;
2439    Q.Inst = nullptr;
2440    Q.IsCall = false;
2441  
2442    // Unlike the other function, do not walk to the def of a def, because we are
2443    // handed something we already believe is the clobbering access.
2444    // We never set SkipSelf to true in Q in this method.
2445    MemoryAccess *Clobber =
2446        Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit);
2447    LLVM_DEBUG({
2448      dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2449      if (I)
2450        dbgs() << "  for instruction " << *I << "\n";
2451      dbgs() << "  is " << *Clobber << "\n";
2452    });
2453    return Clobber;
2454  }
2455  
2456  static const Instruction *
2457  getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2458    if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2459      return nullptr;
2460  
2461    // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2462    // stripping bitcasts and zero GEPs, then we will recursively look at loads
2463    // and stores through bitcasts and zero GEPs.
2464    Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2465  
2466    // It's not safe to walk the use list of a global value because function
2467    // passes aren't allowed to look outside their functions.
2468    // FIXME: this could be fixed by filtering instructions from outside of
2469    // current function.
2470    if (isa<Constant>(PointerOperand))
2471      return nullptr;
2472  
2473    // Queue to process all pointers that are equivalent to load operand.
2474    SmallVector<const Value *, 8> PointerUsesQueue;
2475    PointerUsesQueue.push_back(PointerOperand);
2476  
2477    const Instruction *MostDominatingInstruction = &I;
2478  
2479    // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2480    // we will see all the instructions. It may not matter in practice. If it
2481    // does, we will have to support MemorySSA construction and updates.
2482    while (!PointerUsesQueue.empty()) {
2483      const Value *Ptr = PointerUsesQueue.pop_back_val();
2484      assert(Ptr && !isa<GlobalValue>(Ptr) &&
2485             "Null or GlobalValue should not be inserted");
2486  
2487      for (const User *Us : Ptr->users()) {
2488        auto *U = dyn_cast<Instruction>(Us);
2489        if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2490          continue;
2491  
2492        // Add bitcasts and zero GEPs to queue.
2493        if (isa<BitCastInst>(U)) {
2494          PointerUsesQueue.push_back(U);
2495          continue;
2496        }
2497        if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2498          if (GEP->hasAllZeroIndices())
2499            PointerUsesQueue.push_back(U);
2500          continue;
2501        }
2502  
2503        // If we hit a load/store with an invariant.group metadata and the same
2504        // pointer operand, we can assume that value pointed to by the pointer
2505        // operand didn't change.
2506        if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2507            getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2508          MostDominatingInstruction = U;
2509        }
2510      }
2511    }
2512    return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2513  }
2514  
2515  MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2516      MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit,
2517      bool SkipSelf, bool UseInvariantGroup) {
2518    auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2519    // If this is a MemoryPhi, we can't do anything.
2520    if (!StartingAccess)
2521      return MA;
2522  
2523    if (UseInvariantGroup) {
2524      if (auto *I = getInvariantGroupClobberingInstruction(
2525              *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2526        assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2527  
2528        auto *ClobberMA = MSSA->getMemoryAccess(I);
2529        assert(ClobberMA);
2530        if (isa<MemoryUse>(ClobberMA))
2531          return ClobberMA->getDefiningAccess();
2532        return ClobberMA;
2533      }
2534    }
2535  
2536    bool IsOptimized = false;
2537  
2538    // If this is an already optimized use or def, return the optimized result.
2539    // Note: Currently, we store the optimized def result in a separate field,
2540    // since we can't use the defining access.
2541    if (StartingAccess->isOptimized()) {
2542      if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2543        return StartingAccess->getOptimized();
2544      IsOptimized = true;
2545    }
2546  
2547    const Instruction *I = StartingAccess->getMemoryInst();
2548    // We can't sanely do anything with a fence, since they conservatively clobber
2549    // all memory, and have no locations to get pointers from to try to
2550    // disambiguate.
2551    if (!isa<CallBase>(I) && I->isFenceLike())
2552      return StartingAccess;
2553  
2554    UpwardsMemoryQuery Q(I, StartingAccess);
2555  
2556    if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) {
2557      MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2558      StartingAccess->setOptimized(LiveOnEntry);
2559      return LiveOnEntry;
2560    }
2561  
2562    MemoryAccess *OptimizedAccess;
2563    if (!IsOptimized) {
2564      // Start with the thing we already think clobbers this location
2565      MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2566  
2567      // At this point, DefiningAccess may be the live on entry def.
2568      // If it is, we will not get a better result.
2569      if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2570        StartingAccess->setOptimized(DefiningAccess);
2571        return DefiningAccess;
2572      }
2573  
2574      OptimizedAccess =
2575          Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit);
2576      StartingAccess->setOptimized(OptimizedAccess);
2577    } else
2578      OptimizedAccess = StartingAccess->getOptimized();
2579  
2580    LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2581    LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2582    LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2583    LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2584  
2585    MemoryAccess *Result;
2586    if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2587        isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2588      assert(isa<MemoryDef>(Q.OriginalAccess));
2589      Q.SkipSelfAccess = true;
2590      Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit);
2591    } else
2592      Result = OptimizedAccess;
2593  
2594    LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2595    LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2596  
2597    return Result;
2598  }
2599  
2600  MemoryAccess *
2601  DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2602                                                      BatchAAResults &) {
2603    if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2604      return Use->getDefiningAccess();
2605    return MA;
2606  }
2607  
2608  MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2609      MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) {
2610    if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2611      return Use->getDefiningAccess();
2612    return StartingAccess;
2613  }
2614  
2615  void MemoryPhi::deleteMe(DerivedUser *Self) {
2616    delete static_cast<MemoryPhi *>(Self);
2617  }
2618  
2619  void MemoryDef::deleteMe(DerivedUser *Self) {
2620    delete static_cast<MemoryDef *>(Self);
2621  }
2622  
2623  void MemoryUse::deleteMe(DerivedUser *Self) {
2624    delete static_cast<MemoryUse *>(Self);
2625  }
2626  
2627  bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const {
2628    auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) {
2629      Ptr = Ptr->stripPointerCasts();
2630      if (!isa<Instruction>(Ptr))
2631        return true;
2632      return isa<AllocaInst>(Ptr);
2633    };
2634  
2635    Ptr = Ptr->stripPointerCasts();
2636    if (auto *I = dyn_cast<Instruction>(Ptr)) {
2637      if (I->getParent()->isEntryBlock())
2638        return true;
2639    }
2640    if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2641      return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2642             GEP->hasAllConstantIndices();
2643    }
2644    return IsGuaranteedLoopInvariantBase(Ptr);
2645  }
2646