xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSA.cpp (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CFGPrinter.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 static cl::opt<std::string>
63     DotCFGMSSA("dot-cfg-mssa",
64                cl::value_desc("file name for generated dot file"),
65                cl::desc("file name for generated dot file"), cl::init(""));
66 
67 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
68                       true)
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
72                     true)
73 
74 static cl::opt<unsigned> MaxCheckLimit(
75     "memssa-check-limit", cl::Hidden, cl::init(100),
76     cl::desc("The maximum number of stores/phis MemorySSA"
77              "will consider trying to walk past (default = 100)"));
78 
79 // Always verify MemorySSA if expensive checking is enabled.
80 #ifdef EXPENSIVE_CHECKS
81 bool llvm::VerifyMemorySSA = true;
82 #else
83 bool llvm::VerifyMemorySSA = false;
84 #endif
85 
86 static cl::opt<bool, true>
87     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
88                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
89 
90 const static char LiveOnEntryStr[] = "liveOnEntry";
91 
92 namespace {
93 
94 /// An assembly annotator class to print Memory SSA information in
95 /// comments.
96 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
97   const MemorySSA *MSSA;
98 
99 public:
100   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
101 
102   void emitBasicBlockStartAnnot(const BasicBlock *BB,
103                                 formatted_raw_ostream &OS) override {
104     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
105       OS << "; " << *MA << "\n";
106   }
107 
108   void emitInstructionAnnot(const Instruction *I,
109                             formatted_raw_ostream &OS) override {
110     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
111       OS << "; " << *MA << "\n";
112   }
113 };
114 
115 /// An assembly annotator class to print Memory SSA information in
116 /// comments.
117 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
118   MemorySSA *MSSA;
119   MemorySSAWalker *Walker;
120   BatchAAResults BAA;
121 
122 public:
123   MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
124       : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {}
125 
126   void emitBasicBlockStartAnnot(const BasicBlock *BB,
127                                 formatted_raw_ostream &OS) override {
128     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
129       OS << "; " << *MA << "\n";
130   }
131 
132   void emitInstructionAnnot(const Instruction *I,
133                             formatted_raw_ostream &OS) override {
134     if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
135       MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA);
136       OS << "; " << *MA;
137       if (Clobber) {
138         OS << " - clobbered by ";
139         if (MSSA->isLiveOnEntryDef(Clobber))
140           OS << LiveOnEntryStr;
141         else
142           OS << *Clobber;
143       }
144       OS << "\n";
145     }
146   }
147 };
148 
149 } // namespace
150 
151 namespace {
152 
153 /// Our current alias analysis API differentiates heavily between calls and
154 /// non-calls, and functions called on one usually assert on the other.
155 /// This class encapsulates the distinction to simplify other code that wants
156 /// "Memory affecting instructions and related data" to use as a key.
157 /// For example, this class is used as a densemap key in the use optimizer.
158 class MemoryLocOrCall {
159 public:
160   bool IsCall = false;
161 
162   MemoryLocOrCall(MemoryUseOrDef *MUD)
163       : MemoryLocOrCall(MUD->getMemoryInst()) {}
164   MemoryLocOrCall(const MemoryUseOrDef *MUD)
165       : MemoryLocOrCall(MUD->getMemoryInst()) {}
166 
167   MemoryLocOrCall(Instruction *Inst) {
168     if (auto *C = dyn_cast<CallBase>(Inst)) {
169       IsCall = true;
170       Call = C;
171     } else {
172       IsCall = false;
173       // There is no such thing as a memorylocation for a fence inst, and it is
174       // unique in that regard.
175       if (!isa<FenceInst>(Inst))
176         Loc = MemoryLocation::get(Inst);
177     }
178   }
179 
180   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
181 
182   const CallBase *getCall() const {
183     assert(IsCall);
184     return Call;
185   }
186 
187   MemoryLocation getLoc() const {
188     assert(!IsCall);
189     return Loc;
190   }
191 
192   bool operator==(const MemoryLocOrCall &Other) const {
193     if (IsCall != Other.IsCall)
194       return false;
195 
196     if (!IsCall)
197       return Loc == Other.Loc;
198 
199     if (Call->getCalledOperand() != Other.Call->getCalledOperand())
200       return false;
201 
202     return Call->arg_size() == Other.Call->arg_size() &&
203            std::equal(Call->arg_begin(), Call->arg_end(),
204                       Other.Call->arg_begin());
205   }
206 
207 private:
208   union {
209     const CallBase *Call;
210     MemoryLocation Loc;
211   };
212 };
213 
214 } // end anonymous namespace
215 
216 namespace llvm {
217 
218 template <> struct DenseMapInfo<MemoryLocOrCall> {
219   static inline MemoryLocOrCall getEmptyKey() {
220     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
221   }
222 
223   static inline MemoryLocOrCall getTombstoneKey() {
224     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
225   }
226 
227   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
228     if (!MLOC.IsCall)
229       return hash_combine(
230           MLOC.IsCall,
231           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
232 
233     hash_code hash =
234         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
235                                       MLOC.getCall()->getCalledOperand()));
236 
237     for (const Value *Arg : MLOC.getCall()->args())
238       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
239     return hash;
240   }
241 
242   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
243     return LHS == RHS;
244   }
245 };
246 
247 } // end namespace llvm
248 
249 /// This does one-way checks to see if Use could theoretically be hoisted above
250 /// MayClobber. This will not check the other way around.
251 ///
252 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
253 /// MayClobber, with no potentially clobbering operations in between them.
254 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
255 static bool areLoadsReorderable(const LoadInst *Use,
256                                 const LoadInst *MayClobber) {
257   bool VolatileUse = Use->isVolatile();
258   bool VolatileClobber = MayClobber->isVolatile();
259   // Volatile operations may never be reordered with other volatile operations.
260   if (VolatileUse && VolatileClobber)
261     return false;
262   // Otherwise, volatile doesn't matter here. From the language reference:
263   // 'optimizers may change the order of volatile operations relative to
264   // non-volatile operations.'"
265 
266   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
267   // is weaker, it can be moved above other loads. We just need to be sure that
268   // MayClobber isn't an acquire load, because loads can't be moved above
269   // acquire loads.
270   //
271   // Note that this explicitly *does* allow the free reordering of monotonic (or
272   // weaker) loads of the same address.
273   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
274   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
275                                                      AtomicOrdering::Acquire);
276   return !(SeqCstUse || MayClobberIsAcquire);
277 }
278 
279 template <typename AliasAnalysisType>
280 static bool
281 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
282                          const Instruction *UseInst, AliasAnalysisType &AA) {
283   Instruction *DefInst = MD->getMemoryInst();
284   assert(DefInst && "Defining instruction not actually an instruction");
285 
286   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
287     // These intrinsics will show up as affecting memory, but they are just
288     // markers, mostly.
289     //
290     // FIXME: We probably don't actually want MemorySSA to model these at all
291     // (including creating MemoryAccesses for them): we just end up inventing
292     // clobbers where they don't really exist at all. Please see D43269 for
293     // context.
294     switch (II->getIntrinsicID()) {
295     case Intrinsic::invariant_start:
296     case Intrinsic::invariant_end:
297     case Intrinsic::assume:
298     case Intrinsic::experimental_noalias_scope_decl:
299     case Intrinsic::pseudoprobe:
300       return false;
301     case Intrinsic::dbg_declare:
302     case Intrinsic::dbg_label:
303     case Intrinsic::dbg_value:
304       llvm_unreachable("debuginfo shouldn't have associated defs!");
305     default:
306       break;
307     }
308   }
309 
310   if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
311     ModRefInfo I = AA.getModRefInfo(DefInst, CB);
312     return isModOrRefSet(I);
313   }
314 
315   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
316     if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
317       return !areLoadsReorderable(UseLoad, DefLoad);
318 
319   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
320   return isModSet(I);
321 }
322 
323 template <typename AliasAnalysisType>
324 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
325                                      const MemoryLocOrCall &UseMLOC,
326                                      AliasAnalysisType &AA) {
327   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
328   // to exist while MemoryLocOrCall is pushed through places.
329   if (UseMLOC.IsCall)
330     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
331                                     AA);
332   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
333                                   AA);
334 }
335 
336 // Return true when MD may alias MU, return false otherwise.
337 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
338                                         AliasAnalysis &AA) {
339   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
340 }
341 
342 namespace {
343 
344 struct UpwardsMemoryQuery {
345   // True if our original query started off as a call
346   bool IsCall = false;
347   // The pointer location we started the query with. This will be empty if
348   // IsCall is true.
349   MemoryLocation StartingLoc;
350   // This is the instruction we were querying about.
351   const Instruction *Inst = nullptr;
352   // The MemoryAccess we actually got called with, used to test local domination
353   const MemoryAccess *OriginalAccess = nullptr;
354   bool SkipSelfAccess = false;
355 
356   UpwardsMemoryQuery() = default;
357 
358   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
359       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
360     if (!IsCall)
361       StartingLoc = MemoryLocation::get(Inst);
362   }
363 };
364 
365 } // end anonymous namespace
366 
367 template <typename AliasAnalysisType>
368 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
369                                                    const Instruction *I) {
370   // If the memory can't be changed, then loads of the memory can't be
371   // clobbered.
372   if (auto *LI = dyn_cast<LoadInst>(I)) {
373     return I->hasMetadata(LLVMContext::MD_invariant_load) ||
374            !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI)));
375   }
376   return false;
377 }
378 
379 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
380 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
381 ///
382 /// This is meant to be as simple and self-contained as possible. Because it
383 /// uses no cache, etc., it can be relatively expensive.
384 ///
385 /// \param Start     The MemoryAccess that we want to walk from.
386 /// \param ClobberAt A clobber for Start.
387 /// \param StartLoc  The MemoryLocation for Start.
388 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
389 /// \param Query     The UpwardsMemoryQuery we used for our search.
390 /// \param AA        The AliasAnalysis we used for our search.
391 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
392 
393 LLVM_ATTRIBUTE_UNUSED static void
394 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
395                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
396                    const UpwardsMemoryQuery &Query, BatchAAResults &AA,
397                    bool AllowImpreciseClobber = false) {
398   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
399 
400   if (MSSA.isLiveOnEntryDef(Start)) {
401     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
402            "liveOnEntry must clobber itself");
403     return;
404   }
405 
406   bool FoundClobber = false;
407   DenseSet<ConstMemoryAccessPair> VisitedPhis;
408   SmallVector<ConstMemoryAccessPair, 8> Worklist;
409   Worklist.emplace_back(Start, StartLoc);
410   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
411   // is found, complain.
412   while (!Worklist.empty()) {
413     auto MAP = Worklist.pop_back_val();
414     // All we care about is that nothing from Start to ClobberAt clobbers Start.
415     // We learn nothing from revisiting nodes.
416     if (!VisitedPhis.insert(MAP).second)
417       continue;
418 
419     for (const auto *MA : def_chain(MAP.first)) {
420       if (MA == ClobberAt) {
421         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
422           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
423           // since it won't let us short-circuit.
424           //
425           // Also, note that this can't be hoisted out of the `Worklist` loop,
426           // since MD may only act as a clobber for 1 of N MemoryLocations.
427           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
428           if (!FoundClobber) {
429             if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA))
430               FoundClobber = true;
431           }
432         }
433         break;
434       }
435 
436       // We should never hit liveOnEntry, unless it's the clobber.
437       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
438 
439       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
440         // If Start is a Def, skip self.
441         if (MD == Start)
442           continue;
443 
444         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
445                "Found clobber before reaching ClobberAt!");
446         continue;
447       }
448 
449       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
450         (void)MU;
451         assert (MU == Start &&
452                 "Can only find use in def chain if Start is a use");
453         continue;
454       }
455 
456       assert(isa<MemoryPhi>(MA));
457 
458       // Add reachable phi predecessors
459       for (auto ItB = upward_defs_begin(
460                     {const_cast<MemoryAccess *>(MA), MAP.second},
461                     MSSA.getDomTree()),
462                 ItE = upward_defs_end();
463            ItB != ItE; ++ItB)
464         if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
465           Worklist.emplace_back(*ItB);
466     }
467   }
468 
469   // If the verify is done following an optimization, it's possible that
470   // ClobberAt was a conservative clobbering, that we can now infer is not a
471   // true clobbering access. Don't fail the verify if that's the case.
472   // We do have accesses that claim they're optimized, but could be optimized
473   // further. Updating all these can be expensive, so allow it for now (FIXME).
474   if (AllowImpreciseClobber)
475     return;
476 
477   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
478   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
479   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
480          "ClobberAt never acted as a clobber");
481 }
482 
483 namespace {
484 
485 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
486 /// in one class.
487 class ClobberWalker {
488   /// Save a few bytes by using unsigned instead of size_t.
489   using ListIndex = unsigned;
490 
491   /// Represents a span of contiguous MemoryDefs, potentially ending in a
492   /// MemoryPhi.
493   struct DefPath {
494     MemoryLocation Loc;
495     // Note that, because we always walk in reverse, Last will always dominate
496     // First. Also note that First and Last are inclusive.
497     MemoryAccess *First;
498     MemoryAccess *Last;
499     std::optional<ListIndex> Previous;
500 
501     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
502             std::optional<ListIndex> Previous)
503         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
504 
505     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
506             std::optional<ListIndex> Previous)
507         : DefPath(Loc, Init, Init, Previous) {}
508   };
509 
510   const MemorySSA &MSSA;
511   DominatorTree &DT;
512   BatchAAResults *AA;
513   UpwardsMemoryQuery *Query;
514   unsigned *UpwardWalkLimit;
515 
516   // Phi optimization bookkeeping:
517   // List of DefPath to process during the current phi optimization walk.
518   SmallVector<DefPath, 32> Paths;
519   // List of visited <Access, Location> pairs; we can skip paths already
520   // visited with the same memory location.
521   DenseSet<ConstMemoryAccessPair> VisitedPhis;
522 
523   /// Find the nearest def or phi that `From` can legally be optimized to.
524   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
525     assert(From->getNumOperands() && "Phi with no operands?");
526 
527     BasicBlock *BB = From->getBlock();
528     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
529     DomTreeNode *Node = DT.getNode(BB);
530     while ((Node = Node->getIDom())) {
531       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
532       if (Defs)
533         return &*Defs->rbegin();
534     }
535     return Result;
536   }
537 
538   /// Result of calling walkToPhiOrClobber.
539   struct UpwardsWalkResult {
540     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
541     /// both. Include alias info when clobber found.
542     MemoryAccess *Result;
543     bool IsKnownClobber;
544   };
545 
546   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
547   /// This will update Desc.Last as it walks. It will (optionally) also stop at
548   /// StopAt.
549   ///
550   /// This does not test for whether StopAt is a clobber
551   UpwardsWalkResult
552   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
553                      const MemoryAccess *SkipStopAt = nullptr) const {
554     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
555     assert(UpwardWalkLimit && "Need a valid walk limit");
556     bool LimitAlreadyReached = false;
557     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
558     // it to 1. This will not do any alias() calls. It either returns in the
559     // first iteration in the loop below, or is set back to 0 if all def chains
560     // are free of MemoryDefs.
561     if (!*UpwardWalkLimit) {
562       *UpwardWalkLimit = 1;
563       LimitAlreadyReached = true;
564     }
565 
566     for (MemoryAccess *Current : def_chain(Desc.Last)) {
567       Desc.Last = Current;
568       if (Current == StopAt || Current == SkipStopAt)
569         return {Current, false};
570 
571       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
572         if (MSSA.isLiveOnEntryDef(MD))
573           return {MD, true};
574 
575         if (!--*UpwardWalkLimit)
576           return {Current, true};
577 
578         if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA))
579           return {MD, true};
580       }
581     }
582 
583     if (LimitAlreadyReached)
584       *UpwardWalkLimit = 0;
585 
586     assert(isa<MemoryPhi>(Desc.Last) &&
587            "Ended at a non-clobber that's not a phi?");
588     return {Desc.Last, false};
589   }
590 
591   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
592                    ListIndex PriorNode) {
593     auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT);
594     auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
595     for (const MemoryAccessPair &P : UpwardDefs) {
596       PausedSearches.push_back(Paths.size());
597       Paths.emplace_back(P.second, P.first, PriorNode);
598     }
599   }
600 
601   /// Represents a search that terminated after finding a clobber. This clobber
602   /// may or may not be present in the path of defs from LastNode..SearchStart,
603   /// since it may have been retrieved from cache.
604   struct TerminatedPath {
605     MemoryAccess *Clobber;
606     ListIndex LastNode;
607   };
608 
609   /// Get an access that keeps us from optimizing to the given phi.
610   ///
611   /// PausedSearches is an array of indices into the Paths array. Its incoming
612   /// value is the indices of searches that stopped at the last phi optimization
613   /// target. It's left in an unspecified state.
614   ///
615   /// If this returns std::nullopt, NewPaused is a vector of searches that
616   /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified
617   /// state.
618   std::optional<TerminatedPath>
619   getBlockingAccess(const MemoryAccess *StopWhere,
620                     SmallVectorImpl<ListIndex> &PausedSearches,
621                     SmallVectorImpl<ListIndex> &NewPaused,
622                     SmallVectorImpl<TerminatedPath> &Terminated) {
623     assert(!PausedSearches.empty() && "No searches to continue?");
624 
625     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
626     // PausedSearches as our stack.
627     while (!PausedSearches.empty()) {
628       ListIndex PathIndex = PausedSearches.pop_back_val();
629       DefPath &Node = Paths[PathIndex];
630 
631       // If we've already visited this path with this MemoryLocation, we don't
632       // need to do so again.
633       //
634       // NOTE: That we just drop these paths on the ground makes caching
635       // behavior sporadic. e.g. given a diamond:
636       //  A
637       // B C
638       //  D
639       //
640       // ...If we walk D, B, A, C, we'll only cache the result of phi
641       // optimization for A, B, and D; C will be skipped because it dies here.
642       // This arguably isn't the worst thing ever, since:
643       //   - We generally query things in a top-down order, so if we got below D
644       //     without needing cache entries for {C, MemLoc}, then chances are
645       //     that those cache entries would end up ultimately unused.
646       //   - We still cache things for A, so C only needs to walk up a bit.
647       // If this behavior becomes problematic, we can fix without a ton of extra
648       // work.
649       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
650         continue;
651 
652       const MemoryAccess *SkipStopWhere = nullptr;
653       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
654         assert(isa<MemoryDef>(Query->OriginalAccess));
655         SkipStopWhere = Query->OriginalAccess;
656       }
657 
658       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
659                                                  /*StopAt=*/StopWhere,
660                                                  /*SkipStopAt=*/SkipStopWhere);
661       if (Res.IsKnownClobber) {
662         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
663 
664         // If this wasn't a cache hit, we hit a clobber when walking. That's a
665         // failure.
666         TerminatedPath Term{Res.Result, PathIndex};
667         if (!MSSA.dominates(Res.Result, StopWhere))
668           return Term;
669 
670         // Otherwise, it's a valid thing to potentially optimize to.
671         Terminated.push_back(Term);
672         continue;
673       }
674 
675       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
676         // We've hit our target. Save this path off for if we want to continue
677         // walking. If we are in the mode of skipping the OriginalAccess, and
678         // we've reached back to the OriginalAccess, do not save path, we've
679         // just looped back to self.
680         if (Res.Result != SkipStopWhere)
681           NewPaused.push_back(PathIndex);
682         continue;
683       }
684 
685       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
686       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
687     }
688 
689     return std::nullopt;
690   }
691 
692   template <typename T, typename Walker>
693   struct generic_def_path_iterator
694       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
695                                     std::forward_iterator_tag, T *> {
696     generic_def_path_iterator() = default;
697     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
698 
699     T &operator*() const { return curNode(); }
700 
701     generic_def_path_iterator &operator++() {
702       N = curNode().Previous;
703       return *this;
704     }
705 
706     bool operator==(const generic_def_path_iterator &O) const {
707       if (N.has_value() != O.N.has_value())
708         return false;
709       return !N || *N == *O.N;
710     }
711 
712   private:
713     T &curNode() const { return W->Paths[*N]; }
714 
715     Walker *W = nullptr;
716     std::optional<ListIndex> N;
717   };
718 
719   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
720   using const_def_path_iterator =
721       generic_def_path_iterator<const DefPath, const ClobberWalker>;
722 
723   iterator_range<def_path_iterator> def_path(ListIndex From) {
724     return make_range(def_path_iterator(this, From), def_path_iterator());
725   }
726 
727   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
728     return make_range(const_def_path_iterator(this, From),
729                       const_def_path_iterator());
730   }
731 
732   struct OptznResult {
733     /// The path that contains our result.
734     TerminatedPath PrimaryClobber;
735     /// The paths that we can legally cache back from, but that aren't
736     /// necessarily the result of the Phi optimization.
737     SmallVector<TerminatedPath, 4> OtherClobbers;
738   };
739 
740   ListIndex defPathIndex(const DefPath &N) const {
741     // The assert looks nicer if we don't need to do &N
742     const DefPath *NP = &N;
743     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
744            "Out of bounds DefPath!");
745     return NP - &Paths.front();
746   }
747 
748   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
749   /// that act as legal clobbers. Note that this won't return *all* clobbers.
750   ///
751   /// Phi optimization algorithm tl;dr:
752   ///   - Find the earliest def/phi, A, we can optimize to
753   ///   - Find if all paths from the starting memory access ultimately reach A
754   ///     - If not, optimization isn't possible.
755   ///     - Otherwise, walk from A to another clobber or phi, A'.
756   ///       - If A' is a def, we're done.
757   ///       - If A' is a phi, try to optimize it.
758   ///
759   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
760   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
761   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
762                              const MemoryLocation &Loc) {
763     assert(Paths.empty() && VisitedPhis.empty() &&
764            "Reset the optimization state.");
765 
766     Paths.emplace_back(Loc, Start, Phi, std::nullopt);
767     // Stores how many "valid" optimization nodes we had prior to calling
768     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
769     auto PriorPathsSize = Paths.size();
770 
771     SmallVector<ListIndex, 16> PausedSearches;
772     SmallVector<ListIndex, 8> NewPaused;
773     SmallVector<TerminatedPath, 4> TerminatedPaths;
774 
775     addSearches(Phi, PausedSearches, 0);
776 
777     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
778     // Paths.
779     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
780       assert(!Paths.empty() && "Need a path to move");
781       auto Dom = Paths.begin();
782       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
783         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
784           Dom = I;
785       auto Last = Paths.end() - 1;
786       if (Last != Dom)
787         std::iter_swap(Last, Dom);
788     };
789 
790     MemoryPhi *Current = Phi;
791     while (true) {
792       assert(!MSSA.isLiveOnEntryDef(Current) &&
793              "liveOnEntry wasn't treated as a clobber?");
794 
795       const auto *Target = getWalkTarget(Current);
796       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
797       // optimization for the prior phi.
798       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
799         return MSSA.dominates(P.Clobber, Target);
800       }));
801 
802       // FIXME: This is broken, because the Blocker may be reported to be
803       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
804       // For the moment, this is fine, since we do nothing with blocker info.
805       if (std::optional<TerminatedPath> Blocker = getBlockingAccess(
806               Target, PausedSearches, NewPaused, TerminatedPaths)) {
807 
808         // Find the node we started at. We can't search based on N->Last, since
809         // we may have gone around a loop with a different MemoryLocation.
810         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
811           return defPathIndex(N) < PriorPathsSize;
812         });
813         assert(Iter != def_path_iterator());
814 
815         DefPath &CurNode = *Iter;
816         assert(CurNode.Last == Current);
817 
818         // Two things:
819         // A. We can't reliably cache all of NewPaused back. Consider a case
820         //    where we have two paths in NewPaused; one of which can't optimize
821         //    above this phi, whereas the other can. If we cache the second path
822         //    back, we'll end up with suboptimal cache entries. We can handle
823         //    cases like this a bit better when we either try to find all
824         //    clobbers that block phi optimization, or when our cache starts
825         //    supporting unfinished searches.
826         // B. We can't reliably cache TerminatedPaths back here without doing
827         //    extra checks; consider a case like:
828         //       T
829         //      / \
830         //     D   C
831         //      \ /
832         //       S
833         //    Where T is our target, C is a node with a clobber on it, D is a
834         //    diamond (with a clobber *only* on the left or right node, N), and
835         //    S is our start. Say we walk to D, through the node opposite N
836         //    (read: ignoring the clobber), and see a cache entry in the top
837         //    node of D. That cache entry gets put into TerminatedPaths. We then
838         //    walk up to C (N is later in our worklist), find the clobber, and
839         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
840         //    the bottom part of D to the cached clobber, ignoring the clobber
841         //    in N. Again, this problem goes away if we start tracking all
842         //    blockers for a given phi optimization.
843         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
844         return {Result, {}};
845       }
846 
847       // If there's nothing left to search, then all paths led to valid clobbers
848       // that we got from our cache; pick the nearest to the start, and allow
849       // the rest to be cached back.
850       if (NewPaused.empty()) {
851         MoveDominatedPathToEnd(TerminatedPaths);
852         TerminatedPath Result = TerminatedPaths.pop_back_val();
853         return {Result, std::move(TerminatedPaths)};
854       }
855 
856       MemoryAccess *DefChainEnd = nullptr;
857       SmallVector<TerminatedPath, 4> Clobbers;
858       for (ListIndex Paused : NewPaused) {
859         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
860         if (WR.IsKnownClobber)
861           Clobbers.push_back({WR.Result, Paused});
862         else
863           // Micro-opt: If we hit the end of the chain, save it.
864           DefChainEnd = WR.Result;
865       }
866 
867       if (!TerminatedPaths.empty()) {
868         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
869         // do it now.
870         if (!DefChainEnd)
871           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
872             DefChainEnd = MA;
873         assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
874 
875         // If any of the terminated paths don't dominate the phi we'll try to
876         // optimize, we need to figure out what they are and quit.
877         const BasicBlock *ChainBB = DefChainEnd->getBlock();
878         for (const TerminatedPath &TP : TerminatedPaths) {
879           // Because we know that DefChainEnd is as "high" as we can go, we
880           // don't need local dominance checks; BB dominance is sufficient.
881           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
882             Clobbers.push_back(TP);
883         }
884       }
885 
886       // If we have clobbers in the def chain, find the one closest to Current
887       // and quit.
888       if (!Clobbers.empty()) {
889         MoveDominatedPathToEnd(Clobbers);
890         TerminatedPath Result = Clobbers.pop_back_val();
891         return {Result, std::move(Clobbers)};
892       }
893 
894       assert(all_of(NewPaused,
895                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
896 
897       // Because liveOnEntry is a clobber, this must be a phi.
898       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
899 
900       PriorPathsSize = Paths.size();
901       PausedSearches.clear();
902       for (ListIndex I : NewPaused)
903         addSearches(DefChainPhi, PausedSearches, I);
904       NewPaused.clear();
905 
906       Current = DefChainPhi;
907     }
908   }
909 
910   void verifyOptResult(const OptznResult &R) const {
911     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
912       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
913     }));
914   }
915 
916   void resetPhiOptznState() {
917     Paths.clear();
918     VisitedPhis.clear();
919   }
920 
921 public:
922   ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT)
923       : MSSA(MSSA), DT(DT) {}
924 
925   /// Finds the nearest clobber for the given query, optimizing phis if
926   /// possible.
927   MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start,
928                             UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) {
929     AA = &BAA;
930     Query = &Q;
931     UpwardWalkLimit = &UpWalkLimit;
932     // Starting limit must be > 0.
933     if (!UpWalkLimit)
934       UpWalkLimit++;
935 
936     MemoryAccess *Current = Start;
937     // This walker pretends uses don't exist. If we're handed one, silently grab
938     // its def. (This has the nice side-effect of ensuring we never cache uses)
939     if (auto *MU = dyn_cast<MemoryUse>(Start))
940       Current = MU->getDefiningAccess();
941 
942     DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt);
943     // Fast path for the overly-common case (no crazy phi optimization
944     // necessary)
945     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
946     MemoryAccess *Result;
947     if (WalkResult.IsKnownClobber) {
948       Result = WalkResult.Result;
949     } else {
950       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
951                                           Current, Q.StartingLoc);
952       verifyOptResult(OptRes);
953       resetPhiOptznState();
954       Result = OptRes.PrimaryClobber.Clobber;
955     }
956 
957 #ifdef EXPENSIVE_CHECKS
958     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
959       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA);
960 #endif
961     return Result;
962   }
963 };
964 
965 struct RenamePassData {
966   DomTreeNode *DTN;
967   DomTreeNode::const_iterator ChildIt;
968   MemoryAccess *IncomingVal;
969 
970   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
971                  MemoryAccess *M)
972       : DTN(D), ChildIt(It), IncomingVal(M) {}
973 
974   void swap(RenamePassData &RHS) {
975     std::swap(DTN, RHS.DTN);
976     std::swap(ChildIt, RHS.ChildIt);
977     std::swap(IncomingVal, RHS.IncomingVal);
978   }
979 };
980 
981 } // end anonymous namespace
982 
983 namespace llvm {
984 
985 class MemorySSA::ClobberWalkerBase {
986   ClobberWalker Walker;
987   MemorySSA *MSSA;
988 
989 public:
990   ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {}
991 
992   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
993                                               const MemoryLocation &,
994                                               BatchAAResults &, unsigned &);
995   // Third argument (bool), defines whether the clobber search should skip the
996   // original queried access. If true, there will be a follow-up query searching
997   // for a clobber access past "self". Note that the Optimized access is not
998   // updated if a new clobber is found by this SkipSelf search. If this
999   // additional query becomes heavily used we may decide to cache the result.
1000   // Walker instantiations will decide how to set the SkipSelf bool.
1001   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &,
1002                                               unsigned &, bool,
1003                                               bool UseInvariantGroup = true);
1004 };
1005 
1006 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1007 /// longer does caching on its own, but the name has been retained for the
1008 /// moment.
1009 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1010   ClobberWalkerBase *Walker;
1011 
1012 public:
1013   CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
1014       : MemorySSAWalker(M), Walker(W) {}
1015   ~CachingWalker() override = default;
1016 
1017   using MemorySSAWalker::getClobberingMemoryAccess;
1018 
1019   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1020                                           unsigned &UWL) {
1021     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false);
1022   }
1023   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1024                                           const MemoryLocation &Loc,
1025                                           BatchAAResults &BAA, unsigned &UWL) {
1026     return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1027   }
1028   // This method is not accessible outside of this file.
1029   MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(
1030       MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) {
1031     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false);
1032   }
1033 
1034   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1035                                           BatchAAResults &BAA) override {
1036     unsigned UpwardWalkLimit = MaxCheckLimit;
1037     return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1038   }
1039   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1040                                           const MemoryLocation &Loc,
1041                                           BatchAAResults &BAA) override {
1042     unsigned UpwardWalkLimit = MaxCheckLimit;
1043     return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1044   }
1045 
1046   void invalidateInfo(MemoryAccess *MA) override {
1047     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1048       MUD->resetOptimized();
1049   }
1050 };
1051 
1052 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1053   ClobberWalkerBase *Walker;
1054 
1055 public:
1056   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1057       : MemorySSAWalker(M), Walker(W) {}
1058   ~SkipSelfWalker() override = default;
1059 
1060   using MemorySSAWalker::getClobberingMemoryAccess;
1061 
1062   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1063                                           unsigned &UWL) {
1064     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true);
1065   }
1066   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1067                                           const MemoryLocation &Loc,
1068                                           BatchAAResults &BAA, unsigned &UWL) {
1069     return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1070   }
1071 
1072   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1073                                           BatchAAResults &BAA) override {
1074     unsigned UpwardWalkLimit = MaxCheckLimit;
1075     return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1076   }
1077   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1078                                           const MemoryLocation &Loc,
1079                                           BatchAAResults &BAA) override {
1080     unsigned UpwardWalkLimit = MaxCheckLimit;
1081     return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1082   }
1083 
1084   void invalidateInfo(MemoryAccess *MA) override {
1085     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1086       MUD->resetOptimized();
1087   }
1088 };
1089 
1090 } // end namespace llvm
1091 
1092 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1093                                     bool RenameAllUses) {
1094   // Pass through values to our successors
1095   for (const BasicBlock *S : successors(BB)) {
1096     auto It = PerBlockAccesses.find(S);
1097     // Rename the phi nodes in our successor block
1098     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1099       continue;
1100     AccessList *Accesses = It->second.get();
1101     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1102     if (RenameAllUses) {
1103       bool ReplacementDone = false;
1104       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1105         if (Phi->getIncomingBlock(I) == BB) {
1106           Phi->setIncomingValue(I, IncomingVal);
1107           ReplacementDone = true;
1108         }
1109       (void) ReplacementDone;
1110       assert(ReplacementDone && "Incomplete phi during partial rename");
1111     } else
1112       Phi->addIncoming(IncomingVal, BB);
1113   }
1114 }
1115 
1116 /// Rename a single basic block into MemorySSA form.
1117 /// Uses the standard SSA renaming algorithm.
1118 /// \returns The new incoming value.
1119 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1120                                      bool RenameAllUses) {
1121   auto It = PerBlockAccesses.find(BB);
1122   // Skip most processing if the list is empty.
1123   if (It != PerBlockAccesses.end()) {
1124     AccessList *Accesses = It->second.get();
1125     for (MemoryAccess &L : *Accesses) {
1126       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1127         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1128           MUD->setDefiningAccess(IncomingVal);
1129         if (isa<MemoryDef>(&L))
1130           IncomingVal = &L;
1131       } else {
1132         IncomingVal = &L;
1133       }
1134     }
1135   }
1136   return IncomingVal;
1137 }
1138 
1139 /// This is the standard SSA renaming algorithm.
1140 ///
1141 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1142 /// in phi nodes in our successors.
1143 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1144                            SmallPtrSetImpl<BasicBlock *> &Visited,
1145                            bool SkipVisited, bool RenameAllUses) {
1146   assert(Root && "Trying to rename accesses in an unreachable block");
1147 
1148   SmallVector<RenamePassData, 32> WorkStack;
1149   // Skip everything if we already renamed this block and we are skipping.
1150   // Note: You can't sink this into the if, because we need it to occur
1151   // regardless of whether we skip blocks or not.
1152   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1153   if (SkipVisited && AlreadyVisited)
1154     return;
1155 
1156   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1157   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1158   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1159 
1160   while (!WorkStack.empty()) {
1161     DomTreeNode *Node = WorkStack.back().DTN;
1162     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1163     IncomingVal = WorkStack.back().IncomingVal;
1164 
1165     if (ChildIt == Node->end()) {
1166       WorkStack.pop_back();
1167     } else {
1168       DomTreeNode *Child = *ChildIt;
1169       ++WorkStack.back().ChildIt;
1170       BasicBlock *BB = Child->getBlock();
1171       // Note: You can't sink this into the if, because we need it to occur
1172       // regardless of whether we skip blocks or not.
1173       AlreadyVisited = !Visited.insert(BB).second;
1174       if (SkipVisited && AlreadyVisited) {
1175         // We already visited this during our renaming, which can happen when
1176         // being asked to rename multiple blocks. Figure out the incoming val,
1177         // which is the last def.
1178         // Incoming value can only change if there is a block def, and in that
1179         // case, it's the last block def in the list.
1180         if (auto *BlockDefs = getWritableBlockDefs(BB))
1181           IncomingVal = &*BlockDefs->rbegin();
1182       } else
1183         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1184       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1185       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1186     }
1187   }
1188 }
1189 
1190 /// This handles unreachable block accesses by deleting phi nodes in
1191 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1192 /// being uses of the live on entry definition.
1193 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1194   assert(!DT->isReachableFromEntry(BB) &&
1195          "Reachable block found while handling unreachable blocks");
1196 
1197   // Make sure phi nodes in our reachable successors end up with a
1198   // LiveOnEntryDef for our incoming edge, even though our block is forward
1199   // unreachable.  We could just disconnect these blocks from the CFG fully,
1200   // but we do not right now.
1201   for (const BasicBlock *S : successors(BB)) {
1202     if (!DT->isReachableFromEntry(S))
1203       continue;
1204     auto It = PerBlockAccesses.find(S);
1205     // Rename the phi nodes in our successor block
1206     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1207       continue;
1208     AccessList *Accesses = It->second.get();
1209     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1210     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1211   }
1212 
1213   auto It = PerBlockAccesses.find(BB);
1214   if (It == PerBlockAccesses.end())
1215     return;
1216 
1217   auto &Accesses = It->second;
1218   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1219     auto Next = std::next(AI);
1220     // If we have a phi, just remove it. We are going to replace all
1221     // users with live on entry.
1222     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1223       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1224     else
1225       Accesses->erase(AI);
1226     AI = Next;
1227   }
1228 }
1229 
1230 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1231     : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1232       SkipWalker(nullptr) {
1233   // Build MemorySSA using a batch alias analysis. This reuses the internal
1234   // state that AA collects during an alias()/getModRefInfo() call. This is
1235   // safe because there are no CFG changes while building MemorySSA and can
1236   // significantly reduce the time spent by the compiler in AA, because we will
1237   // make queries about all the instructions in the Function.
1238   assert(AA && "No alias analysis?");
1239   BatchAAResults BatchAA(*AA);
1240   buildMemorySSA(BatchAA);
1241   // Intentionally leave AA to nullptr while building so we don't accidently
1242   // use non-batch AliasAnalysis.
1243   this->AA = AA;
1244   // Also create the walker here.
1245   getWalker();
1246 }
1247 
1248 MemorySSA::~MemorySSA() {
1249   // Drop all our references
1250   for (const auto &Pair : PerBlockAccesses)
1251     for (MemoryAccess &MA : *Pair.second)
1252       MA.dropAllReferences();
1253 }
1254 
1255 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1256   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1257 
1258   if (Res.second)
1259     Res.first->second = std::make_unique<AccessList>();
1260   return Res.first->second.get();
1261 }
1262 
1263 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1264   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1265 
1266   if (Res.second)
1267     Res.first->second = std::make_unique<DefsList>();
1268   return Res.first->second.get();
1269 }
1270 
1271 namespace llvm {
1272 
1273 /// This class is a batch walker of all MemoryUse's in the program, and points
1274 /// their defining access at the thing that actually clobbers them.  Because it
1275 /// is a batch walker that touches everything, it does not operate like the
1276 /// other walkers.  This walker is basically performing a top-down SSA renaming
1277 /// pass, where the version stack is used as the cache.  This enables it to be
1278 /// significantly more time and memory efficient than using the regular walker,
1279 /// which is walking bottom-up.
1280 class MemorySSA::OptimizeUses {
1281 public:
1282   OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA,
1283                DominatorTree *DT)
1284       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1285 
1286   void optimizeUses();
1287 
1288 private:
1289   /// This represents where a given memorylocation is in the stack.
1290   struct MemlocStackInfo {
1291     // This essentially is keeping track of versions of the stack. Whenever
1292     // the stack changes due to pushes or pops, these versions increase.
1293     unsigned long StackEpoch;
1294     unsigned long PopEpoch;
1295     // This is the lower bound of places on the stack to check. It is equal to
1296     // the place the last stack walk ended.
1297     // Note: Correctness depends on this being initialized to 0, which densemap
1298     // does
1299     unsigned long LowerBound;
1300     const BasicBlock *LowerBoundBlock;
1301     // This is where the last walk for this memory location ended.
1302     unsigned long LastKill;
1303     bool LastKillValid;
1304   };
1305 
1306   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1307                            SmallVectorImpl<MemoryAccess *> &,
1308                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1309 
1310   MemorySSA *MSSA;
1311   CachingWalker *Walker;
1312   BatchAAResults *AA;
1313   DominatorTree *DT;
1314 };
1315 
1316 } // end namespace llvm
1317 
1318 /// Optimize the uses in a given block This is basically the SSA renaming
1319 /// algorithm, with one caveat: We are able to use a single stack for all
1320 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1321 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1322 /// going to be some position in that stack of possible ones.
1323 ///
1324 /// We track the stack positions that each MemoryLocation needs
1325 /// to check, and last ended at.  This is because we only want to check the
1326 /// things that changed since last time.  The same MemoryLocation should
1327 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1328 /// things like this, and if they start, we can modify MemoryLocOrCall to
1329 /// include relevant data)
1330 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1331     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1332     SmallVectorImpl<MemoryAccess *> &VersionStack,
1333     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1334 
1335   /// If no accesses, nothing to do.
1336   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1337   if (Accesses == nullptr)
1338     return;
1339 
1340   // Pop everything that doesn't dominate the current block off the stack,
1341   // increment the PopEpoch to account for this.
1342   while (true) {
1343     assert(
1344         !VersionStack.empty() &&
1345         "Version stack should have liveOnEntry sentinel dominating everything");
1346     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1347     if (DT->dominates(BackBlock, BB))
1348       break;
1349     while (VersionStack.back()->getBlock() == BackBlock)
1350       VersionStack.pop_back();
1351     ++PopEpoch;
1352   }
1353 
1354   for (MemoryAccess &MA : *Accesses) {
1355     auto *MU = dyn_cast<MemoryUse>(&MA);
1356     if (!MU) {
1357       VersionStack.push_back(&MA);
1358       ++StackEpoch;
1359       continue;
1360     }
1361 
1362     if (MU->isOptimized())
1363       continue;
1364 
1365     MemoryLocOrCall UseMLOC(MU);
1366     auto &LocInfo = LocStackInfo[UseMLOC];
1367     // If the pop epoch changed, it means we've removed stuff from top of
1368     // stack due to changing blocks. We may have to reset the lower bound or
1369     // last kill info.
1370     if (LocInfo.PopEpoch != PopEpoch) {
1371       LocInfo.PopEpoch = PopEpoch;
1372       LocInfo.StackEpoch = StackEpoch;
1373       // If the lower bound was in something that no longer dominates us, we
1374       // have to reset it.
1375       // We can't simply track stack size, because the stack may have had
1376       // pushes/pops in the meantime.
1377       // XXX: This is non-optimal, but only is slower cases with heavily
1378       // branching dominator trees.  To get the optimal number of queries would
1379       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1380       // the top of that stack dominates us.  This does not seem worth it ATM.
1381       // A much cheaper optimization would be to always explore the deepest
1382       // branch of the dominator tree first. This will guarantee this resets on
1383       // the smallest set of blocks.
1384       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1385           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1386         // Reset the lower bound of things to check.
1387         // TODO: Some day we should be able to reset to last kill, rather than
1388         // 0.
1389         LocInfo.LowerBound = 0;
1390         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1391         LocInfo.LastKillValid = false;
1392       }
1393     } else if (LocInfo.StackEpoch != StackEpoch) {
1394       // If all that has changed is the StackEpoch, we only have to check the
1395       // new things on the stack, because we've checked everything before.  In
1396       // this case, the lower bound of things to check remains the same.
1397       LocInfo.PopEpoch = PopEpoch;
1398       LocInfo.StackEpoch = StackEpoch;
1399     }
1400     if (!LocInfo.LastKillValid) {
1401       LocInfo.LastKill = VersionStack.size() - 1;
1402       LocInfo.LastKillValid = true;
1403     }
1404 
1405     // At this point, we should have corrected last kill and LowerBound to be
1406     // in bounds.
1407     assert(LocInfo.LowerBound < VersionStack.size() &&
1408            "Lower bound out of range");
1409     assert(LocInfo.LastKill < VersionStack.size() &&
1410            "Last kill info out of range");
1411     // In any case, the new upper bound is the top of the stack.
1412     unsigned long UpperBound = VersionStack.size() - 1;
1413 
1414     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1415       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1416                         << *(MU->getMemoryInst()) << ")"
1417                         << " because there are "
1418                         << UpperBound - LocInfo.LowerBound
1419                         << " stores to disambiguate\n");
1420       // Because we did not walk, LastKill is no longer valid, as this may
1421       // have been a kill.
1422       LocInfo.LastKillValid = false;
1423       continue;
1424     }
1425     bool FoundClobberResult = false;
1426     unsigned UpwardWalkLimit = MaxCheckLimit;
1427     while (UpperBound > LocInfo.LowerBound) {
1428       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1429         // For phis, use the walker, see where we ended up, go there.
1430         // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1431         // support updates, so don't use it to optimize uses.
1432         MemoryAccess *Result =
1433             Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1434                 MU, *AA, UpwardWalkLimit);
1435         // We are guaranteed to find it or something is wrong.
1436         while (VersionStack[UpperBound] != Result) {
1437           assert(UpperBound != 0);
1438           --UpperBound;
1439         }
1440         FoundClobberResult = true;
1441         break;
1442       }
1443 
1444       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1445       if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
1446         FoundClobberResult = true;
1447         break;
1448       }
1449       --UpperBound;
1450     }
1451 
1452     // At the end of this loop, UpperBound is either a clobber, or lower bound
1453     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1454     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1455       MU->setDefiningAccess(VersionStack[UpperBound], true);
1456       LocInfo.LastKill = UpperBound;
1457     } else {
1458       // Otherwise, we checked all the new ones, and now we know we can get to
1459       // LastKill.
1460       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
1461     }
1462     LocInfo.LowerBound = VersionStack.size() - 1;
1463     LocInfo.LowerBoundBlock = BB;
1464   }
1465 }
1466 
1467 /// Optimize uses to point to their actual clobbering definitions.
1468 void MemorySSA::OptimizeUses::optimizeUses() {
1469   SmallVector<MemoryAccess *, 16> VersionStack;
1470   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1471   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1472 
1473   unsigned long StackEpoch = 1;
1474   unsigned long PopEpoch = 1;
1475   // We perform a non-recursive top-down dominator tree walk.
1476   for (const auto *DomNode : depth_first(DT->getRootNode()))
1477     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1478                         LocStackInfo);
1479 }
1480 
1481 void MemorySSA::placePHINodes(
1482     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1483   // Determine where our MemoryPhi's should go
1484   ForwardIDFCalculator IDFs(*DT);
1485   IDFs.setDefiningBlocks(DefiningBlocks);
1486   SmallVector<BasicBlock *, 32> IDFBlocks;
1487   IDFs.calculate(IDFBlocks);
1488 
1489   // Now place MemoryPhi nodes.
1490   for (auto &BB : IDFBlocks)
1491     createMemoryPhi(BB);
1492 }
1493 
1494 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1495   // We create an access to represent "live on entry", for things like
1496   // arguments or users of globals, where the memory they use is defined before
1497   // the beginning of the function. We do not actually insert it into the IR.
1498   // We do not define a live on exit for the immediate uses, and thus our
1499   // semantics do *not* imply that something with no immediate uses can simply
1500   // be removed.
1501   BasicBlock &StartingPoint = F.getEntryBlock();
1502   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1503                                      &StartingPoint, NextID++));
1504 
1505   // We maintain lists of memory accesses per-block, trading memory for time. We
1506   // could just look up the memory access for every possible instruction in the
1507   // stream.
1508   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1509   // Go through each block, figure out where defs occur, and chain together all
1510   // the accesses.
1511   for (BasicBlock &B : F) {
1512     bool InsertIntoDef = false;
1513     AccessList *Accesses = nullptr;
1514     DefsList *Defs = nullptr;
1515     for (Instruction &I : B) {
1516       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1517       if (!MUD)
1518         continue;
1519 
1520       if (!Accesses)
1521         Accesses = getOrCreateAccessList(&B);
1522       Accesses->push_back(MUD);
1523       if (isa<MemoryDef>(MUD)) {
1524         InsertIntoDef = true;
1525         if (!Defs)
1526           Defs = getOrCreateDefsList(&B);
1527         Defs->push_back(*MUD);
1528       }
1529     }
1530     if (InsertIntoDef)
1531       DefiningBlocks.insert(&B);
1532   }
1533   placePHINodes(DefiningBlocks);
1534 
1535   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1536   // filled in with all blocks.
1537   SmallPtrSet<BasicBlock *, 16> Visited;
1538   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1539 
1540   // Mark the uses in unreachable blocks as live on entry, so that they go
1541   // somewhere.
1542   for (auto &BB : F)
1543     if (!Visited.count(&BB))
1544       markUnreachableAsLiveOnEntry(&BB);
1545 }
1546 
1547 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1548 
1549 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1550   if (Walker)
1551     return Walker.get();
1552 
1553   if (!WalkerBase)
1554     WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1555 
1556   Walker = std::make_unique<CachingWalker>(this, WalkerBase.get());
1557   return Walker.get();
1558 }
1559 
1560 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1561   if (SkipWalker)
1562     return SkipWalker.get();
1563 
1564   if (!WalkerBase)
1565     WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1566 
1567   SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1568   return SkipWalker.get();
1569  }
1570 
1571 
1572 // This is a helper function used by the creation routines. It places NewAccess
1573 // into the access and defs lists for a given basic block, at the given
1574 // insertion point.
1575 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1576                                         const BasicBlock *BB,
1577                                         InsertionPlace Point) {
1578   auto *Accesses = getOrCreateAccessList(BB);
1579   if (Point == Beginning) {
1580     // If it's a phi node, it goes first, otherwise, it goes after any phi
1581     // nodes.
1582     if (isa<MemoryPhi>(NewAccess)) {
1583       Accesses->push_front(NewAccess);
1584       auto *Defs = getOrCreateDefsList(BB);
1585       Defs->push_front(*NewAccess);
1586     } else {
1587       auto AI = find_if_not(
1588           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1589       Accesses->insert(AI, NewAccess);
1590       if (!isa<MemoryUse>(NewAccess)) {
1591         auto *Defs = getOrCreateDefsList(BB);
1592         auto DI = find_if_not(
1593             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1594         Defs->insert(DI, *NewAccess);
1595       }
1596     }
1597   } else {
1598     Accesses->push_back(NewAccess);
1599     if (!isa<MemoryUse>(NewAccess)) {
1600       auto *Defs = getOrCreateDefsList(BB);
1601       Defs->push_back(*NewAccess);
1602     }
1603   }
1604   BlockNumberingValid.erase(BB);
1605 }
1606 
1607 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1608                                       AccessList::iterator InsertPt) {
1609   auto *Accesses = getWritableBlockAccesses(BB);
1610   bool WasEnd = InsertPt == Accesses->end();
1611   Accesses->insert(AccessList::iterator(InsertPt), What);
1612   if (!isa<MemoryUse>(What)) {
1613     auto *Defs = getOrCreateDefsList(BB);
1614     // If we got asked to insert at the end, we have an easy job, just shove it
1615     // at the end. If we got asked to insert before an existing def, we also get
1616     // an iterator. If we got asked to insert before a use, we have to hunt for
1617     // the next def.
1618     if (WasEnd) {
1619       Defs->push_back(*What);
1620     } else if (isa<MemoryDef>(InsertPt)) {
1621       Defs->insert(InsertPt->getDefsIterator(), *What);
1622     } else {
1623       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1624         ++InsertPt;
1625       // Either we found a def, or we are inserting at the end
1626       if (InsertPt == Accesses->end())
1627         Defs->push_back(*What);
1628       else
1629         Defs->insert(InsertPt->getDefsIterator(), *What);
1630     }
1631   }
1632   BlockNumberingValid.erase(BB);
1633 }
1634 
1635 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1636   // Keep it in the lookup tables, remove from the lists
1637   removeFromLists(What, false);
1638 
1639   // Note that moving should implicitly invalidate the optimized state of a
1640   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1641   // MemoryDef.
1642   if (auto *MD = dyn_cast<MemoryDef>(What))
1643     MD->resetOptimized();
1644   What->setBlock(BB);
1645 }
1646 
1647 // Move What before Where in the IR.  The end result is that What will belong to
1648 // the right lists and have the right Block set, but will not otherwise be
1649 // correct. It will not have the right defining access, and if it is a def,
1650 // things below it will not properly be updated.
1651 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1652                        AccessList::iterator Where) {
1653   prepareForMoveTo(What, BB);
1654   insertIntoListsBefore(What, BB, Where);
1655 }
1656 
1657 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1658                        InsertionPlace Point) {
1659   if (isa<MemoryPhi>(What)) {
1660     assert(Point == Beginning &&
1661            "Can only move a Phi at the beginning of the block");
1662     // Update lookup table entry
1663     ValueToMemoryAccess.erase(What->getBlock());
1664     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1665     (void)Inserted;
1666     assert(Inserted && "Cannot move a Phi to a block that already has one");
1667   }
1668 
1669   prepareForMoveTo(What, BB);
1670   insertIntoListsForBlock(What, BB, Point);
1671 }
1672 
1673 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1674   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1675   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1676   // Phi's always are placed at the front of the block.
1677   insertIntoListsForBlock(Phi, BB, Beginning);
1678   ValueToMemoryAccess[BB] = Phi;
1679   return Phi;
1680 }
1681 
1682 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1683                                                MemoryAccess *Definition,
1684                                                const MemoryUseOrDef *Template,
1685                                                bool CreationMustSucceed) {
1686   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1687   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1688   if (CreationMustSucceed)
1689     assert(NewAccess != nullptr && "Tried to create a memory access for a "
1690                                    "non-memory touching instruction");
1691   if (NewAccess) {
1692     assert((!Definition || !isa<MemoryUse>(Definition)) &&
1693            "A use cannot be a defining access");
1694     NewAccess->setDefiningAccess(Definition);
1695   }
1696   return NewAccess;
1697 }
1698 
1699 // Return true if the instruction has ordering constraints.
1700 // Note specifically that this only considers stores and loads
1701 // because others are still considered ModRef by getModRefInfo.
1702 static inline bool isOrdered(const Instruction *I) {
1703   if (auto *SI = dyn_cast<StoreInst>(I)) {
1704     if (!SI->isUnordered())
1705       return true;
1706   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1707     if (!LI->isUnordered())
1708       return true;
1709   }
1710   return false;
1711 }
1712 
1713 /// Helper function to create new memory accesses
1714 template <typename AliasAnalysisType>
1715 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1716                                            AliasAnalysisType *AAP,
1717                                            const MemoryUseOrDef *Template) {
1718   // The assume intrinsic has a control dependency which we model by claiming
1719   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1720   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1721   // dependencies here.
1722   // FIXME: Replace this special casing with a more accurate modelling of
1723   // assume's control dependency.
1724   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1725     switch (II->getIntrinsicID()) {
1726     default:
1727       break;
1728     case Intrinsic::assume:
1729     case Intrinsic::experimental_noalias_scope_decl:
1730     case Intrinsic::pseudoprobe:
1731       return nullptr;
1732     }
1733   }
1734 
1735   // Using a nonstandard AA pipelines might leave us with unexpected modref
1736   // results for I, so add a check to not model instructions that may not read
1737   // from or write to memory. This is necessary for correctness.
1738   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1739     return nullptr;
1740 
1741   bool Def, Use;
1742   if (Template) {
1743     Def = isa<MemoryDef>(Template);
1744     Use = isa<MemoryUse>(Template);
1745 #if !defined(NDEBUG)
1746     ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1747     bool DefCheck, UseCheck;
1748     DefCheck = isModSet(ModRef) || isOrdered(I);
1749     UseCheck = isRefSet(ModRef);
1750     // Memory accesses should only be reduced and can not be increased since AA
1751     // just might return better results as a result of some transformations.
1752     assert((Def == DefCheck || !DefCheck) &&
1753            "Memory accesses should only be reduced");
1754     if (!Def && Use != UseCheck) {
1755       // New Access should not have more power than template access
1756       assert(!UseCheck && "Invalid template");
1757     }
1758 #endif
1759   } else {
1760     // Find out what affect this instruction has on memory.
1761     ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1762     // The isOrdered check is used to ensure that volatiles end up as defs
1763     // (atomics end up as ModRef right now anyway).  Until we separate the
1764     // ordering chain from the memory chain, this enables people to see at least
1765     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1766     // will still give an answer that bypasses other volatile loads.  TODO:
1767     // Separate memory aliasing and ordering into two different chains so that
1768     // we can precisely represent both "what memory will this read/write/is
1769     // clobbered by" and "what instructions can I move this past".
1770     Def = isModSet(ModRef) || isOrdered(I);
1771     Use = isRefSet(ModRef);
1772   }
1773 
1774   // It's possible for an instruction to not modify memory at all. During
1775   // construction, we ignore them.
1776   if (!Def && !Use)
1777     return nullptr;
1778 
1779   MemoryUseOrDef *MUD;
1780   if (Def) {
1781     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1782   } else {
1783     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1784     if (isUseTriviallyOptimizableToLiveOnEntry(*AAP, I)) {
1785       MemoryAccess *LiveOnEntry = getLiveOnEntryDef();
1786       MUD->setOptimized(LiveOnEntry);
1787     }
1788   }
1789   ValueToMemoryAccess[I] = MUD;
1790   return MUD;
1791 }
1792 
1793 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1794 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1795   assert(MA->use_empty() &&
1796          "Trying to remove memory access that still has uses");
1797   BlockNumbering.erase(MA);
1798   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1799     MUD->setDefiningAccess(nullptr);
1800   // Invalidate our walker's cache if necessary
1801   if (!isa<MemoryUse>(MA))
1802     getWalker()->invalidateInfo(MA);
1803 
1804   Value *MemoryInst;
1805   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1806     MemoryInst = MUD->getMemoryInst();
1807   else
1808     MemoryInst = MA->getBlock();
1809 
1810   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1811   if (VMA->second == MA)
1812     ValueToMemoryAccess.erase(VMA);
1813 }
1814 
1815 /// Properly remove \p MA from all of MemorySSA's lists.
1816 ///
1817 /// Because of the way the intrusive list and use lists work, it is important to
1818 /// do removal in the right order.
1819 /// ShouldDelete defaults to true, and will cause the memory access to also be
1820 /// deleted, not just removed.
1821 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1822   BasicBlock *BB = MA->getBlock();
1823   // The access list owns the reference, so we erase it from the non-owning list
1824   // first.
1825   if (!isa<MemoryUse>(MA)) {
1826     auto DefsIt = PerBlockDefs.find(BB);
1827     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1828     Defs->remove(*MA);
1829     if (Defs->empty())
1830       PerBlockDefs.erase(DefsIt);
1831   }
1832 
1833   // The erase call here will delete it. If we don't want it deleted, we call
1834   // remove instead.
1835   auto AccessIt = PerBlockAccesses.find(BB);
1836   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1837   if (ShouldDelete)
1838     Accesses->erase(MA);
1839   else
1840     Accesses->remove(MA);
1841 
1842   if (Accesses->empty()) {
1843     PerBlockAccesses.erase(AccessIt);
1844     BlockNumberingValid.erase(BB);
1845   }
1846 }
1847 
1848 void MemorySSA::print(raw_ostream &OS) const {
1849   MemorySSAAnnotatedWriter Writer(this);
1850   F.print(OS, &Writer);
1851 }
1852 
1853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1854 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1855 #endif
1856 
1857 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1858 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1859   VL = VerificationLevel::Full;
1860 #endif
1861 
1862 #ifndef NDEBUG
1863   verifyOrderingDominationAndDefUses(F, VL);
1864   verifyDominationNumbers(F);
1865   if (VL == VerificationLevel::Full)
1866     verifyPrevDefInPhis(F);
1867 #endif
1868   // Previously, the verification used to also verify that the clobberingAccess
1869   // cached by MemorySSA is the same as the clobberingAccess found at a later
1870   // query to AA. This does not hold true in general due to the current fragility
1871   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1872   // up. As a result, transformations that are correct, will lead to BasicAA
1873   // returning different Alias answers before and after that transformation.
1874   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1875   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1876   // every transformation, which defeats the purpose of using it. For such an
1877   // example, see test4 added in D51960.
1878 }
1879 
1880 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1881   for (const BasicBlock &BB : F) {
1882     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1883       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1884         auto *Pred = Phi->getIncomingBlock(I);
1885         auto *IncAcc = Phi->getIncomingValue(I);
1886         // If Pred has no unreachable predecessors, get last def looking at
1887         // IDoms. If, while walkings IDoms, any of these has an unreachable
1888         // predecessor, then the incoming def can be any access.
1889         if (auto *DTNode = DT->getNode(Pred)) {
1890           while (DTNode) {
1891             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1892               auto *LastAcc = &*(--DefList->end());
1893               assert(LastAcc == IncAcc &&
1894                      "Incorrect incoming access into phi.");
1895               (void)IncAcc;
1896               (void)LastAcc;
1897               break;
1898             }
1899             DTNode = DTNode->getIDom();
1900           }
1901         } else {
1902           // If Pred has unreachable predecessors, but has at least a Def, the
1903           // incoming access can be the last Def in Pred, or it could have been
1904           // optimized to LoE. After an update, though, the LoE may have been
1905           // replaced by another access, so IncAcc may be any access.
1906           // If Pred has unreachable predecessors and no Defs, incoming access
1907           // should be LoE; However, after an update, it may be any access.
1908         }
1909       }
1910     }
1911   }
1912 }
1913 
1914 /// Verify that all of the blocks we believe to have valid domination numbers
1915 /// actually have valid domination numbers.
1916 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1917   if (BlockNumberingValid.empty())
1918     return;
1919 
1920   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1921   for (const BasicBlock &BB : F) {
1922     if (!ValidBlocks.count(&BB))
1923       continue;
1924 
1925     ValidBlocks.erase(&BB);
1926 
1927     const AccessList *Accesses = getBlockAccesses(&BB);
1928     // It's correct to say an empty block has valid numbering.
1929     if (!Accesses)
1930       continue;
1931 
1932     // Block numbering starts at 1.
1933     unsigned long LastNumber = 0;
1934     for (const MemoryAccess &MA : *Accesses) {
1935       auto ThisNumberIter = BlockNumbering.find(&MA);
1936       assert(ThisNumberIter != BlockNumbering.end() &&
1937              "MemoryAccess has no domination number in a valid block!");
1938 
1939       unsigned long ThisNumber = ThisNumberIter->second;
1940       assert(ThisNumber > LastNumber &&
1941              "Domination numbers should be strictly increasing!");
1942       (void)LastNumber;
1943       LastNumber = ThisNumber;
1944     }
1945   }
1946 
1947   assert(ValidBlocks.empty() &&
1948          "All valid BasicBlocks should exist in F -- dangling pointers?");
1949 }
1950 
1951 /// Verify ordering: the order and existence of MemoryAccesses matches the
1952 /// order and existence of memory affecting instructions.
1953 /// Verify domination: each definition dominates all of its uses.
1954 /// Verify def-uses: the immediate use information - walk all the memory
1955 /// accesses and verifying that, for each use, it appears in the appropriate
1956 /// def's use list
1957 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
1958                                                    VerificationLevel VL) const {
1959   // Walk all the blocks, comparing what the lookups think and what the access
1960   // lists think, as well as the order in the blocks vs the order in the access
1961   // lists.
1962   SmallVector<MemoryAccess *, 32> ActualAccesses;
1963   SmallVector<MemoryAccess *, 32> ActualDefs;
1964   for (BasicBlock &B : F) {
1965     const AccessList *AL = getBlockAccesses(&B);
1966     const auto *DL = getBlockDefs(&B);
1967     MemoryPhi *Phi = getMemoryAccess(&B);
1968     if (Phi) {
1969       // Verify ordering.
1970       ActualAccesses.push_back(Phi);
1971       ActualDefs.push_back(Phi);
1972       // Verify domination
1973       for (const Use &U : Phi->uses()) {
1974         assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1975         (void)U;
1976       }
1977       // Verify def-uses for full verify.
1978       if (VL == VerificationLevel::Full) {
1979         assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1980                                             pred_begin(&B), pred_end(&B))) &&
1981                "Incomplete MemoryPhi Node");
1982         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1983           verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1984           assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1985                  "Incoming phi block not a block predecessor");
1986         }
1987       }
1988     }
1989 
1990     for (Instruction &I : B) {
1991       MemoryUseOrDef *MA = getMemoryAccess(&I);
1992       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1993              "We have memory affecting instructions "
1994              "in this block but they are not in the "
1995              "access list or defs list");
1996       if (MA) {
1997         // Verify ordering.
1998         ActualAccesses.push_back(MA);
1999         if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2000           // Verify ordering.
2001           ActualDefs.push_back(MA);
2002           // Verify domination.
2003           for (const Use &U : MD->uses()) {
2004             assert(dominates(MD, U) &&
2005                    "Memory Def does not dominate it's uses");
2006             (void)U;
2007           }
2008         }
2009         // Verify def-uses for full verify.
2010         if (VL == VerificationLevel::Full)
2011           verifyUseInDefs(MA->getDefiningAccess(), MA);
2012       }
2013     }
2014     // Either we hit the assert, really have no accesses, or we have both
2015     // accesses and an access list. Same with defs.
2016     if (!AL && !DL)
2017       continue;
2018     // Verify ordering.
2019     assert(AL->size() == ActualAccesses.size() &&
2020            "We don't have the same number of accesses in the block as on the "
2021            "access list");
2022     assert((DL || ActualDefs.size() == 0) &&
2023            "Either we should have a defs list, or we should have no defs");
2024     assert((!DL || DL->size() == ActualDefs.size()) &&
2025            "We don't have the same number of defs in the block as on the "
2026            "def list");
2027     auto ALI = AL->begin();
2028     auto AAI = ActualAccesses.begin();
2029     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2030       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2031       ++ALI;
2032       ++AAI;
2033     }
2034     ActualAccesses.clear();
2035     if (DL) {
2036       auto DLI = DL->begin();
2037       auto ADI = ActualDefs.begin();
2038       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2039         assert(&*DLI == *ADI && "Not the same defs in the same order");
2040         ++DLI;
2041         ++ADI;
2042       }
2043     }
2044     ActualDefs.clear();
2045   }
2046 }
2047 
2048 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2049 /// appears in the use list of \p Def.
2050 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2051   // The live on entry use may cause us to get a NULL def here
2052   if (!Def)
2053     assert(isLiveOnEntryDef(Use) &&
2054            "Null def but use not point to live on entry def");
2055   else
2056     assert(is_contained(Def->users(), Use) &&
2057            "Did not find use in def's use list");
2058 }
2059 
2060 /// Perform a local numbering on blocks so that instruction ordering can be
2061 /// determined in constant time.
2062 /// TODO: We currently just number in order.  If we numbered by N, we could
2063 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2064 /// log2(N) sequences of mixed before and after) without needing to invalidate
2065 /// the numbering.
2066 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2067   // The pre-increment ensures the numbers really start at 1.
2068   unsigned long CurrentNumber = 0;
2069   const AccessList *AL = getBlockAccesses(B);
2070   assert(AL != nullptr && "Asking to renumber an empty block");
2071   for (const auto &I : *AL)
2072     BlockNumbering[&I] = ++CurrentNumber;
2073   BlockNumberingValid.insert(B);
2074 }
2075 
2076 /// Determine, for two memory accesses in the same block,
2077 /// whether \p Dominator dominates \p Dominatee.
2078 /// \returns True if \p Dominator dominates \p Dominatee.
2079 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2080                                  const MemoryAccess *Dominatee) const {
2081   const BasicBlock *DominatorBlock = Dominator->getBlock();
2082 
2083   assert((DominatorBlock == Dominatee->getBlock()) &&
2084          "Asking for local domination when accesses are in different blocks!");
2085   // A node dominates itself.
2086   if (Dominatee == Dominator)
2087     return true;
2088 
2089   // When Dominatee is defined on function entry, it is not dominated by another
2090   // memory access.
2091   if (isLiveOnEntryDef(Dominatee))
2092     return false;
2093 
2094   // When Dominator is defined on function entry, it dominates the other memory
2095   // access.
2096   if (isLiveOnEntryDef(Dominator))
2097     return true;
2098 
2099   if (!BlockNumberingValid.count(DominatorBlock))
2100     renumberBlock(DominatorBlock);
2101 
2102   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2103   // All numbers start with 1
2104   assert(DominatorNum != 0 && "Block was not numbered properly");
2105   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2106   assert(DominateeNum != 0 && "Block was not numbered properly");
2107   return DominatorNum < DominateeNum;
2108 }
2109 
2110 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2111                           const MemoryAccess *Dominatee) const {
2112   if (Dominator == Dominatee)
2113     return true;
2114 
2115   if (isLiveOnEntryDef(Dominatee))
2116     return false;
2117 
2118   if (Dominator->getBlock() != Dominatee->getBlock())
2119     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2120   return locallyDominates(Dominator, Dominatee);
2121 }
2122 
2123 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2124                           const Use &Dominatee) const {
2125   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2126     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2127     // The def must dominate the incoming block of the phi.
2128     if (UseBB != Dominator->getBlock())
2129       return DT->dominates(Dominator->getBlock(), UseBB);
2130     // If the UseBB and the DefBB are the same, compare locally.
2131     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2132   }
2133   // If it's not a PHI node use, the normal dominates can already handle it.
2134   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2135 }
2136 
2137 void MemorySSA::ensureOptimizedUses() {
2138   if (IsOptimized)
2139     return;
2140 
2141   BatchAAResults BatchAA(*AA);
2142   ClobberWalkerBase WalkerBase(this, DT);
2143   CachingWalker WalkerLocal(this, &WalkerBase);
2144   OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2145   IsOptimized = true;
2146 }
2147 
2148 void MemoryAccess::print(raw_ostream &OS) const {
2149   switch (getValueID()) {
2150   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2151   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2152   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2153   }
2154   llvm_unreachable("invalid value id");
2155 }
2156 
2157 void MemoryDef::print(raw_ostream &OS) const {
2158   MemoryAccess *UO = getDefiningAccess();
2159 
2160   auto printID = [&OS](MemoryAccess *A) {
2161     if (A && A->getID())
2162       OS << A->getID();
2163     else
2164       OS << LiveOnEntryStr;
2165   };
2166 
2167   OS << getID() << " = MemoryDef(";
2168   printID(UO);
2169   OS << ")";
2170 
2171   if (isOptimized()) {
2172     OS << "->";
2173     printID(getOptimized());
2174   }
2175 }
2176 
2177 void MemoryPhi::print(raw_ostream &OS) const {
2178   ListSeparator LS(",");
2179   OS << getID() << " = MemoryPhi(";
2180   for (const auto &Op : operands()) {
2181     BasicBlock *BB = getIncomingBlock(Op);
2182     MemoryAccess *MA = cast<MemoryAccess>(Op);
2183 
2184     OS << LS << '{';
2185     if (BB->hasName())
2186       OS << BB->getName();
2187     else
2188       BB->printAsOperand(OS, false);
2189     OS << ',';
2190     if (unsigned ID = MA->getID())
2191       OS << ID;
2192     else
2193       OS << LiveOnEntryStr;
2194     OS << '}';
2195   }
2196   OS << ')';
2197 }
2198 
2199 void MemoryUse::print(raw_ostream &OS) const {
2200   MemoryAccess *UO = getDefiningAccess();
2201   OS << "MemoryUse(";
2202   if (UO && UO->getID())
2203     OS << UO->getID();
2204   else
2205     OS << LiveOnEntryStr;
2206   OS << ')';
2207 }
2208 
2209 void MemoryAccess::dump() const {
2210 // Cannot completely remove virtual function even in release mode.
2211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2212   print(dbgs());
2213   dbgs() << "\n";
2214 #endif
2215 }
2216 
2217 class DOTFuncMSSAInfo {
2218 private:
2219   const Function &F;
2220   MemorySSAAnnotatedWriter MSSAWriter;
2221 
2222 public:
2223   DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2224       : F(F), MSSAWriter(&MSSA) {}
2225 
2226   const Function *getFunction() { return &F; }
2227   MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2228 };
2229 
2230 namespace llvm {
2231 
2232 template <>
2233 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2234   static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2235     return &(CFGInfo->getFunction()->getEntryBlock());
2236   }
2237 
2238   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2239   using nodes_iterator = pointer_iterator<Function::const_iterator>;
2240 
2241   static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2242     return nodes_iterator(CFGInfo->getFunction()->begin());
2243   }
2244 
2245   static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2246     return nodes_iterator(CFGInfo->getFunction()->end());
2247   }
2248 
2249   static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2250     return CFGInfo->getFunction()->size();
2251   }
2252 };
2253 
2254 template <>
2255 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2256 
2257   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2258 
2259   static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2260     return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2261            "' function";
2262   }
2263 
2264   std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2265     return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2266         Node, nullptr,
2267         [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2268           BB.print(OS, &CFGInfo->getWriter(), true, true);
2269         },
2270         [](std::string &S, unsigned &I, unsigned Idx) -> void {
2271           std::string Str = S.substr(I, Idx - I);
2272           StringRef SR = Str;
2273           if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2274               SR.count("MemoryUse("))
2275             return;
2276           DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2277         });
2278   }
2279 
2280   static std::string getEdgeSourceLabel(const BasicBlock *Node,
2281                                         const_succ_iterator I) {
2282     return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2283   }
2284 
2285   /// Display the raw branch weights from PGO.
2286   std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2287                                 DOTFuncMSSAInfo *CFGInfo) {
2288     return "";
2289   }
2290 
2291   std::string getNodeAttributes(const BasicBlock *Node,
2292                                 DOTFuncMSSAInfo *CFGInfo) {
2293     return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2294                ? "style=filled, fillcolor=lightpink"
2295                : "";
2296   }
2297 };
2298 
2299 } // namespace llvm
2300 
2301 AnalysisKey MemorySSAAnalysis::Key;
2302 
2303 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2304                                                  FunctionAnalysisManager &AM) {
2305   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2306   auto &AA = AM.getResult<AAManager>(F);
2307   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2308 }
2309 
2310 bool MemorySSAAnalysis::Result::invalidate(
2311     Function &F, const PreservedAnalyses &PA,
2312     FunctionAnalysisManager::Invalidator &Inv) {
2313   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2314   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2315          Inv.invalidate<AAManager>(F, PA) ||
2316          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2317 }
2318 
2319 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2320                                             FunctionAnalysisManager &AM) {
2321   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2322   if (EnsureOptimizedUses)
2323     MSSA.ensureOptimizedUses();
2324   if (DotCFGMSSA != "") {
2325     DOTFuncMSSAInfo CFGInfo(F, MSSA);
2326     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2327   } else {
2328     OS << "MemorySSA for function: " << F.getName() << "\n";
2329     MSSA.print(OS);
2330   }
2331 
2332   return PreservedAnalyses::all();
2333 }
2334 
2335 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
2336                                                   FunctionAnalysisManager &AM) {
2337   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2338   OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
2339   MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
2340   F.print(OS, &Writer);
2341 
2342   return PreservedAnalyses::all();
2343 }
2344 
2345 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2346                                              FunctionAnalysisManager &AM) {
2347   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2348 
2349   return PreservedAnalyses::all();
2350 }
2351 
2352 char MemorySSAWrapperPass::ID = 0;
2353 
2354 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2355   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2356 }
2357 
2358 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2359 
2360 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2361   AU.setPreservesAll();
2362   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2363   AU.addRequiredTransitive<AAResultsWrapperPass>();
2364 }
2365 
2366 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2367   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2368   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2369   MSSA.reset(new MemorySSA(F, &AA, &DT));
2370   return false;
2371 }
2372 
2373 void MemorySSAWrapperPass::verifyAnalysis() const {
2374   if (VerifyMemorySSA)
2375     MSSA->verifyMemorySSA();
2376 }
2377 
2378 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2379   MSSA->print(OS);
2380 }
2381 
2382 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2383 
2384 /// Walk the use-def chains starting at \p StartingAccess and find
2385 /// the MemoryAccess that actually clobbers Loc.
2386 ///
2387 /// \returns our clobbering memory access
2388 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2389     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2390     BatchAAResults &BAA, unsigned &UpwardWalkLimit) {
2391   assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2392 
2393   // If location is undefined, conservatively return starting access.
2394   if (Loc.Ptr == nullptr)
2395     return StartingAccess;
2396 
2397   Instruction *I = nullptr;
2398   if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2399     if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2400       return StartingUseOrDef;
2401 
2402     I = StartingUseOrDef->getMemoryInst();
2403 
2404     // Conservatively, fences are always clobbers, so don't perform the walk if
2405     // we hit a fence.
2406     if (!isa<CallBase>(I) && I->isFenceLike())
2407       return StartingUseOrDef;
2408   }
2409 
2410   UpwardsMemoryQuery Q;
2411   Q.OriginalAccess = StartingAccess;
2412   Q.StartingLoc = Loc;
2413   Q.Inst = nullptr;
2414   Q.IsCall = false;
2415 
2416   // Unlike the other function, do not walk to the def of a def, because we are
2417   // handed something we already believe is the clobbering access.
2418   // We never set SkipSelf to true in Q in this method.
2419   MemoryAccess *Clobber =
2420       Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit);
2421   LLVM_DEBUG({
2422     dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2423     if (I)
2424       dbgs() << "  for instruction " << *I << "\n";
2425     dbgs() << "  is " << *Clobber << "\n";
2426   });
2427   return Clobber;
2428 }
2429 
2430 static const Instruction *
2431 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2432   if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2433     return nullptr;
2434 
2435   // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2436   // stripping bitcasts and zero GEPs, then we will recursively look at loads
2437   // and stores through bitcasts and zero GEPs.
2438   Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2439 
2440   // It's not safe to walk the use list of a global value because function
2441   // passes aren't allowed to look outside their functions.
2442   // FIXME: this could be fixed by filtering instructions from outside of
2443   // current function.
2444   if (isa<Constant>(PointerOperand))
2445     return nullptr;
2446 
2447   // Queue to process all pointers that are equivalent to load operand.
2448   SmallVector<const Value *, 8> PointerUsesQueue;
2449   PointerUsesQueue.push_back(PointerOperand);
2450 
2451   const Instruction *MostDominatingInstruction = &I;
2452 
2453   // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2454   // we will see all the instructions. It may not matter in practice. If it
2455   // does, we will have to support MemorySSA construction and updates.
2456   while (!PointerUsesQueue.empty()) {
2457     const Value *Ptr = PointerUsesQueue.pop_back_val();
2458     assert(Ptr && !isa<GlobalValue>(Ptr) &&
2459            "Null or GlobalValue should not be inserted");
2460 
2461     for (const User *Us : Ptr->users()) {
2462       auto *U = dyn_cast<Instruction>(Us);
2463       if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2464         continue;
2465 
2466       // Add bitcasts and zero GEPs to queue.
2467       if (isa<BitCastInst>(U)) {
2468         PointerUsesQueue.push_back(U);
2469         continue;
2470       }
2471       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2472         if (GEP->hasAllZeroIndices())
2473           PointerUsesQueue.push_back(U);
2474         continue;
2475       }
2476 
2477       // If we hit a load/store with an invariant.group metadata and the same
2478       // pointer operand, we can assume that value pointed to by the pointer
2479       // operand didn't change.
2480       if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2481           getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2482         MostDominatingInstruction = U;
2483       }
2484     }
2485   }
2486   return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2487 }
2488 
2489 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2490     MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit,
2491     bool SkipSelf, bool UseInvariantGroup) {
2492   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2493   // If this is a MemoryPhi, we can't do anything.
2494   if (!StartingAccess)
2495     return MA;
2496 
2497   if (UseInvariantGroup) {
2498     if (auto *I = getInvariantGroupClobberingInstruction(
2499             *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2500       assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2501 
2502       auto *ClobberMA = MSSA->getMemoryAccess(I);
2503       assert(ClobberMA);
2504       if (isa<MemoryUse>(ClobberMA))
2505         return ClobberMA->getDefiningAccess();
2506       return ClobberMA;
2507     }
2508   }
2509 
2510   bool IsOptimized = false;
2511 
2512   // If this is an already optimized use or def, return the optimized result.
2513   // Note: Currently, we store the optimized def result in a separate field,
2514   // since we can't use the defining access.
2515   if (StartingAccess->isOptimized()) {
2516     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2517       return StartingAccess->getOptimized();
2518     IsOptimized = true;
2519   }
2520 
2521   const Instruction *I = StartingAccess->getMemoryInst();
2522   // We can't sanely do anything with a fence, since they conservatively clobber
2523   // all memory, and have no locations to get pointers from to try to
2524   // disambiguate.
2525   if (!isa<CallBase>(I) && I->isFenceLike())
2526     return StartingAccess;
2527 
2528   UpwardsMemoryQuery Q(I, StartingAccess);
2529 
2530   if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) {
2531     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2532     StartingAccess->setOptimized(LiveOnEntry);
2533     return LiveOnEntry;
2534   }
2535 
2536   MemoryAccess *OptimizedAccess;
2537   if (!IsOptimized) {
2538     // Start with the thing we already think clobbers this location
2539     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2540 
2541     // At this point, DefiningAccess may be the live on entry def.
2542     // If it is, we will not get a better result.
2543     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2544       StartingAccess->setOptimized(DefiningAccess);
2545       return DefiningAccess;
2546     }
2547 
2548     OptimizedAccess =
2549         Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit);
2550     StartingAccess->setOptimized(OptimizedAccess);
2551   } else
2552     OptimizedAccess = StartingAccess->getOptimized();
2553 
2554   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2555   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2556   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2557   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2558 
2559   MemoryAccess *Result;
2560   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2561       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2562     assert(isa<MemoryDef>(Q.OriginalAccess));
2563     Q.SkipSelfAccess = true;
2564     Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit);
2565   } else
2566     Result = OptimizedAccess;
2567 
2568   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2569   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2570 
2571   return Result;
2572 }
2573 
2574 MemoryAccess *
2575 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2576                                                     BatchAAResults &) {
2577   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2578     return Use->getDefiningAccess();
2579   return MA;
2580 }
2581 
2582 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2583     MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) {
2584   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2585     return Use->getDefiningAccess();
2586   return StartingAccess;
2587 }
2588 
2589 void MemoryPhi::deleteMe(DerivedUser *Self) {
2590   delete static_cast<MemoryPhi *>(Self);
2591 }
2592 
2593 void MemoryDef::deleteMe(DerivedUser *Self) {
2594   delete static_cast<MemoryDef *>(Self);
2595 }
2596 
2597 void MemoryUse::deleteMe(DerivedUser *Self) {
2598   delete static_cast<MemoryUse *>(Self);
2599 }
2600 
2601 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const {
2602   auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) {
2603     Ptr = Ptr->stripPointerCasts();
2604     if (!isa<Instruction>(Ptr))
2605       return true;
2606     return isa<AllocaInst>(Ptr);
2607   };
2608 
2609   Ptr = Ptr->stripPointerCasts();
2610   if (auto *I = dyn_cast<Instruction>(Ptr)) {
2611     if (I->getParent()->isEntryBlock())
2612       return true;
2613   }
2614   if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2615     return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2616            GEP->hasAllConstantIndices();
2617   }
2618   return IsGuaranteedLoopInvariantBase(Ptr);
2619 }
2620