1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 94 static cl::opt<bool, true> 95 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 96 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 97 98 const static char LiveOnEntryStr[] = "liveOnEntry"; 99 100 namespace { 101 102 /// An assembly annotator class to print Memory SSA information in 103 /// comments. 104 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 105 const MemorySSA *MSSA; 106 107 public: 108 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 109 110 void emitBasicBlockStartAnnot(const BasicBlock *BB, 111 formatted_raw_ostream &OS) override { 112 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 113 OS << "; " << *MA << "\n"; 114 } 115 116 void emitInstructionAnnot(const Instruction *I, 117 formatted_raw_ostream &OS) override { 118 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 119 OS << "; " << *MA << "\n"; 120 } 121 }; 122 123 /// An assembly annotator class to print Memory SSA information in 124 /// comments. 125 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 126 MemorySSA *MSSA; 127 MemorySSAWalker *Walker; 128 129 public: 130 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 131 : MSSA(M), Walker(M->getWalker()) {} 132 133 void emitInstructionAnnot(const Instruction *I, 134 formatted_raw_ostream &OS) override { 135 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 136 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA); 137 OS << "; " << *MA; 138 if (Clobber) { 139 OS << " - clobbered by "; 140 if (MSSA->isLiveOnEntryDef(Clobber)) 141 OS << LiveOnEntryStr; 142 else 143 OS << *Clobber; 144 } 145 OS << "\n"; 146 } 147 } 148 }; 149 150 } // namespace 151 152 namespace { 153 154 /// Our current alias analysis API differentiates heavily between calls and 155 /// non-calls, and functions called on one usually assert on the other. 156 /// This class encapsulates the distinction to simplify other code that wants 157 /// "Memory affecting instructions and related data" to use as a key. 158 /// For example, this class is used as a densemap key in the use optimizer. 159 class MemoryLocOrCall { 160 public: 161 bool IsCall = false; 162 163 MemoryLocOrCall(MemoryUseOrDef *MUD) 164 : MemoryLocOrCall(MUD->getMemoryInst()) {} 165 MemoryLocOrCall(const MemoryUseOrDef *MUD) 166 : MemoryLocOrCall(MUD->getMemoryInst()) {} 167 168 MemoryLocOrCall(Instruction *Inst) { 169 if (auto *C = dyn_cast<CallBase>(Inst)) { 170 IsCall = true; 171 Call = C; 172 } else { 173 IsCall = false; 174 // There is no such thing as a memorylocation for a fence inst, and it is 175 // unique in that regard. 176 if (!isa<FenceInst>(Inst)) 177 Loc = MemoryLocation::get(Inst); 178 } 179 } 180 181 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 182 183 const CallBase *getCall() const { 184 assert(IsCall); 185 return Call; 186 } 187 188 MemoryLocation getLoc() const { 189 assert(!IsCall); 190 return Loc; 191 } 192 193 bool operator==(const MemoryLocOrCall &Other) const { 194 if (IsCall != Other.IsCall) 195 return false; 196 197 if (!IsCall) 198 return Loc == Other.Loc; 199 200 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 201 return false; 202 203 return Call->arg_size() == Other.Call->arg_size() && 204 std::equal(Call->arg_begin(), Call->arg_end(), 205 Other.Call->arg_begin()); 206 } 207 208 private: 209 union { 210 const CallBase *Call; 211 MemoryLocation Loc; 212 }; 213 }; 214 215 } // end anonymous namespace 216 217 namespace llvm { 218 219 template <> struct DenseMapInfo<MemoryLocOrCall> { 220 static inline MemoryLocOrCall getEmptyKey() { 221 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 222 } 223 224 static inline MemoryLocOrCall getTombstoneKey() { 225 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 226 } 227 228 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 229 if (!MLOC.IsCall) 230 return hash_combine( 231 MLOC.IsCall, 232 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 233 234 hash_code hash = 235 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 236 MLOC.getCall()->getCalledOperand())); 237 238 for (const Value *Arg : MLOC.getCall()->args()) 239 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 240 return hash; 241 } 242 243 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 244 return LHS == RHS; 245 } 246 }; 247 248 } // end namespace llvm 249 250 /// This does one-way checks to see if Use could theoretically be hoisted above 251 /// MayClobber. This will not check the other way around. 252 /// 253 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 254 /// MayClobber, with no potentially clobbering operations in between them. 255 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 256 static bool areLoadsReorderable(const LoadInst *Use, 257 const LoadInst *MayClobber) { 258 bool VolatileUse = Use->isVolatile(); 259 bool VolatileClobber = MayClobber->isVolatile(); 260 // Volatile operations may never be reordered with other volatile operations. 261 if (VolatileUse && VolatileClobber) 262 return false; 263 // Otherwise, volatile doesn't matter here. From the language reference: 264 // 'optimizers may change the order of volatile operations relative to 265 // non-volatile operations.'" 266 267 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 268 // is weaker, it can be moved above other loads. We just need to be sure that 269 // MayClobber isn't an acquire load, because loads can't be moved above 270 // acquire loads. 271 // 272 // Note that this explicitly *does* allow the free reordering of monotonic (or 273 // weaker) loads of the same address. 274 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 275 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 276 AtomicOrdering::Acquire); 277 return !(SeqCstUse || MayClobberIsAcquire); 278 } 279 280 namespace { 281 282 struct ClobberAlias { 283 bool IsClobber; 284 Optional<AliasResult> AR; 285 }; 286 287 } // end anonymous namespace 288 289 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 290 // ignored if IsClobber = false. 291 template <typename AliasAnalysisType> 292 static ClobberAlias 293 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 294 const Instruction *UseInst, AliasAnalysisType &AA) { 295 Instruction *DefInst = MD->getMemoryInst(); 296 assert(DefInst && "Defining instruction not actually an instruction"); 297 Optional<AliasResult> AR; 298 299 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 300 // These intrinsics will show up as affecting memory, but they are just 301 // markers, mostly. 302 // 303 // FIXME: We probably don't actually want MemorySSA to model these at all 304 // (including creating MemoryAccesses for them): we just end up inventing 305 // clobbers where they don't really exist at all. Please see D43269 for 306 // context. 307 switch (II->getIntrinsicID()) { 308 case Intrinsic::invariant_start: 309 case Intrinsic::invariant_end: 310 case Intrinsic::assume: 311 case Intrinsic::experimental_noalias_scope_decl: 312 case Intrinsic::pseudoprobe: 313 return {false, AliasResult(AliasResult::NoAlias)}; 314 case Intrinsic::dbg_addr: 315 case Intrinsic::dbg_declare: 316 case Intrinsic::dbg_label: 317 case Intrinsic::dbg_value: 318 llvm_unreachable("debuginfo shouldn't have associated defs!"); 319 default: 320 break; 321 } 322 } 323 324 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 325 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 326 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 327 return {isModOrRefSet(I), AR}; 328 } 329 330 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 331 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 332 return {!areLoadsReorderable(UseLoad, DefLoad), 333 AliasResult(AliasResult::MayAlias)}; 334 335 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 336 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 337 return {isModSet(I), AR}; 338 } 339 340 template <typename AliasAnalysisType> 341 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 342 const MemoryUseOrDef *MU, 343 const MemoryLocOrCall &UseMLOC, 344 AliasAnalysisType &AA) { 345 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 346 // to exist while MemoryLocOrCall is pushed through places. 347 if (UseMLOC.IsCall) 348 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 349 AA); 350 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 351 AA); 352 } 353 354 // Return true when MD may alias MU, return false otherwise. 355 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 356 AliasAnalysis &AA) { 357 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 358 } 359 360 namespace { 361 362 struct UpwardsMemoryQuery { 363 // True if our original query started off as a call 364 bool IsCall = false; 365 // The pointer location we started the query with. This will be empty if 366 // IsCall is true. 367 MemoryLocation StartingLoc; 368 // This is the instruction we were querying about. 369 const Instruction *Inst = nullptr; 370 // The MemoryAccess we actually got called with, used to test local domination 371 const MemoryAccess *OriginalAccess = nullptr; 372 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 373 bool SkipSelfAccess = false; 374 375 UpwardsMemoryQuery() = default; 376 377 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 378 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 379 if (!IsCall) 380 StartingLoc = MemoryLocation::get(Inst); 381 } 382 }; 383 384 } // end anonymous namespace 385 386 template <typename AliasAnalysisType> 387 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 388 const Instruction *I) { 389 // If the memory can't be changed, then loads of the memory can't be 390 // clobbered. 391 if (auto *LI = dyn_cast<LoadInst>(I)) 392 return I->hasMetadata(LLVMContext::MD_invariant_load) || 393 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 394 return false; 395 } 396 397 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 398 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 399 /// 400 /// This is meant to be as simple and self-contained as possible. Because it 401 /// uses no cache, etc., it can be relatively expensive. 402 /// 403 /// \param Start The MemoryAccess that we want to walk from. 404 /// \param ClobberAt A clobber for Start. 405 /// \param StartLoc The MemoryLocation for Start. 406 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 407 /// \param Query The UpwardsMemoryQuery we used for our search. 408 /// \param AA The AliasAnalysis we used for our search. 409 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 410 411 template <typename AliasAnalysisType> 412 LLVM_ATTRIBUTE_UNUSED static void 413 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 414 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 415 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 416 bool AllowImpreciseClobber = false) { 417 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 418 419 if (MSSA.isLiveOnEntryDef(Start)) { 420 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 421 "liveOnEntry must clobber itself"); 422 return; 423 } 424 425 bool FoundClobber = false; 426 DenseSet<ConstMemoryAccessPair> VisitedPhis; 427 SmallVector<ConstMemoryAccessPair, 8> Worklist; 428 Worklist.emplace_back(Start, StartLoc); 429 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 430 // is found, complain. 431 while (!Worklist.empty()) { 432 auto MAP = Worklist.pop_back_val(); 433 // All we care about is that nothing from Start to ClobberAt clobbers Start. 434 // We learn nothing from revisiting nodes. 435 if (!VisitedPhis.insert(MAP).second) 436 continue; 437 438 for (const auto *MA : def_chain(MAP.first)) { 439 if (MA == ClobberAt) { 440 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 441 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 442 // since it won't let us short-circuit. 443 // 444 // Also, note that this can't be hoisted out of the `Worklist` loop, 445 // since MD may only act as a clobber for 1 of N MemoryLocations. 446 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 447 if (!FoundClobber) { 448 ClobberAlias CA = 449 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 450 if (CA.IsClobber) { 451 FoundClobber = true; 452 // Not used: CA.AR; 453 } 454 } 455 } 456 break; 457 } 458 459 // We should never hit liveOnEntry, unless it's the clobber. 460 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 461 462 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 463 // If Start is a Def, skip self. 464 if (MD == Start) 465 continue; 466 467 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 468 .IsClobber && 469 "Found clobber before reaching ClobberAt!"); 470 continue; 471 } 472 473 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 474 (void)MU; 475 assert (MU == Start && 476 "Can only find use in def chain if Start is a use"); 477 continue; 478 } 479 480 assert(isa<MemoryPhi>(MA)); 481 482 // Add reachable phi predecessors 483 for (auto ItB = upward_defs_begin( 484 {const_cast<MemoryAccess *>(MA), MAP.second}, 485 MSSA.getDomTree()), 486 ItE = upward_defs_end(); 487 ItB != ItE; ++ItB) 488 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 489 Worklist.emplace_back(*ItB); 490 } 491 } 492 493 // If the verify is done following an optimization, it's possible that 494 // ClobberAt was a conservative clobbering, that we can now infer is not a 495 // true clobbering access. Don't fail the verify if that's the case. 496 // We do have accesses that claim they're optimized, but could be optimized 497 // further. Updating all these can be expensive, so allow it for now (FIXME). 498 if (AllowImpreciseClobber) 499 return; 500 501 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 502 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 503 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 504 "ClobberAt never acted as a clobber"); 505 } 506 507 namespace { 508 509 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 510 /// in one class. 511 template <class AliasAnalysisType> class ClobberWalker { 512 /// Save a few bytes by using unsigned instead of size_t. 513 using ListIndex = unsigned; 514 515 /// Represents a span of contiguous MemoryDefs, potentially ending in a 516 /// MemoryPhi. 517 struct DefPath { 518 MemoryLocation Loc; 519 // Note that, because we always walk in reverse, Last will always dominate 520 // First. Also note that First and Last are inclusive. 521 MemoryAccess *First; 522 MemoryAccess *Last; 523 Optional<ListIndex> Previous; 524 525 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 526 Optional<ListIndex> Previous) 527 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 528 529 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 530 Optional<ListIndex> Previous) 531 : DefPath(Loc, Init, Init, Previous) {} 532 }; 533 534 const MemorySSA &MSSA; 535 AliasAnalysisType &AA; 536 DominatorTree &DT; 537 UpwardsMemoryQuery *Query; 538 unsigned *UpwardWalkLimit; 539 540 // Phi optimization bookkeeping: 541 // List of DefPath to process during the current phi optimization walk. 542 SmallVector<DefPath, 32> Paths; 543 // List of visited <Access, Location> pairs; we can skip paths already 544 // visited with the same memory location. 545 DenseSet<ConstMemoryAccessPair> VisitedPhis; 546 // Record if phi translation has been performed during the current phi 547 // optimization walk, as merging alias results after phi translation can 548 // yield incorrect results. Context in PR46156. 549 bool PerformedPhiTranslation = false; 550 551 /// Find the nearest def or phi that `From` can legally be optimized to. 552 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 553 assert(From->getNumOperands() && "Phi with no operands?"); 554 555 BasicBlock *BB = From->getBlock(); 556 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 557 DomTreeNode *Node = DT.getNode(BB); 558 while ((Node = Node->getIDom())) { 559 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 560 if (Defs) 561 return &*Defs->rbegin(); 562 } 563 return Result; 564 } 565 566 /// Result of calling walkToPhiOrClobber. 567 struct UpwardsWalkResult { 568 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 569 /// both. Include alias info when clobber found. 570 MemoryAccess *Result; 571 bool IsKnownClobber; 572 Optional<AliasResult> AR; 573 }; 574 575 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 576 /// This will update Desc.Last as it walks. It will (optionally) also stop at 577 /// StopAt. 578 /// 579 /// This does not test for whether StopAt is a clobber 580 UpwardsWalkResult 581 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 582 const MemoryAccess *SkipStopAt = nullptr) const { 583 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 584 assert(UpwardWalkLimit && "Need a valid walk limit"); 585 bool LimitAlreadyReached = false; 586 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 587 // it to 1. This will not do any alias() calls. It either returns in the 588 // first iteration in the loop below, or is set back to 0 if all def chains 589 // are free of MemoryDefs. 590 if (!*UpwardWalkLimit) { 591 *UpwardWalkLimit = 1; 592 LimitAlreadyReached = true; 593 } 594 595 for (MemoryAccess *Current : def_chain(Desc.Last)) { 596 Desc.Last = Current; 597 if (Current == StopAt || Current == SkipStopAt) 598 return {Current, false, AliasResult(AliasResult::MayAlias)}; 599 600 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 601 if (MSSA.isLiveOnEntryDef(MD)) 602 return {MD, true, AliasResult(AliasResult::MustAlias)}; 603 604 if (!--*UpwardWalkLimit) 605 return {Current, true, AliasResult(AliasResult::MayAlias)}; 606 607 ClobberAlias CA = 608 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 609 if (CA.IsClobber) 610 return {MD, true, CA.AR}; 611 } 612 } 613 614 if (LimitAlreadyReached) 615 *UpwardWalkLimit = 0; 616 617 assert(isa<MemoryPhi>(Desc.Last) && 618 "Ended at a non-clobber that's not a phi?"); 619 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 620 } 621 622 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 623 ListIndex PriorNode) { 624 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 625 &PerformedPhiTranslation); 626 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 627 for (const MemoryAccessPair &P : UpwardDefs) { 628 PausedSearches.push_back(Paths.size()); 629 Paths.emplace_back(P.second, P.first, PriorNode); 630 } 631 } 632 633 /// Represents a search that terminated after finding a clobber. This clobber 634 /// may or may not be present in the path of defs from LastNode..SearchStart, 635 /// since it may have been retrieved from cache. 636 struct TerminatedPath { 637 MemoryAccess *Clobber; 638 ListIndex LastNode; 639 }; 640 641 /// Get an access that keeps us from optimizing to the given phi. 642 /// 643 /// PausedSearches is an array of indices into the Paths array. Its incoming 644 /// value is the indices of searches that stopped at the last phi optimization 645 /// target. It's left in an unspecified state. 646 /// 647 /// If this returns None, NewPaused is a vector of searches that terminated 648 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 649 Optional<TerminatedPath> 650 getBlockingAccess(const MemoryAccess *StopWhere, 651 SmallVectorImpl<ListIndex> &PausedSearches, 652 SmallVectorImpl<ListIndex> &NewPaused, 653 SmallVectorImpl<TerminatedPath> &Terminated) { 654 assert(!PausedSearches.empty() && "No searches to continue?"); 655 656 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 657 // PausedSearches as our stack. 658 while (!PausedSearches.empty()) { 659 ListIndex PathIndex = PausedSearches.pop_back_val(); 660 DefPath &Node = Paths[PathIndex]; 661 662 // If we've already visited this path with this MemoryLocation, we don't 663 // need to do so again. 664 // 665 // NOTE: That we just drop these paths on the ground makes caching 666 // behavior sporadic. e.g. given a diamond: 667 // A 668 // B C 669 // D 670 // 671 // ...If we walk D, B, A, C, we'll only cache the result of phi 672 // optimization for A, B, and D; C will be skipped because it dies here. 673 // This arguably isn't the worst thing ever, since: 674 // - We generally query things in a top-down order, so if we got below D 675 // without needing cache entries for {C, MemLoc}, then chances are 676 // that those cache entries would end up ultimately unused. 677 // - We still cache things for A, so C only needs to walk up a bit. 678 // If this behavior becomes problematic, we can fix without a ton of extra 679 // work. 680 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 681 if (PerformedPhiTranslation) { 682 // If visiting this path performed Phi translation, don't continue, 683 // since it may not be correct to merge results from two paths if one 684 // relies on the phi translation. 685 TerminatedPath Term{Node.Last, PathIndex}; 686 return Term; 687 } 688 continue; 689 } 690 691 const MemoryAccess *SkipStopWhere = nullptr; 692 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 693 assert(isa<MemoryDef>(Query->OriginalAccess)); 694 SkipStopWhere = Query->OriginalAccess; 695 } 696 697 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 698 /*StopAt=*/StopWhere, 699 /*SkipStopAt=*/SkipStopWhere); 700 if (Res.IsKnownClobber) { 701 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 702 703 // If this wasn't a cache hit, we hit a clobber when walking. That's a 704 // failure. 705 TerminatedPath Term{Res.Result, PathIndex}; 706 if (!MSSA.dominates(Res.Result, StopWhere)) 707 return Term; 708 709 // Otherwise, it's a valid thing to potentially optimize to. 710 Terminated.push_back(Term); 711 continue; 712 } 713 714 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 715 // We've hit our target. Save this path off for if we want to continue 716 // walking. If we are in the mode of skipping the OriginalAccess, and 717 // we've reached back to the OriginalAccess, do not save path, we've 718 // just looped back to self. 719 if (Res.Result != SkipStopWhere) 720 NewPaused.push_back(PathIndex); 721 continue; 722 } 723 724 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 725 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 726 } 727 728 return None; 729 } 730 731 template <typename T, typename Walker> 732 struct generic_def_path_iterator 733 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 734 std::forward_iterator_tag, T *> { 735 generic_def_path_iterator() {} 736 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 737 738 T &operator*() const { return curNode(); } 739 740 generic_def_path_iterator &operator++() { 741 N = curNode().Previous; 742 return *this; 743 } 744 745 bool operator==(const generic_def_path_iterator &O) const { 746 if (N.hasValue() != O.N.hasValue()) 747 return false; 748 return !N.hasValue() || *N == *O.N; 749 } 750 751 private: 752 T &curNode() const { return W->Paths[*N]; } 753 754 Walker *W = nullptr; 755 Optional<ListIndex> N = None; 756 }; 757 758 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 759 using const_def_path_iterator = 760 generic_def_path_iterator<const DefPath, const ClobberWalker>; 761 762 iterator_range<def_path_iterator> def_path(ListIndex From) { 763 return make_range(def_path_iterator(this, From), def_path_iterator()); 764 } 765 766 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 767 return make_range(const_def_path_iterator(this, From), 768 const_def_path_iterator()); 769 } 770 771 struct OptznResult { 772 /// The path that contains our result. 773 TerminatedPath PrimaryClobber; 774 /// The paths that we can legally cache back from, but that aren't 775 /// necessarily the result of the Phi optimization. 776 SmallVector<TerminatedPath, 4> OtherClobbers; 777 }; 778 779 ListIndex defPathIndex(const DefPath &N) const { 780 // The assert looks nicer if we don't need to do &N 781 const DefPath *NP = &N; 782 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 783 "Out of bounds DefPath!"); 784 return NP - &Paths.front(); 785 } 786 787 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 788 /// that act as legal clobbers. Note that this won't return *all* clobbers. 789 /// 790 /// Phi optimization algorithm tl;dr: 791 /// - Find the earliest def/phi, A, we can optimize to 792 /// - Find if all paths from the starting memory access ultimately reach A 793 /// - If not, optimization isn't possible. 794 /// - Otherwise, walk from A to another clobber or phi, A'. 795 /// - If A' is a def, we're done. 796 /// - If A' is a phi, try to optimize it. 797 /// 798 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 799 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 800 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 801 const MemoryLocation &Loc) { 802 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 803 "Reset the optimization state."); 804 805 Paths.emplace_back(Loc, Start, Phi, None); 806 // Stores how many "valid" optimization nodes we had prior to calling 807 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 808 auto PriorPathsSize = Paths.size(); 809 810 SmallVector<ListIndex, 16> PausedSearches; 811 SmallVector<ListIndex, 8> NewPaused; 812 SmallVector<TerminatedPath, 4> TerminatedPaths; 813 814 addSearches(Phi, PausedSearches, 0); 815 816 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 817 // Paths. 818 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 819 assert(!Paths.empty() && "Need a path to move"); 820 auto Dom = Paths.begin(); 821 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 822 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 823 Dom = I; 824 auto Last = Paths.end() - 1; 825 if (Last != Dom) 826 std::iter_swap(Last, Dom); 827 }; 828 829 MemoryPhi *Current = Phi; 830 while (true) { 831 assert(!MSSA.isLiveOnEntryDef(Current) && 832 "liveOnEntry wasn't treated as a clobber?"); 833 834 const auto *Target = getWalkTarget(Current); 835 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 836 // optimization for the prior phi. 837 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 838 return MSSA.dominates(P.Clobber, Target); 839 })); 840 841 // FIXME: This is broken, because the Blocker may be reported to be 842 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 843 // For the moment, this is fine, since we do nothing with blocker info. 844 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 845 Target, PausedSearches, NewPaused, TerminatedPaths)) { 846 847 // Find the node we started at. We can't search based on N->Last, since 848 // we may have gone around a loop with a different MemoryLocation. 849 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 850 return defPathIndex(N) < PriorPathsSize; 851 }); 852 assert(Iter != def_path_iterator()); 853 854 DefPath &CurNode = *Iter; 855 assert(CurNode.Last == Current); 856 857 // Two things: 858 // A. We can't reliably cache all of NewPaused back. Consider a case 859 // where we have two paths in NewPaused; one of which can't optimize 860 // above this phi, whereas the other can. If we cache the second path 861 // back, we'll end up with suboptimal cache entries. We can handle 862 // cases like this a bit better when we either try to find all 863 // clobbers that block phi optimization, or when our cache starts 864 // supporting unfinished searches. 865 // B. We can't reliably cache TerminatedPaths back here without doing 866 // extra checks; consider a case like: 867 // T 868 // / \ 869 // D C 870 // \ / 871 // S 872 // Where T is our target, C is a node with a clobber on it, D is a 873 // diamond (with a clobber *only* on the left or right node, N), and 874 // S is our start. Say we walk to D, through the node opposite N 875 // (read: ignoring the clobber), and see a cache entry in the top 876 // node of D. That cache entry gets put into TerminatedPaths. We then 877 // walk up to C (N is later in our worklist), find the clobber, and 878 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 879 // the bottom part of D to the cached clobber, ignoring the clobber 880 // in N. Again, this problem goes away if we start tracking all 881 // blockers for a given phi optimization. 882 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 883 return {Result, {}}; 884 } 885 886 // If there's nothing left to search, then all paths led to valid clobbers 887 // that we got from our cache; pick the nearest to the start, and allow 888 // the rest to be cached back. 889 if (NewPaused.empty()) { 890 MoveDominatedPathToEnd(TerminatedPaths); 891 TerminatedPath Result = TerminatedPaths.pop_back_val(); 892 return {Result, std::move(TerminatedPaths)}; 893 } 894 895 MemoryAccess *DefChainEnd = nullptr; 896 SmallVector<TerminatedPath, 4> Clobbers; 897 for (ListIndex Paused : NewPaused) { 898 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 899 if (WR.IsKnownClobber) 900 Clobbers.push_back({WR.Result, Paused}); 901 else 902 // Micro-opt: If we hit the end of the chain, save it. 903 DefChainEnd = WR.Result; 904 } 905 906 if (!TerminatedPaths.empty()) { 907 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 908 // do it now. 909 if (!DefChainEnd) 910 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 911 DefChainEnd = MA; 912 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 913 914 // If any of the terminated paths don't dominate the phi we'll try to 915 // optimize, we need to figure out what they are and quit. 916 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 917 for (const TerminatedPath &TP : TerminatedPaths) { 918 // Because we know that DefChainEnd is as "high" as we can go, we 919 // don't need local dominance checks; BB dominance is sufficient. 920 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 921 Clobbers.push_back(TP); 922 } 923 } 924 925 // If we have clobbers in the def chain, find the one closest to Current 926 // and quit. 927 if (!Clobbers.empty()) { 928 MoveDominatedPathToEnd(Clobbers); 929 TerminatedPath Result = Clobbers.pop_back_val(); 930 return {Result, std::move(Clobbers)}; 931 } 932 933 assert(all_of(NewPaused, 934 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 935 936 // Because liveOnEntry is a clobber, this must be a phi. 937 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 938 939 PriorPathsSize = Paths.size(); 940 PausedSearches.clear(); 941 for (ListIndex I : NewPaused) 942 addSearches(DefChainPhi, PausedSearches, I); 943 NewPaused.clear(); 944 945 Current = DefChainPhi; 946 } 947 } 948 949 void verifyOptResult(const OptznResult &R) const { 950 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 951 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 952 })); 953 } 954 955 void resetPhiOptznState() { 956 Paths.clear(); 957 VisitedPhis.clear(); 958 PerformedPhiTranslation = false; 959 } 960 961 public: 962 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 963 : MSSA(MSSA), AA(AA), DT(DT) {} 964 965 AliasAnalysisType *getAA() { return &AA; } 966 /// Finds the nearest clobber for the given query, optimizing phis if 967 /// possible. 968 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 969 unsigned &UpWalkLimit) { 970 Query = &Q; 971 UpwardWalkLimit = &UpWalkLimit; 972 // Starting limit must be > 0. 973 if (!UpWalkLimit) 974 UpWalkLimit++; 975 976 MemoryAccess *Current = Start; 977 // This walker pretends uses don't exist. If we're handed one, silently grab 978 // its def. (This has the nice side-effect of ensuring we never cache uses) 979 if (auto *MU = dyn_cast<MemoryUse>(Start)) 980 Current = MU->getDefiningAccess(); 981 982 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 983 // Fast path for the overly-common case (no crazy phi optimization 984 // necessary) 985 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 986 MemoryAccess *Result; 987 if (WalkResult.IsKnownClobber) { 988 Result = WalkResult.Result; 989 Q.AR = WalkResult.AR; 990 } else { 991 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 992 Current, Q.StartingLoc); 993 verifyOptResult(OptRes); 994 resetPhiOptznState(); 995 Result = OptRes.PrimaryClobber.Clobber; 996 } 997 998 #ifdef EXPENSIVE_CHECKS 999 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 1000 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 1001 #endif 1002 return Result; 1003 } 1004 }; 1005 1006 struct RenamePassData { 1007 DomTreeNode *DTN; 1008 DomTreeNode::const_iterator ChildIt; 1009 MemoryAccess *IncomingVal; 1010 1011 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 1012 MemoryAccess *M) 1013 : DTN(D), ChildIt(It), IncomingVal(M) {} 1014 1015 void swap(RenamePassData &RHS) { 1016 std::swap(DTN, RHS.DTN); 1017 std::swap(ChildIt, RHS.ChildIt); 1018 std::swap(IncomingVal, RHS.IncomingVal); 1019 } 1020 }; 1021 1022 } // end anonymous namespace 1023 1024 namespace llvm { 1025 1026 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1027 ClobberWalker<AliasAnalysisType> Walker; 1028 MemorySSA *MSSA; 1029 1030 public: 1031 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1032 : Walker(*M, *A, *D), MSSA(M) {} 1033 1034 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1035 const MemoryLocation &, 1036 unsigned &); 1037 // Third argument (bool), defines whether the clobber search should skip the 1038 // original queried access. If true, there will be a follow-up query searching 1039 // for a clobber access past "self". Note that the Optimized access is not 1040 // updated if a new clobber is found by this SkipSelf search. If this 1041 // additional query becomes heavily used we may decide to cache the result. 1042 // Walker instantiations will decide how to set the SkipSelf bool. 1043 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool, 1044 bool UseInvariantGroup = true); 1045 }; 1046 1047 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1048 /// longer does caching on its own, but the name has been retained for the 1049 /// moment. 1050 template <class AliasAnalysisType> 1051 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1052 ClobberWalkerBase<AliasAnalysisType> *Walker; 1053 1054 public: 1055 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1056 : MemorySSAWalker(M), Walker(W) {} 1057 ~CachingWalker() override = default; 1058 1059 using MemorySSAWalker::getClobberingMemoryAccess; 1060 1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1062 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1063 } 1064 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1065 const MemoryLocation &Loc, 1066 unsigned &UWL) { 1067 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1068 } 1069 // This method is not accessible outside of this file. 1070 MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(MemoryAccess *MA, 1071 unsigned &UWL) { 1072 return Walker->getClobberingMemoryAccessBase(MA, UWL, false, false); 1073 } 1074 1075 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1076 unsigned UpwardWalkLimit = MaxCheckLimit; 1077 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1078 } 1079 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1080 const MemoryLocation &Loc) override { 1081 unsigned UpwardWalkLimit = MaxCheckLimit; 1082 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1083 } 1084 1085 void invalidateInfo(MemoryAccess *MA) override { 1086 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1087 MUD->resetOptimized(); 1088 } 1089 }; 1090 1091 template <class AliasAnalysisType> 1092 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1093 ClobberWalkerBase<AliasAnalysisType> *Walker; 1094 1095 public: 1096 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1097 : MemorySSAWalker(M), Walker(W) {} 1098 ~SkipSelfWalker() override = default; 1099 1100 using MemorySSAWalker::getClobberingMemoryAccess; 1101 1102 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1103 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1104 } 1105 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1106 const MemoryLocation &Loc, 1107 unsigned &UWL) { 1108 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1109 } 1110 1111 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1112 unsigned UpwardWalkLimit = MaxCheckLimit; 1113 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1114 } 1115 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1116 const MemoryLocation &Loc) override { 1117 unsigned UpwardWalkLimit = MaxCheckLimit; 1118 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1119 } 1120 1121 void invalidateInfo(MemoryAccess *MA) override { 1122 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1123 MUD->resetOptimized(); 1124 } 1125 }; 1126 1127 } // end namespace llvm 1128 1129 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1130 bool RenameAllUses) { 1131 // Pass through values to our successors 1132 for (const BasicBlock *S : successors(BB)) { 1133 auto It = PerBlockAccesses.find(S); 1134 // Rename the phi nodes in our successor block 1135 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1136 continue; 1137 AccessList *Accesses = It->second.get(); 1138 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1139 if (RenameAllUses) { 1140 bool ReplacementDone = false; 1141 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1142 if (Phi->getIncomingBlock(I) == BB) { 1143 Phi->setIncomingValue(I, IncomingVal); 1144 ReplacementDone = true; 1145 } 1146 (void) ReplacementDone; 1147 assert(ReplacementDone && "Incomplete phi during partial rename"); 1148 } else 1149 Phi->addIncoming(IncomingVal, BB); 1150 } 1151 } 1152 1153 /// Rename a single basic block into MemorySSA form. 1154 /// Uses the standard SSA renaming algorithm. 1155 /// \returns The new incoming value. 1156 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1157 bool RenameAllUses) { 1158 auto It = PerBlockAccesses.find(BB); 1159 // Skip most processing if the list is empty. 1160 if (It != PerBlockAccesses.end()) { 1161 AccessList *Accesses = It->second.get(); 1162 for (MemoryAccess &L : *Accesses) { 1163 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1164 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1165 MUD->setDefiningAccess(IncomingVal); 1166 if (isa<MemoryDef>(&L)) 1167 IncomingVal = &L; 1168 } else { 1169 IncomingVal = &L; 1170 } 1171 } 1172 } 1173 return IncomingVal; 1174 } 1175 1176 /// This is the standard SSA renaming algorithm. 1177 /// 1178 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1179 /// in phi nodes in our successors. 1180 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1181 SmallPtrSetImpl<BasicBlock *> &Visited, 1182 bool SkipVisited, bool RenameAllUses) { 1183 assert(Root && "Trying to rename accesses in an unreachable block"); 1184 1185 SmallVector<RenamePassData, 32> WorkStack; 1186 // Skip everything if we already renamed this block and we are skipping. 1187 // Note: You can't sink this into the if, because we need it to occur 1188 // regardless of whether we skip blocks or not. 1189 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1190 if (SkipVisited && AlreadyVisited) 1191 return; 1192 1193 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1194 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1195 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1196 1197 while (!WorkStack.empty()) { 1198 DomTreeNode *Node = WorkStack.back().DTN; 1199 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1200 IncomingVal = WorkStack.back().IncomingVal; 1201 1202 if (ChildIt == Node->end()) { 1203 WorkStack.pop_back(); 1204 } else { 1205 DomTreeNode *Child = *ChildIt; 1206 ++WorkStack.back().ChildIt; 1207 BasicBlock *BB = Child->getBlock(); 1208 // Note: You can't sink this into the if, because we need it to occur 1209 // regardless of whether we skip blocks or not. 1210 AlreadyVisited = !Visited.insert(BB).second; 1211 if (SkipVisited && AlreadyVisited) { 1212 // We already visited this during our renaming, which can happen when 1213 // being asked to rename multiple blocks. Figure out the incoming val, 1214 // which is the last def. 1215 // Incoming value can only change if there is a block def, and in that 1216 // case, it's the last block def in the list. 1217 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1218 IncomingVal = &*BlockDefs->rbegin(); 1219 } else 1220 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1221 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1222 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1223 } 1224 } 1225 } 1226 1227 /// This handles unreachable block accesses by deleting phi nodes in 1228 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1229 /// being uses of the live on entry definition. 1230 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1231 assert(!DT->isReachableFromEntry(BB) && 1232 "Reachable block found while handling unreachable blocks"); 1233 1234 // Make sure phi nodes in our reachable successors end up with a 1235 // LiveOnEntryDef for our incoming edge, even though our block is forward 1236 // unreachable. We could just disconnect these blocks from the CFG fully, 1237 // but we do not right now. 1238 for (const BasicBlock *S : successors(BB)) { 1239 if (!DT->isReachableFromEntry(S)) 1240 continue; 1241 auto It = PerBlockAccesses.find(S); 1242 // Rename the phi nodes in our successor block 1243 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1244 continue; 1245 AccessList *Accesses = It->second.get(); 1246 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1247 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1248 } 1249 1250 auto It = PerBlockAccesses.find(BB); 1251 if (It == PerBlockAccesses.end()) 1252 return; 1253 1254 auto &Accesses = It->second; 1255 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1256 auto Next = std::next(AI); 1257 // If we have a phi, just remove it. We are going to replace all 1258 // users with live on entry. 1259 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1260 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1261 else 1262 Accesses->erase(AI); 1263 AI = Next; 1264 } 1265 } 1266 1267 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1268 : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1269 SkipWalker(nullptr) { 1270 // Build MemorySSA using a batch alias analysis. This reuses the internal 1271 // state that AA collects during an alias()/getModRefInfo() call. This is 1272 // safe because there are no CFG changes while building MemorySSA and can 1273 // significantly reduce the time spent by the compiler in AA, because we will 1274 // make queries about all the instructions in the Function. 1275 assert(AA && "No alias analysis?"); 1276 BatchAAResults BatchAA(*AA); 1277 buildMemorySSA(BatchAA); 1278 // Intentionally leave AA to nullptr while building so we don't accidently 1279 // use non-batch AliasAnalysis. 1280 this->AA = AA; 1281 // Also create the walker here. 1282 getWalker(); 1283 } 1284 1285 MemorySSA::~MemorySSA() { 1286 // Drop all our references 1287 for (const auto &Pair : PerBlockAccesses) 1288 for (MemoryAccess &MA : *Pair.second) 1289 MA.dropAllReferences(); 1290 } 1291 1292 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1293 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1294 1295 if (Res.second) 1296 Res.first->second = std::make_unique<AccessList>(); 1297 return Res.first->second.get(); 1298 } 1299 1300 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1301 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1302 1303 if (Res.second) 1304 Res.first->second = std::make_unique<DefsList>(); 1305 return Res.first->second.get(); 1306 } 1307 1308 namespace llvm { 1309 1310 /// This class is a batch walker of all MemoryUse's in the program, and points 1311 /// their defining access at the thing that actually clobbers them. Because it 1312 /// is a batch walker that touches everything, it does not operate like the 1313 /// other walkers. This walker is basically performing a top-down SSA renaming 1314 /// pass, where the version stack is used as the cache. This enables it to be 1315 /// significantly more time and memory efficient than using the regular walker, 1316 /// which is walking bottom-up. 1317 class MemorySSA::OptimizeUses { 1318 public: 1319 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1320 BatchAAResults *BAA, DominatorTree *DT) 1321 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1322 1323 void optimizeUses(); 1324 1325 private: 1326 /// This represents where a given memorylocation is in the stack. 1327 struct MemlocStackInfo { 1328 // This essentially is keeping track of versions of the stack. Whenever 1329 // the stack changes due to pushes or pops, these versions increase. 1330 unsigned long StackEpoch; 1331 unsigned long PopEpoch; 1332 // This is the lower bound of places on the stack to check. It is equal to 1333 // the place the last stack walk ended. 1334 // Note: Correctness depends on this being initialized to 0, which densemap 1335 // does 1336 unsigned long LowerBound; 1337 const BasicBlock *LowerBoundBlock; 1338 // This is where the last walk for this memory location ended. 1339 unsigned long LastKill; 1340 bool LastKillValid; 1341 Optional<AliasResult> AR; 1342 }; 1343 1344 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1345 SmallVectorImpl<MemoryAccess *> &, 1346 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1347 1348 MemorySSA *MSSA; 1349 CachingWalker<BatchAAResults> *Walker; 1350 BatchAAResults *AA; 1351 DominatorTree *DT; 1352 }; 1353 1354 } // end namespace llvm 1355 1356 /// Optimize the uses in a given block This is basically the SSA renaming 1357 /// algorithm, with one caveat: We are able to use a single stack for all 1358 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1359 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1360 /// going to be some position in that stack of possible ones. 1361 /// 1362 /// We track the stack positions that each MemoryLocation needs 1363 /// to check, and last ended at. This is because we only want to check the 1364 /// things that changed since last time. The same MemoryLocation should 1365 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1366 /// things like this, and if they start, we can modify MemoryLocOrCall to 1367 /// include relevant data) 1368 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1369 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1370 SmallVectorImpl<MemoryAccess *> &VersionStack, 1371 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1372 1373 /// If no accesses, nothing to do. 1374 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1375 if (Accesses == nullptr) 1376 return; 1377 1378 // Pop everything that doesn't dominate the current block off the stack, 1379 // increment the PopEpoch to account for this. 1380 while (true) { 1381 assert( 1382 !VersionStack.empty() && 1383 "Version stack should have liveOnEntry sentinel dominating everything"); 1384 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1385 if (DT->dominates(BackBlock, BB)) 1386 break; 1387 while (VersionStack.back()->getBlock() == BackBlock) 1388 VersionStack.pop_back(); 1389 ++PopEpoch; 1390 } 1391 1392 for (MemoryAccess &MA : *Accesses) { 1393 auto *MU = dyn_cast<MemoryUse>(&MA); 1394 if (!MU) { 1395 VersionStack.push_back(&MA); 1396 ++StackEpoch; 1397 continue; 1398 } 1399 1400 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1401 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1402 continue; 1403 } 1404 1405 MemoryLocOrCall UseMLOC(MU); 1406 auto &LocInfo = LocStackInfo[UseMLOC]; 1407 // If the pop epoch changed, it means we've removed stuff from top of 1408 // stack due to changing blocks. We may have to reset the lower bound or 1409 // last kill info. 1410 if (LocInfo.PopEpoch != PopEpoch) { 1411 LocInfo.PopEpoch = PopEpoch; 1412 LocInfo.StackEpoch = StackEpoch; 1413 // If the lower bound was in something that no longer dominates us, we 1414 // have to reset it. 1415 // We can't simply track stack size, because the stack may have had 1416 // pushes/pops in the meantime. 1417 // XXX: This is non-optimal, but only is slower cases with heavily 1418 // branching dominator trees. To get the optimal number of queries would 1419 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1420 // the top of that stack dominates us. This does not seem worth it ATM. 1421 // A much cheaper optimization would be to always explore the deepest 1422 // branch of the dominator tree first. This will guarantee this resets on 1423 // the smallest set of blocks. 1424 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1425 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1426 // Reset the lower bound of things to check. 1427 // TODO: Some day we should be able to reset to last kill, rather than 1428 // 0. 1429 LocInfo.LowerBound = 0; 1430 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1431 LocInfo.LastKillValid = false; 1432 } 1433 } else if (LocInfo.StackEpoch != StackEpoch) { 1434 // If all that has changed is the StackEpoch, we only have to check the 1435 // new things on the stack, because we've checked everything before. In 1436 // this case, the lower bound of things to check remains the same. 1437 LocInfo.PopEpoch = PopEpoch; 1438 LocInfo.StackEpoch = StackEpoch; 1439 } 1440 if (!LocInfo.LastKillValid) { 1441 LocInfo.LastKill = VersionStack.size() - 1; 1442 LocInfo.LastKillValid = true; 1443 LocInfo.AR = AliasResult::MayAlias; 1444 } 1445 1446 // At this point, we should have corrected last kill and LowerBound to be 1447 // in bounds. 1448 assert(LocInfo.LowerBound < VersionStack.size() && 1449 "Lower bound out of range"); 1450 assert(LocInfo.LastKill < VersionStack.size() && 1451 "Last kill info out of range"); 1452 // In any case, the new upper bound is the top of the stack. 1453 unsigned long UpperBound = VersionStack.size() - 1; 1454 1455 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1456 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1457 << *(MU->getMemoryInst()) << ")" 1458 << " because there are " 1459 << UpperBound - LocInfo.LowerBound 1460 << " stores to disambiguate\n"); 1461 // Because we did not walk, LastKill is no longer valid, as this may 1462 // have been a kill. 1463 LocInfo.LastKillValid = false; 1464 continue; 1465 } 1466 bool FoundClobberResult = false; 1467 unsigned UpwardWalkLimit = MaxCheckLimit; 1468 while (UpperBound > LocInfo.LowerBound) { 1469 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1470 // For phis, use the walker, see where we ended up, go there. 1471 // The invariant.group handling in MemorySSA is ad-hoc and doesn't 1472 // support updates, so don't use it to optimize uses. 1473 MemoryAccess *Result = 1474 Walker->getClobberingMemoryAccessWithoutInvariantGroup( 1475 MU, UpwardWalkLimit); 1476 // We are guaranteed to find it or something is wrong. 1477 while (VersionStack[UpperBound] != Result) { 1478 assert(UpperBound != 0); 1479 --UpperBound; 1480 } 1481 FoundClobberResult = true; 1482 break; 1483 } 1484 1485 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1486 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1487 if (CA.IsClobber) { 1488 FoundClobberResult = true; 1489 LocInfo.AR = CA.AR; 1490 break; 1491 } 1492 --UpperBound; 1493 } 1494 1495 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1496 1497 // At the end of this loop, UpperBound is either a clobber, or lower bound 1498 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1499 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1500 // We were last killed now by where we got to 1501 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1502 LocInfo.AR = None; 1503 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1504 LocInfo.LastKill = UpperBound; 1505 } else { 1506 // Otherwise, we checked all the new ones, and now we know we can get to 1507 // LastKill. 1508 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1509 } 1510 LocInfo.LowerBound = VersionStack.size() - 1; 1511 LocInfo.LowerBoundBlock = BB; 1512 } 1513 } 1514 1515 /// Optimize uses to point to their actual clobbering definitions. 1516 void MemorySSA::OptimizeUses::optimizeUses() { 1517 SmallVector<MemoryAccess *, 16> VersionStack; 1518 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1519 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1520 1521 unsigned long StackEpoch = 1; 1522 unsigned long PopEpoch = 1; 1523 // We perform a non-recursive top-down dominator tree walk. 1524 for (const auto *DomNode : depth_first(DT->getRootNode())) 1525 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1526 LocStackInfo); 1527 } 1528 1529 void MemorySSA::placePHINodes( 1530 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1531 // Determine where our MemoryPhi's should go 1532 ForwardIDFCalculator IDFs(*DT); 1533 IDFs.setDefiningBlocks(DefiningBlocks); 1534 SmallVector<BasicBlock *, 32> IDFBlocks; 1535 IDFs.calculate(IDFBlocks); 1536 1537 // Now place MemoryPhi nodes. 1538 for (auto &BB : IDFBlocks) 1539 createMemoryPhi(BB); 1540 } 1541 1542 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1543 // We create an access to represent "live on entry", for things like 1544 // arguments or users of globals, where the memory they use is defined before 1545 // the beginning of the function. We do not actually insert it into the IR. 1546 // We do not define a live on exit for the immediate uses, and thus our 1547 // semantics do *not* imply that something with no immediate uses can simply 1548 // be removed. 1549 BasicBlock &StartingPoint = F.getEntryBlock(); 1550 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1551 &StartingPoint, NextID++)); 1552 1553 // We maintain lists of memory accesses per-block, trading memory for time. We 1554 // could just look up the memory access for every possible instruction in the 1555 // stream. 1556 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1557 // Go through each block, figure out where defs occur, and chain together all 1558 // the accesses. 1559 for (BasicBlock &B : F) { 1560 bool InsertIntoDef = false; 1561 AccessList *Accesses = nullptr; 1562 DefsList *Defs = nullptr; 1563 for (Instruction &I : B) { 1564 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1565 if (!MUD) 1566 continue; 1567 1568 if (!Accesses) 1569 Accesses = getOrCreateAccessList(&B); 1570 Accesses->push_back(MUD); 1571 if (isa<MemoryDef>(MUD)) { 1572 InsertIntoDef = true; 1573 if (!Defs) 1574 Defs = getOrCreateDefsList(&B); 1575 Defs->push_back(*MUD); 1576 } 1577 } 1578 if (InsertIntoDef) 1579 DefiningBlocks.insert(&B); 1580 } 1581 placePHINodes(DefiningBlocks); 1582 1583 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1584 // filled in with all blocks. 1585 SmallPtrSet<BasicBlock *, 16> Visited; 1586 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1587 1588 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1589 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1590 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1591 1592 // Mark the uses in unreachable blocks as live on entry, so that they go 1593 // somewhere. 1594 for (auto &BB : F) 1595 if (!Visited.count(&BB)) 1596 markUnreachableAsLiveOnEntry(&BB); 1597 } 1598 1599 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1600 1601 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1602 if (Walker) 1603 return Walker.get(); 1604 1605 if (!WalkerBase) 1606 WalkerBase = 1607 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1608 1609 Walker = 1610 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1611 return Walker.get(); 1612 } 1613 1614 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1615 if (SkipWalker) 1616 return SkipWalker.get(); 1617 1618 if (!WalkerBase) 1619 WalkerBase = 1620 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1621 1622 SkipWalker = 1623 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1624 return SkipWalker.get(); 1625 } 1626 1627 1628 // This is a helper function used by the creation routines. It places NewAccess 1629 // into the access and defs lists for a given basic block, at the given 1630 // insertion point. 1631 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1632 const BasicBlock *BB, 1633 InsertionPlace Point) { 1634 auto *Accesses = getOrCreateAccessList(BB); 1635 if (Point == Beginning) { 1636 // If it's a phi node, it goes first, otherwise, it goes after any phi 1637 // nodes. 1638 if (isa<MemoryPhi>(NewAccess)) { 1639 Accesses->push_front(NewAccess); 1640 auto *Defs = getOrCreateDefsList(BB); 1641 Defs->push_front(*NewAccess); 1642 } else { 1643 auto AI = find_if_not( 1644 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1645 Accesses->insert(AI, NewAccess); 1646 if (!isa<MemoryUse>(NewAccess)) { 1647 auto *Defs = getOrCreateDefsList(BB); 1648 auto DI = find_if_not( 1649 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1650 Defs->insert(DI, *NewAccess); 1651 } 1652 } 1653 } else { 1654 Accesses->push_back(NewAccess); 1655 if (!isa<MemoryUse>(NewAccess)) { 1656 auto *Defs = getOrCreateDefsList(BB); 1657 Defs->push_back(*NewAccess); 1658 } 1659 } 1660 BlockNumberingValid.erase(BB); 1661 } 1662 1663 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1664 AccessList::iterator InsertPt) { 1665 auto *Accesses = getWritableBlockAccesses(BB); 1666 bool WasEnd = InsertPt == Accesses->end(); 1667 Accesses->insert(AccessList::iterator(InsertPt), What); 1668 if (!isa<MemoryUse>(What)) { 1669 auto *Defs = getOrCreateDefsList(BB); 1670 // If we got asked to insert at the end, we have an easy job, just shove it 1671 // at the end. If we got asked to insert before an existing def, we also get 1672 // an iterator. If we got asked to insert before a use, we have to hunt for 1673 // the next def. 1674 if (WasEnd) { 1675 Defs->push_back(*What); 1676 } else if (isa<MemoryDef>(InsertPt)) { 1677 Defs->insert(InsertPt->getDefsIterator(), *What); 1678 } else { 1679 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1680 ++InsertPt; 1681 // Either we found a def, or we are inserting at the end 1682 if (InsertPt == Accesses->end()) 1683 Defs->push_back(*What); 1684 else 1685 Defs->insert(InsertPt->getDefsIterator(), *What); 1686 } 1687 } 1688 BlockNumberingValid.erase(BB); 1689 } 1690 1691 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1692 // Keep it in the lookup tables, remove from the lists 1693 removeFromLists(What, false); 1694 1695 // Note that moving should implicitly invalidate the optimized state of a 1696 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1697 // MemoryDef. 1698 if (auto *MD = dyn_cast<MemoryDef>(What)) 1699 MD->resetOptimized(); 1700 What->setBlock(BB); 1701 } 1702 1703 // Move What before Where in the IR. The end result is that What will belong to 1704 // the right lists and have the right Block set, but will not otherwise be 1705 // correct. It will not have the right defining access, and if it is a def, 1706 // things below it will not properly be updated. 1707 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1708 AccessList::iterator Where) { 1709 prepareForMoveTo(What, BB); 1710 insertIntoListsBefore(What, BB, Where); 1711 } 1712 1713 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1714 InsertionPlace Point) { 1715 if (isa<MemoryPhi>(What)) { 1716 assert(Point == Beginning && 1717 "Can only move a Phi at the beginning of the block"); 1718 // Update lookup table entry 1719 ValueToMemoryAccess.erase(What->getBlock()); 1720 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1721 (void)Inserted; 1722 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1723 } 1724 1725 prepareForMoveTo(What, BB); 1726 insertIntoListsForBlock(What, BB, Point); 1727 } 1728 1729 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1730 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1731 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1732 // Phi's always are placed at the front of the block. 1733 insertIntoListsForBlock(Phi, BB, Beginning); 1734 ValueToMemoryAccess[BB] = Phi; 1735 return Phi; 1736 } 1737 1738 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1739 MemoryAccess *Definition, 1740 const MemoryUseOrDef *Template, 1741 bool CreationMustSucceed) { 1742 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1743 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1744 if (CreationMustSucceed) 1745 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1746 "non-memory touching instruction"); 1747 if (NewAccess) { 1748 assert((!Definition || !isa<MemoryUse>(Definition)) && 1749 "A use cannot be a defining access"); 1750 NewAccess->setDefiningAccess(Definition); 1751 } 1752 return NewAccess; 1753 } 1754 1755 // Return true if the instruction has ordering constraints. 1756 // Note specifically that this only considers stores and loads 1757 // because others are still considered ModRef by getModRefInfo. 1758 static inline bool isOrdered(const Instruction *I) { 1759 if (auto *SI = dyn_cast<StoreInst>(I)) { 1760 if (!SI->isUnordered()) 1761 return true; 1762 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1763 if (!LI->isUnordered()) 1764 return true; 1765 } 1766 return false; 1767 } 1768 1769 /// Helper function to create new memory accesses 1770 template <typename AliasAnalysisType> 1771 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1772 AliasAnalysisType *AAP, 1773 const MemoryUseOrDef *Template) { 1774 // The assume intrinsic has a control dependency which we model by claiming 1775 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1776 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1777 // dependencies here. 1778 // FIXME: Replace this special casing with a more accurate modelling of 1779 // assume's control dependency. 1780 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1781 switch (II->getIntrinsicID()) { 1782 default: 1783 break; 1784 case Intrinsic::assume: 1785 case Intrinsic::experimental_noalias_scope_decl: 1786 case Intrinsic::pseudoprobe: 1787 return nullptr; 1788 } 1789 } 1790 1791 // Using a nonstandard AA pipelines might leave us with unexpected modref 1792 // results for I, so add a check to not model instructions that may not read 1793 // from or write to memory. This is necessary for correctness. 1794 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1795 return nullptr; 1796 1797 bool Def, Use; 1798 if (Template) { 1799 Def = isa<MemoryDef>(Template); 1800 Use = isa<MemoryUse>(Template); 1801 #if !defined(NDEBUG) 1802 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1803 bool DefCheck, UseCheck; 1804 DefCheck = isModSet(ModRef) || isOrdered(I); 1805 UseCheck = isRefSet(ModRef); 1806 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1807 #endif 1808 } else { 1809 // Find out what affect this instruction has on memory. 1810 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1811 // The isOrdered check is used to ensure that volatiles end up as defs 1812 // (atomics end up as ModRef right now anyway). Until we separate the 1813 // ordering chain from the memory chain, this enables people to see at least 1814 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1815 // will still give an answer that bypasses other volatile loads. TODO: 1816 // Separate memory aliasing and ordering into two different chains so that 1817 // we can precisely represent both "what memory will this read/write/is 1818 // clobbered by" and "what instructions can I move this past". 1819 Def = isModSet(ModRef) || isOrdered(I); 1820 Use = isRefSet(ModRef); 1821 } 1822 1823 // It's possible for an instruction to not modify memory at all. During 1824 // construction, we ignore them. 1825 if (!Def && !Use) 1826 return nullptr; 1827 1828 MemoryUseOrDef *MUD; 1829 if (Def) 1830 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1831 else 1832 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1833 ValueToMemoryAccess[I] = MUD; 1834 return MUD; 1835 } 1836 1837 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1838 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1839 assert(MA->use_empty() && 1840 "Trying to remove memory access that still has uses"); 1841 BlockNumbering.erase(MA); 1842 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1843 MUD->setDefiningAccess(nullptr); 1844 // Invalidate our walker's cache if necessary 1845 if (!isa<MemoryUse>(MA)) 1846 getWalker()->invalidateInfo(MA); 1847 1848 Value *MemoryInst; 1849 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1850 MemoryInst = MUD->getMemoryInst(); 1851 else 1852 MemoryInst = MA->getBlock(); 1853 1854 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1855 if (VMA->second == MA) 1856 ValueToMemoryAccess.erase(VMA); 1857 } 1858 1859 /// Properly remove \p MA from all of MemorySSA's lists. 1860 /// 1861 /// Because of the way the intrusive list and use lists work, it is important to 1862 /// do removal in the right order. 1863 /// ShouldDelete defaults to true, and will cause the memory access to also be 1864 /// deleted, not just removed. 1865 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1866 BasicBlock *BB = MA->getBlock(); 1867 // The access list owns the reference, so we erase it from the non-owning list 1868 // first. 1869 if (!isa<MemoryUse>(MA)) { 1870 auto DefsIt = PerBlockDefs.find(BB); 1871 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1872 Defs->remove(*MA); 1873 if (Defs->empty()) 1874 PerBlockDefs.erase(DefsIt); 1875 } 1876 1877 // The erase call here will delete it. If we don't want it deleted, we call 1878 // remove instead. 1879 auto AccessIt = PerBlockAccesses.find(BB); 1880 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1881 if (ShouldDelete) 1882 Accesses->erase(MA); 1883 else 1884 Accesses->remove(MA); 1885 1886 if (Accesses->empty()) { 1887 PerBlockAccesses.erase(AccessIt); 1888 BlockNumberingValid.erase(BB); 1889 } 1890 } 1891 1892 void MemorySSA::print(raw_ostream &OS) const { 1893 MemorySSAAnnotatedWriter Writer(this); 1894 F.print(OS, &Writer); 1895 } 1896 1897 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1898 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1899 #endif 1900 1901 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const { 1902 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1903 VL = VerificationLevel::Full; 1904 #endif 1905 1906 #ifndef NDEBUG 1907 verifyOrderingDominationAndDefUses(F, VL); 1908 verifyDominationNumbers(F); 1909 if (VL == VerificationLevel::Full) 1910 verifyPrevDefInPhis(F); 1911 #endif 1912 // Previously, the verification used to also verify that the clobberingAccess 1913 // cached by MemorySSA is the same as the clobberingAccess found at a later 1914 // query to AA. This does not hold true in general due to the current fragility 1915 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1916 // up. As a result, transformations that are correct, will lead to BasicAA 1917 // returning different Alias answers before and after that transformation. 1918 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1919 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1920 // every transformation, which defeats the purpose of using it. For such an 1921 // example, see test4 added in D51960. 1922 } 1923 1924 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1925 for (const BasicBlock &BB : F) { 1926 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1927 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1928 auto *Pred = Phi->getIncomingBlock(I); 1929 auto *IncAcc = Phi->getIncomingValue(I); 1930 // If Pred has no unreachable predecessors, get last def looking at 1931 // IDoms. If, while walkings IDoms, any of these has an unreachable 1932 // predecessor, then the incoming def can be any access. 1933 if (auto *DTNode = DT->getNode(Pred)) { 1934 while (DTNode) { 1935 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1936 auto *LastAcc = &*(--DefList->end()); 1937 assert(LastAcc == IncAcc && 1938 "Incorrect incoming access into phi."); 1939 (void)IncAcc; 1940 (void)LastAcc; 1941 break; 1942 } 1943 DTNode = DTNode->getIDom(); 1944 } 1945 } else { 1946 // If Pred has unreachable predecessors, but has at least a Def, the 1947 // incoming access can be the last Def in Pred, or it could have been 1948 // optimized to LoE. After an update, though, the LoE may have been 1949 // replaced by another access, so IncAcc may be any access. 1950 // If Pred has unreachable predecessors and no Defs, incoming access 1951 // should be LoE; However, after an update, it may be any access. 1952 } 1953 } 1954 } 1955 } 1956 } 1957 1958 /// Verify that all of the blocks we believe to have valid domination numbers 1959 /// actually have valid domination numbers. 1960 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1961 if (BlockNumberingValid.empty()) 1962 return; 1963 1964 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1965 for (const BasicBlock &BB : F) { 1966 if (!ValidBlocks.count(&BB)) 1967 continue; 1968 1969 ValidBlocks.erase(&BB); 1970 1971 const AccessList *Accesses = getBlockAccesses(&BB); 1972 // It's correct to say an empty block has valid numbering. 1973 if (!Accesses) 1974 continue; 1975 1976 // Block numbering starts at 1. 1977 unsigned long LastNumber = 0; 1978 for (const MemoryAccess &MA : *Accesses) { 1979 auto ThisNumberIter = BlockNumbering.find(&MA); 1980 assert(ThisNumberIter != BlockNumbering.end() && 1981 "MemoryAccess has no domination number in a valid block!"); 1982 1983 unsigned long ThisNumber = ThisNumberIter->second; 1984 assert(ThisNumber > LastNumber && 1985 "Domination numbers should be strictly increasing!"); 1986 (void)LastNumber; 1987 LastNumber = ThisNumber; 1988 } 1989 } 1990 1991 assert(ValidBlocks.empty() && 1992 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1993 } 1994 1995 /// Verify ordering: the order and existence of MemoryAccesses matches the 1996 /// order and existence of memory affecting instructions. 1997 /// Verify domination: each definition dominates all of its uses. 1998 /// Verify def-uses: the immediate use information - walk all the memory 1999 /// accesses and verifying that, for each use, it appears in the appropriate 2000 /// def's use list 2001 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F, 2002 VerificationLevel VL) const { 2003 // Walk all the blocks, comparing what the lookups think and what the access 2004 // lists think, as well as the order in the blocks vs the order in the access 2005 // lists. 2006 SmallVector<MemoryAccess *, 32> ActualAccesses; 2007 SmallVector<MemoryAccess *, 32> ActualDefs; 2008 for (BasicBlock &B : F) { 2009 const AccessList *AL = getBlockAccesses(&B); 2010 const auto *DL = getBlockDefs(&B); 2011 MemoryPhi *Phi = getMemoryAccess(&B); 2012 if (Phi) { 2013 // Verify ordering. 2014 ActualAccesses.push_back(Phi); 2015 ActualDefs.push_back(Phi); 2016 // Verify domination 2017 for (const Use &U : Phi->uses()) { 2018 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 2019 (void)U; 2020 } 2021 // Verify def-uses for full verify. 2022 if (VL == VerificationLevel::Full) { 2023 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2024 pred_begin(&B), pred_end(&B))) && 2025 "Incomplete MemoryPhi Node"); 2026 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2027 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2028 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 2029 "Incoming phi block not a block predecessor"); 2030 } 2031 } 2032 } 2033 2034 for (Instruction &I : B) { 2035 MemoryUseOrDef *MA = getMemoryAccess(&I); 2036 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 2037 "We have memory affecting instructions " 2038 "in this block but they are not in the " 2039 "access list or defs list"); 2040 if (MA) { 2041 // Verify ordering. 2042 ActualAccesses.push_back(MA); 2043 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2044 // Verify ordering. 2045 ActualDefs.push_back(MA); 2046 // Verify domination. 2047 for (const Use &U : MD->uses()) { 2048 assert(dominates(MD, U) && 2049 "Memory Def does not dominate it's uses"); 2050 (void)U; 2051 } 2052 } 2053 // Verify def-uses for full verify. 2054 if (VL == VerificationLevel::Full) 2055 verifyUseInDefs(MA->getDefiningAccess(), MA); 2056 } 2057 } 2058 // Either we hit the assert, really have no accesses, or we have both 2059 // accesses and an access list. Same with defs. 2060 if (!AL && !DL) 2061 continue; 2062 // Verify ordering. 2063 assert(AL->size() == ActualAccesses.size() && 2064 "We don't have the same number of accesses in the block as on the " 2065 "access list"); 2066 assert((DL || ActualDefs.size() == 0) && 2067 "Either we should have a defs list, or we should have no defs"); 2068 assert((!DL || DL->size() == ActualDefs.size()) && 2069 "We don't have the same number of defs in the block as on the " 2070 "def list"); 2071 auto ALI = AL->begin(); 2072 auto AAI = ActualAccesses.begin(); 2073 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2074 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2075 ++ALI; 2076 ++AAI; 2077 } 2078 ActualAccesses.clear(); 2079 if (DL) { 2080 auto DLI = DL->begin(); 2081 auto ADI = ActualDefs.begin(); 2082 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2083 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2084 ++DLI; 2085 ++ADI; 2086 } 2087 } 2088 ActualDefs.clear(); 2089 } 2090 } 2091 2092 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2093 /// appears in the use list of \p Def. 2094 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2095 // The live on entry use may cause us to get a NULL def here 2096 if (!Def) 2097 assert(isLiveOnEntryDef(Use) && 2098 "Null def but use not point to live on entry def"); 2099 else 2100 assert(is_contained(Def->users(), Use) && 2101 "Did not find use in def's use list"); 2102 } 2103 2104 /// Perform a local numbering on blocks so that instruction ordering can be 2105 /// determined in constant time. 2106 /// TODO: We currently just number in order. If we numbered by N, we could 2107 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2108 /// log2(N) sequences of mixed before and after) without needing to invalidate 2109 /// the numbering. 2110 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2111 // The pre-increment ensures the numbers really start at 1. 2112 unsigned long CurrentNumber = 0; 2113 const AccessList *AL = getBlockAccesses(B); 2114 assert(AL != nullptr && "Asking to renumber an empty block"); 2115 for (const auto &I : *AL) 2116 BlockNumbering[&I] = ++CurrentNumber; 2117 BlockNumberingValid.insert(B); 2118 } 2119 2120 /// Determine, for two memory accesses in the same block, 2121 /// whether \p Dominator dominates \p Dominatee. 2122 /// \returns True if \p Dominator dominates \p Dominatee. 2123 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2124 const MemoryAccess *Dominatee) const { 2125 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2126 2127 assert((DominatorBlock == Dominatee->getBlock()) && 2128 "Asking for local domination when accesses are in different blocks!"); 2129 // A node dominates itself. 2130 if (Dominatee == Dominator) 2131 return true; 2132 2133 // When Dominatee is defined on function entry, it is not dominated by another 2134 // memory access. 2135 if (isLiveOnEntryDef(Dominatee)) 2136 return false; 2137 2138 // When Dominator is defined on function entry, it dominates the other memory 2139 // access. 2140 if (isLiveOnEntryDef(Dominator)) 2141 return true; 2142 2143 if (!BlockNumberingValid.count(DominatorBlock)) 2144 renumberBlock(DominatorBlock); 2145 2146 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2147 // All numbers start with 1 2148 assert(DominatorNum != 0 && "Block was not numbered properly"); 2149 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2150 assert(DominateeNum != 0 && "Block was not numbered properly"); 2151 return DominatorNum < DominateeNum; 2152 } 2153 2154 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2155 const MemoryAccess *Dominatee) const { 2156 if (Dominator == Dominatee) 2157 return true; 2158 2159 if (isLiveOnEntryDef(Dominatee)) 2160 return false; 2161 2162 if (Dominator->getBlock() != Dominatee->getBlock()) 2163 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2164 return locallyDominates(Dominator, Dominatee); 2165 } 2166 2167 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2168 const Use &Dominatee) const { 2169 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2170 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2171 // The def must dominate the incoming block of the phi. 2172 if (UseBB != Dominator->getBlock()) 2173 return DT->dominates(Dominator->getBlock(), UseBB); 2174 // If the UseBB and the DefBB are the same, compare locally. 2175 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2176 } 2177 // If it's not a PHI node use, the normal dominates can already handle it. 2178 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2179 } 2180 2181 void MemoryAccess::print(raw_ostream &OS) const { 2182 switch (getValueID()) { 2183 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2184 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2185 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2186 } 2187 llvm_unreachable("invalid value id"); 2188 } 2189 2190 void MemoryDef::print(raw_ostream &OS) const { 2191 MemoryAccess *UO = getDefiningAccess(); 2192 2193 auto printID = [&OS](MemoryAccess *A) { 2194 if (A && A->getID()) 2195 OS << A->getID(); 2196 else 2197 OS << LiveOnEntryStr; 2198 }; 2199 2200 OS << getID() << " = MemoryDef("; 2201 printID(UO); 2202 OS << ")"; 2203 2204 if (isOptimized()) { 2205 OS << "->"; 2206 printID(getOptimized()); 2207 2208 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2209 OS << " " << *AR; 2210 } 2211 } 2212 2213 void MemoryPhi::print(raw_ostream &OS) const { 2214 ListSeparator LS(","); 2215 OS << getID() << " = MemoryPhi("; 2216 for (const auto &Op : operands()) { 2217 BasicBlock *BB = getIncomingBlock(Op); 2218 MemoryAccess *MA = cast<MemoryAccess>(Op); 2219 2220 OS << LS << '{'; 2221 if (BB->hasName()) 2222 OS << BB->getName(); 2223 else 2224 BB->printAsOperand(OS, false); 2225 OS << ','; 2226 if (unsigned ID = MA->getID()) 2227 OS << ID; 2228 else 2229 OS << LiveOnEntryStr; 2230 OS << '}'; 2231 } 2232 OS << ')'; 2233 } 2234 2235 void MemoryUse::print(raw_ostream &OS) const { 2236 MemoryAccess *UO = getDefiningAccess(); 2237 OS << "MemoryUse("; 2238 if (UO && UO->getID()) 2239 OS << UO->getID(); 2240 else 2241 OS << LiveOnEntryStr; 2242 OS << ')'; 2243 2244 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2245 OS << " " << *AR; 2246 } 2247 2248 void MemoryAccess::dump() const { 2249 // Cannot completely remove virtual function even in release mode. 2250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2251 print(dbgs()); 2252 dbgs() << "\n"; 2253 #endif 2254 } 2255 2256 char MemorySSAPrinterLegacyPass::ID = 0; 2257 2258 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2259 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2260 } 2261 2262 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2263 AU.setPreservesAll(); 2264 AU.addRequired<MemorySSAWrapperPass>(); 2265 } 2266 2267 class DOTFuncMSSAInfo { 2268 private: 2269 const Function &F; 2270 MemorySSAAnnotatedWriter MSSAWriter; 2271 2272 public: 2273 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2274 : F(F), MSSAWriter(&MSSA) {} 2275 2276 const Function *getFunction() { return &F; } 2277 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2278 }; 2279 2280 namespace llvm { 2281 2282 template <> 2283 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2284 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2285 return &(CFGInfo->getFunction()->getEntryBlock()); 2286 } 2287 2288 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2289 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2290 2291 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2292 return nodes_iterator(CFGInfo->getFunction()->begin()); 2293 } 2294 2295 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2296 return nodes_iterator(CFGInfo->getFunction()->end()); 2297 } 2298 2299 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2300 return CFGInfo->getFunction()->size(); 2301 } 2302 }; 2303 2304 template <> 2305 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2306 2307 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2308 2309 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2310 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2311 "' function"; 2312 } 2313 2314 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2315 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2316 Node, nullptr, 2317 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2318 BB.print(OS, &CFGInfo->getWriter(), true, true); 2319 }, 2320 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2321 std::string Str = S.substr(I, Idx - I); 2322 StringRef SR = Str; 2323 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2324 SR.count("MemoryUse(")) 2325 return; 2326 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2327 }); 2328 } 2329 2330 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2331 const_succ_iterator I) { 2332 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2333 } 2334 2335 /// Display the raw branch weights from PGO. 2336 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2337 DOTFuncMSSAInfo *CFGInfo) { 2338 return ""; 2339 } 2340 2341 std::string getNodeAttributes(const BasicBlock *Node, 2342 DOTFuncMSSAInfo *CFGInfo) { 2343 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2344 ? "style=filled, fillcolor=lightpink" 2345 : ""; 2346 } 2347 }; 2348 2349 } // namespace llvm 2350 2351 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2352 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2353 if (DotCFGMSSA != "") { 2354 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2355 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2356 } else 2357 MSSA.print(dbgs()); 2358 2359 if (VerifyMemorySSA) 2360 MSSA.verifyMemorySSA(); 2361 return false; 2362 } 2363 2364 AnalysisKey MemorySSAAnalysis::Key; 2365 2366 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2367 FunctionAnalysisManager &AM) { 2368 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2369 auto &AA = AM.getResult<AAManager>(F); 2370 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2371 } 2372 2373 bool MemorySSAAnalysis::Result::invalidate( 2374 Function &F, const PreservedAnalyses &PA, 2375 FunctionAnalysisManager::Invalidator &Inv) { 2376 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2377 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2378 Inv.invalidate<AAManager>(F, PA) || 2379 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2380 } 2381 2382 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2383 FunctionAnalysisManager &AM) { 2384 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2385 if (DotCFGMSSA != "") { 2386 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2387 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2388 } else { 2389 OS << "MemorySSA for function: " << F.getName() << "\n"; 2390 MSSA.print(OS); 2391 } 2392 2393 return PreservedAnalyses::all(); 2394 } 2395 2396 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2397 FunctionAnalysisManager &AM) { 2398 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2399 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2400 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2401 F.print(OS, &Writer); 2402 2403 return PreservedAnalyses::all(); 2404 } 2405 2406 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2407 FunctionAnalysisManager &AM) { 2408 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2409 2410 return PreservedAnalyses::all(); 2411 } 2412 2413 char MemorySSAWrapperPass::ID = 0; 2414 2415 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2416 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2417 } 2418 2419 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2420 2421 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2422 AU.setPreservesAll(); 2423 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2424 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2425 } 2426 2427 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2428 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2429 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2430 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2431 return false; 2432 } 2433 2434 void MemorySSAWrapperPass::verifyAnalysis() const { 2435 if (VerifyMemorySSA) 2436 MSSA->verifyMemorySSA(); 2437 } 2438 2439 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2440 MSSA->print(OS); 2441 } 2442 2443 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2444 2445 /// Walk the use-def chains starting at \p StartingAccess and find 2446 /// the MemoryAccess that actually clobbers Loc. 2447 /// 2448 /// \returns our clobbering memory access 2449 template <typename AliasAnalysisType> 2450 MemoryAccess * 2451 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2452 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2453 unsigned &UpwardWalkLimit) { 2454 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2455 2456 Instruction *I = nullptr; 2457 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2458 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2459 return StartingUseOrDef; 2460 2461 I = StartingUseOrDef->getMemoryInst(); 2462 2463 // Conservatively, fences are always clobbers, so don't perform the walk if 2464 // we hit a fence. 2465 if (!isa<CallBase>(I) && I->isFenceLike()) 2466 return StartingUseOrDef; 2467 } 2468 2469 UpwardsMemoryQuery Q; 2470 Q.OriginalAccess = StartingAccess; 2471 Q.StartingLoc = Loc; 2472 Q.Inst = nullptr; 2473 Q.IsCall = false; 2474 2475 // Unlike the other function, do not walk to the def of a def, because we are 2476 // handed something we already believe is the clobbering access. 2477 // We never set SkipSelf to true in Q in this method. 2478 MemoryAccess *Clobber = 2479 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2480 LLVM_DEBUG({ 2481 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2482 if (I) 2483 dbgs() << " for instruction " << *I << "\n"; 2484 dbgs() << " is " << *Clobber << "\n"; 2485 }); 2486 return Clobber; 2487 } 2488 2489 static const Instruction * 2490 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) { 2491 if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile()) 2492 return nullptr; 2493 2494 // We consider bitcasts and zero GEPs to be the same pointer value. Start by 2495 // stripping bitcasts and zero GEPs, then we will recursively look at loads 2496 // and stores through bitcasts and zero GEPs. 2497 Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts(); 2498 2499 // It's not safe to walk the use list of a global value because function 2500 // passes aren't allowed to look outside their functions. 2501 // FIXME: this could be fixed by filtering instructions from outside of 2502 // current function. 2503 if (isa<Constant>(PointerOperand)) 2504 return nullptr; 2505 2506 // Queue to process all pointers that are equivalent to load operand. 2507 SmallVector<const Value *, 8> PointerUsesQueue; 2508 PointerUsesQueue.push_back(PointerOperand); 2509 2510 const Instruction *MostDominatingInstruction = &I; 2511 2512 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case 2513 // we will see all the instructions. It may not matter in practice. If it 2514 // does, we will have to support MemorySSA construction and updates. 2515 while (!PointerUsesQueue.empty()) { 2516 const Value *Ptr = PointerUsesQueue.pop_back_val(); 2517 assert(Ptr && !isa<GlobalValue>(Ptr) && 2518 "Null or GlobalValue should not be inserted"); 2519 2520 for (const User *Us : Ptr->users()) { 2521 auto *U = dyn_cast<Instruction>(Us); 2522 if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction)) 2523 continue; 2524 2525 // Add bitcasts and zero GEPs to queue. 2526 if (isa<BitCastInst>(U)) { 2527 PointerUsesQueue.push_back(U); 2528 continue; 2529 } 2530 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 2531 if (GEP->hasAllZeroIndices()) 2532 PointerUsesQueue.push_back(U); 2533 continue; 2534 } 2535 2536 // If we hit a load/store with an invariant.group metadata and the same 2537 // pointer operand, we can assume that value pointed to by the pointer 2538 // operand didn't change. 2539 if (U->hasMetadata(LLVMContext::MD_invariant_group) && 2540 getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) { 2541 MostDominatingInstruction = U; 2542 } 2543 } 2544 } 2545 return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction; 2546 } 2547 2548 template <typename AliasAnalysisType> 2549 MemoryAccess * 2550 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2551 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf, 2552 bool UseInvariantGroup) { 2553 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2554 // If this is a MemoryPhi, we can't do anything. 2555 if (!StartingAccess) 2556 return MA; 2557 2558 if (UseInvariantGroup) { 2559 if (auto *I = getInvariantGroupClobberingInstruction( 2560 *StartingAccess->getMemoryInst(), MSSA->getDomTree())) { 2561 assert(isa<LoadInst>(I) || isa<StoreInst>(I)); 2562 2563 auto *ClobberMA = MSSA->getMemoryAccess(I); 2564 assert(ClobberMA); 2565 if (isa<MemoryUse>(ClobberMA)) 2566 return ClobberMA->getDefiningAccess(); 2567 return ClobberMA; 2568 } 2569 } 2570 2571 bool IsOptimized = false; 2572 2573 // If this is an already optimized use or def, return the optimized result. 2574 // Note: Currently, we store the optimized def result in a separate field, 2575 // since we can't use the defining access. 2576 if (StartingAccess->isOptimized()) { 2577 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2578 return StartingAccess->getOptimized(); 2579 IsOptimized = true; 2580 } 2581 2582 const Instruction *I = StartingAccess->getMemoryInst(); 2583 // We can't sanely do anything with a fence, since they conservatively clobber 2584 // all memory, and have no locations to get pointers from to try to 2585 // disambiguate. 2586 if (!isa<CallBase>(I) && I->isFenceLike()) 2587 return StartingAccess; 2588 2589 UpwardsMemoryQuery Q(I, StartingAccess); 2590 2591 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2592 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2593 StartingAccess->setOptimized(LiveOnEntry); 2594 StartingAccess->setOptimizedAccessType(None); 2595 return LiveOnEntry; 2596 } 2597 2598 MemoryAccess *OptimizedAccess; 2599 if (!IsOptimized) { 2600 // Start with the thing we already think clobbers this location 2601 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2602 2603 // At this point, DefiningAccess may be the live on entry def. 2604 // If it is, we will not get a better result. 2605 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2606 StartingAccess->setOptimized(DefiningAccess); 2607 StartingAccess->setOptimizedAccessType(None); 2608 return DefiningAccess; 2609 } 2610 2611 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2612 StartingAccess->setOptimized(OptimizedAccess); 2613 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2614 StartingAccess->setOptimizedAccessType(None); 2615 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2616 StartingAccess->setOptimizedAccessType( 2617 AliasResult(AliasResult::MustAlias)); 2618 } else 2619 OptimizedAccess = StartingAccess->getOptimized(); 2620 2621 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2622 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2623 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2624 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2625 2626 MemoryAccess *Result; 2627 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2628 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2629 assert(isa<MemoryDef>(Q.OriginalAccess)); 2630 Q.SkipSelfAccess = true; 2631 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2632 } else 2633 Result = OptimizedAccess; 2634 2635 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2636 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2637 2638 return Result; 2639 } 2640 2641 MemoryAccess * 2642 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2643 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2644 return Use->getDefiningAccess(); 2645 return MA; 2646 } 2647 2648 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2649 MemoryAccess *StartingAccess, const MemoryLocation &) { 2650 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2651 return Use->getDefiningAccess(); 2652 return StartingAccess; 2653 } 2654 2655 void MemoryPhi::deleteMe(DerivedUser *Self) { 2656 delete static_cast<MemoryPhi *>(Self); 2657 } 2658 2659 void MemoryDef::deleteMe(DerivedUser *Self) { 2660 delete static_cast<MemoryDef *>(Self); 2661 } 2662 2663 void MemoryUse::deleteMe(DerivedUser *Self) { 2664 delete static_cast<MemoryUse *>(Self); 2665 } 2666 2667 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2668 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2669 Ptr = Ptr->stripPointerCasts(); 2670 if (!isa<Instruction>(Ptr)) 2671 return true; 2672 return isa<AllocaInst>(Ptr); 2673 }; 2674 2675 Ptr = Ptr->stripPointerCasts(); 2676 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2677 if (I->getParent()->isEntryBlock()) 2678 return true; 2679 } 2680 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2681 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2682 GEP->hasAllConstantIndices(); 2683 } 2684 return IsGuaranteedLoopInvariantBase(Ptr); 2685 } 2686