1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/FormattedStream.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdlib> 53 #include <iterator> 54 #include <memory> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "memoryssa" 60 61 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 62 true) 63 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 66 true) 67 68 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 69 "Memory SSA Printer", false, false) 70 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 72 "Memory SSA Printer", false, false) 73 74 static cl::opt<unsigned> MaxCheckLimit( 75 "memssa-check-limit", cl::Hidden, cl::init(100), 76 cl::desc("The maximum number of stores/phis MemorySSA" 77 "will consider trying to walk past (default = 100)")); 78 79 // Always verify MemorySSA if expensive checking is enabled. 80 #ifdef EXPENSIVE_CHECKS 81 bool llvm::VerifyMemorySSA = true; 82 #else 83 bool llvm::VerifyMemorySSA = false; 84 #endif 85 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 86 cl::opt<bool> llvm::EnableMSSALoopDependency( 87 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 88 cl::desc("Enable MemorySSA dependency for loop pass manager")); 89 90 static cl::opt<bool, true> 91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 92 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 93 94 namespace llvm { 95 96 /// An assembly annotator class to print Memory SSA information in 97 /// comments. 98 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 99 friend class MemorySSA; 100 101 const MemorySSA *MSSA; 102 103 public: 104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 105 106 void emitBasicBlockStartAnnot(const BasicBlock *BB, 107 formatted_raw_ostream &OS) override { 108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 109 OS << "; " << *MA << "\n"; 110 } 111 112 void emitInstructionAnnot(const Instruction *I, 113 formatted_raw_ostream &OS) override { 114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 115 OS << "; " << *MA << "\n"; 116 } 117 }; 118 119 } // end namespace llvm 120 121 namespace { 122 123 /// Our current alias analysis API differentiates heavily between calls and 124 /// non-calls, and functions called on one usually assert on the other. 125 /// This class encapsulates the distinction to simplify other code that wants 126 /// "Memory affecting instructions and related data" to use as a key. 127 /// For example, this class is used as a densemap key in the use optimizer. 128 class MemoryLocOrCall { 129 public: 130 bool IsCall = false; 131 132 MemoryLocOrCall(MemoryUseOrDef *MUD) 133 : MemoryLocOrCall(MUD->getMemoryInst()) {} 134 MemoryLocOrCall(const MemoryUseOrDef *MUD) 135 : MemoryLocOrCall(MUD->getMemoryInst()) {} 136 137 MemoryLocOrCall(Instruction *Inst) { 138 if (auto *C = dyn_cast<CallBase>(Inst)) { 139 IsCall = true; 140 Call = C; 141 } else { 142 IsCall = false; 143 // There is no such thing as a memorylocation for a fence inst, and it is 144 // unique in that regard. 145 if (!isa<FenceInst>(Inst)) 146 Loc = MemoryLocation::get(Inst); 147 } 148 } 149 150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 151 152 const CallBase *getCall() const { 153 assert(IsCall); 154 return Call; 155 } 156 157 MemoryLocation getLoc() const { 158 assert(!IsCall); 159 return Loc; 160 } 161 162 bool operator==(const MemoryLocOrCall &Other) const { 163 if (IsCall != Other.IsCall) 164 return false; 165 166 if (!IsCall) 167 return Loc == Other.Loc; 168 169 if (Call->getCalledValue() != Other.Call->getCalledValue()) 170 return false; 171 172 return Call->arg_size() == Other.Call->arg_size() && 173 std::equal(Call->arg_begin(), Call->arg_end(), 174 Other.Call->arg_begin()); 175 } 176 177 private: 178 union { 179 const CallBase *Call; 180 MemoryLocation Loc; 181 }; 182 }; 183 184 } // end anonymous namespace 185 186 namespace llvm { 187 188 template <> struct DenseMapInfo<MemoryLocOrCall> { 189 static inline MemoryLocOrCall getEmptyKey() { 190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 191 } 192 193 static inline MemoryLocOrCall getTombstoneKey() { 194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 195 } 196 197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 198 if (!MLOC.IsCall) 199 return hash_combine( 200 MLOC.IsCall, 201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 202 203 hash_code hash = 204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 205 MLOC.getCall()->getCalledValue())); 206 207 for (const Value *Arg : MLOC.getCall()->args()) 208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 209 return hash; 210 } 211 212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 213 return LHS == RHS; 214 } 215 }; 216 217 } // end namespace llvm 218 219 /// This does one-way checks to see if Use could theoretically be hoisted above 220 /// MayClobber. This will not check the other way around. 221 /// 222 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 223 /// MayClobber, with no potentially clobbering operations in between them. 224 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 225 static bool areLoadsReorderable(const LoadInst *Use, 226 const LoadInst *MayClobber) { 227 bool VolatileUse = Use->isVolatile(); 228 bool VolatileClobber = MayClobber->isVolatile(); 229 // Volatile operations may never be reordered with other volatile operations. 230 if (VolatileUse && VolatileClobber) 231 return false; 232 // Otherwise, volatile doesn't matter here. From the language reference: 233 // 'optimizers may change the order of volatile operations relative to 234 // non-volatile operations.'" 235 236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 237 // is weaker, it can be moved above other loads. We just need to be sure that 238 // MayClobber isn't an acquire load, because loads can't be moved above 239 // acquire loads. 240 // 241 // Note that this explicitly *does* allow the free reordering of monotonic (or 242 // weaker) loads of the same address. 243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 245 AtomicOrdering::Acquire); 246 return !(SeqCstUse || MayClobberIsAcquire); 247 } 248 249 namespace { 250 251 struct ClobberAlias { 252 bool IsClobber; 253 Optional<AliasResult> AR; 254 }; 255 256 } // end anonymous namespace 257 258 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 259 // ignored if IsClobber = false. 260 template <typename AliasAnalysisType> 261 static ClobberAlias 262 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 263 const Instruction *UseInst, AliasAnalysisType &AA) { 264 Instruction *DefInst = MD->getMemoryInst(); 265 assert(DefInst && "Defining instruction not actually an instruction"); 266 const auto *UseCall = dyn_cast<CallBase>(UseInst); 267 Optional<AliasResult> AR; 268 269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 270 // These intrinsics will show up as affecting memory, but they are just 271 // markers, mostly. 272 // 273 // FIXME: We probably don't actually want MemorySSA to model these at all 274 // (including creating MemoryAccesses for them): we just end up inventing 275 // clobbers where they don't really exist at all. Please see D43269 for 276 // context. 277 switch (II->getIntrinsicID()) { 278 case Intrinsic::lifetime_start: 279 if (UseCall) 280 return {false, NoAlias}; 281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc); 282 return {AR != NoAlias, AR}; 283 case Intrinsic::lifetime_end: 284 case Intrinsic::invariant_start: 285 case Intrinsic::invariant_end: 286 case Intrinsic::assume: 287 return {false, NoAlias}; 288 case Intrinsic::dbg_addr: 289 case Intrinsic::dbg_declare: 290 case Intrinsic::dbg_label: 291 case Intrinsic::dbg_value: 292 llvm_unreachable("debuginfo shouldn't have associated defs!"); 293 default: 294 break; 295 } 296 } 297 298 if (UseCall) { 299 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall); 300 AR = isMustSet(I) ? MustAlias : MayAlias; 301 return {isModOrRefSet(I), AR}; 302 } 303 304 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 305 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) 306 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias}; 307 308 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 309 AR = isMustSet(I) ? MustAlias : MayAlias; 310 return {isModSet(I), AR}; 311 } 312 313 template <typename AliasAnalysisType> 314 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 315 const MemoryUseOrDef *MU, 316 const MemoryLocOrCall &UseMLOC, 317 AliasAnalysisType &AA) { 318 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 319 // to exist while MemoryLocOrCall is pushed through places. 320 if (UseMLOC.IsCall) 321 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 322 AA); 323 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 324 AA); 325 } 326 327 // Return true when MD may alias MU, return false otherwise. 328 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 329 AliasAnalysis &AA) { 330 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 331 } 332 333 namespace { 334 335 struct UpwardsMemoryQuery { 336 // True if our original query started off as a call 337 bool IsCall = false; 338 // The pointer location we started the query with. This will be empty if 339 // IsCall is true. 340 MemoryLocation StartingLoc; 341 // This is the instruction we were querying about. 342 const Instruction *Inst = nullptr; 343 // The MemoryAccess we actually got called with, used to test local domination 344 const MemoryAccess *OriginalAccess = nullptr; 345 Optional<AliasResult> AR = MayAlias; 346 bool SkipSelfAccess = false; 347 348 UpwardsMemoryQuery() = default; 349 350 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 351 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 352 if (!IsCall) 353 StartingLoc = MemoryLocation::get(Inst); 354 } 355 }; 356 357 } // end anonymous namespace 358 359 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, 360 BatchAAResults &AA) { 361 Instruction *Inst = MD->getMemoryInst(); 362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 363 switch (II->getIntrinsicID()) { 364 case Intrinsic::lifetime_end: 365 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias; 366 default: 367 return false; 368 } 369 } 370 return false; 371 } 372 373 template <typename AliasAnalysisType> 374 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 375 const Instruction *I) { 376 // If the memory can't be changed, then loads of the memory can't be 377 // clobbered. 378 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) || 379 AA.pointsToConstantMemory(MemoryLocation( 380 cast<LoadInst>(I)->getPointerOperand()))); 381 } 382 383 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 384 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 385 /// 386 /// This is meant to be as simple and self-contained as possible. Because it 387 /// uses no cache, etc., it can be relatively expensive. 388 /// 389 /// \param Start The MemoryAccess that we want to walk from. 390 /// \param ClobberAt A clobber for Start. 391 /// \param StartLoc The MemoryLocation for Start. 392 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 393 /// \param Query The UpwardsMemoryQuery we used for our search. 394 /// \param AA The AliasAnalysis we used for our search. 395 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 396 397 template <typename AliasAnalysisType> 398 LLVM_ATTRIBUTE_UNUSED static void 399 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 400 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 401 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 402 bool AllowImpreciseClobber = false) { 403 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 404 405 if (MSSA.isLiveOnEntryDef(Start)) { 406 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 407 "liveOnEntry must clobber itself"); 408 return; 409 } 410 411 bool FoundClobber = false; 412 DenseSet<ConstMemoryAccessPair> VisitedPhis; 413 SmallVector<ConstMemoryAccessPair, 8> Worklist; 414 Worklist.emplace_back(Start, StartLoc); 415 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 416 // is found, complain. 417 while (!Worklist.empty()) { 418 auto MAP = Worklist.pop_back_val(); 419 // All we care about is that nothing from Start to ClobberAt clobbers Start. 420 // We learn nothing from revisiting nodes. 421 if (!VisitedPhis.insert(MAP).second) 422 continue; 423 424 for (const auto *MA : def_chain(MAP.first)) { 425 if (MA == ClobberAt) { 426 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 427 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 428 // since it won't let us short-circuit. 429 // 430 // Also, note that this can't be hoisted out of the `Worklist` loop, 431 // since MD may only act as a clobber for 1 of N MemoryLocations. 432 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 433 if (!FoundClobber) { 434 ClobberAlias CA = 435 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 436 if (CA.IsClobber) { 437 FoundClobber = true; 438 // Not used: CA.AR; 439 } 440 } 441 } 442 break; 443 } 444 445 // We should never hit liveOnEntry, unless it's the clobber. 446 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 447 448 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 449 // If Start is a Def, skip self. 450 if (MD == Start) 451 continue; 452 453 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 454 .IsClobber && 455 "Found clobber before reaching ClobberAt!"); 456 continue; 457 } 458 459 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 460 (void)MU; 461 assert (MU == Start && 462 "Can only find use in def chain if Start is a use"); 463 continue; 464 } 465 466 assert(isa<MemoryPhi>(MA)); 467 Worklist.append( 468 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}), 469 upward_defs_end()); 470 } 471 } 472 473 // If the verify is done following an optimization, it's possible that 474 // ClobberAt was a conservative clobbering, that we can now infer is not a 475 // true clobbering access. Don't fail the verify if that's the case. 476 // We do have accesses that claim they're optimized, but could be optimized 477 // further. Updating all these can be expensive, so allow it for now (FIXME). 478 if (AllowImpreciseClobber) 479 return; 480 481 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 482 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 483 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 484 "ClobberAt never acted as a clobber"); 485 } 486 487 namespace { 488 489 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 490 /// in one class. 491 template <class AliasAnalysisType> class ClobberWalker { 492 /// Save a few bytes by using unsigned instead of size_t. 493 using ListIndex = unsigned; 494 495 /// Represents a span of contiguous MemoryDefs, potentially ending in a 496 /// MemoryPhi. 497 struct DefPath { 498 MemoryLocation Loc; 499 // Note that, because we always walk in reverse, Last will always dominate 500 // First. Also note that First and Last are inclusive. 501 MemoryAccess *First; 502 MemoryAccess *Last; 503 Optional<ListIndex> Previous; 504 505 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 506 Optional<ListIndex> Previous) 507 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 508 509 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 510 Optional<ListIndex> Previous) 511 : DefPath(Loc, Init, Init, Previous) {} 512 }; 513 514 const MemorySSA &MSSA; 515 AliasAnalysisType &AA; 516 DominatorTree &DT; 517 UpwardsMemoryQuery *Query; 518 unsigned *UpwardWalkLimit; 519 520 // Phi optimization bookkeeping 521 SmallVector<DefPath, 32> Paths; 522 DenseSet<ConstMemoryAccessPair> VisitedPhis; 523 524 /// Find the nearest def or phi that `From` can legally be optimized to. 525 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 526 assert(From->getNumOperands() && "Phi with no operands?"); 527 528 BasicBlock *BB = From->getBlock(); 529 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 530 DomTreeNode *Node = DT.getNode(BB); 531 while ((Node = Node->getIDom())) { 532 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 533 if (Defs) 534 return &*Defs->rbegin(); 535 } 536 return Result; 537 } 538 539 /// Result of calling walkToPhiOrClobber. 540 struct UpwardsWalkResult { 541 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 542 /// both. Include alias info when clobber found. 543 MemoryAccess *Result; 544 bool IsKnownClobber; 545 Optional<AliasResult> AR; 546 }; 547 548 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 549 /// This will update Desc.Last as it walks. It will (optionally) also stop at 550 /// StopAt. 551 /// 552 /// This does not test for whether StopAt is a clobber 553 UpwardsWalkResult 554 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 555 const MemoryAccess *SkipStopAt = nullptr) const { 556 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 557 assert(UpwardWalkLimit && "Need a valid walk limit"); 558 bool LimitAlreadyReached = false; 559 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 560 // it to 1. This will not do any alias() calls. It either returns in the 561 // first iteration in the loop below, or is set back to 0 if all def chains 562 // are free of MemoryDefs. 563 if (!*UpwardWalkLimit) { 564 *UpwardWalkLimit = 1; 565 LimitAlreadyReached = true; 566 } 567 568 for (MemoryAccess *Current : def_chain(Desc.Last)) { 569 Desc.Last = Current; 570 if (Current == StopAt || Current == SkipStopAt) 571 return {Current, false, MayAlias}; 572 573 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 574 if (MSSA.isLiveOnEntryDef(MD)) 575 return {MD, true, MustAlias}; 576 577 if (!--*UpwardWalkLimit) 578 return {Current, true, MayAlias}; 579 580 ClobberAlias CA = 581 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 582 if (CA.IsClobber) 583 return {MD, true, CA.AR}; 584 } 585 } 586 587 if (LimitAlreadyReached) 588 *UpwardWalkLimit = 0; 589 590 assert(isa<MemoryPhi>(Desc.Last) && 591 "Ended at a non-clobber that's not a phi?"); 592 return {Desc.Last, false, MayAlias}; 593 } 594 595 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 596 ListIndex PriorNode) { 597 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), 598 upward_defs_end()); 599 for (const MemoryAccessPair &P : UpwardDefs) { 600 PausedSearches.push_back(Paths.size()); 601 Paths.emplace_back(P.second, P.first, PriorNode); 602 } 603 } 604 605 /// Represents a search that terminated after finding a clobber. This clobber 606 /// may or may not be present in the path of defs from LastNode..SearchStart, 607 /// since it may have been retrieved from cache. 608 struct TerminatedPath { 609 MemoryAccess *Clobber; 610 ListIndex LastNode; 611 }; 612 613 /// Get an access that keeps us from optimizing to the given phi. 614 /// 615 /// PausedSearches is an array of indices into the Paths array. Its incoming 616 /// value is the indices of searches that stopped at the last phi optimization 617 /// target. It's left in an unspecified state. 618 /// 619 /// If this returns None, NewPaused is a vector of searches that terminated 620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 621 Optional<TerminatedPath> 622 getBlockingAccess(const MemoryAccess *StopWhere, 623 SmallVectorImpl<ListIndex> &PausedSearches, 624 SmallVectorImpl<ListIndex> &NewPaused, 625 SmallVectorImpl<TerminatedPath> &Terminated) { 626 assert(!PausedSearches.empty() && "No searches to continue?"); 627 628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 629 // PausedSearches as our stack. 630 while (!PausedSearches.empty()) { 631 ListIndex PathIndex = PausedSearches.pop_back_val(); 632 DefPath &Node = Paths[PathIndex]; 633 634 // If we've already visited this path with this MemoryLocation, we don't 635 // need to do so again. 636 // 637 // NOTE: That we just drop these paths on the ground makes caching 638 // behavior sporadic. e.g. given a diamond: 639 // A 640 // B C 641 // D 642 // 643 // ...If we walk D, B, A, C, we'll only cache the result of phi 644 // optimization for A, B, and D; C will be skipped because it dies here. 645 // This arguably isn't the worst thing ever, since: 646 // - We generally query things in a top-down order, so if we got below D 647 // without needing cache entries for {C, MemLoc}, then chances are 648 // that those cache entries would end up ultimately unused. 649 // - We still cache things for A, so C only needs to walk up a bit. 650 // If this behavior becomes problematic, we can fix without a ton of extra 651 // work. 652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 653 continue; 654 655 const MemoryAccess *SkipStopWhere = nullptr; 656 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 657 assert(isa<MemoryDef>(Query->OriginalAccess)); 658 SkipStopWhere = Query->OriginalAccess; 659 } 660 661 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 662 /*StopAt=*/StopWhere, 663 /*SkipStopAt=*/SkipStopWhere); 664 if (Res.IsKnownClobber) { 665 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 666 667 // If this wasn't a cache hit, we hit a clobber when walking. That's a 668 // failure. 669 TerminatedPath Term{Res.Result, PathIndex}; 670 if (!MSSA.dominates(Res.Result, StopWhere)) 671 return Term; 672 673 // Otherwise, it's a valid thing to potentially optimize to. 674 Terminated.push_back(Term); 675 continue; 676 } 677 678 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 679 // We've hit our target. Save this path off for if we want to continue 680 // walking. If we are in the mode of skipping the OriginalAccess, and 681 // we've reached back to the OriginalAccess, do not save path, we've 682 // just looped back to self. 683 if (Res.Result != SkipStopWhere) 684 NewPaused.push_back(PathIndex); 685 continue; 686 } 687 688 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 689 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 690 } 691 692 return None; 693 } 694 695 template <typename T, typename Walker> 696 struct generic_def_path_iterator 697 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 698 std::forward_iterator_tag, T *> { 699 generic_def_path_iterator() {} 700 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 701 702 T &operator*() const { return curNode(); } 703 704 generic_def_path_iterator &operator++() { 705 N = curNode().Previous; 706 return *this; 707 } 708 709 bool operator==(const generic_def_path_iterator &O) const { 710 if (N.hasValue() != O.N.hasValue()) 711 return false; 712 return !N.hasValue() || *N == *O.N; 713 } 714 715 private: 716 T &curNode() const { return W->Paths[*N]; } 717 718 Walker *W = nullptr; 719 Optional<ListIndex> N = None; 720 }; 721 722 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 723 using const_def_path_iterator = 724 generic_def_path_iterator<const DefPath, const ClobberWalker>; 725 726 iterator_range<def_path_iterator> def_path(ListIndex From) { 727 return make_range(def_path_iterator(this, From), def_path_iterator()); 728 } 729 730 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 731 return make_range(const_def_path_iterator(this, From), 732 const_def_path_iterator()); 733 } 734 735 struct OptznResult { 736 /// The path that contains our result. 737 TerminatedPath PrimaryClobber; 738 /// The paths that we can legally cache back from, but that aren't 739 /// necessarily the result of the Phi optimization. 740 SmallVector<TerminatedPath, 4> OtherClobbers; 741 }; 742 743 ListIndex defPathIndex(const DefPath &N) const { 744 // The assert looks nicer if we don't need to do &N 745 const DefPath *NP = &N; 746 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 747 "Out of bounds DefPath!"); 748 return NP - &Paths.front(); 749 } 750 751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 752 /// that act as legal clobbers. Note that this won't return *all* clobbers. 753 /// 754 /// Phi optimization algorithm tl;dr: 755 /// - Find the earliest def/phi, A, we can optimize to 756 /// - Find if all paths from the starting memory access ultimately reach A 757 /// - If not, optimization isn't possible. 758 /// - Otherwise, walk from A to another clobber or phi, A'. 759 /// - If A' is a def, we're done. 760 /// - If A' is a phi, try to optimize it. 761 /// 762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 764 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 765 const MemoryLocation &Loc) { 766 assert(Paths.empty() && VisitedPhis.empty() && 767 "Reset the optimization state."); 768 769 Paths.emplace_back(Loc, Start, Phi, None); 770 // Stores how many "valid" optimization nodes we had prior to calling 771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 772 auto PriorPathsSize = Paths.size(); 773 774 SmallVector<ListIndex, 16> PausedSearches; 775 SmallVector<ListIndex, 8> NewPaused; 776 SmallVector<TerminatedPath, 4> TerminatedPaths; 777 778 addSearches(Phi, PausedSearches, 0); 779 780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 781 // Paths. 782 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 783 assert(!Paths.empty() && "Need a path to move"); 784 auto Dom = Paths.begin(); 785 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 786 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 787 Dom = I; 788 auto Last = Paths.end() - 1; 789 if (Last != Dom) 790 std::iter_swap(Last, Dom); 791 }; 792 793 MemoryPhi *Current = Phi; 794 while (true) { 795 assert(!MSSA.isLiveOnEntryDef(Current) && 796 "liveOnEntry wasn't treated as a clobber?"); 797 798 const auto *Target = getWalkTarget(Current); 799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 800 // optimization for the prior phi. 801 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 802 return MSSA.dominates(P.Clobber, Target); 803 })); 804 805 // FIXME: This is broken, because the Blocker may be reported to be 806 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 807 // For the moment, this is fine, since we do nothing with blocker info. 808 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 809 Target, PausedSearches, NewPaused, TerminatedPaths)) { 810 811 // Find the node we started at. We can't search based on N->Last, since 812 // we may have gone around a loop with a different MemoryLocation. 813 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 814 return defPathIndex(N) < PriorPathsSize; 815 }); 816 assert(Iter != def_path_iterator()); 817 818 DefPath &CurNode = *Iter; 819 assert(CurNode.Last == Current); 820 821 // Two things: 822 // A. We can't reliably cache all of NewPaused back. Consider a case 823 // where we have two paths in NewPaused; one of which can't optimize 824 // above this phi, whereas the other can. If we cache the second path 825 // back, we'll end up with suboptimal cache entries. We can handle 826 // cases like this a bit better when we either try to find all 827 // clobbers that block phi optimization, or when our cache starts 828 // supporting unfinished searches. 829 // B. We can't reliably cache TerminatedPaths back here without doing 830 // extra checks; consider a case like: 831 // T 832 // / \ 833 // D C 834 // \ / 835 // S 836 // Where T is our target, C is a node with a clobber on it, D is a 837 // diamond (with a clobber *only* on the left or right node, N), and 838 // S is our start. Say we walk to D, through the node opposite N 839 // (read: ignoring the clobber), and see a cache entry in the top 840 // node of D. That cache entry gets put into TerminatedPaths. We then 841 // walk up to C (N is later in our worklist), find the clobber, and 842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 843 // the bottom part of D to the cached clobber, ignoring the clobber 844 // in N. Again, this problem goes away if we start tracking all 845 // blockers for a given phi optimization. 846 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 847 return {Result, {}}; 848 } 849 850 // If there's nothing left to search, then all paths led to valid clobbers 851 // that we got from our cache; pick the nearest to the start, and allow 852 // the rest to be cached back. 853 if (NewPaused.empty()) { 854 MoveDominatedPathToEnd(TerminatedPaths); 855 TerminatedPath Result = TerminatedPaths.pop_back_val(); 856 return {Result, std::move(TerminatedPaths)}; 857 } 858 859 MemoryAccess *DefChainEnd = nullptr; 860 SmallVector<TerminatedPath, 4> Clobbers; 861 for (ListIndex Paused : NewPaused) { 862 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 863 if (WR.IsKnownClobber) 864 Clobbers.push_back({WR.Result, Paused}); 865 else 866 // Micro-opt: If we hit the end of the chain, save it. 867 DefChainEnd = WR.Result; 868 } 869 870 if (!TerminatedPaths.empty()) { 871 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 872 // do it now. 873 if (!DefChainEnd) 874 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 875 DefChainEnd = MA; 876 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 877 878 // If any of the terminated paths don't dominate the phi we'll try to 879 // optimize, we need to figure out what they are and quit. 880 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 881 for (const TerminatedPath &TP : TerminatedPaths) { 882 // Because we know that DefChainEnd is as "high" as we can go, we 883 // don't need local dominance checks; BB dominance is sufficient. 884 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 885 Clobbers.push_back(TP); 886 } 887 } 888 889 // If we have clobbers in the def chain, find the one closest to Current 890 // and quit. 891 if (!Clobbers.empty()) { 892 MoveDominatedPathToEnd(Clobbers); 893 TerminatedPath Result = Clobbers.pop_back_val(); 894 return {Result, std::move(Clobbers)}; 895 } 896 897 assert(all_of(NewPaused, 898 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 899 900 // Because liveOnEntry is a clobber, this must be a phi. 901 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 902 903 PriorPathsSize = Paths.size(); 904 PausedSearches.clear(); 905 for (ListIndex I : NewPaused) 906 addSearches(DefChainPhi, PausedSearches, I); 907 NewPaused.clear(); 908 909 Current = DefChainPhi; 910 } 911 } 912 913 void verifyOptResult(const OptznResult &R) const { 914 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 915 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 916 })); 917 } 918 919 void resetPhiOptznState() { 920 Paths.clear(); 921 VisitedPhis.clear(); 922 } 923 924 public: 925 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 926 : MSSA(MSSA), AA(AA), DT(DT) {} 927 928 AliasAnalysisType *getAA() { return &AA; } 929 /// Finds the nearest clobber for the given query, optimizing phis if 930 /// possible. 931 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 932 unsigned &UpWalkLimit) { 933 Query = &Q; 934 UpwardWalkLimit = &UpWalkLimit; 935 // Starting limit must be > 0. 936 if (!UpWalkLimit) 937 UpWalkLimit++; 938 939 MemoryAccess *Current = Start; 940 // This walker pretends uses don't exist. If we're handed one, silently grab 941 // its def. (This has the nice side-effect of ensuring we never cache uses) 942 if (auto *MU = dyn_cast<MemoryUse>(Start)) 943 Current = MU->getDefiningAccess(); 944 945 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 946 // Fast path for the overly-common case (no crazy phi optimization 947 // necessary) 948 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 949 MemoryAccess *Result; 950 if (WalkResult.IsKnownClobber) { 951 Result = WalkResult.Result; 952 Q.AR = WalkResult.AR; 953 } else { 954 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 955 Current, Q.StartingLoc); 956 verifyOptResult(OptRes); 957 resetPhiOptznState(); 958 Result = OptRes.PrimaryClobber.Clobber; 959 } 960 961 #ifdef EXPENSIVE_CHECKS 962 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 963 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 964 #endif 965 return Result; 966 } 967 }; 968 969 struct RenamePassData { 970 DomTreeNode *DTN; 971 DomTreeNode::const_iterator ChildIt; 972 MemoryAccess *IncomingVal; 973 974 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 975 MemoryAccess *M) 976 : DTN(D), ChildIt(It), IncomingVal(M) {} 977 978 void swap(RenamePassData &RHS) { 979 std::swap(DTN, RHS.DTN); 980 std::swap(ChildIt, RHS.ChildIt); 981 std::swap(IncomingVal, RHS.IncomingVal); 982 } 983 }; 984 985 } // end anonymous namespace 986 987 namespace llvm { 988 989 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 990 ClobberWalker<AliasAnalysisType> Walker; 991 MemorySSA *MSSA; 992 993 public: 994 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 995 : Walker(*M, *A, *D), MSSA(M) {} 996 997 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 998 const MemoryLocation &, 999 unsigned &); 1000 // Third argument (bool), defines whether the clobber search should skip the 1001 // original queried access. If true, there will be a follow-up query searching 1002 // for a clobber access past "self". Note that the Optimized access is not 1003 // updated if a new clobber is found by this SkipSelf search. If this 1004 // additional query becomes heavily used we may decide to cache the result. 1005 // Walker instantiations will decide how to set the SkipSelf bool. 1006 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1007 }; 1008 1009 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1010 /// longer does caching on its own, but the name has been retained for the 1011 /// moment. 1012 template <class AliasAnalysisType> 1013 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1014 ClobberWalkerBase<AliasAnalysisType> *Walker; 1015 1016 public: 1017 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1018 : MemorySSAWalker(M), Walker(W) {} 1019 ~CachingWalker() override = default; 1020 1021 using MemorySSAWalker::getClobberingMemoryAccess; 1022 1023 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1024 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1025 } 1026 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1027 const MemoryLocation &Loc, 1028 unsigned &UWL) { 1029 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1030 } 1031 1032 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1033 unsigned UpwardWalkLimit = MaxCheckLimit; 1034 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1035 } 1036 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1037 const MemoryLocation &Loc) override { 1038 unsigned UpwardWalkLimit = MaxCheckLimit; 1039 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1040 } 1041 1042 void invalidateInfo(MemoryAccess *MA) override { 1043 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1044 MUD->resetOptimized(); 1045 } 1046 }; 1047 1048 template <class AliasAnalysisType> 1049 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1050 ClobberWalkerBase<AliasAnalysisType> *Walker; 1051 1052 public: 1053 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1054 : MemorySSAWalker(M), Walker(W) {} 1055 ~SkipSelfWalker() override = default; 1056 1057 using MemorySSAWalker::getClobberingMemoryAccess; 1058 1059 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1060 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1061 } 1062 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1063 const MemoryLocation &Loc, 1064 unsigned &UWL) { 1065 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1066 } 1067 1068 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1069 unsigned UpwardWalkLimit = MaxCheckLimit; 1070 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1071 } 1072 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1073 const MemoryLocation &Loc) override { 1074 unsigned UpwardWalkLimit = MaxCheckLimit; 1075 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1076 } 1077 1078 void invalidateInfo(MemoryAccess *MA) override { 1079 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1080 MUD->resetOptimized(); 1081 } 1082 }; 1083 1084 } // end namespace llvm 1085 1086 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1087 bool RenameAllUses) { 1088 // Pass through values to our successors 1089 for (const BasicBlock *S : successors(BB)) { 1090 auto It = PerBlockAccesses.find(S); 1091 // Rename the phi nodes in our successor block 1092 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1093 continue; 1094 AccessList *Accesses = It->second.get(); 1095 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1096 if (RenameAllUses) { 1097 bool ReplacementDone = false; 1098 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1099 if (Phi->getIncomingBlock(I) == BB) { 1100 Phi->setIncomingValue(I, IncomingVal); 1101 ReplacementDone = true; 1102 } 1103 (void) ReplacementDone; 1104 assert(ReplacementDone && "Incomplete phi during partial rename"); 1105 } else 1106 Phi->addIncoming(IncomingVal, BB); 1107 } 1108 } 1109 1110 /// Rename a single basic block into MemorySSA form. 1111 /// Uses the standard SSA renaming algorithm. 1112 /// \returns The new incoming value. 1113 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1114 bool RenameAllUses) { 1115 auto It = PerBlockAccesses.find(BB); 1116 // Skip most processing if the list is empty. 1117 if (It != PerBlockAccesses.end()) { 1118 AccessList *Accesses = It->second.get(); 1119 for (MemoryAccess &L : *Accesses) { 1120 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1121 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1122 MUD->setDefiningAccess(IncomingVal); 1123 if (isa<MemoryDef>(&L)) 1124 IncomingVal = &L; 1125 } else { 1126 IncomingVal = &L; 1127 } 1128 } 1129 } 1130 return IncomingVal; 1131 } 1132 1133 /// This is the standard SSA renaming algorithm. 1134 /// 1135 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1136 /// in phi nodes in our successors. 1137 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1138 SmallPtrSetImpl<BasicBlock *> &Visited, 1139 bool SkipVisited, bool RenameAllUses) { 1140 assert(Root && "Trying to rename accesses in an unreachable block"); 1141 1142 SmallVector<RenamePassData, 32> WorkStack; 1143 // Skip everything if we already renamed this block and we are skipping. 1144 // Note: You can't sink this into the if, because we need it to occur 1145 // regardless of whether we skip blocks or not. 1146 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1147 if (SkipVisited && AlreadyVisited) 1148 return; 1149 1150 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1151 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1152 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1153 1154 while (!WorkStack.empty()) { 1155 DomTreeNode *Node = WorkStack.back().DTN; 1156 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1157 IncomingVal = WorkStack.back().IncomingVal; 1158 1159 if (ChildIt == Node->end()) { 1160 WorkStack.pop_back(); 1161 } else { 1162 DomTreeNode *Child = *ChildIt; 1163 ++WorkStack.back().ChildIt; 1164 BasicBlock *BB = Child->getBlock(); 1165 // Note: You can't sink this into the if, because we need it to occur 1166 // regardless of whether we skip blocks or not. 1167 AlreadyVisited = !Visited.insert(BB).second; 1168 if (SkipVisited && AlreadyVisited) { 1169 // We already visited this during our renaming, which can happen when 1170 // being asked to rename multiple blocks. Figure out the incoming val, 1171 // which is the last def. 1172 // Incoming value can only change if there is a block def, and in that 1173 // case, it's the last block def in the list. 1174 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1175 IncomingVal = &*BlockDefs->rbegin(); 1176 } else 1177 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1178 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1179 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1180 } 1181 } 1182 } 1183 1184 /// This handles unreachable block accesses by deleting phi nodes in 1185 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1186 /// being uses of the live on entry definition. 1187 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1188 assert(!DT->isReachableFromEntry(BB) && 1189 "Reachable block found while handling unreachable blocks"); 1190 1191 // Make sure phi nodes in our reachable successors end up with a 1192 // LiveOnEntryDef for our incoming edge, even though our block is forward 1193 // unreachable. We could just disconnect these blocks from the CFG fully, 1194 // but we do not right now. 1195 for (const BasicBlock *S : successors(BB)) { 1196 if (!DT->isReachableFromEntry(S)) 1197 continue; 1198 auto It = PerBlockAccesses.find(S); 1199 // Rename the phi nodes in our successor block 1200 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1201 continue; 1202 AccessList *Accesses = It->second.get(); 1203 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1204 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1205 } 1206 1207 auto It = PerBlockAccesses.find(BB); 1208 if (It == PerBlockAccesses.end()) 1209 return; 1210 1211 auto &Accesses = It->second; 1212 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1213 auto Next = std::next(AI); 1214 // If we have a phi, just remove it. We are going to replace all 1215 // users with live on entry. 1216 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1217 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1218 else 1219 Accesses->erase(AI); 1220 AI = Next; 1221 } 1222 } 1223 1224 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1225 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1226 SkipWalker(nullptr), NextID(0) { 1227 // Build MemorySSA using a batch alias analysis. This reuses the internal 1228 // state that AA collects during an alias()/getModRefInfo() call. This is 1229 // safe because there are no CFG changes while building MemorySSA and can 1230 // significantly reduce the time spent by the compiler in AA, because we will 1231 // make queries about all the instructions in the Function. 1232 BatchAAResults BatchAA(*AA); 1233 buildMemorySSA(BatchAA); 1234 // Intentionally leave AA to nullptr while building so we don't accidently 1235 // use non-batch AliasAnalysis. 1236 this->AA = AA; 1237 // Also create the walker here. 1238 getWalker(); 1239 } 1240 1241 MemorySSA::~MemorySSA() { 1242 // Drop all our references 1243 for (const auto &Pair : PerBlockAccesses) 1244 for (MemoryAccess &MA : *Pair.second) 1245 MA.dropAllReferences(); 1246 } 1247 1248 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1249 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1250 1251 if (Res.second) 1252 Res.first->second = std::make_unique<AccessList>(); 1253 return Res.first->second.get(); 1254 } 1255 1256 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1257 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1258 1259 if (Res.second) 1260 Res.first->second = std::make_unique<DefsList>(); 1261 return Res.first->second.get(); 1262 } 1263 1264 namespace llvm { 1265 1266 /// This class is a batch walker of all MemoryUse's in the program, and points 1267 /// their defining access at the thing that actually clobbers them. Because it 1268 /// is a batch walker that touches everything, it does not operate like the 1269 /// other walkers. This walker is basically performing a top-down SSA renaming 1270 /// pass, where the version stack is used as the cache. This enables it to be 1271 /// significantly more time and memory efficient than using the regular walker, 1272 /// which is walking bottom-up. 1273 class MemorySSA::OptimizeUses { 1274 public: 1275 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1276 BatchAAResults *BAA, DominatorTree *DT) 1277 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1278 1279 void optimizeUses(); 1280 1281 private: 1282 /// This represents where a given memorylocation is in the stack. 1283 struct MemlocStackInfo { 1284 // This essentially is keeping track of versions of the stack. Whenever 1285 // the stack changes due to pushes or pops, these versions increase. 1286 unsigned long StackEpoch; 1287 unsigned long PopEpoch; 1288 // This is the lower bound of places on the stack to check. It is equal to 1289 // the place the last stack walk ended. 1290 // Note: Correctness depends on this being initialized to 0, which densemap 1291 // does 1292 unsigned long LowerBound; 1293 const BasicBlock *LowerBoundBlock; 1294 // This is where the last walk for this memory location ended. 1295 unsigned long LastKill; 1296 bool LastKillValid; 1297 Optional<AliasResult> AR; 1298 }; 1299 1300 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1301 SmallVectorImpl<MemoryAccess *> &, 1302 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1303 1304 MemorySSA *MSSA; 1305 CachingWalker<BatchAAResults> *Walker; 1306 BatchAAResults *AA; 1307 DominatorTree *DT; 1308 }; 1309 1310 } // end namespace llvm 1311 1312 /// Optimize the uses in a given block This is basically the SSA renaming 1313 /// algorithm, with one caveat: We are able to use a single stack for all 1314 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1315 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1316 /// going to be some position in that stack of possible ones. 1317 /// 1318 /// We track the stack positions that each MemoryLocation needs 1319 /// to check, and last ended at. This is because we only want to check the 1320 /// things that changed since last time. The same MemoryLocation should 1321 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1322 /// things like this, and if they start, we can modify MemoryLocOrCall to 1323 /// include relevant data) 1324 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1325 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1326 SmallVectorImpl<MemoryAccess *> &VersionStack, 1327 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1328 1329 /// If no accesses, nothing to do. 1330 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1331 if (Accesses == nullptr) 1332 return; 1333 1334 // Pop everything that doesn't dominate the current block off the stack, 1335 // increment the PopEpoch to account for this. 1336 while (true) { 1337 assert( 1338 !VersionStack.empty() && 1339 "Version stack should have liveOnEntry sentinel dominating everything"); 1340 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1341 if (DT->dominates(BackBlock, BB)) 1342 break; 1343 while (VersionStack.back()->getBlock() == BackBlock) 1344 VersionStack.pop_back(); 1345 ++PopEpoch; 1346 } 1347 1348 for (MemoryAccess &MA : *Accesses) { 1349 auto *MU = dyn_cast<MemoryUse>(&MA); 1350 if (!MU) { 1351 VersionStack.push_back(&MA); 1352 ++StackEpoch; 1353 continue; 1354 } 1355 1356 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1357 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1358 continue; 1359 } 1360 1361 MemoryLocOrCall UseMLOC(MU); 1362 auto &LocInfo = LocStackInfo[UseMLOC]; 1363 // If the pop epoch changed, it means we've removed stuff from top of 1364 // stack due to changing blocks. We may have to reset the lower bound or 1365 // last kill info. 1366 if (LocInfo.PopEpoch != PopEpoch) { 1367 LocInfo.PopEpoch = PopEpoch; 1368 LocInfo.StackEpoch = StackEpoch; 1369 // If the lower bound was in something that no longer dominates us, we 1370 // have to reset it. 1371 // We can't simply track stack size, because the stack may have had 1372 // pushes/pops in the meantime. 1373 // XXX: This is non-optimal, but only is slower cases with heavily 1374 // branching dominator trees. To get the optimal number of queries would 1375 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1376 // the top of that stack dominates us. This does not seem worth it ATM. 1377 // A much cheaper optimization would be to always explore the deepest 1378 // branch of the dominator tree first. This will guarantee this resets on 1379 // the smallest set of blocks. 1380 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1381 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1382 // Reset the lower bound of things to check. 1383 // TODO: Some day we should be able to reset to last kill, rather than 1384 // 0. 1385 LocInfo.LowerBound = 0; 1386 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1387 LocInfo.LastKillValid = false; 1388 } 1389 } else if (LocInfo.StackEpoch != StackEpoch) { 1390 // If all that has changed is the StackEpoch, we only have to check the 1391 // new things on the stack, because we've checked everything before. In 1392 // this case, the lower bound of things to check remains the same. 1393 LocInfo.PopEpoch = PopEpoch; 1394 LocInfo.StackEpoch = StackEpoch; 1395 } 1396 if (!LocInfo.LastKillValid) { 1397 LocInfo.LastKill = VersionStack.size() - 1; 1398 LocInfo.LastKillValid = true; 1399 LocInfo.AR = MayAlias; 1400 } 1401 1402 // At this point, we should have corrected last kill and LowerBound to be 1403 // in bounds. 1404 assert(LocInfo.LowerBound < VersionStack.size() && 1405 "Lower bound out of range"); 1406 assert(LocInfo.LastKill < VersionStack.size() && 1407 "Last kill info out of range"); 1408 // In any case, the new upper bound is the top of the stack. 1409 unsigned long UpperBound = VersionStack.size() - 1; 1410 1411 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1412 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1413 << *(MU->getMemoryInst()) << ")" 1414 << " because there are " 1415 << UpperBound - LocInfo.LowerBound 1416 << " stores to disambiguate\n"); 1417 // Because we did not walk, LastKill is no longer valid, as this may 1418 // have been a kill. 1419 LocInfo.LastKillValid = false; 1420 continue; 1421 } 1422 bool FoundClobberResult = false; 1423 unsigned UpwardWalkLimit = MaxCheckLimit; 1424 while (UpperBound > LocInfo.LowerBound) { 1425 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1426 // For phis, use the walker, see where we ended up, go there 1427 MemoryAccess *Result = 1428 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1429 // We are guaranteed to find it or something is wrong 1430 while (VersionStack[UpperBound] != Result) { 1431 assert(UpperBound != 0); 1432 --UpperBound; 1433 } 1434 FoundClobberResult = true; 1435 break; 1436 } 1437 1438 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1439 // If the lifetime of the pointer ends at this instruction, it's live on 1440 // entry. 1441 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { 1442 // Reset UpperBound to liveOnEntryDef's place in the stack 1443 UpperBound = 0; 1444 FoundClobberResult = true; 1445 LocInfo.AR = MustAlias; 1446 break; 1447 } 1448 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1449 if (CA.IsClobber) { 1450 FoundClobberResult = true; 1451 LocInfo.AR = CA.AR; 1452 break; 1453 } 1454 --UpperBound; 1455 } 1456 1457 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1458 1459 // At the end of this loop, UpperBound is either a clobber, or lower bound 1460 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1461 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1462 // We were last killed now by where we got to 1463 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1464 LocInfo.AR = None; 1465 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1466 LocInfo.LastKill = UpperBound; 1467 } else { 1468 // Otherwise, we checked all the new ones, and now we know we can get to 1469 // LastKill. 1470 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1471 } 1472 LocInfo.LowerBound = VersionStack.size() - 1; 1473 LocInfo.LowerBoundBlock = BB; 1474 } 1475 } 1476 1477 /// Optimize uses to point to their actual clobbering definitions. 1478 void MemorySSA::OptimizeUses::optimizeUses() { 1479 SmallVector<MemoryAccess *, 16> VersionStack; 1480 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1481 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1482 1483 unsigned long StackEpoch = 1; 1484 unsigned long PopEpoch = 1; 1485 // We perform a non-recursive top-down dominator tree walk. 1486 for (const auto *DomNode : depth_first(DT->getRootNode())) 1487 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1488 LocStackInfo); 1489 } 1490 1491 void MemorySSA::placePHINodes( 1492 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1493 // Determine where our MemoryPhi's should go 1494 ForwardIDFCalculator IDFs(*DT); 1495 IDFs.setDefiningBlocks(DefiningBlocks); 1496 SmallVector<BasicBlock *, 32> IDFBlocks; 1497 IDFs.calculate(IDFBlocks); 1498 1499 // Now place MemoryPhi nodes. 1500 for (auto &BB : IDFBlocks) 1501 createMemoryPhi(BB); 1502 } 1503 1504 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1505 // We create an access to represent "live on entry", for things like 1506 // arguments or users of globals, where the memory they use is defined before 1507 // the beginning of the function. We do not actually insert it into the IR. 1508 // We do not define a live on exit for the immediate uses, and thus our 1509 // semantics do *not* imply that something with no immediate uses can simply 1510 // be removed. 1511 BasicBlock &StartingPoint = F.getEntryBlock(); 1512 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1513 &StartingPoint, NextID++)); 1514 1515 // We maintain lists of memory accesses per-block, trading memory for time. We 1516 // could just look up the memory access for every possible instruction in the 1517 // stream. 1518 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1519 // Go through each block, figure out where defs occur, and chain together all 1520 // the accesses. 1521 for (BasicBlock &B : F) { 1522 bool InsertIntoDef = false; 1523 AccessList *Accesses = nullptr; 1524 DefsList *Defs = nullptr; 1525 for (Instruction &I : B) { 1526 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1527 if (!MUD) 1528 continue; 1529 1530 if (!Accesses) 1531 Accesses = getOrCreateAccessList(&B); 1532 Accesses->push_back(MUD); 1533 if (isa<MemoryDef>(MUD)) { 1534 InsertIntoDef = true; 1535 if (!Defs) 1536 Defs = getOrCreateDefsList(&B); 1537 Defs->push_back(*MUD); 1538 } 1539 } 1540 if (InsertIntoDef) 1541 DefiningBlocks.insert(&B); 1542 } 1543 placePHINodes(DefiningBlocks); 1544 1545 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1546 // filled in with all blocks. 1547 SmallPtrSet<BasicBlock *, 16> Visited; 1548 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1549 1550 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1551 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1552 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1553 1554 // Mark the uses in unreachable blocks as live on entry, so that they go 1555 // somewhere. 1556 for (auto &BB : F) 1557 if (!Visited.count(&BB)) 1558 markUnreachableAsLiveOnEntry(&BB); 1559 } 1560 1561 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1562 1563 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1564 if (Walker) 1565 return Walker.get(); 1566 1567 if (!WalkerBase) 1568 WalkerBase = 1569 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1570 1571 Walker = 1572 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1573 return Walker.get(); 1574 } 1575 1576 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1577 if (SkipWalker) 1578 return SkipWalker.get(); 1579 1580 if (!WalkerBase) 1581 WalkerBase = 1582 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1583 1584 SkipWalker = 1585 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1586 return SkipWalker.get(); 1587 } 1588 1589 1590 // This is a helper function used by the creation routines. It places NewAccess 1591 // into the access and defs lists for a given basic block, at the given 1592 // insertion point. 1593 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1594 const BasicBlock *BB, 1595 InsertionPlace Point) { 1596 auto *Accesses = getOrCreateAccessList(BB); 1597 if (Point == Beginning) { 1598 // If it's a phi node, it goes first, otherwise, it goes after any phi 1599 // nodes. 1600 if (isa<MemoryPhi>(NewAccess)) { 1601 Accesses->push_front(NewAccess); 1602 auto *Defs = getOrCreateDefsList(BB); 1603 Defs->push_front(*NewAccess); 1604 } else { 1605 auto AI = find_if_not( 1606 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1607 Accesses->insert(AI, NewAccess); 1608 if (!isa<MemoryUse>(NewAccess)) { 1609 auto *Defs = getOrCreateDefsList(BB); 1610 auto DI = find_if_not( 1611 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1612 Defs->insert(DI, *NewAccess); 1613 } 1614 } 1615 } else { 1616 Accesses->push_back(NewAccess); 1617 if (!isa<MemoryUse>(NewAccess)) { 1618 auto *Defs = getOrCreateDefsList(BB); 1619 Defs->push_back(*NewAccess); 1620 } 1621 } 1622 BlockNumberingValid.erase(BB); 1623 } 1624 1625 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1626 AccessList::iterator InsertPt) { 1627 auto *Accesses = getWritableBlockAccesses(BB); 1628 bool WasEnd = InsertPt == Accesses->end(); 1629 Accesses->insert(AccessList::iterator(InsertPt), What); 1630 if (!isa<MemoryUse>(What)) { 1631 auto *Defs = getOrCreateDefsList(BB); 1632 // If we got asked to insert at the end, we have an easy job, just shove it 1633 // at the end. If we got asked to insert before an existing def, we also get 1634 // an iterator. If we got asked to insert before a use, we have to hunt for 1635 // the next def. 1636 if (WasEnd) { 1637 Defs->push_back(*What); 1638 } else if (isa<MemoryDef>(InsertPt)) { 1639 Defs->insert(InsertPt->getDefsIterator(), *What); 1640 } else { 1641 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1642 ++InsertPt; 1643 // Either we found a def, or we are inserting at the end 1644 if (InsertPt == Accesses->end()) 1645 Defs->push_back(*What); 1646 else 1647 Defs->insert(InsertPt->getDefsIterator(), *What); 1648 } 1649 } 1650 BlockNumberingValid.erase(BB); 1651 } 1652 1653 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1654 // Keep it in the lookup tables, remove from the lists 1655 removeFromLists(What, false); 1656 1657 // Note that moving should implicitly invalidate the optimized state of a 1658 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1659 // MemoryDef. 1660 if (auto *MD = dyn_cast<MemoryDef>(What)) 1661 MD->resetOptimized(); 1662 What->setBlock(BB); 1663 } 1664 1665 // Move What before Where in the IR. The end result is that What will belong to 1666 // the right lists and have the right Block set, but will not otherwise be 1667 // correct. It will not have the right defining access, and if it is a def, 1668 // things below it will not properly be updated. 1669 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1670 AccessList::iterator Where) { 1671 prepareForMoveTo(What, BB); 1672 insertIntoListsBefore(What, BB, Where); 1673 } 1674 1675 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1676 InsertionPlace Point) { 1677 if (isa<MemoryPhi>(What)) { 1678 assert(Point == Beginning && 1679 "Can only move a Phi at the beginning of the block"); 1680 // Update lookup table entry 1681 ValueToMemoryAccess.erase(What->getBlock()); 1682 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1683 (void)Inserted; 1684 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1685 } 1686 1687 prepareForMoveTo(What, BB); 1688 insertIntoListsForBlock(What, BB, Point); 1689 } 1690 1691 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1692 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1693 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1694 // Phi's always are placed at the front of the block. 1695 insertIntoListsForBlock(Phi, BB, Beginning); 1696 ValueToMemoryAccess[BB] = Phi; 1697 return Phi; 1698 } 1699 1700 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1701 MemoryAccess *Definition, 1702 const MemoryUseOrDef *Template, 1703 bool CreationMustSucceed) { 1704 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1705 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1706 if (CreationMustSucceed) 1707 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1708 "non-memory touching instruction"); 1709 if (NewAccess) 1710 NewAccess->setDefiningAccess(Definition); 1711 return NewAccess; 1712 } 1713 1714 // Return true if the instruction has ordering constraints. 1715 // Note specifically that this only considers stores and loads 1716 // because others are still considered ModRef by getModRefInfo. 1717 static inline bool isOrdered(const Instruction *I) { 1718 if (auto *SI = dyn_cast<StoreInst>(I)) { 1719 if (!SI->isUnordered()) 1720 return true; 1721 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1722 if (!LI->isUnordered()) 1723 return true; 1724 } 1725 return false; 1726 } 1727 1728 /// Helper function to create new memory accesses 1729 template <typename AliasAnalysisType> 1730 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1731 AliasAnalysisType *AAP, 1732 const MemoryUseOrDef *Template) { 1733 // The assume intrinsic has a control dependency which we model by claiming 1734 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1735 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1736 // dependencies here. 1737 // FIXME: Replace this special casing with a more accurate modelling of 1738 // assume's control dependency. 1739 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1740 if (II->getIntrinsicID() == Intrinsic::assume) 1741 return nullptr; 1742 1743 // Using a nonstandard AA pipelines might leave us with unexpected modref 1744 // results for I, so add a check to not model instructions that may not read 1745 // from or write to memory. This is necessary for correctness. 1746 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1747 return nullptr; 1748 1749 bool Def, Use; 1750 if (Template) { 1751 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr; 1752 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr; 1753 #if !defined(NDEBUG) 1754 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1755 bool DefCheck, UseCheck; 1756 DefCheck = isModSet(ModRef) || isOrdered(I); 1757 UseCheck = isRefSet(ModRef); 1758 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1759 #endif 1760 } else { 1761 // Find out what affect this instruction has on memory. 1762 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1763 // The isOrdered check is used to ensure that volatiles end up as defs 1764 // (atomics end up as ModRef right now anyway). Until we separate the 1765 // ordering chain from the memory chain, this enables people to see at least 1766 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1767 // will still give an answer that bypasses other volatile loads. TODO: 1768 // Separate memory aliasing and ordering into two different chains so that 1769 // we can precisely represent both "what memory will this read/write/is 1770 // clobbered by" and "what instructions can I move this past". 1771 Def = isModSet(ModRef) || isOrdered(I); 1772 Use = isRefSet(ModRef); 1773 } 1774 1775 // It's possible for an instruction to not modify memory at all. During 1776 // construction, we ignore them. 1777 if (!Def && !Use) 1778 return nullptr; 1779 1780 MemoryUseOrDef *MUD; 1781 if (Def) 1782 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1783 else 1784 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1785 ValueToMemoryAccess[I] = MUD; 1786 return MUD; 1787 } 1788 1789 /// Returns true if \p Replacer dominates \p Replacee . 1790 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, 1791 const MemoryAccess *Replacee) const { 1792 if (isa<MemoryUseOrDef>(Replacee)) 1793 return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); 1794 const auto *MP = cast<MemoryPhi>(Replacee); 1795 // For a phi node, the use occurs in the predecessor block of the phi node. 1796 // Since we may occur multiple times in the phi node, we have to check each 1797 // operand to ensure Replacer dominates each operand where Replacee occurs. 1798 for (const Use &Arg : MP->operands()) { 1799 if (Arg.get() != Replacee && 1800 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) 1801 return false; 1802 } 1803 return true; 1804 } 1805 1806 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1807 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1808 assert(MA->use_empty() && 1809 "Trying to remove memory access that still has uses"); 1810 BlockNumbering.erase(MA); 1811 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1812 MUD->setDefiningAccess(nullptr); 1813 // Invalidate our walker's cache if necessary 1814 if (!isa<MemoryUse>(MA)) 1815 getWalker()->invalidateInfo(MA); 1816 1817 Value *MemoryInst; 1818 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1819 MemoryInst = MUD->getMemoryInst(); 1820 else 1821 MemoryInst = MA->getBlock(); 1822 1823 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1824 if (VMA->second == MA) 1825 ValueToMemoryAccess.erase(VMA); 1826 } 1827 1828 /// Properly remove \p MA from all of MemorySSA's lists. 1829 /// 1830 /// Because of the way the intrusive list and use lists work, it is important to 1831 /// do removal in the right order. 1832 /// ShouldDelete defaults to true, and will cause the memory access to also be 1833 /// deleted, not just removed. 1834 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1835 BasicBlock *BB = MA->getBlock(); 1836 // The access list owns the reference, so we erase it from the non-owning list 1837 // first. 1838 if (!isa<MemoryUse>(MA)) { 1839 auto DefsIt = PerBlockDefs.find(BB); 1840 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1841 Defs->remove(*MA); 1842 if (Defs->empty()) 1843 PerBlockDefs.erase(DefsIt); 1844 } 1845 1846 // The erase call here will delete it. If we don't want it deleted, we call 1847 // remove instead. 1848 auto AccessIt = PerBlockAccesses.find(BB); 1849 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1850 if (ShouldDelete) 1851 Accesses->erase(MA); 1852 else 1853 Accesses->remove(MA); 1854 1855 if (Accesses->empty()) { 1856 PerBlockAccesses.erase(AccessIt); 1857 BlockNumberingValid.erase(BB); 1858 } 1859 } 1860 1861 void MemorySSA::print(raw_ostream &OS) const { 1862 MemorySSAAnnotatedWriter Writer(this); 1863 F.print(OS, &Writer); 1864 } 1865 1866 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1867 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1868 #endif 1869 1870 void MemorySSA::verifyMemorySSA() const { 1871 verifyDefUses(F); 1872 verifyDomination(F); 1873 verifyOrdering(F); 1874 verifyDominationNumbers(F); 1875 verifyPrevDefInPhis(F); 1876 // Previously, the verification used to also verify that the clobberingAccess 1877 // cached by MemorySSA is the same as the clobberingAccess found at a later 1878 // query to AA. This does not hold true in general due to the current fragility 1879 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1880 // up. As a result, transformations that are correct, will lead to BasicAA 1881 // returning different Alias answers before and after that transformation. 1882 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1883 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1884 // every transformation, which defeats the purpose of using it. For such an 1885 // example, see test4 added in D51960. 1886 } 1887 1888 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1889 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1890 for (const BasicBlock &BB : F) { 1891 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1892 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1893 auto *Pred = Phi->getIncomingBlock(I); 1894 auto *IncAcc = Phi->getIncomingValue(I); 1895 // If Pred has no unreachable predecessors, get last def looking at 1896 // IDoms. If, while walkings IDoms, any of these has an unreachable 1897 // predecessor, then the incoming def can be any access. 1898 if (auto *DTNode = DT->getNode(Pred)) { 1899 while (DTNode) { 1900 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1901 auto *LastAcc = &*(--DefList->end()); 1902 assert(LastAcc == IncAcc && 1903 "Incorrect incoming access into phi."); 1904 break; 1905 } 1906 DTNode = DTNode->getIDom(); 1907 } 1908 } else { 1909 // If Pred has unreachable predecessors, but has at least a Def, the 1910 // incoming access can be the last Def in Pred, or it could have been 1911 // optimized to LoE. After an update, though, the LoE may have been 1912 // replaced by another access, so IncAcc may be any access. 1913 // If Pred has unreachable predecessors and no Defs, incoming access 1914 // should be LoE; However, after an update, it may be any access. 1915 } 1916 } 1917 } 1918 } 1919 #endif 1920 } 1921 1922 /// Verify that all of the blocks we believe to have valid domination numbers 1923 /// actually have valid domination numbers. 1924 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1925 #ifndef NDEBUG 1926 if (BlockNumberingValid.empty()) 1927 return; 1928 1929 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1930 for (const BasicBlock &BB : F) { 1931 if (!ValidBlocks.count(&BB)) 1932 continue; 1933 1934 ValidBlocks.erase(&BB); 1935 1936 const AccessList *Accesses = getBlockAccesses(&BB); 1937 // It's correct to say an empty block has valid numbering. 1938 if (!Accesses) 1939 continue; 1940 1941 // Block numbering starts at 1. 1942 unsigned long LastNumber = 0; 1943 for (const MemoryAccess &MA : *Accesses) { 1944 auto ThisNumberIter = BlockNumbering.find(&MA); 1945 assert(ThisNumberIter != BlockNumbering.end() && 1946 "MemoryAccess has no domination number in a valid block!"); 1947 1948 unsigned long ThisNumber = ThisNumberIter->second; 1949 assert(ThisNumber > LastNumber && 1950 "Domination numbers should be strictly increasing!"); 1951 LastNumber = ThisNumber; 1952 } 1953 } 1954 1955 assert(ValidBlocks.empty() && 1956 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1957 #endif 1958 } 1959 1960 /// Verify that the order and existence of MemoryAccesses matches the 1961 /// order and existence of memory affecting instructions. 1962 void MemorySSA::verifyOrdering(Function &F) const { 1963 #ifndef NDEBUG 1964 // Walk all the blocks, comparing what the lookups think and what the access 1965 // lists think, as well as the order in the blocks vs the order in the access 1966 // lists. 1967 SmallVector<MemoryAccess *, 32> ActualAccesses; 1968 SmallVector<MemoryAccess *, 32> ActualDefs; 1969 for (BasicBlock &B : F) { 1970 const AccessList *AL = getBlockAccesses(&B); 1971 const auto *DL = getBlockDefs(&B); 1972 MemoryAccess *Phi = getMemoryAccess(&B); 1973 if (Phi) { 1974 ActualAccesses.push_back(Phi); 1975 ActualDefs.push_back(Phi); 1976 } 1977 1978 for (Instruction &I : B) { 1979 MemoryAccess *MA = getMemoryAccess(&I); 1980 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1981 "We have memory affecting instructions " 1982 "in this block but they are not in the " 1983 "access list or defs list"); 1984 if (MA) { 1985 ActualAccesses.push_back(MA); 1986 if (isa<MemoryDef>(MA)) 1987 ActualDefs.push_back(MA); 1988 } 1989 } 1990 // Either we hit the assert, really have no accesses, or we have both 1991 // accesses and an access list. 1992 // Same with defs. 1993 if (!AL && !DL) 1994 continue; 1995 assert(AL->size() == ActualAccesses.size() && 1996 "We don't have the same number of accesses in the block as on the " 1997 "access list"); 1998 assert((DL || ActualDefs.size() == 0) && 1999 "Either we should have a defs list, or we should have no defs"); 2000 assert((!DL || DL->size() == ActualDefs.size()) && 2001 "We don't have the same number of defs in the block as on the " 2002 "def list"); 2003 auto ALI = AL->begin(); 2004 auto AAI = ActualAccesses.begin(); 2005 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2006 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2007 ++ALI; 2008 ++AAI; 2009 } 2010 ActualAccesses.clear(); 2011 if (DL) { 2012 auto DLI = DL->begin(); 2013 auto ADI = ActualDefs.begin(); 2014 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2015 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2016 ++DLI; 2017 ++ADI; 2018 } 2019 } 2020 ActualDefs.clear(); 2021 } 2022 #endif 2023 } 2024 2025 /// Verify the domination properties of MemorySSA by checking that each 2026 /// definition dominates all of its uses. 2027 void MemorySSA::verifyDomination(Function &F) const { 2028 #ifndef NDEBUG 2029 for (BasicBlock &B : F) { 2030 // Phi nodes are attached to basic blocks 2031 if (MemoryPhi *MP = getMemoryAccess(&B)) 2032 for (const Use &U : MP->uses()) 2033 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); 2034 2035 for (Instruction &I : B) { 2036 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); 2037 if (!MD) 2038 continue; 2039 2040 for (const Use &U : MD->uses()) 2041 assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); 2042 } 2043 } 2044 #endif 2045 } 2046 2047 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2048 /// appears in the use list of \p Def. 2049 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2050 #ifndef NDEBUG 2051 // The live on entry use may cause us to get a NULL def here 2052 if (!Def) 2053 assert(isLiveOnEntryDef(Use) && 2054 "Null def but use not point to live on entry def"); 2055 else 2056 assert(is_contained(Def->users(), Use) && 2057 "Did not find use in def's use list"); 2058 #endif 2059 } 2060 2061 /// Verify the immediate use information, by walking all the memory 2062 /// accesses and verifying that, for each use, it appears in the 2063 /// appropriate def's use list 2064 void MemorySSA::verifyDefUses(Function &F) const { 2065 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 2066 for (BasicBlock &B : F) { 2067 // Phi nodes are attached to basic blocks 2068 if (MemoryPhi *Phi = getMemoryAccess(&B)) { 2069 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 2070 pred_begin(&B), pred_end(&B))) && 2071 "Incomplete MemoryPhi Node"); 2072 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 2073 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 2074 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) != 2075 pred_end(&B) && 2076 "Incoming phi block not a block predecessor"); 2077 } 2078 } 2079 2080 for (Instruction &I : B) { 2081 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { 2082 verifyUseInDefs(MA->getDefiningAccess(), MA); 2083 } 2084 } 2085 } 2086 #endif 2087 } 2088 2089 /// Perform a local numbering on blocks so that instruction ordering can be 2090 /// determined in constant time. 2091 /// TODO: We currently just number in order. If we numbered by N, we could 2092 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2093 /// log2(N) sequences of mixed before and after) without needing to invalidate 2094 /// the numbering. 2095 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2096 // The pre-increment ensures the numbers really start at 1. 2097 unsigned long CurrentNumber = 0; 2098 const AccessList *AL = getBlockAccesses(B); 2099 assert(AL != nullptr && "Asking to renumber an empty block"); 2100 for (const auto &I : *AL) 2101 BlockNumbering[&I] = ++CurrentNumber; 2102 BlockNumberingValid.insert(B); 2103 } 2104 2105 /// Determine, for two memory accesses in the same block, 2106 /// whether \p Dominator dominates \p Dominatee. 2107 /// \returns True if \p Dominator dominates \p Dominatee. 2108 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2109 const MemoryAccess *Dominatee) const { 2110 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2111 2112 assert((DominatorBlock == Dominatee->getBlock()) && 2113 "Asking for local domination when accesses are in different blocks!"); 2114 // A node dominates itself. 2115 if (Dominatee == Dominator) 2116 return true; 2117 2118 // When Dominatee is defined on function entry, it is not dominated by another 2119 // memory access. 2120 if (isLiveOnEntryDef(Dominatee)) 2121 return false; 2122 2123 // When Dominator is defined on function entry, it dominates the other memory 2124 // access. 2125 if (isLiveOnEntryDef(Dominator)) 2126 return true; 2127 2128 if (!BlockNumberingValid.count(DominatorBlock)) 2129 renumberBlock(DominatorBlock); 2130 2131 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2132 // All numbers start with 1 2133 assert(DominatorNum != 0 && "Block was not numbered properly"); 2134 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2135 assert(DominateeNum != 0 && "Block was not numbered properly"); 2136 return DominatorNum < DominateeNum; 2137 } 2138 2139 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2140 const MemoryAccess *Dominatee) const { 2141 if (Dominator == Dominatee) 2142 return true; 2143 2144 if (isLiveOnEntryDef(Dominatee)) 2145 return false; 2146 2147 if (Dominator->getBlock() != Dominatee->getBlock()) 2148 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2149 return locallyDominates(Dominator, Dominatee); 2150 } 2151 2152 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2153 const Use &Dominatee) const { 2154 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2155 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2156 // The def must dominate the incoming block of the phi. 2157 if (UseBB != Dominator->getBlock()) 2158 return DT->dominates(Dominator->getBlock(), UseBB); 2159 // If the UseBB and the DefBB are the same, compare locally. 2160 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2161 } 2162 // If it's not a PHI node use, the normal dominates can already handle it. 2163 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2164 } 2165 2166 const static char LiveOnEntryStr[] = "liveOnEntry"; 2167 2168 void MemoryAccess::print(raw_ostream &OS) const { 2169 switch (getValueID()) { 2170 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2171 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2172 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2173 } 2174 llvm_unreachable("invalid value id"); 2175 } 2176 2177 void MemoryDef::print(raw_ostream &OS) const { 2178 MemoryAccess *UO = getDefiningAccess(); 2179 2180 auto printID = [&OS](MemoryAccess *A) { 2181 if (A && A->getID()) 2182 OS << A->getID(); 2183 else 2184 OS << LiveOnEntryStr; 2185 }; 2186 2187 OS << getID() << " = MemoryDef("; 2188 printID(UO); 2189 OS << ")"; 2190 2191 if (isOptimized()) { 2192 OS << "->"; 2193 printID(getOptimized()); 2194 2195 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2196 OS << " " << *AR; 2197 } 2198 } 2199 2200 void MemoryPhi::print(raw_ostream &OS) const { 2201 bool First = true; 2202 OS << getID() << " = MemoryPhi("; 2203 for (const auto &Op : operands()) { 2204 BasicBlock *BB = getIncomingBlock(Op); 2205 MemoryAccess *MA = cast<MemoryAccess>(Op); 2206 if (!First) 2207 OS << ','; 2208 else 2209 First = false; 2210 2211 OS << '{'; 2212 if (BB->hasName()) 2213 OS << BB->getName(); 2214 else 2215 BB->printAsOperand(OS, false); 2216 OS << ','; 2217 if (unsigned ID = MA->getID()) 2218 OS << ID; 2219 else 2220 OS << LiveOnEntryStr; 2221 OS << '}'; 2222 } 2223 OS << ')'; 2224 } 2225 2226 void MemoryUse::print(raw_ostream &OS) const { 2227 MemoryAccess *UO = getDefiningAccess(); 2228 OS << "MemoryUse("; 2229 if (UO && UO->getID()) 2230 OS << UO->getID(); 2231 else 2232 OS << LiveOnEntryStr; 2233 OS << ')'; 2234 2235 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2236 OS << " " << *AR; 2237 } 2238 2239 void MemoryAccess::dump() const { 2240 // Cannot completely remove virtual function even in release mode. 2241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2242 print(dbgs()); 2243 dbgs() << "\n"; 2244 #endif 2245 } 2246 2247 char MemorySSAPrinterLegacyPass::ID = 0; 2248 2249 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2250 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2251 } 2252 2253 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2254 AU.setPreservesAll(); 2255 AU.addRequired<MemorySSAWrapperPass>(); 2256 } 2257 2258 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2259 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2260 MSSA.print(dbgs()); 2261 if (VerifyMemorySSA) 2262 MSSA.verifyMemorySSA(); 2263 return false; 2264 } 2265 2266 AnalysisKey MemorySSAAnalysis::Key; 2267 2268 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2269 FunctionAnalysisManager &AM) { 2270 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2271 auto &AA = AM.getResult<AAManager>(F); 2272 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2273 } 2274 2275 bool MemorySSAAnalysis::Result::invalidate( 2276 Function &F, const PreservedAnalyses &PA, 2277 FunctionAnalysisManager::Invalidator &Inv) { 2278 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2279 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2280 Inv.invalidate<AAManager>(F, PA) || 2281 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2282 } 2283 2284 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2285 FunctionAnalysisManager &AM) { 2286 OS << "MemorySSA for function: " << F.getName() << "\n"; 2287 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); 2288 2289 return PreservedAnalyses::all(); 2290 } 2291 2292 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2293 FunctionAnalysisManager &AM) { 2294 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2295 2296 return PreservedAnalyses::all(); 2297 } 2298 2299 char MemorySSAWrapperPass::ID = 0; 2300 2301 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2302 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2303 } 2304 2305 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2306 2307 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2308 AU.setPreservesAll(); 2309 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2310 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2311 } 2312 2313 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2314 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2315 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2316 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2317 return false; 2318 } 2319 2320 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } 2321 2322 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2323 MSSA->print(OS); 2324 } 2325 2326 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2327 2328 /// Walk the use-def chains starting at \p StartingAccess and find 2329 /// the MemoryAccess that actually clobbers Loc. 2330 /// 2331 /// \returns our clobbering memory access 2332 template <typename AliasAnalysisType> 2333 MemoryAccess * 2334 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2335 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2336 unsigned &UpwardWalkLimit) { 2337 if (isa<MemoryPhi>(StartingAccess)) 2338 return StartingAccess; 2339 2340 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); 2341 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2342 return StartingUseOrDef; 2343 2344 Instruction *I = StartingUseOrDef->getMemoryInst(); 2345 2346 // Conservatively, fences are always clobbers, so don't perform the walk if we 2347 // hit a fence. 2348 if (!isa<CallBase>(I) && I->isFenceLike()) 2349 return StartingUseOrDef; 2350 2351 UpwardsMemoryQuery Q; 2352 Q.OriginalAccess = StartingUseOrDef; 2353 Q.StartingLoc = Loc; 2354 Q.Inst = I; 2355 Q.IsCall = false; 2356 2357 // Unlike the other function, do not walk to the def of a def, because we are 2358 // handed something we already believe is the clobbering access. 2359 // We never set SkipSelf to true in Q in this method. 2360 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) 2361 ? StartingUseOrDef->getDefiningAccess() 2362 : StartingUseOrDef; 2363 2364 MemoryAccess *Clobber = 2365 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2366 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2367 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n"); 2368 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); 2369 LLVM_DEBUG(dbgs() << *Clobber << "\n"); 2370 return Clobber; 2371 } 2372 2373 template <typename AliasAnalysisType> 2374 MemoryAccess * 2375 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2376 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2377 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2378 // If this is a MemoryPhi, we can't do anything. 2379 if (!StartingAccess) 2380 return MA; 2381 2382 bool IsOptimized = false; 2383 2384 // If this is an already optimized use or def, return the optimized result. 2385 // Note: Currently, we store the optimized def result in a separate field, 2386 // since we can't use the defining access. 2387 if (StartingAccess->isOptimized()) { 2388 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2389 return StartingAccess->getOptimized(); 2390 IsOptimized = true; 2391 } 2392 2393 const Instruction *I = StartingAccess->getMemoryInst(); 2394 // We can't sanely do anything with a fence, since they conservatively clobber 2395 // all memory, and have no locations to get pointers from to try to 2396 // disambiguate. 2397 if (!isa<CallBase>(I) && I->isFenceLike()) 2398 return StartingAccess; 2399 2400 UpwardsMemoryQuery Q(I, StartingAccess); 2401 2402 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2403 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2404 StartingAccess->setOptimized(LiveOnEntry); 2405 StartingAccess->setOptimizedAccessType(None); 2406 return LiveOnEntry; 2407 } 2408 2409 MemoryAccess *OptimizedAccess; 2410 if (!IsOptimized) { 2411 // Start with the thing we already think clobbers this location 2412 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2413 2414 // At this point, DefiningAccess may be the live on entry def. 2415 // If it is, we will not get a better result. 2416 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2417 StartingAccess->setOptimized(DefiningAccess); 2418 StartingAccess->setOptimizedAccessType(None); 2419 return DefiningAccess; 2420 } 2421 2422 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2423 StartingAccess->setOptimized(OptimizedAccess); 2424 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2425 StartingAccess->setOptimizedAccessType(None); 2426 else if (Q.AR == MustAlias) 2427 StartingAccess->setOptimizedAccessType(MustAlias); 2428 } else 2429 OptimizedAccess = StartingAccess->getOptimized(); 2430 2431 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2432 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2433 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2434 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2435 2436 MemoryAccess *Result; 2437 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2438 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2439 assert(isa<MemoryDef>(Q.OriginalAccess)); 2440 Q.SkipSelfAccess = true; 2441 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2442 } else 2443 Result = OptimizedAccess; 2444 2445 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2446 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2447 2448 return Result; 2449 } 2450 2451 MemoryAccess * 2452 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2453 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2454 return Use->getDefiningAccess(); 2455 return MA; 2456 } 2457 2458 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2459 MemoryAccess *StartingAccess, const MemoryLocation &) { 2460 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2461 return Use->getDefiningAccess(); 2462 return StartingAccess; 2463 } 2464 2465 void MemoryPhi::deleteMe(DerivedUser *Self) { 2466 delete static_cast<MemoryPhi *>(Self); 2467 } 2468 2469 void MemoryDef::deleteMe(DerivedUser *Self) { 2470 delete static_cast<MemoryDef *>(Self); 2471 } 2472 2473 void MemoryUse::deleteMe(DerivedUser *Self) { 2474 delete static_cast<MemoryUse *>(Self); 2475 } 2476