1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/iterator.h" 24 #include "llvm/ADT/iterator_range.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/Analysis/CFGPrinter.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Config/llvm-config.h" 30 #include "llvm/IR/AssemblyAnnotationWriter.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/Use.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/FormattedStream.h" 50 #include "llvm/Support/GraphWriter.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <iterator> 55 #include <memory> 56 #include <utility> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "memoryssa" 61 62 static cl::opt<std::string> 63 DotCFGMSSA("dot-cfg-mssa", 64 cl::value_desc("file name for generated dot file"), 65 cl::desc("file name for generated dot file"), cl::init("")); 66 67 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 68 true) 69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 70 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 71 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 72 true) 73 74 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 75 "Memory SSA Printer", false, false) 76 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 77 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 78 "Memory SSA Printer", false, false) 79 80 static cl::opt<unsigned> MaxCheckLimit( 81 "memssa-check-limit", cl::Hidden, cl::init(100), 82 cl::desc("The maximum number of stores/phis MemorySSA" 83 "will consider trying to walk past (default = 100)")); 84 85 // Always verify MemorySSA if expensive checking is enabled. 86 #ifdef EXPENSIVE_CHECKS 87 bool llvm::VerifyMemorySSA = true; 88 #else 89 bool llvm::VerifyMemorySSA = false; 90 #endif 91 92 static cl::opt<bool, true> 93 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 94 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 95 96 const static char LiveOnEntryStr[] = "liveOnEntry"; 97 98 namespace { 99 100 /// An assembly annotator class to print Memory SSA information in 101 /// comments. 102 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 103 const MemorySSA *MSSA; 104 105 public: 106 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 107 108 void emitBasicBlockStartAnnot(const BasicBlock *BB, 109 formatted_raw_ostream &OS) override { 110 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 111 OS << "; " << *MA << "\n"; 112 } 113 114 void emitInstructionAnnot(const Instruction *I, 115 formatted_raw_ostream &OS) override { 116 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 117 OS << "; " << *MA << "\n"; 118 } 119 }; 120 121 /// An assembly annotator class to print Memory SSA information in 122 /// comments. 123 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter { 124 MemorySSA *MSSA; 125 MemorySSAWalker *Walker; 126 BatchAAResults BAA; 127 128 public: 129 MemorySSAWalkerAnnotatedWriter(MemorySSA *M) 130 : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {} 131 132 void emitBasicBlockStartAnnot(const BasicBlock *BB, 133 formatted_raw_ostream &OS) override { 134 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 135 OS << "; " << *MA << "\n"; 136 } 137 138 void emitInstructionAnnot(const Instruction *I, 139 formatted_raw_ostream &OS) override { 140 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { 141 MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA); 142 OS << "; " << *MA; 143 if (Clobber) { 144 OS << " - clobbered by "; 145 if (MSSA->isLiveOnEntryDef(Clobber)) 146 OS << LiveOnEntryStr; 147 else 148 OS << *Clobber; 149 } 150 OS << "\n"; 151 } 152 } 153 }; 154 155 } // namespace 156 157 namespace { 158 159 /// Our current alias analysis API differentiates heavily between calls and 160 /// non-calls, and functions called on one usually assert on the other. 161 /// This class encapsulates the distinction to simplify other code that wants 162 /// "Memory affecting instructions and related data" to use as a key. 163 /// For example, this class is used as a densemap key in the use optimizer. 164 class MemoryLocOrCall { 165 public: 166 bool IsCall = false; 167 168 MemoryLocOrCall(MemoryUseOrDef *MUD) 169 : MemoryLocOrCall(MUD->getMemoryInst()) {} 170 MemoryLocOrCall(const MemoryUseOrDef *MUD) 171 : MemoryLocOrCall(MUD->getMemoryInst()) {} 172 173 MemoryLocOrCall(Instruction *Inst) { 174 if (auto *C = dyn_cast<CallBase>(Inst)) { 175 IsCall = true; 176 Call = C; 177 } else { 178 IsCall = false; 179 // There is no such thing as a memorylocation for a fence inst, and it is 180 // unique in that regard. 181 if (!isa<FenceInst>(Inst)) 182 Loc = MemoryLocation::get(Inst); 183 } 184 } 185 186 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 187 188 const CallBase *getCall() const { 189 assert(IsCall); 190 return Call; 191 } 192 193 MemoryLocation getLoc() const { 194 assert(!IsCall); 195 return Loc; 196 } 197 198 bool operator==(const MemoryLocOrCall &Other) const { 199 if (IsCall != Other.IsCall) 200 return false; 201 202 if (!IsCall) 203 return Loc == Other.Loc; 204 205 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 206 return false; 207 208 return Call->arg_size() == Other.Call->arg_size() && 209 std::equal(Call->arg_begin(), Call->arg_end(), 210 Other.Call->arg_begin()); 211 } 212 213 private: 214 union { 215 const CallBase *Call; 216 MemoryLocation Loc; 217 }; 218 }; 219 220 } // end anonymous namespace 221 222 namespace llvm { 223 224 template <> struct DenseMapInfo<MemoryLocOrCall> { 225 static inline MemoryLocOrCall getEmptyKey() { 226 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 227 } 228 229 static inline MemoryLocOrCall getTombstoneKey() { 230 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 231 } 232 233 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 234 if (!MLOC.IsCall) 235 return hash_combine( 236 MLOC.IsCall, 237 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 238 239 hash_code hash = 240 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 241 MLOC.getCall()->getCalledOperand())); 242 243 for (const Value *Arg : MLOC.getCall()->args()) 244 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 245 return hash; 246 } 247 248 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 249 return LHS == RHS; 250 } 251 }; 252 253 } // end namespace llvm 254 255 /// This does one-way checks to see if Use could theoretically be hoisted above 256 /// MayClobber. This will not check the other way around. 257 /// 258 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 259 /// MayClobber, with no potentially clobbering operations in between them. 260 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 261 static bool areLoadsReorderable(const LoadInst *Use, 262 const LoadInst *MayClobber) { 263 bool VolatileUse = Use->isVolatile(); 264 bool VolatileClobber = MayClobber->isVolatile(); 265 // Volatile operations may never be reordered with other volatile operations. 266 if (VolatileUse && VolatileClobber) 267 return false; 268 // Otherwise, volatile doesn't matter here. From the language reference: 269 // 'optimizers may change the order of volatile operations relative to 270 // non-volatile operations.'" 271 272 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 273 // is weaker, it can be moved above other loads. We just need to be sure that 274 // MayClobber isn't an acquire load, because loads can't be moved above 275 // acquire loads. 276 // 277 // Note that this explicitly *does* allow the free reordering of monotonic (or 278 // weaker) loads of the same address. 279 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 280 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 281 AtomicOrdering::Acquire); 282 return !(SeqCstUse || MayClobberIsAcquire); 283 } 284 285 template <typename AliasAnalysisType> 286 static bool 287 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 288 const Instruction *UseInst, AliasAnalysisType &AA) { 289 Instruction *DefInst = MD->getMemoryInst(); 290 assert(DefInst && "Defining instruction not actually an instruction"); 291 292 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 293 // These intrinsics will show up as affecting memory, but they are just 294 // markers, mostly. 295 // 296 // FIXME: We probably don't actually want MemorySSA to model these at all 297 // (including creating MemoryAccesses for them): we just end up inventing 298 // clobbers where they don't really exist at all. Please see D43269 for 299 // context. 300 switch (II->getIntrinsicID()) { 301 case Intrinsic::invariant_start: 302 case Intrinsic::invariant_end: 303 case Intrinsic::assume: 304 case Intrinsic::experimental_noalias_scope_decl: 305 case Intrinsic::pseudoprobe: 306 return false; 307 case Intrinsic::dbg_addr: 308 case Intrinsic::dbg_declare: 309 case Intrinsic::dbg_label: 310 case Intrinsic::dbg_value: 311 llvm_unreachable("debuginfo shouldn't have associated defs!"); 312 default: 313 break; 314 } 315 } 316 317 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 318 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 319 return isModOrRefSet(I); 320 } 321 322 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 323 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 324 return !areLoadsReorderable(UseLoad, DefLoad); 325 326 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 327 return isModSet(I); 328 } 329 330 template <typename AliasAnalysisType> 331 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, 332 const MemoryLocOrCall &UseMLOC, 333 AliasAnalysisType &AA) { 334 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 335 // to exist while MemoryLocOrCall is pushed through places. 336 if (UseMLOC.IsCall) 337 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 338 AA); 339 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 340 AA); 341 } 342 343 // Return true when MD may alias MU, return false otherwise. 344 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 345 AliasAnalysis &AA) { 346 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); 347 } 348 349 namespace { 350 351 struct UpwardsMemoryQuery { 352 // True if our original query started off as a call 353 bool IsCall = false; 354 // The pointer location we started the query with. This will be empty if 355 // IsCall is true. 356 MemoryLocation StartingLoc; 357 // This is the instruction we were querying about. 358 const Instruction *Inst = nullptr; 359 // The MemoryAccess we actually got called with, used to test local domination 360 const MemoryAccess *OriginalAccess = nullptr; 361 bool SkipSelfAccess = false; 362 363 UpwardsMemoryQuery() = default; 364 365 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 366 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 367 if (!IsCall) 368 StartingLoc = MemoryLocation::get(Inst); 369 } 370 }; 371 372 } // end anonymous namespace 373 374 static bool isUseTriviallyOptimizableToLiveOnEntry(BatchAAResults &AA, 375 const Instruction *I) { 376 // If the memory can't be changed, then loads of the memory can't be 377 // clobbered. 378 if (auto *LI = dyn_cast<LoadInst>(I)) { 379 return I->hasMetadata(LLVMContext::MD_invariant_load) || 380 !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI))); 381 } 382 return false; 383 } 384 385 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 386 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 387 /// 388 /// This is meant to be as simple and self-contained as possible. Because it 389 /// uses no cache, etc., it can be relatively expensive. 390 /// 391 /// \param Start The MemoryAccess that we want to walk from. 392 /// \param ClobberAt A clobber for Start. 393 /// \param StartLoc The MemoryLocation for Start. 394 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 395 /// \param Query The UpwardsMemoryQuery we used for our search. 396 /// \param AA The AliasAnalysis we used for our search. 397 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 398 399 LLVM_ATTRIBUTE_UNUSED static void 400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 401 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 402 const UpwardsMemoryQuery &Query, BatchAAResults &AA, 403 bool AllowImpreciseClobber = false) { 404 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 405 406 if (MSSA.isLiveOnEntryDef(Start)) { 407 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 408 "liveOnEntry must clobber itself"); 409 return; 410 } 411 412 bool FoundClobber = false; 413 DenseSet<ConstMemoryAccessPair> VisitedPhis; 414 SmallVector<ConstMemoryAccessPair, 8> Worklist; 415 Worklist.emplace_back(Start, StartLoc); 416 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 417 // is found, complain. 418 while (!Worklist.empty()) { 419 auto MAP = Worklist.pop_back_val(); 420 // All we care about is that nothing from Start to ClobberAt clobbers Start. 421 // We learn nothing from revisiting nodes. 422 if (!VisitedPhis.insert(MAP).second) 423 continue; 424 425 for (const auto *MA : def_chain(MAP.first)) { 426 if (MA == ClobberAt) { 427 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 428 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 429 // since it won't let us short-circuit. 430 // 431 // Also, note that this can't be hoisted out of the `Worklist` loop, 432 // since MD may only act as a clobber for 1 of N MemoryLocations. 433 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 434 if (!FoundClobber) { 435 if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)) 436 FoundClobber = true; 437 } 438 } 439 break; 440 } 441 442 // We should never hit liveOnEntry, unless it's the clobber. 443 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 444 445 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 446 // If Start is a Def, skip self. 447 if (MD == Start) 448 continue; 449 450 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && 451 "Found clobber before reaching ClobberAt!"); 452 continue; 453 } 454 455 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 456 (void)MU; 457 assert (MU == Start && 458 "Can only find use in def chain if Start is a use"); 459 continue; 460 } 461 462 assert(isa<MemoryPhi>(MA)); 463 464 // Add reachable phi predecessors 465 for (auto ItB = upward_defs_begin( 466 {const_cast<MemoryAccess *>(MA), MAP.second}, 467 MSSA.getDomTree()), 468 ItE = upward_defs_end(); 469 ItB != ItE; ++ItB) 470 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 471 Worklist.emplace_back(*ItB); 472 } 473 } 474 475 // If the verify is done following an optimization, it's possible that 476 // ClobberAt was a conservative clobbering, that we can now infer is not a 477 // true clobbering access. Don't fail the verify if that's the case. 478 // We do have accesses that claim they're optimized, but could be optimized 479 // further. Updating all these can be expensive, so allow it for now (FIXME). 480 if (AllowImpreciseClobber) 481 return; 482 483 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 484 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 485 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 486 "ClobberAt never acted as a clobber"); 487 } 488 489 namespace { 490 491 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 492 /// in one class. 493 class ClobberWalker { 494 /// Save a few bytes by using unsigned instead of size_t. 495 using ListIndex = unsigned; 496 497 /// Represents a span of contiguous MemoryDefs, potentially ending in a 498 /// MemoryPhi. 499 struct DefPath { 500 MemoryLocation Loc; 501 // Note that, because we always walk in reverse, Last will always dominate 502 // First. Also note that First and Last are inclusive. 503 MemoryAccess *First; 504 MemoryAccess *Last; 505 std::optional<ListIndex> Previous; 506 507 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 508 std::optional<ListIndex> Previous) 509 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 510 511 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 512 std::optional<ListIndex> Previous) 513 : DefPath(Loc, Init, Init, Previous) {} 514 }; 515 516 const MemorySSA &MSSA; 517 DominatorTree &DT; 518 BatchAAResults *AA; 519 UpwardsMemoryQuery *Query; 520 unsigned *UpwardWalkLimit; 521 522 // Phi optimization bookkeeping: 523 // List of DefPath to process during the current phi optimization walk. 524 SmallVector<DefPath, 32> Paths; 525 // List of visited <Access, Location> pairs; we can skip paths already 526 // visited with the same memory location. 527 DenseSet<ConstMemoryAccessPair> VisitedPhis; 528 529 /// Find the nearest def or phi that `From` can legally be optimized to. 530 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 531 assert(From->getNumOperands() && "Phi with no operands?"); 532 533 BasicBlock *BB = From->getBlock(); 534 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 535 DomTreeNode *Node = DT.getNode(BB); 536 while ((Node = Node->getIDom())) { 537 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 538 if (Defs) 539 return &*Defs->rbegin(); 540 } 541 return Result; 542 } 543 544 /// Result of calling walkToPhiOrClobber. 545 struct UpwardsWalkResult { 546 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 547 /// both. Include alias info when clobber found. 548 MemoryAccess *Result; 549 bool IsKnownClobber; 550 }; 551 552 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 553 /// This will update Desc.Last as it walks. It will (optionally) also stop at 554 /// StopAt. 555 /// 556 /// This does not test for whether StopAt is a clobber 557 UpwardsWalkResult 558 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 559 const MemoryAccess *SkipStopAt = nullptr) const { 560 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 561 assert(UpwardWalkLimit && "Need a valid walk limit"); 562 bool LimitAlreadyReached = false; 563 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 564 // it to 1. This will not do any alias() calls. It either returns in the 565 // first iteration in the loop below, or is set back to 0 if all def chains 566 // are free of MemoryDefs. 567 if (!*UpwardWalkLimit) { 568 *UpwardWalkLimit = 1; 569 LimitAlreadyReached = true; 570 } 571 572 for (MemoryAccess *Current : def_chain(Desc.Last)) { 573 Desc.Last = Current; 574 if (Current == StopAt || Current == SkipStopAt) 575 return {Current, false}; 576 577 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 578 if (MSSA.isLiveOnEntryDef(MD)) 579 return {MD, true}; 580 581 if (!--*UpwardWalkLimit) 582 return {Current, true}; 583 584 if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA)) 585 return {MD, true}; 586 } 587 } 588 589 if (LimitAlreadyReached) 590 *UpwardWalkLimit = 0; 591 592 assert(isa<MemoryPhi>(Desc.Last) && 593 "Ended at a non-clobber that's not a phi?"); 594 return {Desc.Last, false}; 595 } 596 597 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 598 ListIndex PriorNode) { 599 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT); 600 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 601 for (const MemoryAccessPair &P : UpwardDefs) { 602 PausedSearches.push_back(Paths.size()); 603 Paths.emplace_back(P.second, P.first, PriorNode); 604 } 605 } 606 607 /// Represents a search that terminated after finding a clobber. This clobber 608 /// may or may not be present in the path of defs from LastNode..SearchStart, 609 /// since it may have been retrieved from cache. 610 struct TerminatedPath { 611 MemoryAccess *Clobber; 612 ListIndex LastNode; 613 }; 614 615 /// Get an access that keeps us from optimizing to the given phi. 616 /// 617 /// PausedSearches is an array of indices into the Paths array. Its incoming 618 /// value is the indices of searches that stopped at the last phi optimization 619 /// target. It's left in an unspecified state. 620 /// 621 /// If this returns std::nullopt, NewPaused is a vector of searches that 622 /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified 623 /// state. 624 std::optional<TerminatedPath> 625 getBlockingAccess(const MemoryAccess *StopWhere, 626 SmallVectorImpl<ListIndex> &PausedSearches, 627 SmallVectorImpl<ListIndex> &NewPaused, 628 SmallVectorImpl<TerminatedPath> &Terminated) { 629 assert(!PausedSearches.empty() && "No searches to continue?"); 630 631 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 632 // PausedSearches as our stack. 633 while (!PausedSearches.empty()) { 634 ListIndex PathIndex = PausedSearches.pop_back_val(); 635 DefPath &Node = Paths[PathIndex]; 636 637 // If we've already visited this path with this MemoryLocation, we don't 638 // need to do so again. 639 // 640 // NOTE: That we just drop these paths on the ground makes caching 641 // behavior sporadic. e.g. given a diamond: 642 // A 643 // B C 644 // D 645 // 646 // ...If we walk D, B, A, C, we'll only cache the result of phi 647 // optimization for A, B, and D; C will be skipped because it dies here. 648 // This arguably isn't the worst thing ever, since: 649 // - We generally query things in a top-down order, so if we got below D 650 // without needing cache entries for {C, MemLoc}, then chances are 651 // that those cache entries would end up ultimately unused. 652 // - We still cache things for A, so C only needs to walk up a bit. 653 // If this behavior becomes problematic, we can fix without a ton of extra 654 // work. 655 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) 656 continue; 657 658 const MemoryAccess *SkipStopWhere = nullptr; 659 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 660 assert(isa<MemoryDef>(Query->OriginalAccess)); 661 SkipStopWhere = Query->OriginalAccess; 662 } 663 664 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 665 /*StopAt=*/StopWhere, 666 /*SkipStopAt=*/SkipStopWhere); 667 if (Res.IsKnownClobber) { 668 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 669 670 // If this wasn't a cache hit, we hit a clobber when walking. That's a 671 // failure. 672 TerminatedPath Term{Res.Result, PathIndex}; 673 if (!MSSA.dominates(Res.Result, StopWhere)) 674 return Term; 675 676 // Otherwise, it's a valid thing to potentially optimize to. 677 Terminated.push_back(Term); 678 continue; 679 } 680 681 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 682 // We've hit our target. Save this path off for if we want to continue 683 // walking. If we are in the mode of skipping the OriginalAccess, and 684 // we've reached back to the OriginalAccess, do not save path, we've 685 // just looped back to self. 686 if (Res.Result != SkipStopWhere) 687 NewPaused.push_back(PathIndex); 688 continue; 689 } 690 691 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 692 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 693 } 694 695 return std::nullopt; 696 } 697 698 template <typename T, typename Walker> 699 struct generic_def_path_iterator 700 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 701 std::forward_iterator_tag, T *> { 702 generic_def_path_iterator() = default; 703 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 704 705 T &operator*() const { return curNode(); } 706 707 generic_def_path_iterator &operator++() { 708 N = curNode().Previous; 709 return *this; 710 } 711 712 bool operator==(const generic_def_path_iterator &O) const { 713 if (N.has_value() != O.N.has_value()) 714 return false; 715 return !N || *N == *O.N; 716 } 717 718 private: 719 T &curNode() const { return W->Paths[*N]; } 720 721 Walker *W = nullptr; 722 std::optional<ListIndex> N; 723 }; 724 725 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 726 using const_def_path_iterator = 727 generic_def_path_iterator<const DefPath, const ClobberWalker>; 728 729 iterator_range<def_path_iterator> def_path(ListIndex From) { 730 return make_range(def_path_iterator(this, From), def_path_iterator()); 731 } 732 733 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 734 return make_range(const_def_path_iterator(this, From), 735 const_def_path_iterator()); 736 } 737 738 struct OptznResult { 739 /// The path that contains our result. 740 TerminatedPath PrimaryClobber; 741 /// The paths that we can legally cache back from, but that aren't 742 /// necessarily the result of the Phi optimization. 743 SmallVector<TerminatedPath, 4> OtherClobbers; 744 }; 745 746 ListIndex defPathIndex(const DefPath &N) const { 747 // The assert looks nicer if we don't need to do &N 748 const DefPath *NP = &N; 749 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 750 "Out of bounds DefPath!"); 751 return NP - &Paths.front(); 752 } 753 754 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 755 /// that act as legal clobbers. Note that this won't return *all* clobbers. 756 /// 757 /// Phi optimization algorithm tl;dr: 758 /// - Find the earliest def/phi, A, we can optimize to 759 /// - Find if all paths from the starting memory access ultimately reach A 760 /// - If not, optimization isn't possible. 761 /// - Otherwise, walk from A to another clobber or phi, A'. 762 /// - If A' is a def, we're done. 763 /// - If A' is a phi, try to optimize it. 764 /// 765 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 766 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 767 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 768 const MemoryLocation &Loc) { 769 assert(Paths.empty() && VisitedPhis.empty() && 770 "Reset the optimization state."); 771 772 Paths.emplace_back(Loc, Start, Phi, std::nullopt); 773 // Stores how many "valid" optimization nodes we had prior to calling 774 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 775 auto PriorPathsSize = Paths.size(); 776 777 SmallVector<ListIndex, 16> PausedSearches; 778 SmallVector<ListIndex, 8> NewPaused; 779 SmallVector<TerminatedPath, 4> TerminatedPaths; 780 781 addSearches(Phi, PausedSearches, 0); 782 783 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 784 // Paths. 785 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 786 assert(!Paths.empty() && "Need a path to move"); 787 auto Dom = Paths.begin(); 788 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 789 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 790 Dom = I; 791 auto Last = Paths.end() - 1; 792 if (Last != Dom) 793 std::iter_swap(Last, Dom); 794 }; 795 796 MemoryPhi *Current = Phi; 797 while (true) { 798 assert(!MSSA.isLiveOnEntryDef(Current) && 799 "liveOnEntry wasn't treated as a clobber?"); 800 801 const auto *Target = getWalkTarget(Current); 802 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 803 // optimization for the prior phi. 804 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 805 return MSSA.dominates(P.Clobber, Target); 806 })); 807 808 // FIXME: This is broken, because the Blocker may be reported to be 809 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 810 // For the moment, this is fine, since we do nothing with blocker info. 811 if (std::optional<TerminatedPath> Blocker = getBlockingAccess( 812 Target, PausedSearches, NewPaused, TerminatedPaths)) { 813 814 // Find the node we started at. We can't search based on N->Last, since 815 // we may have gone around a loop with a different MemoryLocation. 816 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 817 return defPathIndex(N) < PriorPathsSize; 818 }); 819 assert(Iter != def_path_iterator()); 820 821 DefPath &CurNode = *Iter; 822 assert(CurNode.Last == Current); 823 824 // Two things: 825 // A. We can't reliably cache all of NewPaused back. Consider a case 826 // where we have two paths in NewPaused; one of which can't optimize 827 // above this phi, whereas the other can. If we cache the second path 828 // back, we'll end up with suboptimal cache entries. We can handle 829 // cases like this a bit better when we either try to find all 830 // clobbers that block phi optimization, or when our cache starts 831 // supporting unfinished searches. 832 // B. We can't reliably cache TerminatedPaths back here without doing 833 // extra checks; consider a case like: 834 // T 835 // / \ 836 // D C 837 // \ / 838 // S 839 // Where T is our target, C is a node with a clobber on it, D is a 840 // diamond (with a clobber *only* on the left or right node, N), and 841 // S is our start. Say we walk to D, through the node opposite N 842 // (read: ignoring the clobber), and see a cache entry in the top 843 // node of D. That cache entry gets put into TerminatedPaths. We then 844 // walk up to C (N is later in our worklist), find the clobber, and 845 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 846 // the bottom part of D to the cached clobber, ignoring the clobber 847 // in N. Again, this problem goes away if we start tracking all 848 // blockers for a given phi optimization. 849 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 850 return {Result, {}}; 851 } 852 853 // If there's nothing left to search, then all paths led to valid clobbers 854 // that we got from our cache; pick the nearest to the start, and allow 855 // the rest to be cached back. 856 if (NewPaused.empty()) { 857 MoveDominatedPathToEnd(TerminatedPaths); 858 TerminatedPath Result = TerminatedPaths.pop_back_val(); 859 return {Result, std::move(TerminatedPaths)}; 860 } 861 862 MemoryAccess *DefChainEnd = nullptr; 863 SmallVector<TerminatedPath, 4> Clobbers; 864 for (ListIndex Paused : NewPaused) { 865 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 866 if (WR.IsKnownClobber) 867 Clobbers.push_back({WR.Result, Paused}); 868 else 869 // Micro-opt: If we hit the end of the chain, save it. 870 DefChainEnd = WR.Result; 871 } 872 873 if (!TerminatedPaths.empty()) { 874 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 875 // do it now. 876 if (!DefChainEnd) 877 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 878 DefChainEnd = MA; 879 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 880 881 // If any of the terminated paths don't dominate the phi we'll try to 882 // optimize, we need to figure out what they are and quit. 883 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 884 for (const TerminatedPath &TP : TerminatedPaths) { 885 // Because we know that DefChainEnd is as "high" as we can go, we 886 // don't need local dominance checks; BB dominance is sufficient. 887 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 888 Clobbers.push_back(TP); 889 } 890 } 891 892 // If we have clobbers in the def chain, find the one closest to Current 893 // and quit. 894 if (!Clobbers.empty()) { 895 MoveDominatedPathToEnd(Clobbers); 896 TerminatedPath Result = Clobbers.pop_back_val(); 897 return {Result, std::move(Clobbers)}; 898 } 899 900 assert(all_of(NewPaused, 901 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 902 903 // Because liveOnEntry is a clobber, this must be a phi. 904 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 905 906 PriorPathsSize = Paths.size(); 907 PausedSearches.clear(); 908 for (ListIndex I : NewPaused) 909 addSearches(DefChainPhi, PausedSearches, I); 910 NewPaused.clear(); 911 912 Current = DefChainPhi; 913 } 914 } 915 916 void verifyOptResult(const OptznResult &R) const { 917 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 918 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 919 })); 920 } 921 922 void resetPhiOptznState() { 923 Paths.clear(); 924 VisitedPhis.clear(); 925 } 926 927 public: 928 ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT) 929 : MSSA(MSSA), DT(DT) {} 930 931 /// Finds the nearest clobber for the given query, optimizing phis if 932 /// possible. 933 MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start, 934 UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) { 935 AA = &BAA; 936 Query = &Q; 937 UpwardWalkLimit = &UpWalkLimit; 938 // Starting limit must be > 0. 939 if (!UpWalkLimit) 940 UpWalkLimit++; 941 942 MemoryAccess *Current = Start; 943 // This walker pretends uses don't exist. If we're handed one, silently grab 944 // its def. (This has the nice side-effect of ensuring we never cache uses) 945 if (auto *MU = dyn_cast<MemoryUse>(Start)) 946 Current = MU->getDefiningAccess(); 947 948 DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt); 949 // Fast path for the overly-common case (no crazy phi optimization 950 // necessary) 951 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 952 MemoryAccess *Result; 953 if (WalkResult.IsKnownClobber) { 954 Result = WalkResult.Result; 955 } else { 956 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 957 Current, Q.StartingLoc); 958 verifyOptResult(OptRes); 959 resetPhiOptznState(); 960 Result = OptRes.PrimaryClobber.Clobber; 961 } 962 963 #ifdef EXPENSIVE_CHECKS 964 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 965 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA); 966 #endif 967 return Result; 968 } 969 }; 970 971 struct RenamePassData { 972 DomTreeNode *DTN; 973 DomTreeNode::const_iterator ChildIt; 974 MemoryAccess *IncomingVal; 975 976 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 977 MemoryAccess *M) 978 : DTN(D), ChildIt(It), IncomingVal(M) {} 979 980 void swap(RenamePassData &RHS) { 981 std::swap(DTN, RHS.DTN); 982 std::swap(ChildIt, RHS.ChildIt); 983 std::swap(IncomingVal, RHS.IncomingVal); 984 } 985 }; 986 987 } // end anonymous namespace 988 989 namespace llvm { 990 991 class MemorySSA::ClobberWalkerBase { 992 ClobberWalker Walker; 993 MemorySSA *MSSA; 994 995 public: 996 ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {} 997 998 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 999 const MemoryLocation &, 1000 BatchAAResults &, unsigned &); 1001 // Third argument (bool), defines whether the clobber search should skip the 1002 // original queried access. If true, there will be a follow-up query searching 1003 // for a clobber access past "self". Note that the Optimized access is not 1004 // updated if a new clobber is found by this SkipSelf search. If this 1005 // additional query becomes heavily used we may decide to cache the result. 1006 // Walker instantiations will decide how to set the SkipSelf bool. 1007 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &, 1008 unsigned &, bool, 1009 bool UseInvariantGroup = true); 1010 }; 1011 1012 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1013 /// longer does caching on its own, but the name has been retained for the 1014 /// moment. 1015 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1016 ClobberWalkerBase *Walker; 1017 1018 public: 1019 CachingWalker(MemorySSA *M, ClobberWalkerBase *W) 1020 : MemorySSAWalker(M), Walker(W) {} 1021 ~CachingWalker() override = default; 1022 1023 using MemorySSAWalker::getClobberingMemoryAccess; 1024 1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, 1026 unsigned &UWL) { 1027 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false); 1028 } 1029 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1030 const MemoryLocation &Loc, 1031 BatchAAResults &BAA, unsigned &UWL) { 1032 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); 1033 } 1034 // This method is not accessible outside of this file. 1035 MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup( 1036 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) { 1037 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false); 1038 } 1039 1040 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1041 BatchAAResults &BAA) override { 1042 unsigned UpwardWalkLimit = MaxCheckLimit; 1043 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit); 1044 } 1045 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1046 const MemoryLocation &Loc, 1047 BatchAAResults &BAA) override { 1048 unsigned UpwardWalkLimit = MaxCheckLimit; 1049 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit); 1050 } 1051 1052 void invalidateInfo(MemoryAccess *MA) override { 1053 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1054 MUD->resetOptimized(); 1055 } 1056 }; 1057 1058 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1059 ClobberWalkerBase *Walker; 1060 1061 public: 1062 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W) 1063 : MemorySSAWalker(M), Walker(W) {} 1064 ~SkipSelfWalker() override = default; 1065 1066 using MemorySSAWalker::getClobberingMemoryAccess; 1067 1068 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA, 1069 unsigned &UWL) { 1070 return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true); 1071 } 1072 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1073 const MemoryLocation &Loc, 1074 BatchAAResults &BAA, unsigned &UWL) { 1075 return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL); 1076 } 1077 1078 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1079 BatchAAResults &BAA) override { 1080 unsigned UpwardWalkLimit = MaxCheckLimit; 1081 return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit); 1082 } 1083 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1084 const MemoryLocation &Loc, 1085 BatchAAResults &BAA) override { 1086 unsigned UpwardWalkLimit = MaxCheckLimit; 1087 return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit); 1088 } 1089 1090 void invalidateInfo(MemoryAccess *MA) override { 1091 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1092 MUD->resetOptimized(); 1093 } 1094 }; 1095 1096 } // end namespace llvm 1097 1098 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1099 bool RenameAllUses) { 1100 // Pass through values to our successors 1101 for (const BasicBlock *S : successors(BB)) { 1102 auto It = PerBlockAccesses.find(S); 1103 // Rename the phi nodes in our successor block 1104 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1105 continue; 1106 AccessList *Accesses = It->second.get(); 1107 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1108 if (RenameAllUses) { 1109 bool ReplacementDone = false; 1110 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1111 if (Phi->getIncomingBlock(I) == BB) { 1112 Phi->setIncomingValue(I, IncomingVal); 1113 ReplacementDone = true; 1114 } 1115 (void) ReplacementDone; 1116 assert(ReplacementDone && "Incomplete phi during partial rename"); 1117 } else 1118 Phi->addIncoming(IncomingVal, BB); 1119 } 1120 } 1121 1122 /// Rename a single basic block into MemorySSA form. 1123 /// Uses the standard SSA renaming algorithm. 1124 /// \returns The new incoming value. 1125 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1126 bool RenameAllUses) { 1127 auto It = PerBlockAccesses.find(BB); 1128 // Skip most processing if the list is empty. 1129 if (It != PerBlockAccesses.end()) { 1130 AccessList *Accesses = It->second.get(); 1131 for (MemoryAccess &L : *Accesses) { 1132 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1133 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1134 MUD->setDefiningAccess(IncomingVal); 1135 if (isa<MemoryDef>(&L)) 1136 IncomingVal = &L; 1137 } else { 1138 IncomingVal = &L; 1139 } 1140 } 1141 } 1142 return IncomingVal; 1143 } 1144 1145 /// This is the standard SSA renaming algorithm. 1146 /// 1147 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1148 /// in phi nodes in our successors. 1149 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1150 SmallPtrSetImpl<BasicBlock *> &Visited, 1151 bool SkipVisited, bool RenameAllUses) { 1152 assert(Root && "Trying to rename accesses in an unreachable block"); 1153 1154 SmallVector<RenamePassData, 32> WorkStack; 1155 // Skip everything if we already renamed this block and we are skipping. 1156 // Note: You can't sink this into the if, because we need it to occur 1157 // regardless of whether we skip blocks or not. 1158 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1159 if (SkipVisited && AlreadyVisited) 1160 return; 1161 1162 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1163 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1164 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1165 1166 while (!WorkStack.empty()) { 1167 DomTreeNode *Node = WorkStack.back().DTN; 1168 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1169 IncomingVal = WorkStack.back().IncomingVal; 1170 1171 if (ChildIt == Node->end()) { 1172 WorkStack.pop_back(); 1173 } else { 1174 DomTreeNode *Child = *ChildIt; 1175 ++WorkStack.back().ChildIt; 1176 BasicBlock *BB = Child->getBlock(); 1177 // Note: You can't sink this into the if, because we need it to occur 1178 // regardless of whether we skip blocks or not. 1179 AlreadyVisited = !Visited.insert(BB).second; 1180 if (SkipVisited && AlreadyVisited) { 1181 // We already visited this during our renaming, which can happen when 1182 // being asked to rename multiple blocks. Figure out the incoming val, 1183 // which is the last def. 1184 // Incoming value can only change if there is a block def, and in that 1185 // case, it's the last block def in the list. 1186 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1187 IncomingVal = &*BlockDefs->rbegin(); 1188 } else 1189 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1190 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1191 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1192 } 1193 } 1194 } 1195 1196 /// This handles unreachable block accesses by deleting phi nodes in 1197 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1198 /// being uses of the live on entry definition. 1199 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1200 assert(!DT->isReachableFromEntry(BB) && 1201 "Reachable block found while handling unreachable blocks"); 1202 1203 // Make sure phi nodes in our reachable successors end up with a 1204 // LiveOnEntryDef for our incoming edge, even though our block is forward 1205 // unreachable. We could just disconnect these blocks from the CFG fully, 1206 // but we do not right now. 1207 for (const BasicBlock *S : successors(BB)) { 1208 if (!DT->isReachableFromEntry(S)) 1209 continue; 1210 auto It = PerBlockAccesses.find(S); 1211 // Rename the phi nodes in our successor block 1212 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1213 continue; 1214 AccessList *Accesses = It->second.get(); 1215 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1216 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1217 } 1218 1219 auto It = PerBlockAccesses.find(BB); 1220 if (It == PerBlockAccesses.end()) 1221 return; 1222 1223 auto &Accesses = It->second; 1224 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1225 auto Next = std::next(AI); 1226 // If we have a phi, just remove it. We are going to replace all 1227 // users with live on entry. 1228 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1229 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1230 else 1231 Accesses->erase(AI); 1232 AI = Next; 1233 } 1234 } 1235 1236 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1237 : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1238 SkipWalker(nullptr) { 1239 // Build MemorySSA using a batch alias analysis. This reuses the internal 1240 // state that AA collects during an alias()/getModRefInfo() call. This is 1241 // safe because there are no CFG changes while building MemorySSA and can 1242 // significantly reduce the time spent by the compiler in AA, because we will 1243 // make queries about all the instructions in the Function. 1244 assert(AA && "No alias analysis?"); 1245 BatchAAResults BatchAA(*AA); 1246 buildMemorySSA(BatchAA); 1247 // Intentionally leave AA to nullptr while building so we don't accidently 1248 // use non-batch AliasAnalysis. 1249 this->AA = AA; 1250 // Also create the walker here. 1251 getWalker(); 1252 } 1253 1254 MemorySSA::~MemorySSA() { 1255 // Drop all our references 1256 for (const auto &Pair : PerBlockAccesses) 1257 for (MemoryAccess &MA : *Pair.second) 1258 MA.dropAllReferences(); 1259 } 1260 1261 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1262 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1263 1264 if (Res.second) 1265 Res.first->second = std::make_unique<AccessList>(); 1266 return Res.first->second.get(); 1267 } 1268 1269 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1270 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1271 1272 if (Res.second) 1273 Res.first->second = std::make_unique<DefsList>(); 1274 return Res.first->second.get(); 1275 } 1276 1277 namespace llvm { 1278 1279 /// This class is a batch walker of all MemoryUse's in the program, and points 1280 /// their defining access at the thing that actually clobbers them. Because it 1281 /// is a batch walker that touches everything, it does not operate like the 1282 /// other walkers. This walker is basically performing a top-down SSA renaming 1283 /// pass, where the version stack is used as the cache. This enables it to be 1284 /// significantly more time and memory efficient than using the regular walker, 1285 /// which is walking bottom-up. 1286 class MemorySSA::OptimizeUses { 1287 public: 1288 OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA, 1289 DominatorTree *DT) 1290 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1291 1292 void optimizeUses(); 1293 1294 private: 1295 /// This represents where a given memorylocation is in the stack. 1296 struct MemlocStackInfo { 1297 // This essentially is keeping track of versions of the stack. Whenever 1298 // the stack changes due to pushes or pops, these versions increase. 1299 unsigned long StackEpoch; 1300 unsigned long PopEpoch; 1301 // This is the lower bound of places on the stack to check. It is equal to 1302 // the place the last stack walk ended. 1303 // Note: Correctness depends on this being initialized to 0, which densemap 1304 // does 1305 unsigned long LowerBound; 1306 const BasicBlock *LowerBoundBlock; 1307 // This is where the last walk for this memory location ended. 1308 unsigned long LastKill; 1309 bool LastKillValid; 1310 }; 1311 1312 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1313 SmallVectorImpl<MemoryAccess *> &, 1314 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1315 1316 MemorySSA *MSSA; 1317 CachingWalker *Walker; 1318 BatchAAResults *AA; 1319 DominatorTree *DT; 1320 }; 1321 1322 } // end namespace llvm 1323 1324 /// Optimize the uses in a given block This is basically the SSA renaming 1325 /// algorithm, with one caveat: We are able to use a single stack for all 1326 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1327 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1328 /// going to be some position in that stack of possible ones. 1329 /// 1330 /// We track the stack positions that each MemoryLocation needs 1331 /// to check, and last ended at. This is because we only want to check the 1332 /// things that changed since last time. The same MemoryLocation should 1333 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1334 /// things like this, and if they start, we can modify MemoryLocOrCall to 1335 /// include relevant data) 1336 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1337 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1338 SmallVectorImpl<MemoryAccess *> &VersionStack, 1339 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1340 1341 /// If no accesses, nothing to do. 1342 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1343 if (Accesses == nullptr) 1344 return; 1345 1346 // Pop everything that doesn't dominate the current block off the stack, 1347 // increment the PopEpoch to account for this. 1348 while (true) { 1349 assert( 1350 !VersionStack.empty() && 1351 "Version stack should have liveOnEntry sentinel dominating everything"); 1352 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1353 if (DT->dominates(BackBlock, BB)) 1354 break; 1355 while (VersionStack.back()->getBlock() == BackBlock) 1356 VersionStack.pop_back(); 1357 ++PopEpoch; 1358 } 1359 1360 for (MemoryAccess &MA : *Accesses) { 1361 auto *MU = dyn_cast<MemoryUse>(&MA); 1362 if (!MU) { 1363 VersionStack.push_back(&MA); 1364 ++StackEpoch; 1365 continue; 1366 } 1367 1368 if (MU->isOptimized()) 1369 continue; 1370 1371 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1372 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); 1373 continue; 1374 } 1375 1376 MemoryLocOrCall UseMLOC(MU); 1377 auto &LocInfo = LocStackInfo[UseMLOC]; 1378 // If the pop epoch changed, it means we've removed stuff from top of 1379 // stack due to changing blocks. We may have to reset the lower bound or 1380 // last kill info. 1381 if (LocInfo.PopEpoch != PopEpoch) { 1382 LocInfo.PopEpoch = PopEpoch; 1383 LocInfo.StackEpoch = StackEpoch; 1384 // If the lower bound was in something that no longer dominates us, we 1385 // have to reset it. 1386 // We can't simply track stack size, because the stack may have had 1387 // pushes/pops in the meantime. 1388 // XXX: This is non-optimal, but only is slower cases with heavily 1389 // branching dominator trees. To get the optimal number of queries would 1390 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1391 // the top of that stack dominates us. This does not seem worth it ATM. 1392 // A much cheaper optimization would be to always explore the deepest 1393 // branch of the dominator tree first. This will guarantee this resets on 1394 // the smallest set of blocks. 1395 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1396 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1397 // Reset the lower bound of things to check. 1398 // TODO: Some day we should be able to reset to last kill, rather than 1399 // 0. 1400 LocInfo.LowerBound = 0; 1401 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1402 LocInfo.LastKillValid = false; 1403 } 1404 } else if (LocInfo.StackEpoch != StackEpoch) { 1405 // If all that has changed is the StackEpoch, we only have to check the 1406 // new things on the stack, because we've checked everything before. In 1407 // this case, the lower bound of things to check remains the same. 1408 LocInfo.PopEpoch = PopEpoch; 1409 LocInfo.StackEpoch = StackEpoch; 1410 } 1411 if (!LocInfo.LastKillValid) { 1412 LocInfo.LastKill = VersionStack.size() - 1; 1413 LocInfo.LastKillValid = true; 1414 } 1415 1416 // At this point, we should have corrected last kill and LowerBound to be 1417 // in bounds. 1418 assert(LocInfo.LowerBound < VersionStack.size() && 1419 "Lower bound out of range"); 1420 assert(LocInfo.LastKill < VersionStack.size() && 1421 "Last kill info out of range"); 1422 // In any case, the new upper bound is the top of the stack. 1423 unsigned long UpperBound = VersionStack.size() - 1; 1424 1425 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1426 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1427 << *(MU->getMemoryInst()) << ")" 1428 << " because there are " 1429 << UpperBound - LocInfo.LowerBound 1430 << " stores to disambiguate\n"); 1431 // Because we did not walk, LastKill is no longer valid, as this may 1432 // have been a kill. 1433 LocInfo.LastKillValid = false; 1434 continue; 1435 } 1436 bool FoundClobberResult = false; 1437 unsigned UpwardWalkLimit = MaxCheckLimit; 1438 while (UpperBound > LocInfo.LowerBound) { 1439 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1440 // For phis, use the walker, see where we ended up, go there. 1441 // The invariant.group handling in MemorySSA is ad-hoc and doesn't 1442 // support updates, so don't use it to optimize uses. 1443 MemoryAccess *Result = 1444 Walker->getClobberingMemoryAccessWithoutInvariantGroup( 1445 MU, *AA, UpwardWalkLimit); 1446 // We are guaranteed to find it or something is wrong. 1447 while (VersionStack[UpperBound] != Result) { 1448 assert(UpperBound != 0); 1449 --UpperBound; 1450 } 1451 FoundClobberResult = true; 1452 break; 1453 } 1454 1455 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1456 if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { 1457 FoundClobberResult = true; 1458 break; 1459 } 1460 --UpperBound; 1461 } 1462 1463 // At the end of this loop, UpperBound is either a clobber, or lower bound 1464 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1465 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1466 MU->setDefiningAccess(VersionStack[UpperBound], true); 1467 LocInfo.LastKill = UpperBound; 1468 } else { 1469 // Otherwise, we checked all the new ones, and now we know we can get to 1470 // LastKill. 1471 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); 1472 } 1473 LocInfo.LowerBound = VersionStack.size() - 1; 1474 LocInfo.LowerBoundBlock = BB; 1475 } 1476 } 1477 1478 /// Optimize uses to point to their actual clobbering definitions. 1479 void MemorySSA::OptimizeUses::optimizeUses() { 1480 SmallVector<MemoryAccess *, 16> VersionStack; 1481 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1482 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1483 1484 unsigned long StackEpoch = 1; 1485 unsigned long PopEpoch = 1; 1486 // We perform a non-recursive top-down dominator tree walk. 1487 for (const auto *DomNode : depth_first(DT->getRootNode())) 1488 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1489 LocStackInfo); 1490 } 1491 1492 void MemorySSA::placePHINodes( 1493 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1494 // Determine where our MemoryPhi's should go 1495 ForwardIDFCalculator IDFs(*DT); 1496 IDFs.setDefiningBlocks(DefiningBlocks); 1497 SmallVector<BasicBlock *, 32> IDFBlocks; 1498 IDFs.calculate(IDFBlocks); 1499 1500 // Now place MemoryPhi nodes. 1501 for (auto &BB : IDFBlocks) 1502 createMemoryPhi(BB); 1503 } 1504 1505 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1506 // We create an access to represent "live on entry", for things like 1507 // arguments or users of globals, where the memory they use is defined before 1508 // the beginning of the function. We do not actually insert it into the IR. 1509 // We do not define a live on exit for the immediate uses, and thus our 1510 // semantics do *not* imply that something with no immediate uses can simply 1511 // be removed. 1512 BasicBlock &StartingPoint = F.getEntryBlock(); 1513 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1514 &StartingPoint, NextID++)); 1515 1516 // We maintain lists of memory accesses per-block, trading memory for time. We 1517 // could just look up the memory access for every possible instruction in the 1518 // stream. 1519 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1520 // Go through each block, figure out where defs occur, and chain together all 1521 // the accesses. 1522 for (BasicBlock &B : F) { 1523 bool InsertIntoDef = false; 1524 AccessList *Accesses = nullptr; 1525 DefsList *Defs = nullptr; 1526 for (Instruction &I : B) { 1527 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1528 if (!MUD) 1529 continue; 1530 1531 if (!Accesses) 1532 Accesses = getOrCreateAccessList(&B); 1533 Accesses->push_back(MUD); 1534 if (isa<MemoryDef>(MUD)) { 1535 InsertIntoDef = true; 1536 if (!Defs) 1537 Defs = getOrCreateDefsList(&B); 1538 Defs->push_back(*MUD); 1539 } 1540 } 1541 if (InsertIntoDef) 1542 DefiningBlocks.insert(&B); 1543 } 1544 placePHINodes(DefiningBlocks); 1545 1546 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1547 // filled in with all blocks. 1548 SmallPtrSet<BasicBlock *, 16> Visited; 1549 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1550 1551 // Mark the uses in unreachable blocks as live on entry, so that they go 1552 // somewhere. 1553 for (auto &BB : F) 1554 if (!Visited.count(&BB)) 1555 markUnreachableAsLiveOnEntry(&BB); 1556 } 1557 1558 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1559 1560 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { 1561 if (Walker) 1562 return Walker.get(); 1563 1564 if (!WalkerBase) 1565 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT); 1566 1567 Walker = std::make_unique<CachingWalker>(this, WalkerBase.get()); 1568 return Walker.get(); 1569 } 1570 1571 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1572 if (SkipWalker) 1573 return SkipWalker.get(); 1574 1575 if (!WalkerBase) 1576 WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT); 1577 1578 SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get()); 1579 return SkipWalker.get(); 1580 } 1581 1582 1583 // This is a helper function used by the creation routines. It places NewAccess 1584 // into the access and defs lists for a given basic block, at the given 1585 // insertion point. 1586 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1587 const BasicBlock *BB, 1588 InsertionPlace Point) { 1589 auto *Accesses = getOrCreateAccessList(BB); 1590 if (Point == Beginning) { 1591 // If it's a phi node, it goes first, otherwise, it goes after any phi 1592 // nodes. 1593 if (isa<MemoryPhi>(NewAccess)) { 1594 Accesses->push_front(NewAccess); 1595 auto *Defs = getOrCreateDefsList(BB); 1596 Defs->push_front(*NewAccess); 1597 } else { 1598 auto AI = find_if_not( 1599 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1600 Accesses->insert(AI, NewAccess); 1601 if (!isa<MemoryUse>(NewAccess)) { 1602 auto *Defs = getOrCreateDefsList(BB); 1603 auto DI = find_if_not( 1604 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1605 Defs->insert(DI, *NewAccess); 1606 } 1607 } 1608 } else { 1609 Accesses->push_back(NewAccess); 1610 if (!isa<MemoryUse>(NewAccess)) { 1611 auto *Defs = getOrCreateDefsList(BB); 1612 Defs->push_back(*NewAccess); 1613 } 1614 } 1615 BlockNumberingValid.erase(BB); 1616 } 1617 1618 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1619 AccessList::iterator InsertPt) { 1620 auto *Accesses = getWritableBlockAccesses(BB); 1621 bool WasEnd = InsertPt == Accesses->end(); 1622 Accesses->insert(AccessList::iterator(InsertPt), What); 1623 if (!isa<MemoryUse>(What)) { 1624 auto *Defs = getOrCreateDefsList(BB); 1625 // If we got asked to insert at the end, we have an easy job, just shove it 1626 // at the end. If we got asked to insert before an existing def, we also get 1627 // an iterator. If we got asked to insert before a use, we have to hunt for 1628 // the next def. 1629 if (WasEnd) { 1630 Defs->push_back(*What); 1631 } else if (isa<MemoryDef>(InsertPt)) { 1632 Defs->insert(InsertPt->getDefsIterator(), *What); 1633 } else { 1634 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1635 ++InsertPt; 1636 // Either we found a def, or we are inserting at the end 1637 if (InsertPt == Accesses->end()) 1638 Defs->push_back(*What); 1639 else 1640 Defs->insert(InsertPt->getDefsIterator(), *What); 1641 } 1642 } 1643 BlockNumberingValid.erase(BB); 1644 } 1645 1646 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1647 // Keep it in the lookup tables, remove from the lists 1648 removeFromLists(What, false); 1649 1650 // Note that moving should implicitly invalidate the optimized state of a 1651 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1652 // MemoryDef. 1653 if (auto *MD = dyn_cast<MemoryDef>(What)) 1654 MD->resetOptimized(); 1655 What->setBlock(BB); 1656 } 1657 1658 // Move What before Where in the IR. The end result is that What will belong to 1659 // the right lists and have the right Block set, but will not otherwise be 1660 // correct. It will not have the right defining access, and if it is a def, 1661 // things below it will not properly be updated. 1662 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1663 AccessList::iterator Where) { 1664 prepareForMoveTo(What, BB); 1665 insertIntoListsBefore(What, BB, Where); 1666 } 1667 1668 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1669 InsertionPlace Point) { 1670 if (isa<MemoryPhi>(What)) { 1671 assert(Point == Beginning && 1672 "Can only move a Phi at the beginning of the block"); 1673 // Update lookup table entry 1674 ValueToMemoryAccess.erase(What->getBlock()); 1675 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1676 (void)Inserted; 1677 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1678 } 1679 1680 prepareForMoveTo(What, BB); 1681 insertIntoListsForBlock(What, BB, Point); 1682 } 1683 1684 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1685 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1686 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1687 // Phi's always are placed at the front of the block. 1688 insertIntoListsForBlock(Phi, BB, Beginning); 1689 ValueToMemoryAccess[BB] = Phi; 1690 return Phi; 1691 } 1692 1693 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1694 MemoryAccess *Definition, 1695 const MemoryUseOrDef *Template, 1696 bool CreationMustSucceed) { 1697 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1698 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1699 if (CreationMustSucceed) 1700 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1701 "non-memory touching instruction"); 1702 if (NewAccess) { 1703 assert((!Definition || !isa<MemoryUse>(Definition)) && 1704 "A use cannot be a defining access"); 1705 NewAccess->setDefiningAccess(Definition); 1706 } 1707 return NewAccess; 1708 } 1709 1710 // Return true if the instruction has ordering constraints. 1711 // Note specifically that this only considers stores and loads 1712 // because others are still considered ModRef by getModRefInfo. 1713 static inline bool isOrdered(const Instruction *I) { 1714 if (auto *SI = dyn_cast<StoreInst>(I)) { 1715 if (!SI->isUnordered()) 1716 return true; 1717 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1718 if (!LI->isUnordered()) 1719 return true; 1720 } 1721 return false; 1722 } 1723 1724 /// Helper function to create new memory accesses 1725 template <typename AliasAnalysisType> 1726 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1727 AliasAnalysisType *AAP, 1728 const MemoryUseOrDef *Template) { 1729 // The assume intrinsic has a control dependency which we model by claiming 1730 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1731 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1732 // dependencies here. 1733 // FIXME: Replace this special casing with a more accurate modelling of 1734 // assume's control dependency. 1735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1736 switch (II->getIntrinsicID()) { 1737 default: 1738 break; 1739 case Intrinsic::assume: 1740 case Intrinsic::experimental_noalias_scope_decl: 1741 case Intrinsic::pseudoprobe: 1742 return nullptr; 1743 } 1744 } 1745 1746 // Using a nonstandard AA pipelines might leave us with unexpected modref 1747 // results for I, so add a check to not model instructions that may not read 1748 // from or write to memory. This is necessary for correctness. 1749 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1750 return nullptr; 1751 1752 bool Def, Use; 1753 if (Template) { 1754 Def = isa<MemoryDef>(Template); 1755 Use = isa<MemoryUse>(Template); 1756 #if !defined(NDEBUG) 1757 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); 1758 bool DefCheck, UseCheck; 1759 DefCheck = isModSet(ModRef) || isOrdered(I); 1760 UseCheck = isRefSet(ModRef); 1761 // Memory accesses should only be reduced and can not be increased since AA 1762 // just might return better results as a result of some transformations. 1763 assert((Def == DefCheck || !DefCheck) && 1764 "Memory accesses should only be reduced"); 1765 if (!Def && Use != UseCheck) { 1766 // New Access should not have more power than template access 1767 assert(!UseCheck && "Invalid template"); 1768 } 1769 #endif 1770 } else { 1771 // Find out what affect this instruction has on memory. 1772 ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt); 1773 // The isOrdered check is used to ensure that volatiles end up as defs 1774 // (atomics end up as ModRef right now anyway). Until we separate the 1775 // ordering chain from the memory chain, this enables people to see at least 1776 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1777 // will still give an answer that bypasses other volatile loads. TODO: 1778 // Separate memory aliasing and ordering into two different chains so that 1779 // we can precisely represent both "what memory will this read/write/is 1780 // clobbered by" and "what instructions can I move this past". 1781 Def = isModSet(ModRef) || isOrdered(I); 1782 Use = isRefSet(ModRef); 1783 } 1784 1785 // It's possible for an instruction to not modify memory at all. During 1786 // construction, we ignore them. 1787 if (!Def && !Use) 1788 return nullptr; 1789 1790 MemoryUseOrDef *MUD; 1791 if (Def) 1792 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1793 else 1794 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1795 ValueToMemoryAccess[I] = MUD; 1796 return MUD; 1797 } 1798 1799 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1800 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1801 assert(MA->use_empty() && 1802 "Trying to remove memory access that still has uses"); 1803 BlockNumbering.erase(MA); 1804 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1805 MUD->setDefiningAccess(nullptr); 1806 // Invalidate our walker's cache if necessary 1807 if (!isa<MemoryUse>(MA)) 1808 getWalker()->invalidateInfo(MA); 1809 1810 Value *MemoryInst; 1811 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1812 MemoryInst = MUD->getMemoryInst(); 1813 else 1814 MemoryInst = MA->getBlock(); 1815 1816 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1817 if (VMA->second == MA) 1818 ValueToMemoryAccess.erase(VMA); 1819 } 1820 1821 /// Properly remove \p MA from all of MemorySSA's lists. 1822 /// 1823 /// Because of the way the intrusive list and use lists work, it is important to 1824 /// do removal in the right order. 1825 /// ShouldDelete defaults to true, and will cause the memory access to also be 1826 /// deleted, not just removed. 1827 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1828 BasicBlock *BB = MA->getBlock(); 1829 // The access list owns the reference, so we erase it from the non-owning list 1830 // first. 1831 if (!isa<MemoryUse>(MA)) { 1832 auto DefsIt = PerBlockDefs.find(BB); 1833 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1834 Defs->remove(*MA); 1835 if (Defs->empty()) 1836 PerBlockDefs.erase(DefsIt); 1837 } 1838 1839 // The erase call here will delete it. If we don't want it deleted, we call 1840 // remove instead. 1841 auto AccessIt = PerBlockAccesses.find(BB); 1842 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1843 if (ShouldDelete) 1844 Accesses->erase(MA); 1845 else 1846 Accesses->remove(MA); 1847 1848 if (Accesses->empty()) { 1849 PerBlockAccesses.erase(AccessIt); 1850 BlockNumberingValid.erase(BB); 1851 } 1852 } 1853 1854 void MemorySSA::print(raw_ostream &OS) const { 1855 MemorySSAAnnotatedWriter Writer(this); 1856 F.print(OS, &Writer); 1857 } 1858 1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1860 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1861 #endif 1862 1863 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const { 1864 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1865 VL = VerificationLevel::Full; 1866 #endif 1867 1868 #ifndef NDEBUG 1869 verifyOrderingDominationAndDefUses(F, VL); 1870 verifyDominationNumbers(F); 1871 if (VL == VerificationLevel::Full) 1872 verifyPrevDefInPhis(F); 1873 #endif 1874 // Previously, the verification used to also verify that the clobberingAccess 1875 // cached by MemorySSA is the same as the clobberingAccess found at a later 1876 // query to AA. This does not hold true in general due to the current fragility 1877 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1878 // up. As a result, transformations that are correct, will lead to BasicAA 1879 // returning different Alias answers before and after that transformation. 1880 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1881 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1882 // every transformation, which defeats the purpose of using it. For such an 1883 // example, see test4 added in D51960. 1884 } 1885 1886 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1887 for (const BasicBlock &BB : F) { 1888 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1889 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1890 auto *Pred = Phi->getIncomingBlock(I); 1891 auto *IncAcc = Phi->getIncomingValue(I); 1892 // If Pred has no unreachable predecessors, get last def looking at 1893 // IDoms. If, while walkings IDoms, any of these has an unreachable 1894 // predecessor, then the incoming def can be any access. 1895 if (auto *DTNode = DT->getNode(Pred)) { 1896 while (DTNode) { 1897 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1898 auto *LastAcc = &*(--DefList->end()); 1899 assert(LastAcc == IncAcc && 1900 "Incorrect incoming access into phi."); 1901 (void)IncAcc; 1902 (void)LastAcc; 1903 break; 1904 } 1905 DTNode = DTNode->getIDom(); 1906 } 1907 } else { 1908 // If Pred has unreachable predecessors, but has at least a Def, the 1909 // incoming access can be the last Def in Pred, or it could have been 1910 // optimized to LoE. After an update, though, the LoE may have been 1911 // replaced by another access, so IncAcc may be any access. 1912 // If Pred has unreachable predecessors and no Defs, incoming access 1913 // should be LoE; However, after an update, it may be any access. 1914 } 1915 } 1916 } 1917 } 1918 } 1919 1920 /// Verify that all of the blocks we believe to have valid domination numbers 1921 /// actually have valid domination numbers. 1922 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1923 if (BlockNumberingValid.empty()) 1924 return; 1925 1926 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1927 for (const BasicBlock &BB : F) { 1928 if (!ValidBlocks.count(&BB)) 1929 continue; 1930 1931 ValidBlocks.erase(&BB); 1932 1933 const AccessList *Accesses = getBlockAccesses(&BB); 1934 // It's correct to say an empty block has valid numbering. 1935 if (!Accesses) 1936 continue; 1937 1938 // Block numbering starts at 1. 1939 unsigned long LastNumber = 0; 1940 for (const MemoryAccess &MA : *Accesses) { 1941 auto ThisNumberIter = BlockNumbering.find(&MA); 1942 assert(ThisNumberIter != BlockNumbering.end() && 1943 "MemoryAccess has no domination number in a valid block!"); 1944 1945 unsigned long ThisNumber = ThisNumberIter->second; 1946 assert(ThisNumber > LastNumber && 1947 "Domination numbers should be strictly increasing!"); 1948 (void)LastNumber; 1949 LastNumber = ThisNumber; 1950 } 1951 } 1952 1953 assert(ValidBlocks.empty() && 1954 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1955 } 1956 1957 /// Verify ordering: the order and existence of MemoryAccesses matches the 1958 /// order and existence of memory affecting instructions. 1959 /// Verify domination: each definition dominates all of its uses. 1960 /// Verify def-uses: the immediate use information - walk all the memory 1961 /// accesses and verifying that, for each use, it appears in the appropriate 1962 /// def's use list 1963 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F, 1964 VerificationLevel VL) const { 1965 // Walk all the blocks, comparing what the lookups think and what the access 1966 // lists think, as well as the order in the blocks vs the order in the access 1967 // lists. 1968 SmallVector<MemoryAccess *, 32> ActualAccesses; 1969 SmallVector<MemoryAccess *, 32> ActualDefs; 1970 for (BasicBlock &B : F) { 1971 const AccessList *AL = getBlockAccesses(&B); 1972 const auto *DL = getBlockDefs(&B); 1973 MemoryPhi *Phi = getMemoryAccess(&B); 1974 if (Phi) { 1975 // Verify ordering. 1976 ActualAccesses.push_back(Phi); 1977 ActualDefs.push_back(Phi); 1978 // Verify domination 1979 for (const Use &U : Phi->uses()) { 1980 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 1981 (void)U; 1982 } 1983 // Verify def-uses for full verify. 1984 if (VL == VerificationLevel::Full) { 1985 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1986 pred_begin(&B), pred_end(&B))) && 1987 "Incomplete MemoryPhi Node"); 1988 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1989 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1990 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 1991 "Incoming phi block not a block predecessor"); 1992 } 1993 } 1994 } 1995 1996 for (Instruction &I : B) { 1997 MemoryUseOrDef *MA = getMemoryAccess(&I); 1998 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1999 "We have memory affecting instructions " 2000 "in this block but they are not in the " 2001 "access list or defs list"); 2002 if (MA) { 2003 // Verify ordering. 2004 ActualAccesses.push_back(MA); 2005 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2006 // Verify ordering. 2007 ActualDefs.push_back(MA); 2008 // Verify domination. 2009 for (const Use &U : MD->uses()) { 2010 assert(dominates(MD, U) && 2011 "Memory Def does not dominate it's uses"); 2012 (void)U; 2013 } 2014 } 2015 // Verify def-uses for full verify. 2016 if (VL == VerificationLevel::Full) 2017 verifyUseInDefs(MA->getDefiningAccess(), MA); 2018 } 2019 } 2020 // Either we hit the assert, really have no accesses, or we have both 2021 // accesses and an access list. Same with defs. 2022 if (!AL && !DL) 2023 continue; 2024 // Verify ordering. 2025 assert(AL->size() == ActualAccesses.size() && 2026 "We don't have the same number of accesses in the block as on the " 2027 "access list"); 2028 assert((DL || ActualDefs.size() == 0) && 2029 "Either we should have a defs list, or we should have no defs"); 2030 assert((!DL || DL->size() == ActualDefs.size()) && 2031 "We don't have the same number of defs in the block as on the " 2032 "def list"); 2033 auto ALI = AL->begin(); 2034 auto AAI = ActualAccesses.begin(); 2035 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2036 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2037 ++ALI; 2038 ++AAI; 2039 } 2040 ActualAccesses.clear(); 2041 if (DL) { 2042 auto DLI = DL->begin(); 2043 auto ADI = ActualDefs.begin(); 2044 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2045 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2046 ++DLI; 2047 ++ADI; 2048 } 2049 } 2050 ActualDefs.clear(); 2051 } 2052 } 2053 2054 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2055 /// appears in the use list of \p Def. 2056 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2057 // The live on entry use may cause us to get a NULL def here 2058 if (!Def) 2059 assert(isLiveOnEntryDef(Use) && 2060 "Null def but use not point to live on entry def"); 2061 else 2062 assert(is_contained(Def->users(), Use) && 2063 "Did not find use in def's use list"); 2064 } 2065 2066 /// Perform a local numbering on blocks so that instruction ordering can be 2067 /// determined in constant time. 2068 /// TODO: We currently just number in order. If we numbered by N, we could 2069 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2070 /// log2(N) sequences of mixed before and after) without needing to invalidate 2071 /// the numbering. 2072 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2073 // The pre-increment ensures the numbers really start at 1. 2074 unsigned long CurrentNumber = 0; 2075 const AccessList *AL = getBlockAccesses(B); 2076 assert(AL != nullptr && "Asking to renumber an empty block"); 2077 for (const auto &I : *AL) 2078 BlockNumbering[&I] = ++CurrentNumber; 2079 BlockNumberingValid.insert(B); 2080 } 2081 2082 /// Determine, for two memory accesses in the same block, 2083 /// whether \p Dominator dominates \p Dominatee. 2084 /// \returns True if \p Dominator dominates \p Dominatee. 2085 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2086 const MemoryAccess *Dominatee) const { 2087 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2088 2089 assert((DominatorBlock == Dominatee->getBlock()) && 2090 "Asking for local domination when accesses are in different blocks!"); 2091 // A node dominates itself. 2092 if (Dominatee == Dominator) 2093 return true; 2094 2095 // When Dominatee is defined on function entry, it is not dominated by another 2096 // memory access. 2097 if (isLiveOnEntryDef(Dominatee)) 2098 return false; 2099 2100 // When Dominator is defined on function entry, it dominates the other memory 2101 // access. 2102 if (isLiveOnEntryDef(Dominator)) 2103 return true; 2104 2105 if (!BlockNumberingValid.count(DominatorBlock)) 2106 renumberBlock(DominatorBlock); 2107 2108 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2109 // All numbers start with 1 2110 assert(DominatorNum != 0 && "Block was not numbered properly"); 2111 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2112 assert(DominateeNum != 0 && "Block was not numbered properly"); 2113 return DominatorNum < DominateeNum; 2114 } 2115 2116 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2117 const MemoryAccess *Dominatee) const { 2118 if (Dominator == Dominatee) 2119 return true; 2120 2121 if (isLiveOnEntryDef(Dominatee)) 2122 return false; 2123 2124 if (Dominator->getBlock() != Dominatee->getBlock()) 2125 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2126 return locallyDominates(Dominator, Dominatee); 2127 } 2128 2129 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2130 const Use &Dominatee) const { 2131 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2132 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2133 // The def must dominate the incoming block of the phi. 2134 if (UseBB != Dominator->getBlock()) 2135 return DT->dominates(Dominator->getBlock(), UseBB); 2136 // If the UseBB and the DefBB are the same, compare locally. 2137 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2138 } 2139 // If it's not a PHI node use, the normal dominates can already handle it. 2140 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2141 } 2142 2143 void MemorySSA::ensureOptimizedUses() { 2144 if (IsOptimized) 2145 return; 2146 2147 BatchAAResults BatchAA(*AA); 2148 ClobberWalkerBase WalkerBase(this, DT); 2149 CachingWalker WalkerLocal(this, &WalkerBase); 2150 OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses(); 2151 IsOptimized = true; 2152 } 2153 2154 void MemoryAccess::print(raw_ostream &OS) const { 2155 switch (getValueID()) { 2156 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2157 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2158 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2159 } 2160 llvm_unreachable("invalid value id"); 2161 } 2162 2163 void MemoryDef::print(raw_ostream &OS) const { 2164 MemoryAccess *UO = getDefiningAccess(); 2165 2166 auto printID = [&OS](MemoryAccess *A) { 2167 if (A && A->getID()) 2168 OS << A->getID(); 2169 else 2170 OS << LiveOnEntryStr; 2171 }; 2172 2173 OS << getID() << " = MemoryDef("; 2174 printID(UO); 2175 OS << ")"; 2176 2177 if (isOptimized()) { 2178 OS << "->"; 2179 printID(getOptimized()); 2180 } 2181 } 2182 2183 void MemoryPhi::print(raw_ostream &OS) const { 2184 ListSeparator LS(","); 2185 OS << getID() << " = MemoryPhi("; 2186 for (const auto &Op : operands()) { 2187 BasicBlock *BB = getIncomingBlock(Op); 2188 MemoryAccess *MA = cast<MemoryAccess>(Op); 2189 2190 OS << LS << '{'; 2191 if (BB->hasName()) 2192 OS << BB->getName(); 2193 else 2194 BB->printAsOperand(OS, false); 2195 OS << ','; 2196 if (unsigned ID = MA->getID()) 2197 OS << ID; 2198 else 2199 OS << LiveOnEntryStr; 2200 OS << '}'; 2201 } 2202 OS << ')'; 2203 } 2204 2205 void MemoryUse::print(raw_ostream &OS) const { 2206 MemoryAccess *UO = getDefiningAccess(); 2207 OS << "MemoryUse("; 2208 if (UO && UO->getID()) 2209 OS << UO->getID(); 2210 else 2211 OS << LiveOnEntryStr; 2212 OS << ')'; 2213 } 2214 2215 void MemoryAccess::dump() const { 2216 // Cannot completely remove virtual function even in release mode. 2217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2218 print(dbgs()); 2219 dbgs() << "\n"; 2220 #endif 2221 } 2222 2223 char MemorySSAPrinterLegacyPass::ID = 0; 2224 2225 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2226 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2227 } 2228 2229 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2230 AU.setPreservesAll(); 2231 AU.addRequired<MemorySSAWrapperPass>(); 2232 } 2233 2234 class DOTFuncMSSAInfo { 2235 private: 2236 const Function &F; 2237 MemorySSAAnnotatedWriter MSSAWriter; 2238 2239 public: 2240 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2241 : F(F), MSSAWriter(&MSSA) {} 2242 2243 const Function *getFunction() { return &F; } 2244 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2245 }; 2246 2247 namespace llvm { 2248 2249 template <> 2250 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2251 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2252 return &(CFGInfo->getFunction()->getEntryBlock()); 2253 } 2254 2255 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2256 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2257 2258 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2259 return nodes_iterator(CFGInfo->getFunction()->begin()); 2260 } 2261 2262 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2263 return nodes_iterator(CFGInfo->getFunction()->end()); 2264 } 2265 2266 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2267 return CFGInfo->getFunction()->size(); 2268 } 2269 }; 2270 2271 template <> 2272 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2273 2274 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2275 2276 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2277 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2278 "' function"; 2279 } 2280 2281 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2282 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2283 Node, nullptr, 2284 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2285 BB.print(OS, &CFGInfo->getWriter(), true, true); 2286 }, 2287 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2288 std::string Str = S.substr(I, Idx - I); 2289 StringRef SR = Str; 2290 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2291 SR.count("MemoryUse(")) 2292 return; 2293 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2294 }); 2295 } 2296 2297 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2298 const_succ_iterator I) { 2299 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2300 } 2301 2302 /// Display the raw branch weights from PGO. 2303 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2304 DOTFuncMSSAInfo *CFGInfo) { 2305 return ""; 2306 } 2307 2308 std::string getNodeAttributes(const BasicBlock *Node, 2309 DOTFuncMSSAInfo *CFGInfo) { 2310 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2311 ? "style=filled, fillcolor=lightpink" 2312 : ""; 2313 } 2314 }; 2315 2316 } // namespace llvm 2317 2318 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2319 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2320 MSSA.ensureOptimizedUses(); 2321 if (DotCFGMSSA != "") { 2322 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2323 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2324 } else 2325 MSSA.print(dbgs()); 2326 2327 if (VerifyMemorySSA) 2328 MSSA.verifyMemorySSA(); 2329 return false; 2330 } 2331 2332 AnalysisKey MemorySSAAnalysis::Key; 2333 2334 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2335 FunctionAnalysisManager &AM) { 2336 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2337 auto &AA = AM.getResult<AAManager>(F); 2338 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2339 } 2340 2341 bool MemorySSAAnalysis::Result::invalidate( 2342 Function &F, const PreservedAnalyses &PA, 2343 FunctionAnalysisManager::Invalidator &Inv) { 2344 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2345 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2346 Inv.invalidate<AAManager>(F, PA) || 2347 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2348 } 2349 2350 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2351 FunctionAnalysisManager &AM) { 2352 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2353 MSSA.ensureOptimizedUses(); 2354 if (DotCFGMSSA != "") { 2355 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2356 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2357 } else { 2358 OS << "MemorySSA for function: " << F.getName() << "\n"; 2359 MSSA.print(OS); 2360 } 2361 2362 return PreservedAnalyses::all(); 2363 } 2364 2365 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F, 2366 FunctionAnalysisManager &AM) { 2367 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2368 OS << "MemorySSA (walker) for function: " << F.getName() << "\n"; 2369 MemorySSAWalkerAnnotatedWriter Writer(&MSSA); 2370 F.print(OS, &Writer); 2371 2372 return PreservedAnalyses::all(); 2373 } 2374 2375 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2376 FunctionAnalysisManager &AM) { 2377 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2378 2379 return PreservedAnalyses::all(); 2380 } 2381 2382 char MemorySSAWrapperPass::ID = 0; 2383 2384 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2385 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2386 } 2387 2388 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2389 2390 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2391 AU.setPreservesAll(); 2392 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2393 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2394 } 2395 2396 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2397 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2398 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2399 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2400 return false; 2401 } 2402 2403 void MemorySSAWrapperPass::verifyAnalysis() const { 2404 if (VerifyMemorySSA) 2405 MSSA->verifyMemorySSA(); 2406 } 2407 2408 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2409 MSSA->print(OS); 2410 } 2411 2412 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2413 2414 /// Walk the use-def chains starting at \p StartingAccess and find 2415 /// the MemoryAccess that actually clobbers Loc. 2416 /// 2417 /// \returns our clobbering memory access 2418 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( 2419 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2420 BatchAAResults &BAA, unsigned &UpwardWalkLimit) { 2421 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2422 2423 Instruction *I = nullptr; 2424 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2425 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2426 return StartingUseOrDef; 2427 2428 I = StartingUseOrDef->getMemoryInst(); 2429 2430 // Conservatively, fences are always clobbers, so don't perform the walk if 2431 // we hit a fence. 2432 if (!isa<CallBase>(I) && I->isFenceLike()) 2433 return StartingUseOrDef; 2434 } 2435 2436 UpwardsMemoryQuery Q; 2437 Q.OriginalAccess = StartingAccess; 2438 Q.StartingLoc = Loc; 2439 Q.Inst = nullptr; 2440 Q.IsCall = false; 2441 2442 // Unlike the other function, do not walk to the def of a def, because we are 2443 // handed something we already believe is the clobbering access. 2444 // We never set SkipSelf to true in Q in this method. 2445 MemoryAccess *Clobber = 2446 Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit); 2447 LLVM_DEBUG({ 2448 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2449 if (I) 2450 dbgs() << " for instruction " << *I << "\n"; 2451 dbgs() << " is " << *Clobber << "\n"; 2452 }); 2453 return Clobber; 2454 } 2455 2456 static const Instruction * 2457 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) { 2458 if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile()) 2459 return nullptr; 2460 2461 // We consider bitcasts and zero GEPs to be the same pointer value. Start by 2462 // stripping bitcasts and zero GEPs, then we will recursively look at loads 2463 // and stores through bitcasts and zero GEPs. 2464 Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts(); 2465 2466 // It's not safe to walk the use list of a global value because function 2467 // passes aren't allowed to look outside their functions. 2468 // FIXME: this could be fixed by filtering instructions from outside of 2469 // current function. 2470 if (isa<Constant>(PointerOperand)) 2471 return nullptr; 2472 2473 // Queue to process all pointers that are equivalent to load operand. 2474 SmallVector<const Value *, 8> PointerUsesQueue; 2475 PointerUsesQueue.push_back(PointerOperand); 2476 2477 const Instruction *MostDominatingInstruction = &I; 2478 2479 // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case 2480 // we will see all the instructions. It may not matter in practice. If it 2481 // does, we will have to support MemorySSA construction and updates. 2482 while (!PointerUsesQueue.empty()) { 2483 const Value *Ptr = PointerUsesQueue.pop_back_val(); 2484 assert(Ptr && !isa<GlobalValue>(Ptr) && 2485 "Null or GlobalValue should not be inserted"); 2486 2487 for (const User *Us : Ptr->users()) { 2488 auto *U = dyn_cast<Instruction>(Us); 2489 if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction)) 2490 continue; 2491 2492 // Add bitcasts and zero GEPs to queue. 2493 if (isa<BitCastInst>(U)) { 2494 PointerUsesQueue.push_back(U); 2495 continue; 2496 } 2497 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 2498 if (GEP->hasAllZeroIndices()) 2499 PointerUsesQueue.push_back(U); 2500 continue; 2501 } 2502 2503 // If we hit a load/store with an invariant.group metadata and the same 2504 // pointer operand, we can assume that value pointed to by the pointer 2505 // operand didn't change. 2506 if (U->hasMetadata(LLVMContext::MD_invariant_group) && 2507 getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) { 2508 MostDominatingInstruction = U; 2509 } 2510 } 2511 } 2512 return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction; 2513 } 2514 2515 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase( 2516 MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit, 2517 bool SkipSelf, bool UseInvariantGroup) { 2518 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2519 // If this is a MemoryPhi, we can't do anything. 2520 if (!StartingAccess) 2521 return MA; 2522 2523 if (UseInvariantGroup) { 2524 if (auto *I = getInvariantGroupClobberingInstruction( 2525 *StartingAccess->getMemoryInst(), MSSA->getDomTree())) { 2526 assert(isa<LoadInst>(I) || isa<StoreInst>(I)); 2527 2528 auto *ClobberMA = MSSA->getMemoryAccess(I); 2529 assert(ClobberMA); 2530 if (isa<MemoryUse>(ClobberMA)) 2531 return ClobberMA->getDefiningAccess(); 2532 return ClobberMA; 2533 } 2534 } 2535 2536 bool IsOptimized = false; 2537 2538 // If this is an already optimized use or def, return the optimized result. 2539 // Note: Currently, we store the optimized def result in a separate field, 2540 // since we can't use the defining access. 2541 if (StartingAccess->isOptimized()) { 2542 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2543 return StartingAccess->getOptimized(); 2544 IsOptimized = true; 2545 } 2546 2547 const Instruction *I = StartingAccess->getMemoryInst(); 2548 // We can't sanely do anything with a fence, since they conservatively clobber 2549 // all memory, and have no locations to get pointers from to try to 2550 // disambiguate. 2551 if (!isa<CallBase>(I) && I->isFenceLike()) 2552 return StartingAccess; 2553 2554 UpwardsMemoryQuery Q(I, StartingAccess); 2555 2556 if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) { 2557 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2558 StartingAccess->setOptimized(LiveOnEntry); 2559 return LiveOnEntry; 2560 } 2561 2562 MemoryAccess *OptimizedAccess; 2563 if (!IsOptimized) { 2564 // Start with the thing we already think clobbers this location 2565 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2566 2567 // At this point, DefiningAccess may be the live on entry def. 2568 // If it is, we will not get a better result. 2569 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2570 StartingAccess->setOptimized(DefiningAccess); 2571 return DefiningAccess; 2572 } 2573 2574 OptimizedAccess = 2575 Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit); 2576 StartingAccess->setOptimized(OptimizedAccess); 2577 } else 2578 OptimizedAccess = StartingAccess->getOptimized(); 2579 2580 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2581 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2582 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2583 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2584 2585 MemoryAccess *Result; 2586 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2587 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2588 assert(isa<MemoryDef>(Q.OriginalAccess)); 2589 Q.SkipSelfAccess = true; 2590 Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit); 2591 } else 2592 Result = OptimizedAccess; 2593 2594 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2595 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2596 2597 return Result; 2598 } 2599 2600 MemoryAccess * 2601 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA, 2602 BatchAAResults &) { 2603 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2604 return Use->getDefiningAccess(); 2605 return MA; 2606 } 2607 2608 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2609 MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) { 2610 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2611 return Use->getDefiningAccess(); 2612 return StartingAccess; 2613 } 2614 2615 void MemoryPhi::deleteMe(DerivedUser *Self) { 2616 delete static_cast<MemoryPhi *>(Self); 2617 } 2618 2619 void MemoryDef::deleteMe(DerivedUser *Self) { 2620 delete static_cast<MemoryDef *>(Self); 2621 } 2622 2623 void MemoryUse::deleteMe(DerivedUser *Self) { 2624 delete static_cast<MemoryUse *>(Self); 2625 } 2626 2627 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const { 2628 auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) { 2629 Ptr = Ptr->stripPointerCasts(); 2630 if (!isa<Instruction>(Ptr)) 2631 return true; 2632 return isa<AllocaInst>(Ptr); 2633 }; 2634 2635 Ptr = Ptr->stripPointerCasts(); 2636 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2637 if (I->getParent()->isEntryBlock()) 2638 return true; 2639 } 2640 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2641 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2642 GEP->hasAllConstantIndices(); 2643 } 2644 return IsGuaranteedLoopInvariantBase(Ptr); 2645 } 2646