xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemorySSA.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/CFGPrinter.h"
27 #include "llvm/Analysis/IteratedDominanceFrontier.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Config/llvm-config.h"
30 #include "llvm/IR/AssemblyAnnotationWriter.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/Use.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/GraphWriter.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <iterator>
55 #include <memory>
56 #include <utility>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "memoryssa"
61 
62 static cl::opt<std::string>
63     DotCFGMSSA("dot-cfg-mssa",
64                cl::value_desc("file name for generated dot file"),
65                cl::desc("file name for generated dot file"), cl::init(""));
66 
67 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
68                       true)
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
71 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
72                     true)
73 
74 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
75                       "Memory SSA Printer", false, false)
76 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
77 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
78                     "Memory SSA Printer", false, false)
79 
80 static cl::opt<unsigned> MaxCheckLimit(
81     "memssa-check-limit", cl::Hidden, cl::init(100),
82     cl::desc("The maximum number of stores/phis MemorySSA"
83              "will consider trying to walk past (default = 100)"));
84 
85 // Always verify MemorySSA if expensive checking is enabled.
86 #ifdef EXPENSIVE_CHECKS
87 bool llvm::VerifyMemorySSA = true;
88 #else
89 bool llvm::VerifyMemorySSA = false;
90 #endif
91 
92 static cl::opt<bool, true>
93     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
94                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
95 
96 const static char LiveOnEntryStr[] = "liveOnEntry";
97 
98 namespace {
99 
100 /// An assembly annotator class to print Memory SSA information in
101 /// comments.
102 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
103   const MemorySSA *MSSA;
104 
105 public:
106   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
107 
108   void emitBasicBlockStartAnnot(const BasicBlock *BB,
109                                 formatted_raw_ostream &OS) override {
110     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
111       OS << "; " << *MA << "\n";
112   }
113 
114   void emitInstructionAnnot(const Instruction *I,
115                             formatted_raw_ostream &OS) override {
116     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
117       OS << "; " << *MA << "\n";
118   }
119 };
120 
121 /// An assembly annotator class to print Memory SSA information in
122 /// comments.
123 class MemorySSAWalkerAnnotatedWriter : public AssemblyAnnotationWriter {
124   MemorySSA *MSSA;
125   MemorySSAWalker *Walker;
126   BatchAAResults BAA;
127 
128 public:
129   MemorySSAWalkerAnnotatedWriter(MemorySSA *M)
130       : MSSA(M), Walker(M->getWalker()), BAA(M->getAA()) {}
131 
132   void emitBasicBlockStartAnnot(const BasicBlock *BB,
133                                 formatted_raw_ostream &OS) override {
134     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
135       OS << "; " << *MA << "\n";
136   }
137 
138   void emitInstructionAnnot(const Instruction *I,
139                             formatted_raw_ostream &OS) override {
140     if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) {
141       MemoryAccess *Clobber = Walker->getClobberingMemoryAccess(MA, BAA);
142       OS << "; " << *MA;
143       if (Clobber) {
144         OS << " - clobbered by ";
145         if (MSSA->isLiveOnEntryDef(Clobber))
146           OS << LiveOnEntryStr;
147         else
148           OS << *Clobber;
149       }
150       OS << "\n";
151     }
152   }
153 };
154 
155 } // namespace
156 
157 namespace {
158 
159 /// Our current alias analysis API differentiates heavily between calls and
160 /// non-calls, and functions called on one usually assert on the other.
161 /// This class encapsulates the distinction to simplify other code that wants
162 /// "Memory affecting instructions and related data" to use as a key.
163 /// For example, this class is used as a densemap key in the use optimizer.
164 class MemoryLocOrCall {
165 public:
166   bool IsCall = false;
167 
168   MemoryLocOrCall(MemoryUseOrDef *MUD)
169       : MemoryLocOrCall(MUD->getMemoryInst()) {}
170   MemoryLocOrCall(const MemoryUseOrDef *MUD)
171       : MemoryLocOrCall(MUD->getMemoryInst()) {}
172 
173   MemoryLocOrCall(Instruction *Inst) {
174     if (auto *C = dyn_cast<CallBase>(Inst)) {
175       IsCall = true;
176       Call = C;
177     } else {
178       IsCall = false;
179       // There is no such thing as a memorylocation for a fence inst, and it is
180       // unique in that regard.
181       if (!isa<FenceInst>(Inst))
182         Loc = MemoryLocation::get(Inst);
183     }
184   }
185 
186   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
187 
188   const CallBase *getCall() const {
189     assert(IsCall);
190     return Call;
191   }
192 
193   MemoryLocation getLoc() const {
194     assert(!IsCall);
195     return Loc;
196   }
197 
198   bool operator==(const MemoryLocOrCall &Other) const {
199     if (IsCall != Other.IsCall)
200       return false;
201 
202     if (!IsCall)
203       return Loc == Other.Loc;
204 
205     if (Call->getCalledOperand() != Other.Call->getCalledOperand())
206       return false;
207 
208     return Call->arg_size() == Other.Call->arg_size() &&
209            std::equal(Call->arg_begin(), Call->arg_end(),
210                       Other.Call->arg_begin());
211   }
212 
213 private:
214   union {
215     const CallBase *Call;
216     MemoryLocation Loc;
217   };
218 };
219 
220 } // end anonymous namespace
221 
222 namespace llvm {
223 
224 template <> struct DenseMapInfo<MemoryLocOrCall> {
225   static inline MemoryLocOrCall getEmptyKey() {
226     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
227   }
228 
229   static inline MemoryLocOrCall getTombstoneKey() {
230     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
231   }
232 
233   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
234     if (!MLOC.IsCall)
235       return hash_combine(
236           MLOC.IsCall,
237           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
238 
239     hash_code hash =
240         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
241                                       MLOC.getCall()->getCalledOperand()));
242 
243     for (const Value *Arg : MLOC.getCall()->args())
244       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
245     return hash;
246   }
247 
248   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
249     return LHS == RHS;
250   }
251 };
252 
253 } // end namespace llvm
254 
255 /// This does one-way checks to see if Use could theoretically be hoisted above
256 /// MayClobber. This will not check the other way around.
257 ///
258 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
259 /// MayClobber, with no potentially clobbering operations in between them.
260 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
261 static bool areLoadsReorderable(const LoadInst *Use,
262                                 const LoadInst *MayClobber) {
263   bool VolatileUse = Use->isVolatile();
264   bool VolatileClobber = MayClobber->isVolatile();
265   // Volatile operations may never be reordered with other volatile operations.
266   if (VolatileUse && VolatileClobber)
267     return false;
268   // Otherwise, volatile doesn't matter here. From the language reference:
269   // 'optimizers may change the order of volatile operations relative to
270   // non-volatile operations.'"
271 
272   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
273   // is weaker, it can be moved above other loads. We just need to be sure that
274   // MayClobber isn't an acquire load, because loads can't be moved above
275   // acquire loads.
276   //
277   // Note that this explicitly *does* allow the free reordering of monotonic (or
278   // weaker) loads of the same address.
279   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
280   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
281                                                      AtomicOrdering::Acquire);
282   return !(SeqCstUse || MayClobberIsAcquire);
283 }
284 
285 template <typename AliasAnalysisType>
286 static bool
287 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
288                          const Instruction *UseInst, AliasAnalysisType &AA) {
289   Instruction *DefInst = MD->getMemoryInst();
290   assert(DefInst && "Defining instruction not actually an instruction");
291 
292   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
293     // These intrinsics will show up as affecting memory, but they are just
294     // markers, mostly.
295     //
296     // FIXME: We probably don't actually want MemorySSA to model these at all
297     // (including creating MemoryAccesses for them): we just end up inventing
298     // clobbers where they don't really exist at all. Please see D43269 for
299     // context.
300     switch (II->getIntrinsicID()) {
301     case Intrinsic::invariant_start:
302     case Intrinsic::invariant_end:
303     case Intrinsic::assume:
304     case Intrinsic::experimental_noalias_scope_decl:
305     case Intrinsic::pseudoprobe:
306       return false;
307     case Intrinsic::dbg_addr:
308     case Intrinsic::dbg_declare:
309     case Intrinsic::dbg_label:
310     case Intrinsic::dbg_value:
311       llvm_unreachable("debuginfo shouldn't have associated defs!");
312     default:
313       break;
314     }
315   }
316 
317   if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
318     ModRefInfo I = AA.getModRefInfo(DefInst, CB);
319     return isModOrRefSet(I);
320   }
321 
322   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
323     if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
324       return !areLoadsReorderable(UseLoad, DefLoad);
325 
326   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
327   return isModSet(I);
328 }
329 
330 template <typename AliasAnalysisType>
331 static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU,
332                                      const MemoryLocOrCall &UseMLOC,
333                                      AliasAnalysisType &AA) {
334   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
335   // to exist while MemoryLocOrCall is pushed through places.
336   if (UseMLOC.IsCall)
337     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
338                                     AA);
339   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
340                                   AA);
341 }
342 
343 // Return true when MD may alias MU, return false otherwise.
344 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
345                                         AliasAnalysis &AA) {
346   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA);
347 }
348 
349 namespace {
350 
351 struct UpwardsMemoryQuery {
352   // True if our original query started off as a call
353   bool IsCall = false;
354   // The pointer location we started the query with. This will be empty if
355   // IsCall is true.
356   MemoryLocation StartingLoc;
357   // This is the instruction we were querying about.
358   const Instruction *Inst = nullptr;
359   // The MemoryAccess we actually got called with, used to test local domination
360   const MemoryAccess *OriginalAccess = nullptr;
361   bool SkipSelfAccess = false;
362 
363   UpwardsMemoryQuery() = default;
364 
365   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
366       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
367     if (!IsCall)
368       StartingLoc = MemoryLocation::get(Inst);
369   }
370 };
371 
372 } // end anonymous namespace
373 
374 static bool isUseTriviallyOptimizableToLiveOnEntry(BatchAAResults &AA,
375                                                    const Instruction *I) {
376   // If the memory can't be changed, then loads of the memory can't be
377   // clobbered.
378   if (auto *LI = dyn_cast<LoadInst>(I)) {
379     return I->hasMetadata(LLVMContext::MD_invariant_load) ||
380            !isModSet(AA.getModRefInfoMask(MemoryLocation::get(LI)));
381   }
382   return false;
383 }
384 
385 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
386 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
387 ///
388 /// This is meant to be as simple and self-contained as possible. Because it
389 /// uses no cache, etc., it can be relatively expensive.
390 ///
391 /// \param Start     The MemoryAccess that we want to walk from.
392 /// \param ClobberAt A clobber for Start.
393 /// \param StartLoc  The MemoryLocation for Start.
394 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
395 /// \param Query     The UpwardsMemoryQuery we used for our search.
396 /// \param AA        The AliasAnalysis we used for our search.
397 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
398 
399 LLVM_ATTRIBUTE_UNUSED static void
400 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
401                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
402                    const UpwardsMemoryQuery &Query, BatchAAResults &AA,
403                    bool AllowImpreciseClobber = false) {
404   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
405 
406   if (MSSA.isLiveOnEntryDef(Start)) {
407     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
408            "liveOnEntry must clobber itself");
409     return;
410   }
411 
412   bool FoundClobber = false;
413   DenseSet<ConstMemoryAccessPair> VisitedPhis;
414   SmallVector<ConstMemoryAccessPair, 8> Worklist;
415   Worklist.emplace_back(Start, StartLoc);
416   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
417   // is found, complain.
418   while (!Worklist.empty()) {
419     auto MAP = Worklist.pop_back_val();
420     // All we care about is that nothing from Start to ClobberAt clobbers Start.
421     // We learn nothing from revisiting nodes.
422     if (!VisitedPhis.insert(MAP).second)
423       continue;
424 
425     for (const auto *MA : def_chain(MAP.first)) {
426       if (MA == ClobberAt) {
427         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
428           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
429           // since it won't let us short-circuit.
430           //
431           // Also, note that this can't be hoisted out of the `Worklist` loop,
432           // since MD may only act as a clobber for 1 of N MemoryLocations.
433           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
434           if (!FoundClobber) {
435             if (instructionClobbersQuery(MD, MAP.second, Query.Inst, AA))
436               FoundClobber = true;
437           }
438         }
439         break;
440       }
441 
442       // We should never hit liveOnEntry, unless it's the clobber.
443       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
444 
445       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
446         // If Start is a Def, skip self.
447         if (MD == Start)
448           continue;
449 
450         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) &&
451                "Found clobber before reaching ClobberAt!");
452         continue;
453       }
454 
455       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
456         (void)MU;
457         assert (MU == Start &&
458                 "Can only find use in def chain if Start is a use");
459         continue;
460       }
461 
462       assert(isa<MemoryPhi>(MA));
463 
464       // Add reachable phi predecessors
465       for (auto ItB = upward_defs_begin(
466                     {const_cast<MemoryAccess *>(MA), MAP.second},
467                     MSSA.getDomTree()),
468                 ItE = upward_defs_end();
469            ItB != ItE; ++ItB)
470         if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
471           Worklist.emplace_back(*ItB);
472     }
473   }
474 
475   // If the verify is done following an optimization, it's possible that
476   // ClobberAt was a conservative clobbering, that we can now infer is not a
477   // true clobbering access. Don't fail the verify if that's the case.
478   // We do have accesses that claim they're optimized, but could be optimized
479   // further. Updating all these can be expensive, so allow it for now (FIXME).
480   if (AllowImpreciseClobber)
481     return;
482 
483   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
484   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
485   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
486          "ClobberAt never acted as a clobber");
487 }
488 
489 namespace {
490 
491 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
492 /// in one class.
493 class ClobberWalker {
494   /// Save a few bytes by using unsigned instead of size_t.
495   using ListIndex = unsigned;
496 
497   /// Represents a span of contiguous MemoryDefs, potentially ending in a
498   /// MemoryPhi.
499   struct DefPath {
500     MemoryLocation Loc;
501     // Note that, because we always walk in reverse, Last will always dominate
502     // First. Also note that First and Last are inclusive.
503     MemoryAccess *First;
504     MemoryAccess *Last;
505     std::optional<ListIndex> Previous;
506 
507     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
508             std::optional<ListIndex> Previous)
509         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
510 
511     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
512             std::optional<ListIndex> Previous)
513         : DefPath(Loc, Init, Init, Previous) {}
514   };
515 
516   const MemorySSA &MSSA;
517   DominatorTree &DT;
518   BatchAAResults *AA;
519   UpwardsMemoryQuery *Query;
520   unsigned *UpwardWalkLimit;
521 
522   // Phi optimization bookkeeping:
523   // List of DefPath to process during the current phi optimization walk.
524   SmallVector<DefPath, 32> Paths;
525   // List of visited <Access, Location> pairs; we can skip paths already
526   // visited with the same memory location.
527   DenseSet<ConstMemoryAccessPair> VisitedPhis;
528 
529   /// Find the nearest def or phi that `From` can legally be optimized to.
530   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
531     assert(From->getNumOperands() && "Phi with no operands?");
532 
533     BasicBlock *BB = From->getBlock();
534     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
535     DomTreeNode *Node = DT.getNode(BB);
536     while ((Node = Node->getIDom())) {
537       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
538       if (Defs)
539         return &*Defs->rbegin();
540     }
541     return Result;
542   }
543 
544   /// Result of calling walkToPhiOrClobber.
545   struct UpwardsWalkResult {
546     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
547     /// both. Include alias info when clobber found.
548     MemoryAccess *Result;
549     bool IsKnownClobber;
550   };
551 
552   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
553   /// This will update Desc.Last as it walks. It will (optionally) also stop at
554   /// StopAt.
555   ///
556   /// This does not test for whether StopAt is a clobber
557   UpwardsWalkResult
558   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
559                      const MemoryAccess *SkipStopAt = nullptr) const {
560     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
561     assert(UpwardWalkLimit && "Need a valid walk limit");
562     bool LimitAlreadyReached = false;
563     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
564     // it to 1. This will not do any alias() calls. It either returns in the
565     // first iteration in the loop below, or is set back to 0 if all def chains
566     // are free of MemoryDefs.
567     if (!*UpwardWalkLimit) {
568       *UpwardWalkLimit = 1;
569       LimitAlreadyReached = true;
570     }
571 
572     for (MemoryAccess *Current : def_chain(Desc.Last)) {
573       Desc.Last = Current;
574       if (Current == StopAt || Current == SkipStopAt)
575         return {Current, false};
576 
577       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
578         if (MSSA.isLiveOnEntryDef(MD))
579           return {MD, true};
580 
581         if (!--*UpwardWalkLimit)
582           return {Current, true};
583 
584         if (instructionClobbersQuery(MD, Desc.Loc, Query->Inst, *AA))
585           return {MD, true};
586       }
587     }
588 
589     if (LimitAlreadyReached)
590       *UpwardWalkLimit = 0;
591 
592     assert(isa<MemoryPhi>(Desc.Last) &&
593            "Ended at a non-clobber that's not a phi?");
594     return {Desc.Last, false};
595   }
596 
597   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
598                    ListIndex PriorNode) {
599     auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT);
600     auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
601     for (const MemoryAccessPair &P : UpwardDefs) {
602       PausedSearches.push_back(Paths.size());
603       Paths.emplace_back(P.second, P.first, PriorNode);
604     }
605   }
606 
607   /// Represents a search that terminated after finding a clobber. This clobber
608   /// may or may not be present in the path of defs from LastNode..SearchStart,
609   /// since it may have been retrieved from cache.
610   struct TerminatedPath {
611     MemoryAccess *Clobber;
612     ListIndex LastNode;
613   };
614 
615   /// Get an access that keeps us from optimizing to the given phi.
616   ///
617   /// PausedSearches is an array of indices into the Paths array. Its incoming
618   /// value is the indices of searches that stopped at the last phi optimization
619   /// target. It's left in an unspecified state.
620   ///
621   /// If this returns std::nullopt, NewPaused is a vector of searches that
622   /// terminated at StopWhere. Otherwise, NewPaused is left in an unspecified
623   /// state.
624   std::optional<TerminatedPath>
625   getBlockingAccess(const MemoryAccess *StopWhere,
626                     SmallVectorImpl<ListIndex> &PausedSearches,
627                     SmallVectorImpl<ListIndex> &NewPaused,
628                     SmallVectorImpl<TerminatedPath> &Terminated) {
629     assert(!PausedSearches.empty() && "No searches to continue?");
630 
631     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
632     // PausedSearches as our stack.
633     while (!PausedSearches.empty()) {
634       ListIndex PathIndex = PausedSearches.pop_back_val();
635       DefPath &Node = Paths[PathIndex];
636 
637       // If we've already visited this path with this MemoryLocation, we don't
638       // need to do so again.
639       //
640       // NOTE: That we just drop these paths on the ground makes caching
641       // behavior sporadic. e.g. given a diamond:
642       //  A
643       // B C
644       //  D
645       //
646       // ...If we walk D, B, A, C, we'll only cache the result of phi
647       // optimization for A, B, and D; C will be skipped because it dies here.
648       // This arguably isn't the worst thing ever, since:
649       //   - We generally query things in a top-down order, so if we got below D
650       //     without needing cache entries for {C, MemLoc}, then chances are
651       //     that those cache entries would end up ultimately unused.
652       //   - We still cache things for A, so C only needs to walk up a bit.
653       // If this behavior becomes problematic, we can fix without a ton of extra
654       // work.
655       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
656         continue;
657 
658       const MemoryAccess *SkipStopWhere = nullptr;
659       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
660         assert(isa<MemoryDef>(Query->OriginalAccess));
661         SkipStopWhere = Query->OriginalAccess;
662       }
663 
664       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
665                                                  /*StopAt=*/StopWhere,
666                                                  /*SkipStopAt=*/SkipStopWhere);
667       if (Res.IsKnownClobber) {
668         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
669 
670         // If this wasn't a cache hit, we hit a clobber when walking. That's a
671         // failure.
672         TerminatedPath Term{Res.Result, PathIndex};
673         if (!MSSA.dominates(Res.Result, StopWhere))
674           return Term;
675 
676         // Otherwise, it's a valid thing to potentially optimize to.
677         Terminated.push_back(Term);
678         continue;
679       }
680 
681       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
682         // We've hit our target. Save this path off for if we want to continue
683         // walking. If we are in the mode of skipping the OriginalAccess, and
684         // we've reached back to the OriginalAccess, do not save path, we've
685         // just looped back to self.
686         if (Res.Result != SkipStopWhere)
687           NewPaused.push_back(PathIndex);
688         continue;
689       }
690 
691       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
692       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
693     }
694 
695     return std::nullopt;
696   }
697 
698   template <typename T, typename Walker>
699   struct generic_def_path_iterator
700       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
701                                     std::forward_iterator_tag, T *> {
702     generic_def_path_iterator() = default;
703     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
704 
705     T &operator*() const { return curNode(); }
706 
707     generic_def_path_iterator &operator++() {
708       N = curNode().Previous;
709       return *this;
710     }
711 
712     bool operator==(const generic_def_path_iterator &O) const {
713       if (N.has_value() != O.N.has_value())
714         return false;
715       return !N || *N == *O.N;
716     }
717 
718   private:
719     T &curNode() const { return W->Paths[*N]; }
720 
721     Walker *W = nullptr;
722     std::optional<ListIndex> N;
723   };
724 
725   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
726   using const_def_path_iterator =
727       generic_def_path_iterator<const DefPath, const ClobberWalker>;
728 
729   iterator_range<def_path_iterator> def_path(ListIndex From) {
730     return make_range(def_path_iterator(this, From), def_path_iterator());
731   }
732 
733   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
734     return make_range(const_def_path_iterator(this, From),
735                       const_def_path_iterator());
736   }
737 
738   struct OptznResult {
739     /// The path that contains our result.
740     TerminatedPath PrimaryClobber;
741     /// The paths that we can legally cache back from, but that aren't
742     /// necessarily the result of the Phi optimization.
743     SmallVector<TerminatedPath, 4> OtherClobbers;
744   };
745 
746   ListIndex defPathIndex(const DefPath &N) const {
747     // The assert looks nicer if we don't need to do &N
748     const DefPath *NP = &N;
749     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
750            "Out of bounds DefPath!");
751     return NP - &Paths.front();
752   }
753 
754   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
755   /// that act as legal clobbers. Note that this won't return *all* clobbers.
756   ///
757   /// Phi optimization algorithm tl;dr:
758   ///   - Find the earliest def/phi, A, we can optimize to
759   ///   - Find if all paths from the starting memory access ultimately reach A
760   ///     - If not, optimization isn't possible.
761   ///     - Otherwise, walk from A to another clobber or phi, A'.
762   ///       - If A' is a def, we're done.
763   ///       - If A' is a phi, try to optimize it.
764   ///
765   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
766   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
767   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
768                              const MemoryLocation &Loc) {
769     assert(Paths.empty() && VisitedPhis.empty() &&
770            "Reset the optimization state.");
771 
772     Paths.emplace_back(Loc, Start, Phi, std::nullopt);
773     // Stores how many "valid" optimization nodes we had prior to calling
774     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
775     auto PriorPathsSize = Paths.size();
776 
777     SmallVector<ListIndex, 16> PausedSearches;
778     SmallVector<ListIndex, 8> NewPaused;
779     SmallVector<TerminatedPath, 4> TerminatedPaths;
780 
781     addSearches(Phi, PausedSearches, 0);
782 
783     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
784     // Paths.
785     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
786       assert(!Paths.empty() && "Need a path to move");
787       auto Dom = Paths.begin();
788       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
789         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
790           Dom = I;
791       auto Last = Paths.end() - 1;
792       if (Last != Dom)
793         std::iter_swap(Last, Dom);
794     };
795 
796     MemoryPhi *Current = Phi;
797     while (true) {
798       assert(!MSSA.isLiveOnEntryDef(Current) &&
799              "liveOnEntry wasn't treated as a clobber?");
800 
801       const auto *Target = getWalkTarget(Current);
802       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
803       // optimization for the prior phi.
804       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
805         return MSSA.dominates(P.Clobber, Target);
806       }));
807 
808       // FIXME: This is broken, because the Blocker may be reported to be
809       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
810       // For the moment, this is fine, since we do nothing with blocker info.
811       if (std::optional<TerminatedPath> Blocker = getBlockingAccess(
812               Target, PausedSearches, NewPaused, TerminatedPaths)) {
813 
814         // Find the node we started at. We can't search based on N->Last, since
815         // we may have gone around a loop with a different MemoryLocation.
816         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
817           return defPathIndex(N) < PriorPathsSize;
818         });
819         assert(Iter != def_path_iterator());
820 
821         DefPath &CurNode = *Iter;
822         assert(CurNode.Last == Current);
823 
824         // Two things:
825         // A. We can't reliably cache all of NewPaused back. Consider a case
826         //    where we have two paths in NewPaused; one of which can't optimize
827         //    above this phi, whereas the other can. If we cache the second path
828         //    back, we'll end up with suboptimal cache entries. We can handle
829         //    cases like this a bit better when we either try to find all
830         //    clobbers that block phi optimization, or when our cache starts
831         //    supporting unfinished searches.
832         // B. We can't reliably cache TerminatedPaths back here without doing
833         //    extra checks; consider a case like:
834         //       T
835         //      / \
836         //     D   C
837         //      \ /
838         //       S
839         //    Where T is our target, C is a node with a clobber on it, D is a
840         //    diamond (with a clobber *only* on the left or right node, N), and
841         //    S is our start. Say we walk to D, through the node opposite N
842         //    (read: ignoring the clobber), and see a cache entry in the top
843         //    node of D. That cache entry gets put into TerminatedPaths. We then
844         //    walk up to C (N is later in our worklist), find the clobber, and
845         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
846         //    the bottom part of D to the cached clobber, ignoring the clobber
847         //    in N. Again, this problem goes away if we start tracking all
848         //    blockers for a given phi optimization.
849         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
850         return {Result, {}};
851       }
852 
853       // If there's nothing left to search, then all paths led to valid clobbers
854       // that we got from our cache; pick the nearest to the start, and allow
855       // the rest to be cached back.
856       if (NewPaused.empty()) {
857         MoveDominatedPathToEnd(TerminatedPaths);
858         TerminatedPath Result = TerminatedPaths.pop_back_val();
859         return {Result, std::move(TerminatedPaths)};
860       }
861 
862       MemoryAccess *DefChainEnd = nullptr;
863       SmallVector<TerminatedPath, 4> Clobbers;
864       for (ListIndex Paused : NewPaused) {
865         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
866         if (WR.IsKnownClobber)
867           Clobbers.push_back({WR.Result, Paused});
868         else
869           // Micro-opt: If we hit the end of the chain, save it.
870           DefChainEnd = WR.Result;
871       }
872 
873       if (!TerminatedPaths.empty()) {
874         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
875         // do it now.
876         if (!DefChainEnd)
877           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
878             DefChainEnd = MA;
879         assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
880 
881         // If any of the terminated paths don't dominate the phi we'll try to
882         // optimize, we need to figure out what they are and quit.
883         const BasicBlock *ChainBB = DefChainEnd->getBlock();
884         for (const TerminatedPath &TP : TerminatedPaths) {
885           // Because we know that DefChainEnd is as "high" as we can go, we
886           // don't need local dominance checks; BB dominance is sufficient.
887           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
888             Clobbers.push_back(TP);
889         }
890       }
891 
892       // If we have clobbers in the def chain, find the one closest to Current
893       // and quit.
894       if (!Clobbers.empty()) {
895         MoveDominatedPathToEnd(Clobbers);
896         TerminatedPath Result = Clobbers.pop_back_val();
897         return {Result, std::move(Clobbers)};
898       }
899 
900       assert(all_of(NewPaused,
901                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
902 
903       // Because liveOnEntry is a clobber, this must be a phi.
904       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
905 
906       PriorPathsSize = Paths.size();
907       PausedSearches.clear();
908       for (ListIndex I : NewPaused)
909         addSearches(DefChainPhi, PausedSearches, I);
910       NewPaused.clear();
911 
912       Current = DefChainPhi;
913     }
914   }
915 
916   void verifyOptResult(const OptznResult &R) const {
917     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
918       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
919     }));
920   }
921 
922   void resetPhiOptznState() {
923     Paths.clear();
924     VisitedPhis.clear();
925   }
926 
927 public:
928   ClobberWalker(const MemorySSA &MSSA, DominatorTree &DT)
929       : MSSA(MSSA), DT(DT) {}
930 
931   /// Finds the nearest clobber for the given query, optimizing phis if
932   /// possible.
933   MemoryAccess *findClobber(BatchAAResults &BAA, MemoryAccess *Start,
934                             UpwardsMemoryQuery &Q, unsigned &UpWalkLimit) {
935     AA = &BAA;
936     Query = &Q;
937     UpwardWalkLimit = &UpWalkLimit;
938     // Starting limit must be > 0.
939     if (!UpWalkLimit)
940       UpWalkLimit++;
941 
942     MemoryAccess *Current = Start;
943     // This walker pretends uses don't exist. If we're handed one, silently grab
944     // its def. (This has the nice side-effect of ensuring we never cache uses)
945     if (auto *MU = dyn_cast<MemoryUse>(Start))
946       Current = MU->getDefiningAccess();
947 
948     DefPath FirstDesc(Q.StartingLoc, Current, Current, std::nullopt);
949     // Fast path for the overly-common case (no crazy phi optimization
950     // necessary)
951     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
952     MemoryAccess *Result;
953     if (WalkResult.IsKnownClobber) {
954       Result = WalkResult.Result;
955     } else {
956       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
957                                           Current, Q.StartingLoc);
958       verifyOptResult(OptRes);
959       resetPhiOptznState();
960       Result = OptRes.PrimaryClobber.Clobber;
961     }
962 
963 #ifdef EXPENSIVE_CHECKS
964     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
965       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, BAA);
966 #endif
967     return Result;
968   }
969 };
970 
971 struct RenamePassData {
972   DomTreeNode *DTN;
973   DomTreeNode::const_iterator ChildIt;
974   MemoryAccess *IncomingVal;
975 
976   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
977                  MemoryAccess *M)
978       : DTN(D), ChildIt(It), IncomingVal(M) {}
979 
980   void swap(RenamePassData &RHS) {
981     std::swap(DTN, RHS.DTN);
982     std::swap(ChildIt, RHS.ChildIt);
983     std::swap(IncomingVal, RHS.IncomingVal);
984   }
985 };
986 
987 } // end anonymous namespace
988 
989 namespace llvm {
990 
991 class MemorySSA::ClobberWalkerBase {
992   ClobberWalker Walker;
993   MemorySSA *MSSA;
994 
995 public:
996   ClobberWalkerBase(MemorySSA *M, DominatorTree *D) : Walker(*M, *D), MSSA(M) {}
997 
998   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
999                                               const MemoryLocation &,
1000                                               BatchAAResults &, unsigned &);
1001   // Third argument (bool), defines whether the clobber search should skip the
1002   // original queried access. If true, there will be a follow-up query searching
1003   // for a clobber access past "self". Note that the Optimized access is not
1004   // updated if a new clobber is found by this SkipSelf search. If this
1005   // additional query becomes heavily used we may decide to cache the result.
1006   // Walker instantiations will decide how to set the SkipSelf bool.
1007   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, BatchAAResults &,
1008                                               unsigned &, bool,
1009                                               bool UseInvariantGroup = true);
1010 };
1011 
1012 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1013 /// longer does caching on its own, but the name has been retained for the
1014 /// moment.
1015 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1016   ClobberWalkerBase *Walker;
1017 
1018 public:
1019   CachingWalker(MemorySSA *M, ClobberWalkerBase *W)
1020       : MemorySSAWalker(M), Walker(W) {}
1021   ~CachingWalker() override = default;
1022 
1023   using MemorySSAWalker::getClobberingMemoryAccess;
1024 
1025   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1026                                           unsigned &UWL) {
1027     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false);
1028   }
1029   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1030                                           const MemoryLocation &Loc,
1031                                           BatchAAResults &BAA, unsigned &UWL) {
1032     return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1033   }
1034   // This method is not accessible outside of this file.
1035   MemoryAccess *getClobberingMemoryAccessWithoutInvariantGroup(
1036       MemoryAccess *MA, BatchAAResults &BAA, unsigned &UWL) {
1037     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, false, false);
1038   }
1039 
1040   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1041                                           BatchAAResults &BAA) override {
1042     unsigned UpwardWalkLimit = MaxCheckLimit;
1043     return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1044   }
1045   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1046                                           const MemoryLocation &Loc,
1047                                           BatchAAResults &BAA) override {
1048     unsigned UpwardWalkLimit = MaxCheckLimit;
1049     return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1050   }
1051 
1052   void invalidateInfo(MemoryAccess *MA) override {
1053     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1054       MUD->resetOptimized();
1055   }
1056 };
1057 
1058 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1059   ClobberWalkerBase *Walker;
1060 
1061 public:
1062   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase *W)
1063       : MemorySSAWalker(M), Walker(W) {}
1064   ~SkipSelfWalker() override = default;
1065 
1066   using MemorySSAWalker::getClobberingMemoryAccess;
1067 
1068   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, BatchAAResults &BAA,
1069                                           unsigned &UWL) {
1070     return Walker->getClobberingMemoryAccessBase(MA, BAA, UWL, true);
1071   }
1072   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1073                                           const MemoryLocation &Loc,
1074                                           BatchAAResults &BAA, unsigned &UWL) {
1075     return Walker->getClobberingMemoryAccessBase(MA, Loc, BAA, UWL);
1076   }
1077 
1078   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1079                                           BatchAAResults &BAA) override {
1080     unsigned UpwardWalkLimit = MaxCheckLimit;
1081     return getClobberingMemoryAccess(MA, BAA, UpwardWalkLimit);
1082   }
1083   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1084                                           const MemoryLocation &Loc,
1085                                           BatchAAResults &BAA) override {
1086     unsigned UpwardWalkLimit = MaxCheckLimit;
1087     return getClobberingMemoryAccess(MA, Loc, BAA, UpwardWalkLimit);
1088   }
1089 
1090   void invalidateInfo(MemoryAccess *MA) override {
1091     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1092       MUD->resetOptimized();
1093   }
1094 };
1095 
1096 } // end namespace llvm
1097 
1098 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1099                                     bool RenameAllUses) {
1100   // Pass through values to our successors
1101   for (const BasicBlock *S : successors(BB)) {
1102     auto It = PerBlockAccesses.find(S);
1103     // Rename the phi nodes in our successor block
1104     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1105       continue;
1106     AccessList *Accesses = It->second.get();
1107     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1108     if (RenameAllUses) {
1109       bool ReplacementDone = false;
1110       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1111         if (Phi->getIncomingBlock(I) == BB) {
1112           Phi->setIncomingValue(I, IncomingVal);
1113           ReplacementDone = true;
1114         }
1115       (void) ReplacementDone;
1116       assert(ReplacementDone && "Incomplete phi during partial rename");
1117     } else
1118       Phi->addIncoming(IncomingVal, BB);
1119   }
1120 }
1121 
1122 /// Rename a single basic block into MemorySSA form.
1123 /// Uses the standard SSA renaming algorithm.
1124 /// \returns The new incoming value.
1125 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1126                                      bool RenameAllUses) {
1127   auto It = PerBlockAccesses.find(BB);
1128   // Skip most processing if the list is empty.
1129   if (It != PerBlockAccesses.end()) {
1130     AccessList *Accesses = It->second.get();
1131     for (MemoryAccess &L : *Accesses) {
1132       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1133         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1134           MUD->setDefiningAccess(IncomingVal);
1135         if (isa<MemoryDef>(&L))
1136           IncomingVal = &L;
1137       } else {
1138         IncomingVal = &L;
1139       }
1140     }
1141   }
1142   return IncomingVal;
1143 }
1144 
1145 /// This is the standard SSA renaming algorithm.
1146 ///
1147 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1148 /// in phi nodes in our successors.
1149 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1150                            SmallPtrSetImpl<BasicBlock *> &Visited,
1151                            bool SkipVisited, bool RenameAllUses) {
1152   assert(Root && "Trying to rename accesses in an unreachable block");
1153 
1154   SmallVector<RenamePassData, 32> WorkStack;
1155   // Skip everything if we already renamed this block and we are skipping.
1156   // Note: You can't sink this into the if, because we need it to occur
1157   // regardless of whether we skip blocks or not.
1158   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1159   if (SkipVisited && AlreadyVisited)
1160     return;
1161 
1162   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1163   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1164   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1165 
1166   while (!WorkStack.empty()) {
1167     DomTreeNode *Node = WorkStack.back().DTN;
1168     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1169     IncomingVal = WorkStack.back().IncomingVal;
1170 
1171     if (ChildIt == Node->end()) {
1172       WorkStack.pop_back();
1173     } else {
1174       DomTreeNode *Child = *ChildIt;
1175       ++WorkStack.back().ChildIt;
1176       BasicBlock *BB = Child->getBlock();
1177       // Note: You can't sink this into the if, because we need it to occur
1178       // regardless of whether we skip blocks or not.
1179       AlreadyVisited = !Visited.insert(BB).second;
1180       if (SkipVisited && AlreadyVisited) {
1181         // We already visited this during our renaming, which can happen when
1182         // being asked to rename multiple blocks. Figure out the incoming val,
1183         // which is the last def.
1184         // Incoming value can only change if there is a block def, and in that
1185         // case, it's the last block def in the list.
1186         if (auto *BlockDefs = getWritableBlockDefs(BB))
1187           IncomingVal = &*BlockDefs->rbegin();
1188       } else
1189         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1190       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1191       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1192     }
1193   }
1194 }
1195 
1196 /// This handles unreachable block accesses by deleting phi nodes in
1197 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1198 /// being uses of the live on entry definition.
1199 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1200   assert(!DT->isReachableFromEntry(BB) &&
1201          "Reachable block found while handling unreachable blocks");
1202 
1203   // Make sure phi nodes in our reachable successors end up with a
1204   // LiveOnEntryDef for our incoming edge, even though our block is forward
1205   // unreachable.  We could just disconnect these blocks from the CFG fully,
1206   // but we do not right now.
1207   for (const BasicBlock *S : successors(BB)) {
1208     if (!DT->isReachableFromEntry(S))
1209       continue;
1210     auto It = PerBlockAccesses.find(S);
1211     // Rename the phi nodes in our successor block
1212     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1213       continue;
1214     AccessList *Accesses = It->second.get();
1215     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1216     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1217   }
1218 
1219   auto It = PerBlockAccesses.find(BB);
1220   if (It == PerBlockAccesses.end())
1221     return;
1222 
1223   auto &Accesses = It->second;
1224   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1225     auto Next = std::next(AI);
1226     // If we have a phi, just remove it. We are going to replace all
1227     // users with live on entry.
1228     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1229       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1230     else
1231       Accesses->erase(AI);
1232     AI = Next;
1233   }
1234 }
1235 
1236 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1237     : DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1238       SkipWalker(nullptr) {
1239   // Build MemorySSA using a batch alias analysis. This reuses the internal
1240   // state that AA collects during an alias()/getModRefInfo() call. This is
1241   // safe because there are no CFG changes while building MemorySSA and can
1242   // significantly reduce the time spent by the compiler in AA, because we will
1243   // make queries about all the instructions in the Function.
1244   assert(AA && "No alias analysis?");
1245   BatchAAResults BatchAA(*AA);
1246   buildMemorySSA(BatchAA);
1247   // Intentionally leave AA to nullptr while building so we don't accidently
1248   // use non-batch AliasAnalysis.
1249   this->AA = AA;
1250   // Also create the walker here.
1251   getWalker();
1252 }
1253 
1254 MemorySSA::~MemorySSA() {
1255   // Drop all our references
1256   for (const auto &Pair : PerBlockAccesses)
1257     for (MemoryAccess &MA : *Pair.second)
1258       MA.dropAllReferences();
1259 }
1260 
1261 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1262   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1263 
1264   if (Res.second)
1265     Res.first->second = std::make_unique<AccessList>();
1266   return Res.first->second.get();
1267 }
1268 
1269 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1270   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1271 
1272   if (Res.second)
1273     Res.first->second = std::make_unique<DefsList>();
1274   return Res.first->second.get();
1275 }
1276 
1277 namespace llvm {
1278 
1279 /// This class is a batch walker of all MemoryUse's in the program, and points
1280 /// their defining access at the thing that actually clobbers them.  Because it
1281 /// is a batch walker that touches everything, it does not operate like the
1282 /// other walkers.  This walker is basically performing a top-down SSA renaming
1283 /// pass, where the version stack is used as the cache.  This enables it to be
1284 /// significantly more time and memory efficient than using the regular walker,
1285 /// which is walking bottom-up.
1286 class MemorySSA::OptimizeUses {
1287 public:
1288   OptimizeUses(MemorySSA *MSSA, CachingWalker *Walker, BatchAAResults *BAA,
1289                DominatorTree *DT)
1290       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1291 
1292   void optimizeUses();
1293 
1294 private:
1295   /// This represents where a given memorylocation is in the stack.
1296   struct MemlocStackInfo {
1297     // This essentially is keeping track of versions of the stack. Whenever
1298     // the stack changes due to pushes or pops, these versions increase.
1299     unsigned long StackEpoch;
1300     unsigned long PopEpoch;
1301     // This is the lower bound of places on the stack to check. It is equal to
1302     // the place the last stack walk ended.
1303     // Note: Correctness depends on this being initialized to 0, which densemap
1304     // does
1305     unsigned long LowerBound;
1306     const BasicBlock *LowerBoundBlock;
1307     // This is where the last walk for this memory location ended.
1308     unsigned long LastKill;
1309     bool LastKillValid;
1310   };
1311 
1312   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1313                            SmallVectorImpl<MemoryAccess *> &,
1314                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1315 
1316   MemorySSA *MSSA;
1317   CachingWalker *Walker;
1318   BatchAAResults *AA;
1319   DominatorTree *DT;
1320 };
1321 
1322 } // end namespace llvm
1323 
1324 /// Optimize the uses in a given block This is basically the SSA renaming
1325 /// algorithm, with one caveat: We are able to use a single stack for all
1326 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1327 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1328 /// going to be some position in that stack of possible ones.
1329 ///
1330 /// We track the stack positions that each MemoryLocation needs
1331 /// to check, and last ended at.  This is because we only want to check the
1332 /// things that changed since last time.  The same MemoryLocation should
1333 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1334 /// things like this, and if they start, we can modify MemoryLocOrCall to
1335 /// include relevant data)
1336 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1337     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1338     SmallVectorImpl<MemoryAccess *> &VersionStack,
1339     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1340 
1341   /// If no accesses, nothing to do.
1342   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1343   if (Accesses == nullptr)
1344     return;
1345 
1346   // Pop everything that doesn't dominate the current block off the stack,
1347   // increment the PopEpoch to account for this.
1348   while (true) {
1349     assert(
1350         !VersionStack.empty() &&
1351         "Version stack should have liveOnEntry sentinel dominating everything");
1352     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1353     if (DT->dominates(BackBlock, BB))
1354       break;
1355     while (VersionStack.back()->getBlock() == BackBlock)
1356       VersionStack.pop_back();
1357     ++PopEpoch;
1358   }
1359 
1360   for (MemoryAccess &MA : *Accesses) {
1361     auto *MU = dyn_cast<MemoryUse>(&MA);
1362     if (!MU) {
1363       VersionStack.push_back(&MA);
1364       ++StackEpoch;
1365       continue;
1366     }
1367 
1368     if (MU->isOptimized())
1369       continue;
1370 
1371     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1372       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true);
1373       continue;
1374     }
1375 
1376     MemoryLocOrCall UseMLOC(MU);
1377     auto &LocInfo = LocStackInfo[UseMLOC];
1378     // If the pop epoch changed, it means we've removed stuff from top of
1379     // stack due to changing blocks. We may have to reset the lower bound or
1380     // last kill info.
1381     if (LocInfo.PopEpoch != PopEpoch) {
1382       LocInfo.PopEpoch = PopEpoch;
1383       LocInfo.StackEpoch = StackEpoch;
1384       // If the lower bound was in something that no longer dominates us, we
1385       // have to reset it.
1386       // We can't simply track stack size, because the stack may have had
1387       // pushes/pops in the meantime.
1388       // XXX: This is non-optimal, but only is slower cases with heavily
1389       // branching dominator trees.  To get the optimal number of queries would
1390       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1391       // the top of that stack dominates us.  This does not seem worth it ATM.
1392       // A much cheaper optimization would be to always explore the deepest
1393       // branch of the dominator tree first. This will guarantee this resets on
1394       // the smallest set of blocks.
1395       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1396           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1397         // Reset the lower bound of things to check.
1398         // TODO: Some day we should be able to reset to last kill, rather than
1399         // 0.
1400         LocInfo.LowerBound = 0;
1401         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1402         LocInfo.LastKillValid = false;
1403       }
1404     } else if (LocInfo.StackEpoch != StackEpoch) {
1405       // If all that has changed is the StackEpoch, we only have to check the
1406       // new things on the stack, because we've checked everything before.  In
1407       // this case, the lower bound of things to check remains the same.
1408       LocInfo.PopEpoch = PopEpoch;
1409       LocInfo.StackEpoch = StackEpoch;
1410     }
1411     if (!LocInfo.LastKillValid) {
1412       LocInfo.LastKill = VersionStack.size() - 1;
1413       LocInfo.LastKillValid = true;
1414     }
1415 
1416     // At this point, we should have corrected last kill and LowerBound to be
1417     // in bounds.
1418     assert(LocInfo.LowerBound < VersionStack.size() &&
1419            "Lower bound out of range");
1420     assert(LocInfo.LastKill < VersionStack.size() &&
1421            "Last kill info out of range");
1422     // In any case, the new upper bound is the top of the stack.
1423     unsigned long UpperBound = VersionStack.size() - 1;
1424 
1425     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1426       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1427                         << *(MU->getMemoryInst()) << ")"
1428                         << " because there are "
1429                         << UpperBound - LocInfo.LowerBound
1430                         << " stores to disambiguate\n");
1431       // Because we did not walk, LastKill is no longer valid, as this may
1432       // have been a kill.
1433       LocInfo.LastKillValid = false;
1434       continue;
1435     }
1436     bool FoundClobberResult = false;
1437     unsigned UpwardWalkLimit = MaxCheckLimit;
1438     while (UpperBound > LocInfo.LowerBound) {
1439       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1440         // For phis, use the walker, see where we ended up, go there.
1441         // The invariant.group handling in MemorySSA is ad-hoc and doesn't
1442         // support updates, so don't use it to optimize uses.
1443         MemoryAccess *Result =
1444             Walker->getClobberingMemoryAccessWithoutInvariantGroup(
1445                 MU, *AA, UpwardWalkLimit);
1446         // We are guaranteed to find it or something is wrong.
1447         while (VersionStack[UpperBound] != Result) {
1448           assert(UpperBound != 0);
1449           --UpperBound;
1450         }
1451         FoundClobberResult = true;
1452         break;
1453       }
1454 
1455       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1456       if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) {
1457         FoundClobberResult = true;
1458         break;
1459       }
1460       --UpperBound;
1461     }
1462 
1463     // At the end of this loop, UpperBound is either a clobber, or lower bound
1464     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1465     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1466       MU->setDefiningAccess(VersionStack[UpperBound], true);
1467       LocInfo.LastKill = UpperBound;
1468     } else {
1469       // Otherwise, we checked all the new ones, and now we know we can get to
1470       // LastKill.
1471       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true);
1472     }
1473     LocInfo.LowerBound = VersionStack.size() - 1;
1474     LocInfo.LowerBoundBlock = BB;
1475   }
1476 }
1477 
1478 /// Optimize uses to point to their actual clobbering definitions.
1479 void MemorySSA::OptimizeUses::optimizeUses() {
1480   SmallVector<MemoryAccess *, 16> VersionStack;
1481   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1482   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1483 
1484   unsigned long StackEpoch = 1;
1485   unsigned long PopEpoch = 1;
1486   // We perform a non-recursive top-down dominator tree walk.
1487   for (const auto *DomNode : depth_first(DT->getRootNode()))
1488     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1489                         LocStackInfo);
1490 }
1491 
1492 void MemorySSA::placePHINodes(
1493     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1494   // Determine where our MemoryPhi's should go
1495   ForwardIDFCalculator IDFs(*DT);
1496   IDFs.setDefiningBlocks(DefiningBlocks);
1497   SmallVector<BasicBlock *, 32> IDFBlocks;
1498   IDFs.calculate(IDFBlocks);
1499 
1500   // Now place MemoryPhi nodes.
1501   for (auto &BB : IDFBlocks)
1502     createMemoryPhi(BB);
1503 }
1504 
1505 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1506   // We create an access to represent "live on entry", for things like
1507   // arguments or users of globals, where the memory they use is defined before
1508   // the beginning of the function. We do not actually insert it into the IR.
1509   // We do not define a live on exit for the immediate uses, and thus our
1510   // semantics do *not* imply that something with no immediate uses can simply
1511   // be removed.
1512   BasicBlock &StartingPoint = F.getEntryBlock();
1513   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1514                                      &StartingPoint, NextID++));
1515 
1516   // We maintain lists of memory accesses per-block, trading memory for time. We
1517   // could just look up the memory access for every possible instruction in the
1518   // stream.
1519   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1520   // Go through each block, figure out where defs occur, and chain together all
1521   // the accesses.
1522   for (BasicBlock &B : F) {
1523     bool InsertIntoDef = false;
1524     AccessList *Accesses = nullptr;
1525     DefsList *Defs = nullptr;
1526     for (Instruction &I : B) {
1527       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1528       if (!MUD)
1529         continue;
1530 
1531       if (!Accesses)
1532         Accesses = getOrCreateAccessList(&B);
1533       Accesses->push_back(MUD);
1534       if (isa<MemoryDef>(MUD)) {
1535         InsertIntoDef = true;
1536         if (!Defs)
1537           Defs = getOrCreateDefsList(&B);
1538         Defs->push_back(*MUD);
1539       }
1540     }
1541     if (InsertIntoDef)
1542       DefiningBlocks.insert(&B);
1543   }
1544   placePHINodes(DefiningBlocks);
1545 
1546   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1547   // filled in with all blocks.
1548   SmallPtrSet<BasicBlock *, 16> Visited;
1549   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1550 
1551   // Mark the uses in unreachable blocks as live on entry, so that they go
1552   // somewhere.
1553   for (auto &BB : F)
1554     if (!Visited.count(&BB))
1555       markUnreachableAsLiveOnEntry(&BB);
1556 }
1557 
1558 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1559 
1560 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
1561   if (Walker)
1562     return Walker.get();
1563 
1564   if (!WalkerBase)
1565     WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1566 
1567   Walker = std::make_unique<CachingWalker>(this, WalkerBase.get());
1568   return Walker.get();
1569 }
1570 
1571 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1572   if (SkipWalker)
1573     return SkipWalker.get();
1574 
1575   if (!WalkerBase)
1576     WalkerBase = std::make_unique<ClobberWalkerBase>(this, DT);
1577 
1578   SkipWalker = std::make_unique<SkipSelfWalker>(this, WalkerBase.get());
1579   return SkipWalker.get();
1580  }
1581 
1582 
1583 // This is a helper function used by the creation routines. It places NewAccess
1584 // into the access and defs lists for a given basic block, at the given
1585 // insertion point.
1586 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1587                                         const BasicBlock *BB,
1588                                         InsertionPlace Point) {
1589   auto *Accesses = getOrCreateAccessList(BB);
1590   if (Point == Beginning) {
1591     // If it's a phi node, it goes first, otherwise, it goes after any phi
1592     // nodes.
1593     if (isa<MemoryPhi>(NewAccess)) {
1594       Accesses->push_front(NewAccess);
1595       auto *Defs = getOrCreateDefsList(BB);
1596       Defs->push_front(*NewAccess);
1597     } else {
1598       auto AI = find_if_not(
1599           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1600       Accesses->insert(AI, NewAccess);
1601       if (!isa<MemoryUse>(NewAccess)) {
1602         auto *Defs = getOrCreateDefsList(BB);
1603         auto DI = find_if_not(
1604             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1605         Defs->insert(DI, *NewAccess);
1606       }
1607     }
1608   } else {
1609     Accesses->push_back(NewAccess);
1610     if (!isa<MemoryUse>(NewAccess)) {
1611       auto *Defs = getOrCreateDefsList(BB);
1612       Defs->push_back(*NewAccess);
1613     }
1614   }
1615   BlockNumberingValid.erase(BB);
1616 }
1617 
1618 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1619                                       AccessList::iterator InsertPt) {
1620   auto *Accesses = getWritableBlockAccesses(BB);
1621   bool WasEnd = InsertPt == Accesses->end();
1622   Accesses->insert(AccessList::iterator(InsertPt), What);
1623   if (!isa<MemoryUse>(What)) {
1624     auto *Defs = getOrCreateDefsList(BB);
1625     // If we got asked to insert at the end, we have an easy job, just shove it
1626     // at the end. If we got asked to insert before an existing def, we also get
1627     // an iterator. If we got asked to insert before a use, we have to hunt for
1628     // the next def.
1629     if (WasEnd) {
1630       Defs->push_back(*What);
1631     } else if (isa<MemoryDef>(InsertPt)) {
1632       Defs->insert(InsertPt->getDefsIterator(), *What);
1633     } else {
1634       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1635         ++InsertPt;
1636       // Either we found a def, or we are inserting at the end
1637       if (InsertPt == Accesses->end())
1638         Defs->push_back(*What);
1639       else
1640         Defs->insert(InsertPt->getDefsIterator(), *What);
1641     }
1642   }
1643   BlockNumberingValid.erase(BB);
1644 }
1645 
1646 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1647   // Keep it in the lookup tables, remove from the lists
1648   removeFromLists(What, false);
1649 
1650   // Note that moving should implicitly invalidate the optimized state of a
1651   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1652   // MemoryDef.
1653   if (auto *MD = dyn_cast<MemoryDef>(What))
1654     MD->resetOptimized();
1655   What->setBlock(BB);
1656 }
1657 
1658 // Move What before Where in the IR.  The end result is that What will belong to
1659 // the right lists and have the right Block set, but will not otherwise be
1660 // correct. It will not have the right defining access, and if it is a def,
1661 // things below it will not properly be updated.
1662 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1663                        AccessList::iterator Where) {
1664   prepareForMoveTo(What, BB);
1665   insertIntoListsBefore(What, BB, Where);
1666 }
1667 
1668 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1669                        InsertionPlace Point) {
1670   if (isa<MemoryPhi>(What)) {
1671     assert(Point == Beginning &&
1672            "Can only move a Phi at the beginning of the block");
1673     // Update lookup table entry
1674     ValueToMemoryAccess.erase(What->getBlock());
1675     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1676     (void)Inserted;
1677     assert(Inserted && "Cannot move a Phi to a block that already has one");
1678   }
1679 
1680   prepareForMoveTo(What, BB);
1681   insertIntoListsForBlock(What, BB, Point);
1682 }
1683 
1684 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1685   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1686   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1687   // Phi's always are placed at the front of the block.
1688   insertIntoListsForBlock(Phi, BB, Beginning);
1689   ValueToMemoryAccess[BB] = Phi;
1690   return Phi;
1691 }
1692 
1693 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1694                                                MemoryAccess *Definition,
1695                                                const MemoryUseOrDef *Template,
1696                                                bool CreationMustSucceed) {
1697   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1698   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1699   if (CreationMustSucceed)
1700     assert(NewAccess != nullptr && "Tried to create a memory access for a "
1701                                    "non-memory touching instruction");
1702   if (NewAccess) {
1703     assert((!Definition || !isa<MemoryUse>(Definition)) &&
1704            "A use cannot be a defining access");
1705     NewAccess->setDefiningAccess(Definition);
1706   }
1707   return NewAccess;
1708 }
1709 
1710 // Return true if the instruction has ordering constraints.
1711 // Note specifically that this only considers stores and loads
1712 // because others are still considered ModRef by getModRefInfo.
1713 static inline bool isOrdered(const Instruction *I) {
1714   if (auto *SI = dyn_cast<StoreInst>(I)) {
1715     if (!SI->isUnordered())
1716       return true;
1717   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1718     if (!LI->isUnordered())
1719       return true;
1720   }
1721   return false;
1722 }
1723 
1724 /// Helper function to create new memory accesses
1725 template <typename AliasAnalysisType>
1726 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1727                                            AliasAnalysisType *AAP,
1728                                            const MemoryUseOrDef *Template) {
1729   // The assume intrinsic has a control dependency which we model by claiming
1730   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1731   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1732   // dependencies here.
1733   // FIXME: Replace this special casing with a more accurate modelling of
1734   // assume's control dependency.
1735   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1736     switch (II->getIntrinsicID()) {
1737     default:
1738       break;
1739     case Intrinsic::assume:
1740     case Intrinsic::experimental_noalias_scope_decl:
1741     case Intrinsic::pseudoprobe:
1742       return nullptr;
1743     }
1744   }
1745 
1746   // Using a nonstandard AA pipelines might leave us with unexpected modref
1747   // results for I, so add a check to not model instructions that may not read
1748   // from or write to memory. This is necessary for correctness.
1749   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1750     return nullptr;
1751 
1752   bool Def, Use;
1753   if (Template) {
1754     Def = isa<MemoryDef>(Template);
1755     Use = isa<MemoryUse>(Template);
1756 #if !defined(NDEBUG)
1757     ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1758     bool DefCheck, UseCheck;
1759     DefCheck = isModSet(ModRef) || isOrdered(I);
1760     UseCheck = isRefSet(ModRef);
1761     // Memory accesses should only be reduced and can not be increased since AA
1762     // just might return better results as a result of some transformations.
1763     assert((Def == DefCheck || !DefCheck) &&
1764            "Memory accesses should only be reduced");
1765     if (!Def && Use != UseCheck) {
1766       // New Access should not have more power than template access
1767       assert(!UseCheck && "Invalid template");
1768     }
1769 #endif
1770   } else {
1771     // Find out what affect this instruction has on memory.
1772     ModRefInfo ModRef = AAP->getModRefInfo(I, std::nullopt);
1773     // The isOrdered check is used to ensure that volatiles end up as defs
1774     // (atomics end up as ModRef right now anyway).  Until we separate the
1775     // ordering chain from the memory chain, this enables people to see at least
1776     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1777     // will still give an answer that bypasses other volatile loads.  TODO:
1778     // Separate memory aliasing and ordering into two different chains so that
1779     // we can precisely represent both "what memory will this read/write/is
1780     // clobbered by" and "what instructions can I move this past".
1781     Def = isModSet(ModRef) || isOrdered(I);
1782     Use = isRefSet(ModRef);
1783   }
1784 
1785   // It's possible for an instruction to not modify memory at all. During
1786   // construction, we ignore them.
1787   if (!Def && !Use)
1788     return nullptr;
1789 
1790   MemoryUseOrDef *MUD;
1791   if (Def)
1792     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1793   else
1794     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1795   ValueToMemoryAccess[I] = MUD;
1796   return MUD;
1797 }
1798 
1799 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1800 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1801   assert(MA->use_empty() &&
1802          "Trying to remove memory access that still has uses");
1803   BlockNumbering.erase(MA);
1804   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1805     MUD->setDefiningAccess(nullptr);
1806   // Invalidate our walker's cache if necessary
1807   if (!isa<MemoryUse>(MA))
1808     getWalker()->invalidateInfo(MA);
1809 
1810   Value *MemoryInst;
1811   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1812     MemoryInst = MUD->getMemoryInst();
1813   else
1814     MemoryInst = MA->getBlock();
1815 
1816   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1817   if (VMA->second == MA)
1818     ValueToMemoryAccess.erase(VMA);
1819 }
1820 
1821 /// Properly remove \p MA from all of MemorySSA's lists.
1822 ///
1823 /// Because of the way the intrusive list and use lists work, it is important to
1824 /// do removal in the right order.
1825 /// ShouldDelete defaults to true, and will cause the memory access to also be
1826 /// deleted, not just removed.
1827 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1828   BasicBlock *BB = MA->getBlock();
1829   // The access list owns the reference, so we erase it from the non-owning list
1830   // first.
1831   if (!isa<MemoryUse>(MA)) {
1832     auto DefsIt = PerBlockDefs.find(BB);
1833     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1834     Defs->remove(*MA);
1835     if (Defs->empty())
1836       PerBlockDefs.erase(DefsIt);
1837   }
1838 
1839   // The erase call here will delete it. If we don't want it deleted, we call
1840   // remove instead.
1841   auto AccessIt = PerBlockAccesses.find(BB);
1842   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1843   if (ShouldDelete)
1844     Accesses->erase(MA);
1845   else
1846     Accesses->remove(MA);
1847 
1848   if (Accesses->empty()) {
1849     PerBlockAccesses.erase(AccessIt);
1850     BlockNumberingValid.erase(BB);
1851   }
1852 }
1853 
1854 void MemorySSA::print(raw_ostream &OS) const {
1855   MemorySSAAnnotatedWriter Writer(this);
1856   F.print(OS, &Writer);
1857 }
1858 
1859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1860 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1861 #endif
1862 
1863 void MemorySSA::verifyMemorySSA(VerificationLevel VL) const {
1864 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1865   VL = VerificationLevel::Full;
1866 #endif
1867 
1868 #ifndef NDEBUG
1869   verifyOrderingDominationAndDefUses(F, VL);
1870   verifyDominationNumbers(F);
1871   if (VL == VerificationLevel::Full)
1872     verifyPrevDefInPhis(F);
1873 #endif
1874   // Previously, the verification used to also verify that the clobberingAccess
1875   // cached by MemorySSA is the same as the clobberingAccess found at a later
1876   // query to AA. This does not hold true in general due to the current fragility
1877   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1878   // up. As a result, transformations that are correct, will lead to BasicAA
1879   // returning different Alias answers before and after that transformation.
1880   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1881   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1882   // every transformation, which defeats the purpose of using it. For such an
1883   // example, see test4 added in D51960.
1884 }
1885 
1886 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1887   for (const BasicBlock &BB : F) {
1888     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1889       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1890         auto *Pred = Phi->getIncomingBlock(I);
1891         auto *IncAcc = Phi->getIncomingValue(I);
1892         // If Pred has no unreachable predecessors, get last def looking at
1893         // IDoms. If, while walkings IDoms, any of these has an unreachable
1894         // predecessor, then the incoming def can be any access.
1895         if (auto *DTNode = DT->getNode(Pred)) {
1896           while (DTNode) {
1897             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1898               auto *LastAcc = &*(--DefList->end());
1899               assert(LastAcc == IncAcc &&
1900                      "Incorrect incoming access into phi.");
1901               (void)IncAcc;
1902               (void)LastAcc;
1903               break;
1904             }
1905             DTNode = DTNode->getIDom();
1906           }
1907         } else {
1908           // If Pred has unreachable predecessors, but has at least a Def, the
1909           // incoming access can be the last Def in Pred, or it could have been
1910           // optimized to LoE. After an update, though, the LoE may have been
1911           // replaced by another access, so IncAcc may be any access.
1912           // If Pred has unreachable predecessors and no Defs, incoming access
1913           // should be LoE; However, after an update, it may be any access.
1914         }
1915       }
1916     }
1917   }
1918 }
1919 
1920 /// Verify that all of the blocks we believe to have valid domination numbers
1921 /// actually have valid domination numbers.
1922 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1923   if (BlockNumberingValid.empty())
1924     return;
1925 
1926   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1927   for (const BasicBlock &BB : F) {
1928     if (!ValidBlocks.count(&BB))
1929       continue;
1930 
1931     ValidBlocks.erase(&BB);
1932 
1933     const AccessList *Accesses = getBlockAccesses(&BB);
1934     // It's correct to say an empty block has valid numbering.
1935     if (!Accesses)
1936       continue;
1937 
1938     // Block numbering starts at 1.
1939     unsigned long LastNumber = 0;
1940     for (const MemoryAccess &MA : *Accesses) {
1941       auto ThisNumberIter = BlockNumbering.find(&MA);
1942       assert(ThisNumberIter != BlockNumbering.end() &&
1943              "MemoryAccess has no domination number in a valid block!");
1944 
1945       unsigned long ThisNumber = ThisNumberIter->second;
1946       assert(ThisNumber > LastNumber &&
1947              "Domination numbers should be strictly increasing!");
1948       (void)LastNumber;
1949       LastNumber = ThisNumber;
1950     }
1951   }
1952 
1953   assert(ValidBlocks.empty() &&
1954          "All valid BasicBlocks should exist in F -- dangling pointers?");
1955 }
1956 
1957 /// Verify ordering: the order and existence of MemoryAccesses matches the
1958 /// order and existence of memory affecting instructions.
1959 /// Verify domination: each definition dominates all of its uses.
1960 /// Verify def-uses: the immediate use information - walk all the memory
1961 /// accesses and verifying that, for each use, it appears in the appropriate
1962 /// def's use list
1963 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F,
1964                                                    VerificationLevel VL) const {
1965   // Walk all the blocks, comparing what the lookups think and what the access
1966   // lists think, as well as the order in the blocks vs the order in the access
1967   // lists.
1968   SmallVector<MemoryAccess *, 32> ActualAccesses;
1969   SmallVector<MemoryAccess *, 32> ActualDefs;
1970   for (BasicBlock &B : F) {
1971     const AccessList *AL = getBlockAccesses(&B);
1972     const auto *DL = getBlockDefs(&B);
1973     MemoryPhi *Phi = getMemoryAccess(&B);
1974     if (Phi) {
1975       // Verify ordering.
1976       ActualAccesses.push_back(Phi);
1977       ActualDefs.push_back(Phi);
1978       // Verify domination
1979       for (const Use &U : Phi->uses()) {
1980         assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1981         (void)U;
1982       }
1983       // Verify def-uses for full verify.
1984       if (VL == VerificationLevel::Full) {
1985         assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1986                                             pred_begin(&B), pred_end(&B))) &&
1987                "Incomplete MemoryPhi Node");
1988         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1989           verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1990           assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1991                  "Incoming phi block not a block predecessor");
1992         }
1993       }
1994     }
1995 
1996     for (Instruction &I : B) {
1997       MemoryUseOrDef *MA = getMemoryAccess(&I);
1998       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1999              "We have memory affecting instructions "
2000              "in this block but they are not in the "
2001              "access list or defs list");
2002       if (MA) {
2003         // Verify ordering.
2004         ActualAccesses.push_back(MA);
2005         if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2006           // Verify ordering.
2007           ActualDefs.push_back(MA);
2008           // Verify domination.
2009           for (const Use &U : MD->uses()) {
2010             assert(dominates(MD, U) &&
2011                    "Memory Def does not dominate it's uses");
2012             (void)U;
2013           }
2014         }
2015         // Verify def-uses for full verify.
2016         if (VL == VerificationLevel::Full)
2017           verifyUseInDefs(MA->getDefiningAccess(), MA);
2018       }
2019     }
2020     // Either we hit the assert, really have no accesses, or we have both
2021     // accesses and an access list. Same with defs.
2022     if (!AL && !DL)
2023       continue;
2024     // Verify ordering.
2025     assert(AL->size() == ActualAccesses.size() &&
2026            "We don't have the same number of accesses in the block as on the "
2027            "access list");
2028     assert((DL || ActualDefs.size() == 0) &&
2029            "Either we should have a defs list, or we should have no defs");
2030     assert((!DL || DL->size() == ActualDefs.size()) &&
2031            "We don't have the same number of defs in the block as on the "
2032            "def list");
2033     auto ALI = AL->begin();
2034     auto AAI = ActualAccesses.begin();
2035     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2036       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2037       ++ALI;
2038       ++AAI;
2039     }
2040     ActualAccesses.clear();
2041     if (DL) {
2042       auto DLI = DL->begin();
2043       auto ADI = ActualDefs.begin();
2044       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2045         assert(&*DLI == *ADI && "Not the same defs in the same order");
2046         ++DLI;
2047         ++ADI;
2048       }
2049     }
2050     ActualDefs.clear();
2051   }
2052 }
2053 
2054 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2055 /// appears in the use list of \p Def.
2056 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2057   // The live on entry use may cause us to get a NULL def here
2058   if (!Def)
2059     assert(isLiveOnEntryDef(Use) &&
2060            "Null def but use not point to live on entry def");
2061   else
2062     assert(is_contained(Def->users(), Use) &&
2063            "Did not find use in def's use list");
2064 }
2065 
2066 /// Perform a local numbering on blocks so that instruction ordering can be
2067 /// determined in constant time.
2068 /// TODO: We currently just number in order.  If we numbered by N, we could
2069 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2070 /// log2(N) sequences of mixed before and after) without needing to invalidate
2071 /// the numbering.
2072 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2073   // The pre-increment ensures the numbers really start at 1.
2074   unsigned long CurrentNumber = 0;
2075   const AccessList *AL = getBlockAccesses(B);
2076   assert(AL != nullptr && "Asking to renumber an empty block");
2077   for (const auto &I : *AL)
2078     BlockNumbering[&I] = ++CurrentNumber;
2079   BlockNumberingValid.insert(B);
2080 }
2081 
2082 /// Determine, for two memory accesses in the same block,
2083 /// whether \p Dominator dominates \p Dominatee.
2084 /// \returns True if \p Dominator dominates \p Dominatee.
2085 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2086                                  const MemoryAccess *Dominatee) const {
2087   const BasicBlock *DominatorBlock = Dominator->getBlock();
2088 
2089   assert((DominatorBlock == Dominatee->getBlock()) &&
2090          "Asking for local domination when accesses are in different blocks!");
2091   // A node dominates itself.
2092   if (Dominatee == Dominator)
2093     return true;
2094 
2095   // When Dominatee is defined on function entry, it is not dominated by another
2096   // memory access.
2097   if (isLiveOnEntryDef(Dominatee))
2098     return false;
2099 
2100   // When Dominator is defined on function entry, it dominates the other memory
2101   // access.
2102   if (isLiveOnEntryDef(Dominator))
2103     return true;
2104 
2105   if (!BlockNumberingValid.count(DominatorBlock))
2106     renumberBlock(DominatorBlock);
2107 
2108   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2109   // All numbers start with 1
2110   assert(DominatorNum != 0 && "Block was not numbered properly");
2111   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2112   assert(DominateeNum != 0 && "Block was not numbered properly");
2113   return DominatorNum < DominateeNum;
2114 }
2115 
2116 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2117                           const MemoryAccess *Dominatee) const {
2118   if (Dominator == Dominatee)
2119     return true;
2120 
2121   if (isLiveOnEntryDef(Dominatee))
2122     return false;
2123 
2124   if (Dominator->getBlock() != Dominatee->getBlock())
2125     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2126   return locallyDominates(Dominator, Dominatee);
2127 }
2128 
2129 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2130                           const Use &Dominatee) const {
2131   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2132     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2133     // The def must dominate the incoming block of the phi.
2134     if (UseBB != Dominator->getBlock())
2135       return DT->dominates(Dominator->getBlock(), UseBB);
2136     // If the UseBB and the DefBB are the same, compare locally.
2137     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2138   }
2139   // If it's not a PHI node use, the normal dominates can already handle it.
2140   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2141 }
2142 
2143 void MemorySSA::ensureOptimizedUses() {
2144   if (IsOptimized)
2145     return;
2146 
2147   BatchAAResults BatchAA(*AA);
2148   ClobberWalkerBase WalkerBase(this, DT);
2149   CachingWalker WalkerLocal(this, &WalkerBase);
2150   OptimizeUses(this, &WalkerLocal, &BatchAA, DT).optimizeUses();
2151   IsOptimized = true;
2152 }
2153 
2154 void MemoryAccess::print(raw_ostream &OS) const {
2155   switch (getValueID()) {
2156   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2157   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2158   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2159   }
2160   llvm_unreachable("invalid value id");
2161 }
2162 
2163 void MemoryDef::print(raw_ostream &OS) const {
2164   MemoryAccess *UO = getDefiningAccess();
2165 
2166   auto printID = [&OS](MemoryAccess *A) {
2167     if (A && A->getID())
2168       OS << A->getID();
2169     else
2170       OS << LiveOnEntryStr;
2171   };
2172 
2173   OS << getID() << " = MemoryDef(";
2174   printID(UO);
2175   OS << ")";
2176 
2177   if (isOptimized()) {
2178     OS << "->";
2179     printID(getOptimized());
2180   }
2181 }
2182 
2183 void MemoryPhi::print(raw_ostream &OS) const {
2184   ListSeparator LS(",");
2185   OS << getID() << " = MemoryPhi(";
2186   for (const auto &Op : operands()) {
2187     BasicBlock *BB = getIncomingBlock(Op);
2188     MemoryAccess *MA = cast<MemoryAccess>(Op);
2189 
2190     OS << LS << '{';
2191     if (BB->hasName())
2192       OS << BB->getName();
2193     else
2194       BB->printAsOperand(OS, false);
2195     OS << ',';
2196     if (unsigned ID = MA->getID())
2197       OS << ID;
2198     else
2199       OS << LiveOnEntryStr;
2200     OS << '}';
2201   }
2202   OS << ')';
2203 }
2204 
2205 void MemoryUse::print(raw_ostream &OS) const {
2206   MemoryAccess *UO = getDefiningAccess();
2207   OS << "MemoryUse(";
2208   if (UO && UO->getID())
2209     OS << UO->getID();
2210   else
2211     OS << LiveOnEntryStr;
2212   OS << ')';
2213 }
2214 
2215 void MemoryAccess::dump() const {
2216 // Cannot completely remove virtual function even in release mode.
2217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2218   print(dbgs());
2219   dbgs() << "\n";
2220 #endif
2221 }
2222 
2223 char MemorySSAPrinterLegacyPass::ID = 0;
2224 
2225 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2226   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2227 }
2228 
2229 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2230   AU.setPreservesAll();
2231   AU.addRequired<MemorySSAWrapperPass>();
2232 }
2233 
2234 class DOTFuncMSSAInfo {
2235 private:
2236   const Function &F;
2237   MemorySSAAnnotatedWriter MSSAWriter;
2238 
2239 public:
2240   DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2241       : F(F), MSSAWriter(&MSSA) {}
2242 
2243   const Function *getFunction() { return &F; }
2244   MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2245 };
2246 
2247 namespace llvm {
2248 
2249 template <>
2250 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2251   static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2252     return &(CFGInfo->getFunction()->getEntryBlock());
2253   }
2254 
2255   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2256   using nodes_iterator = pointer_iterator<Function::const_iterator>;
2257 
2258   static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2259     return nodes_iterator(CFGInfo->getFunction()->begin());
2260   }
2261 
2262   static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2263     return nodes_iterator(CFGInfo->getFunction()->end());
2264   }
2265 
2266   static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2267     return CFGInfo->getFunction()->size();
2268   }
2269 };
2270 
2271 template <>
2272 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2273 
2274   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2275 
2276   static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2277     return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2278            "' function";
2279   }
2280 
2281   std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2282     return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2283         Node, nullptr,
2284         [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2285           BB.print(OS, &CFGInfo->getWriter(), true, true);
2286         },
2287         [](std::string &S, unsigned &I, unsigned Idx) -> void {
2288           std::string Str = S.substr(I, Idx - I);
2289           StringRef SR = Str;
2290           if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2291               SR.count("MemoryUse("))
2292             return;
2293           DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2294         });
2295   }
2296 
2297   static std::string getEdgeSourceLabel(const BasicBlock *Node,
2298                                         const_succ_iterator I) {
2299     return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2300   }
2301 
2302   /// Display the raw branch weights from PGO.
2303   std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2304                                 DOTFuncMSSAInfo *CFGInfo) {
2305     return "";
2306   }
2307 
2308   std::string getNodeAttributes(const BasicBlock *Node,
2309                                 DOTFuncMSSAInfo *CFGInfo) {
2310     return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2311                ? "style=filled, fillcolor=lightpink"
2312                : "";
2313   }
2314 };
2315 
2316 } // namespace llvm
2317 
2318 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2319   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2320   MSSA.ensureOptimizedUses();
2321   if (DotCFGMSSA != "") {
2322     DOTFuncMSSAInfo CFGInfo(F, MSSA);
2323     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2324   } else
2325     MSSA.print(dbgs());
2326 
2327   if (VerifyMemorySSA)
2328     MSSA.verifyMemorySSA();
2329   return false;
2330 }
2331 
2332 AnalysisKey MemorySSAAnalysis::Key;
2333 
2334 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2335                                                  FunctionAnalysisManager &AM) {
2336   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2337   auto &AA = AM.getResult<AAManager>(F);
2338   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2339 }
2340 
2341 bool MemorySSAAnalysis::Result::invalidate(
2342     Function &F, const PreservedAnalyses &PA,
2343     FunctionAnalysisManager::Invalidator &Inv) {
2344   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2345   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2346          Inv.invalidate<AAManager>(F, PA) ||
2347          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2348 }
2349 
2350 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2351                                             FunctionAnalysisManager &AM) {
2352   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2353   MSSA.ensureOptimizedUses();
2354   if (DotCFGMSSA != "") {
2355     DOTFuncMSSAInfo CFGInfo(F, MSSA);
2356     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2357   } else {
2358     OS << "MemorySSA for function: " << F.getName() << "\n";
2359     MSSA.print(OS);
2360   }
2361 
2362   return PreservedAnalyses::all();
2363 }
2364 
2365 PreservedAnalyses MemorySSAWalkerPrinterPass::run(Function &F,
2366                                                   FunctionAnalysisManager &AM) {
2367   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2368   OS << "MemorySSA (walker) for function: " << F.getName() << "\n";
2369   MemorySSAWalkerAnnotatedWriter Writer(&MSSA);
2370   F.print(OS, &Writer);
2371 
2372   return PreservedAnalyses::all();
2373 }
2374 
2375 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2376                                              FunctionAnalysisManager &AM) {
2377   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2378 
2379   return PreservedAnalyses::all();
2380 }
2381 
2382 char MemorySSAWrapperPass::ID = 0;
2383 
2384 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2385   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2386 }
2387 
2388 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2389 
2390 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2391   AU.setPreservesAll();
2392   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2393   AU.addRequiredTransitive<AAResultsWrapperPass>();
2394 }
2395 
2396 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2397   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2398   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2399   MSSA.reset(new MemorySSA(F, &AA, &DT));
2400   return false;
2401 }
2402 
2403 void MemorySSAWrapperPass::verifyAnalysis() const {
2404   if (VerifyMemorySSA)
2405     MSSA->verifyMemorySSA();
2406 }
2407 
2408 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2409   MSSA->print(OS);
2410 }
2411 
2412 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2413 
2414 /// Walk the use-def chains starting at \p StartingAccess and find
2415 /// the MemoryAccess that actually clobbers Loc.
2416 ///
2417 /// \returns our clobbering memory access
2418 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2419     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2420     BatchAAResults &BAA, unsigned &UpwardWalkLimit) {
2421   assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2422 
2423   Instruction *I = nullptr;
2424   if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2425     if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2426       return StartingUseOrDef;
2427 
2428     I = StartingUseOrDef->getMemoryInst();
2429 
2430     // Conservatively, fences are always clobbers, so don't perform the walk if
2431     // we hit a fence.
2432     if (!isa<CallBase>(I) && I->isFenceLike())
2433       return StartingUseOrDef;
2434   }
2435 
2436   UpwardsMemoryQuery Q;
2437   Q.OriginalAccess = StartingAccess;
2438   Q.StartingLoc = Loc;
2439   Q.Inst = nullptr;
2440   Q.IsCall = false;
2441 
2442   // Unlike the other function, do not walk to the def of a def, because we are
2443   // handed something we already believe is the clobbering access.
2444   // We never set SkipSelf to true in Q in this method.
2445   MemoryAccess *Clobber =
2446       Walker.findClobber(BAA, StartingAccess, Q, UpwardWalkLimit);
2447   LLVM_DEBUG({
2448     dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2449     if (I)
2450       dbgs() << "  for instruction " << *I << "\n";
2451     dbgs() << "  is " << *Clobber << "\n";
2452   });
2453   return Clobber;
2454 }
2455 
2456 static const Instruction *
2457 getInvariantGroupClobberingInstruction(Instruction &I, DominatorTree &DT) {
2458   if (!I.hasMetadata(LLVMContext::MD_invariant_group) || I.isVolatile())
2459     return nullptr;
2460 
2461   // We consider bitcasts and zero GEPs to be the same pointer value. Start by
2462   // stripping bitcasts and zero GEPs, then we will recursively look at loads
2463   // and stores through bitcasts and zero GEPs.
2464   Value *PointerOperand = getLoadStorePointerOperand(&I)->stripPointerCasts();
2465 
2466   // It's not safe to walk the use list of a global value because function
2467   // passes aren't allowed to look outside their functions.
2468   // FIXME: this could be fixed by filtering instructions from outside of
2469   // current function.
2470   if (isa<Constant>(PointerOperand))
2471     return nullptr;
2472 
2473   // Queue to process all pointers that are equivalent to load operand.
2474   SmallVector<const Value *, 8> PointerUsesQueue;
2475   PointerUsesQueue.push_back(PointerOperand);
2476 
2477   const Instruction *MostDominatingInstruction = &I;
2478 
2479   // FIXME: This loop is O(n^2) because dominates can be O(n) and in worst case
2480   // we will see all the instructions. It may not matter in practice. If it
2481   // does, we will have to support MemorySSA construction and updates.
2482   while (!PointerUsesQueue.empty()) {
2483     const Value *Ptr = PointerUsesQueue.pop_back_val();
2484     assert(Ptr && !isa<GlobalValue>(Ptr) &&
2485            "Null or GlobalValue should not be inserted");
2486 
2487     for (const User *Us : Ptr->users()) {
2488       auto *U = dyn_cast<Instruction>(Us);
2489       if (!U || U == &I || !DT.dominates(U, MostDominatingInstruction))
2490         continue;
2491 
2492       // Add bitcasts and zero GEPs to queue.
2493       if (isa<BitCastInst>(U)) {
2494         PointerUsesQueue.push_back(U);
2495         continue;
2496       }
2497       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
2498         if (GEP->hasAllZeroIndices())
2499           PointerUsesQueue.push_back(U);
2500         continue;
2501       }
2502 
2503       // If we hit a load/store with an invariant.group metadata and the same
2504       // pointer operand, we can assume that value pointed to by the pointer
2505       // operand didn't change.
2506       if (U->hasMetadata(LLVMContext::MD_invariant_group) &&
2507           getLoadStorePointerOperand(U) == Ptr && !U->isVolatile()) {
2508         MostDominatingInstruction = U;
2509       }
2510     }
2511   }
2512   return MostDominatingInstruction == &I ? nullptr : MostDominatingInstruction;
2513 }
2514 
2515 MemoryAccess *MemorySSA::ClobberWalkerBase::getClobberingMemoryAccessBase(
2516     MemoryAccess *MA, BatchAAResults &BAA, unsigned &UpwardWalkLimit,
2517     bool SkipSelf, bool UseInvariantGroup) {
2518   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2519   // If this is a MemoryPhi, we can't do anything.
2520   if (!StartingAccess)
2521     return MA;
2522 
2523   if (UseInvariantGroup) {
2524     if (auto *I = getInvariantGroupClobberingInstruction(
2525             *StartingAccess->getMemoryInst(), MSSA->getDomTree())) {
2526       assert(isa<LoadInst>(I) || isa<StoreInst>(I));
2527 
2528       auto *ClobberMA = MSSA->getMemoryAccess(I);
2529       assert(ClobberMA);
2530       if (isa<MemoryUse>(ClobberMA))
2531         return ClobberMA->getDefiningAccess();
2532       return ClobberMA;
2533     }
2534   }
2535 
2536   bool IsOptimized = false;
2537 
2538   // If this is an already optimized use or def, return the optimized result.
2539   // Note: Currently, we store the optimized def result in a separate field,
2540   // since we can't use the defining access.
2541   if (StartingAccess->isOptimized()) {
2542     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2543       return StartingAccess->getOptimized();
2544     IsOptimized = true;
2545   }
2546 
2547   const Instruction *I = StartingAccess->getMemoryInst();
2548   // We can't sanely do anything with a fence, since they conservatively clobber
2549   // all memory, and have no locations to get pointers from to try to
2550   // disambiguate.
2551   if (!isa<CallBase>(I) && I->isFenceLike())
2552     return StartingAccess;
2553 
2554   UpwardsMemoryQuery Q(I, StartingAccess);
2555 
2556   if (isUseTriviallyOptimizableToLiveOnEntry(BAA, I)) {
2557     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2558     StartingAccess->setOptimized(LiveOnEntry);
2559     return LiveOnEntry;
2560   }
2561 
2562   MemoryAccess *OptimizedAccess;
2563   if (!IsOptimized) {
2564     // Start with the thing we already think clobbers this location
2565     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2566 
2567     // At this point, DefiningAccess may be the live on entry def.
2568     // If it is, we will not get a better result.
2569     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2570       StartingAccess->setOptimized(DefiningAccess);
2571       return DefiningAccess;
2572     }
2573 
2574     OptimizedAccess =
2575         Walker.findClobber(BAA, DefiningAccess, Q, UpwardWalkLimit);
2576     StartingAccess->setOptimized(OptimizedAccess);
2577   } else
2578     OptimizedAccess = StartingAccess->getOptimized();
2579 
2580   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2581   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2582   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2583   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2584 
2585   MemoryAccess *Result;
2586   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2587       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2588     assert(isa<MemoryDef>(Q.OriginalAccess));
2589     Q.SkipSelfAccess = true;
2590     Result = Walker.findClobber(BAA, OptimizedAccess, Q, UpwardWalkLimit);
2591   } else
2592     Result = OptimizedAccess;
2593 
2594   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2595   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2596 
2597   return Result;
2598 }
2599 
2600 MemoryAccess *
2601 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA,
2602                                                     BatchAAResults &) {
2603   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2604     return Use->getDefiningAccess();
2605   return MA;
2606 }
2607 
2608 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2609     MemoryAccess *StartingAccess, const MemoryLocation &, BatchAAResults &) {
2610   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2611     return Use->getDefiningAccess();
2612   return StartingAccess;
2613 }
2614 
2615 void MemoryPhi::deleteMe(DerivedUser *Self) {
2616   delete static_cast<MemoryPhi *>(Self);
2617 }
2618 
2619 void MemoryDef::deleteMe(DerivedUser *Self) {
2620   delete static_cast<MemoryDef *>(Self);
2621 }
2622 
2623 void MemoryUse::deleteMe(DerivedUser *Self) {
2624   delete static_cast<MemoryUse *>(Self);
2625 }
2626 
2627 bool upward_defs_iterator::IsGuaranteedLoopInvariant(const Value *Ptr) const {
2628   auto IsGuaranteedLoopInvariantBase = [](const Value *Ptr) {
2629     Ptr = Ptr->stripPointerCasts();
2630     if (!isa<Instruction>(Ptr))
2631       return true;
2632     return isa<AllocaInst>(Ptr);
2633   };
2634 
2635   Ptr = Ptr->stripPointerCasts();
2636   if (auto *I = dyn_cast<Instruction>(Ptr)) {
2637     if (I->getParent()->isEntryBlock())
2638       return true;
2639   }
2640   if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2641     return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2642            GEP->hasAllConstantIndices();
2643   }
2644   return IsGuaranteedLoopInvariantBase(Ptr);
2645 }
2646