1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the MemorySSA class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/MemorySSA.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFGPrinter.h" 29 #include "llvm/Analysis/IteratedDominanceFrontier.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/AssemblyAnnotationWriter.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdlib> 56 #include <iterator> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "memoryssa" 63 64 static cl::opt<std::string> 65 DotCFGMSSA("dot-cfg-mssa", 66 cl::value_desc("file name for generated dot file"), 67 cl::desc("file name for generated dot file"), cl::init("")); 68 69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 70 true) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, 74 true) 75 76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", 77 "Memory SSA Printer", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", 80 "Memory SSA Printer", false, false) 81 82 static cl::opt<unsigned> MaxCheckLimit( 83 "memssa-check-limit", cl::Hidden, cl::init(100), 84 cl::desc("The maximum number of stores/phis MemorySSA" 85 "will consider trying to walk past (default = 100)")); 86 87 // Always verify MemorySSA if expensive checking is enabled. 88 #ifdef EXPENSIVE_CHECKS 89 bool llvm::VerifyMemorySSA = true; 90 #else 91 bool llvm::VerifyMemorySSA = false; 92 #endif 93 /// Enables memory ssa as a dependency for loop passes in legacy pass manager. 94 cl::opt<bool> llvm::EnableMSSALoopDependency( 95 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true), 96 cl::desc("Enable MemorySSA dependency for loop pass manager")); 97 98 static cl::opt<bool, true> 99 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA), 100 cl::Hidden, cl::desc("Enable verification of MemorySSA.")); 101 102 namespace llvm { 103 104 /// An assembly annotator class to print Memory SSA information in 105 /// comments. 106 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { 107 friend class MemorySSA; 108 109 const MemorySSA *MSSA; 110 111 public: 112 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} 113 114 void emitBasicBlockStartAnnot(const BasicBlock *BB, 115 formatted_raw_ostream &OS) override { 116 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) 117 OS << "; " << *MA << "\n"; 118 } 119 120 void emitInstructionAnnot(const Instruction *I, 121 formatted_raw_ostream &OS) override { 122 if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) 123 OS << "; " << *MA << "\n"; 124 } 125 }; 126 127 } // end namespace llvm 128 129 namespace { 130 131 /// Our current alias analysis API differentiates heavily between calls and 132 /// non-calls, and functions called on one usually assert on the other. 133 /// This class encapsulates the distinction to simplify other code that wants 134 /// "Memory affecting instructions and related data" to use as a key. 135 /// For example, this class is used as a densemap key in the use optimizer. 136 class MemoryLocOrCall { 137 public: 138 bool IsCall = false; 139 140 MemoryLocOrCall(MemoryUseOrDef *MUD) 141 : MemoryLocOrCall(MUD->getMemoryInst()) {} 142 MemoryLocOrCall(const MemoryUseOrDef *MUD) 143 : MemoryLocOrCall(MUD->getMemoryInst()) {} 144 145 MemoryLocOrCall(Instruction *Inst) { 146 if (auto *C = dyn_cast<CallBase>(Inst)) { 147 IsCall = true; 148 Call = C; 149 } else { 150 IsCall = false; 151 // There is no such thing as a memorylocation for a fence inst, and it is 152 // unique in that regard. 153 if (!isa<FenceInst>(Inst)) 154 Loc = MemoryLocation::get(Inst); 155 } 156 } 157 158 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {} 159 160 const CallBase *getCall() const { 161 assert(IsCall); 162 return Call; 163 } 164 165 MemoryLocation getLoc() const { 166 assert(!IsCall); 167 return Loc; 168 } 169 170 bool operator==(const MemoryLocOrCall &Other) const { 171 if (IsCall != Other.IsCall) 172 return false; 173 174 if (!IsCall) 175 return Loc == Other.Loc; 176 177 if (Call->getCalledOperand() != Other.Call->getCalledOperand()) 178 return false; 179 180 return Call->arg_size() == Other.Call->arg_size() && 181 std::equal(Call->arg_begin(), Call->arg_end(), 182 Other.Call->arg_begin()); 183 } 184 185 private: 186 union { 187 const CallBase *Call; 188 MemoryLocation Loc; 189 }; 190 }; 191 192 } // end anonymous namespace 193 194 namespace llvm { 195 196 template <> struct DenseMapInfo<MemoryLocOrCall> { 197 static inline MemoryLocOrCall getEmptyKey() { 198 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); 199 } 200 201 static inline MemoryLocOrCall getTombstoneKey() { 202 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); 203 } 204 205 static unsigned getHashValue(const MemoryLocOrCall &MLOC) { 206 if (!MLOC.IsCall) 207 return hash_combine( 208 MLOC.IsCall, 209 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); 210 211 hash_code hash = 212 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue( 213 MLOC.getCall()->getCalledOperand())); 214 215 for (const Value *Arg : MLOC.getCall()->args()) 216 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg)); 217 return hash; 218 } 219 220 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { 221 return LHS == RHS; 222 } 223 }; 224 225 } // end namespace llvm 226 227 /// This does one-way checks to see if Use could theoretically be hoisted above 228 /// MayClobber. This will not check the other way around. 229 /// 230 /// This assumes that, for the purposes of MemorySSA, Use comes directly after 231 /// MayClobber, with no potentially clobbering operations in between them. 232 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) 233 static bool areLoadsReorderable(const LoadInst *Use, 234 const LoadInst *MayClobber) { 235 bool VolatileUse = Use->isVolatile(); 236 bool VolatileClobber = MayClobber->isVolatile(); 237 // Volatile operations may never be reordered with other volatile operations. 238 if (VolatileUse && VolatileClobber) 239 return false; 240 // Otherwise, volatile doesn't matter here. From the language reference: 241 // 'optimizers may change the order of volatile operations relative to 242 // non-volatile operations.'" 243 244 // If a load is seq_cst, it cannot be moved above other loads. If its ordering 245 // is weaker, it can be moved above other loads. We just need to be sure that 246 // MayClobber isn't an acquire load, because loads can't be moved above 247 // acquire loads. 248 // 249 // Note that this explicitly *does* allow the free reordering of monotonic (or 250 // weaker) loads of the same address. 251 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; 252 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), 253 AtomicOrdering::Acquire); 254 return !(SeqCstUse || MayClobberIsAcquire); 255 } 256 257 namespace { 258 259 struct ClobberAlias { 260 bool IsClobber; 261 Optional<AliasResult> AR; 262 }; 263 264 } // end anonymous namespace 265 266 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being 267 // ignored if IsClobber = false. 268 template <typename AliasAnalysisType> 269 static ClobberAlias 270 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc, 271 const Instruction *UseInst, AliasAnalysisType &AA) { 272 Instruction *DefInst = MD->getMemoryInst(); 273 assert(DefInst && "Defining instruction not actually an instruction"); 274 Optional<AliasResult> AR; 275 276 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { 277 // These intrinsics will show up as affecting memory, but they are just 278 // markers, mostly. 279 // 280 // FIXME: We probably don't actually want MemorySSA to model these at all 281 // (including creating MemoryAccesses for them): we just end up inventing 282 // clobbers where they don't really exist at all. Please see D43269 for 283 // context. 284 switch (II->getIntrinsicID()) { 285 case Intrinsic::invariant_start: 286 case Intrinsic::invariant_end: 287 case Intrinsic::assume: 288 case Intrinsic::experimental_noalias_scope_decl: 289 return {false, AliasResult(AliasResult::NoAlias)}; 290 case Intrinsic::dbg_addr: 291 case Intrinsic::dbg_declare: 292 case Intrinsic::dbg_label: 293 case Intrinsic::dbg_value: 294 llvm_unreachable("debuginfo shouldn't have associated defs!"); 295 default: 296 break; 297 } 298 } 299 300 if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) { 301 ModRefInfo I = AA.getModRefInfo(DefInst, CB); 302 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 303 return {isModOrRefSet(I), AR}; 304 } 305 306 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) 307 if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst)) 308 return {!areLoadsReorderable(UseLoad, DefLoad), 309 AliasResult(AliasResult::MayAlias)}; 310 311 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc); 312 AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias; 313 return {isModSet(I), AR}; 314 } 315 316 template <typename AliasAnalysisType> 317 static ClobberAlias instructionClobbersQuery(MemoryDef *MD, 318 const MemoryUseOrDef *MU, 319 const MemoryLocOrCall &UseMLOC, 320 AliasAnalysisType &AA) { 321 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery 322 // to exist while MemoryLocOrCall is pushed through places. 323 if (UseMLOC.IsCall) 324 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), 325 AA); 326 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), 327 AA); 328 } 329 330 // Return true when MD may alias MU, return false otherwise. 331 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, 332 AliasAnalysis &AA) { 333 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber; 334 } 335 336 namespace { 337 338 struct UpwardsMemoryQuery { 339 // True if our original query started off as a call 340 bool IsCall = false; 341 // The pointer location we started the query with. This will be empty if 342 // IsCall is true. 343 MemoryLocation StartingLoc; 344 // This is the instruction we were querying about. 345 const Instruction *Inst = nullptr; 346 // The MemoryAccess we actually got called with, used to test local domination 347 const MemoryAccess *OriginalAccess = nullptr; 348 Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias); 349 bool SkipSelfAccess = false; 350 351 UpwardsMemoryQuery() = default; 352 353 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) 354 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) { 355 if (!IsCall) 356 StartingLoc = MemoryLocation::get(Inst); 357 } 358 }; 359 360 } // end anonymous namespace 361 362 template <typename AliasAnalysisType> 363 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA, 364 const Instruction *I) { 365 // If the memory can't be changed, then loads of the memory can't be 366 // clobbered. 367 if (auto *LI = dyn_cast<LoadInst>(I)) 368 return I->hasMetadata(LLVMContext::MD_invariant_load) || 369 AA.pointsToConstantMemory(MemoryLocation::get(LI)); 370 return false; 371 } 372 373 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing 374 /// inbetween `Start` and `ClobberAt` can clobbers `Start`. 375 /// 376 /// This is meant to be as simple and self-contained as possible. Because it 377 /// uses no cache, etc., it can be relatively expensive. 378 /// 379 /// \param Start The MemoryAccess that we want to walk from. 380 /// \param ClobberAt A clobber for Start. 381 /// \param StartLoc The MemoryLocation for Start. 382 /// \param MSSA The MemorySSA instance that Start and ClobberAt belong to. 383 /// \param Query The UpwardsMemoryQuery we used for our search. 384 /// \param AA The AliasAnalysis we used for our search. 385 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify. 386 387 template <typename AliasAnalysisType> 388 LLVM_ATTRIBUTE_UNUSED static void 389 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt, 390 const MemoryLocation &StartLoc, const MemorySSA &MSSA, 391 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA, 392 bool AllowImpreciseClobber = false) { 393 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); 394 395 if (MSSA.isLiveOnEntryDef(Start)) { 396 assert(MSSA.isLiveOnEntryDef(ClobberAt) && 397 "liveOnEntry must clobber itself"); 398 return; 399 } 400 401 bool FoundClobber = false; 402 DenseSet<ConstMemoryAccessPair> VisitedPhis; 403 SmallVector<ConstMemoryAccessPair, 8> Worklist; 404 Worklist.emplace_back(Start, StartLoc); 405 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one 406 // is found, complain. 407 while (!Worklist.empty()) { 408 auto MAP = Worklist.pop_back_val(); 409 // All we care about is that nothing from Start to ClobberAt clobbers Start. 410 // We learn nothing from revisiting nodes. 411 if (!VisitedPhis.insert(MAP).second) 412 continue; 413 414 for (const auto *MA : def_chain(MAP.first)) { 415 if (MA == ClobberAt) { 416 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 417 // instructionClobbersQuery isn't essentially free, so don't use `|=`, 418 // since it won't let us short-circuit. 419 // 420 // Also, note that this can't be hoisted out of the `Worklist` loop, 421 // since MD may only act as a clobber for 1 of N MemoryLocations. 422 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD); 423 if (!FoundClobber) { 424 ClobberAlias CA = 425 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); 426 if (CA.IsClobber) { 427 FoundClobber = true; 428 // Not used: CA.AR; 429 } 430 } 431 } 432 break; 433 } 434 435 // We should never hit liveOnEntry, unless it's the clobber. 436 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); 437 438 if (const auto *MD = dyn_cast<MemoryDef>(MA)) { 439 // If Start is a Def, skip self. 440 if (MD == Start) 441 continue; 442 443 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) 444 .IsClobber && 445 "Found clobber before reaching ClobberAt!"); 446 continue; 447 } 448 449 if (const auto *MU = dyn_cast<MemoryUse>(MA)) { 450 (void)MU; 451 assert (MU == Start && 452 "Can only find use in def chain if Start is a use"); 453 continue; 454 } 455 456 assert(isa<MemoryPhi>(MA)); 457 458 // Add reachable phi predecessors 459 for (auto ItB = upward_defs_begin( 460 {const_cast<MemoryAccess *>(MA), MAP.second}, 461 MSSA.getDomTree()), 462 ItE = upward_defs_end(); 463 ItB != ItE; ++ItB) 464 if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock())) 465 Worklist.emplace_back(*ItB); 466 } 467 } 468 469 // If the verify is done following an optimization, it's possible that 470 // ClobberAt was a conservative clobbering, that we can now infer is not a 471 // true clobbering access. Don't fail the verify if that's the case. 472 // We do have accesses that claim they're optimized, but could be optimized 473 // further. Updating all these can be expensive, so allow it for now (FIXME). 474 if (AllowImpreciseClobber) 475 return; 476 477 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a 478 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. 479 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && 480 "ClobberAt never acted as a clobber"); 481 } 482 483 namespace { 484 485 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up 486 /// in one class. 487 template <class AliasAnalysisType> class ClobberWalker { 488 /// Save a few bytes by using unsigned instead of size_t. 489 using ListIndex = unsigned; 490 491 /// Represents a span of contiguous MemoryDefs, potentially ending in a 492 /// MemoryPhi. 493 struct DefPath { 494 MemoryLocation Loc; 495 // Note that, because we always walk in reverse, Last will always dominate 496 // First. Also note that First and Last are inclusive. 497 MemoryAccess *First; 498 MemoryAccess *Last; 499 Optional<ListIndex> Previous; 500 501 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, 502 Optional<ListIndex> Previous) 503 : Loc(Loc), First(First), Last(Last), Previous(Previous) {} 504 505 DefPath(const MemoryLocation &Loc, MemoryAccess *Init, 506 Optional<ListIndex> Previous) 507 : DefPath(Loc, Init, Init, Previous) {} 508 }; 509 510 const MemorySSA &MSSA; 511 AliasAnalysisType &AA; 512 DominatorTree &DT; 513 UpwardsMemoryQuery *Query; 514 unsigned *UpwardWalkLimit; 515 516 // Phi optimization bookkeeping: 517 // List of DefPath to process during the current phi optimization walk. 518 SmallVector<DefPath, 32> Paths; 519 // List of visited <Access, Location> pairs; we can skip paths already 520 // visited with the same memory location. 521 DenseSet<ConstMemoryAccessPair> VisitedPhis; 522 // Record if phi translation has been performed during the current phi 523 // optimization walk, as merging alias results after phi translation can 524 // yield incorrect results. Context in PR46156. 525 bool PerformedPhiTranslation = false; 526 527 /// Find the nearest def or phi that `From` can legally be optimized to. 528 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const { 529 assert(From->getNumOperands() && "Phi with no operands?"); 530 531 BasicBlock *BB = From->getBlock(); 532 MemoryAccess *Result = MSSA.getLiveOnEntryDef(); 533 DomTreeNode *Node = DT.getNode(BB); 534 while ((Node = Node->getIDom())) { 535 auto *Defs = MSSA.getBlockDefs(Node->getBlock()); 536 if (Defs) 537 return &*Defs->rbegin(); 538 } 539 return Result; 540 } 541 542 /// Result of calling walkToPhiOrClobber. 543 struct UpwardsWalkResult { 544 /// The "Result" of the walk. Either a clobber, the last thing we walked, or 545 /// both. Include alias info when clobber found. 546 MemoryAccess *Result; 547 bool IsKnownClobber; 548 Optional<AliasResult> AR; 549 }; 550 551 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. 552 /// This will update Desc.Last as it walks. It will (optionally) also stop at 553 /// StopAt. 554 /// 555 /// This does not test for whether StopAt is a clobber 556 UpwardsWalkResult 557 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr, 558 const MemoryAccess *SkipStopAt = nullptr) const { 559 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); 560 assert(UpwardWalkLimit && "Need a valid walk limit"); 561 bool LimitAlreadyReached = false; 562 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set 563 // it to 1. This will not do any alias() calls. It either returns in the 564 // first iteration in the loop below, or is set back to 0 if all def chains 565 // are free of MemoryDefs. 566 if (!*UpwardWalkLimit) { 567 *UpwardWalkLimit = 1; 568 LimitAlreadyReached = true; 569 } 570 571 for (MemoryAccess *Current : def_chain(Desc.Last)) { 572 Desc.Last = Current; 573 if (Current == StopAt || Current == SkipStopAt) 574 return {Current, false, AliasResult(AliasResult::MayAlias)}; 575 576 if (auto *MD = dyn_cast<MemoryDef>(Current)) { 577 if (MSSA.isLiveOnEntryDef(MD)) 578 return {MD, true, AliasResult(AliasResult::MustAlias)}; 579 580 if (!--*UpwardWalkLimit) 581 return {Current, true, AliasResult(AliasResult::MayAlias)}; 582 583 ClobberAlias CA = 584 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA); 585 if (CA.IsClobber) 586 return {MD, true, CA.AR}; 587 } 588 } 589 590 if (LimitAlreadyReached) 591 *UpwardWalkLimit = 0; 592 593 assert(isa<MemoryPhi>(Desc.Last) && 594 "Ended at a non-clobber that's not a phi?"); 595 return {Desc.Last, false, AliasResult(AliasResult::MayAlias)}; 596 } 597 598 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, 599 ListIndex PriorNode) { 600 auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT, 601 &PerformedPhiTranslation); 602 auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end()); 603 for (const MemoryAccessPair &P : UpwardDefs) { 604 PausedSearches.push_back(Paths.size()); 605 Paths.emplace_back(P.second, P.first, PriorNode); 606 } 607 } 608 609 /// Represents a search that terminated after finding a clobber. This clobber 610 /// may or may not be present in the path of defs from LastNode..SearchStart, 611 /// since it may have been retrieved from cache. 612 struct TerminatedPath { 613 MemoryAccess *Clobber; 614 ListIndex LastNode; 615 }; 616 617 /// Get an access that keeps us from optimizing to the given phi. 618 /// 619 /// PausedSearches is an array of indices into the Paths array. Its incoming 620 /// value is the indices of searches that stopped at the last phi optimization 621 /// target. It's left in an unspecified state. 622 /// 623 /// If this returns None, NewPaused is a vector of searches that terminated 624 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. 625 Optional<TerminatedPath> 626 getBlockingAccess(const MemoryAccess *StopWhere, 627 SmallVectorImpl<ListIndex> &PausedSearches, 628 SmallVectorImpl<ListIndex> &NewPaused, 629 SmallVectorImpl<TerminatedPath> &Terminated) { 630 assert(!PausedSearches.empty() && "No searches to continue?"); 631 632 // BFS vs DFS really doesn't make a difference here, so just do a DFS with 633 // PausedSearches as our stack. 634 while (!PausedSearches.empty()) { 635 ListIndex PathIndex = PausedSearches.pop_back_val(); 636 DefPath &Node = Paths[PathIndex]; 637 638 // If we've already visited this path with this MemoryLocation, we don't 639 // need to do so again. 640 // 641 // NOTE: That we just drop these paths on the ground makes caching 642 // behavior sporadic. e.g. given a diamond: 643 // A 644 // B C 645 // D 646 // 647 // ...If we walk D, B, A, C, we'll only cache the result of phi 648 // optimization for A, B, and D; C will be skipped because it dies here. 649 // This arguably isn't the worst thing ever, since: 650 // - We generally query things in a top-down order, so if we got below D 651 // without needing cache entries for {C, MemLoc}, then chances are 652 // that those cache entries would end up ultimately unused. 653 // - We still cache things for A, so C only needs to walk up a bit. 654 // If this behavior becomes problematic, we can fix without a ton of extra 655 // work. 656 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) { 657 if (PerformedPhiTranslation) { 658 // If visiting this path performed Phi translation, don't continue, 659 // since it may not be correct to merge results from two paths if one 660 // relies on the phi translation. 661 TerminatedPath Term{Node.Last, PathIndex}; 662 return Term; 663 } 664 continue; 665 } 666 667 const MemoryAccess *SkipStopWhere = nullptr; 668 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) { 669 assert(isa<MemoryDef>(Query->OriginalAccess)); 670 SkipStopWhere = Query->OriginalAccess; 671 } 672 673 UpwardsWalkResult Res = walkToPhiOrClobber(Node, 674 /*StopAt=*/StopWhere, 675 /*SkipStopAt=*/SkipStopWhere); 676 if (Res.IsKnownClobber) { 677 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere); 678 679 // If this wasn't a cache hit, we hit a clobber when walking. That's a 680 // failure. 681 TerminatedPath Term{Res.Result, PathIndex}; 682 if (!MSSA.dominates(Res.Result, StopWhere)) 683 return Term; 684 685 // Otherwise, it's a valid thing to potentially optimize to. 686 Terminated.push_back(Term); 687 continue; 688 } 689 690 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) { 691 // We've hit our target. Save this path off for if we want to continue 692 // walking. If we are in the mode of skipping the OriginalAccess, and 693 // we've reached back to the OriginalAccess, do not save path, we've 694 // just looped back to self. 695 if (Res.Result != SkipStopWhere) 696 NewPaused.push_back(PathIndex); 697 continue; 698 } 699 700 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); 701 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); 702 } 703 704 return None; 705 } 706 707 template <typename T, typename Walker> 708 struct generic_def_path_iterator 709 : public iterator_facade_base<generic_def_path_iterator<T, Walker>, 710 std::forward_iterator_tag, T *> { 711 generic_def_path_iterator() {} 712 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} 713 714 T &operator*() const { return curNode(); } 715 716 generic_def_path_iterator &operator++() { 717 N = curNode().Previous; 718 return *this; 719 } 720 721 bool operator==(const generic_def_path_iterator &O) const { 722 if (N.hasValue() != O.N.hasValue()) 723 return false; 724 return !N.hasValue() || *N == *O.N; 725 } 726 727 private: 728 T &curNode() const { return W->Paths[*N]; } 729 730 Walker *W = nullptr; 731 Optional<ListIndex> N = None; 732 }; 733 734 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; 735 using const_def_path_iterator = 736 generic_def_path_iterator<const DefPath, const ClobberWalker>; 737 738 iterator_range<def_path_iterator> def_path(ListIndex From) { 739 return make_range(def_path_iterator(this, From), def_path_iterator()); 740 } 741 742 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { 743 return make_range(const_def_path_iterator(this, From), 744 const_def_path_iterator()); 745 } 746 747 struct OptznResult { 748 /// The path that contains our result. 749 TerminatedPath PrimaryClobber; 750 /// The paths that we can legally cache back from, but that aren't 751 /// necessarily the result of the Phi optimization. 752 SmallVector<TerminatedPath, 4> OtherClobbers; 753 }; 754 755 ListIndex defPathIndex(const DefPath &N) const { 756 // The assert looks nicer if we don't need to do &N 757 const DefPath *NP = &N; 758 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && 759 "Out of bounds DefPath!"); 760 return NP - &Paths.front(); 761 } 762 763 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths 764 /// that act as legal clobbers. Note that this won't return *all* clobbers. 765 /// 766 /// Phi optimization algorithm tl;dr: 767 /// - Find the earliest def/phi, A, we can optimize to 768 /// - Find if all paths from the starting memory access ultimately reach A 769 /// - If not, optimization isn't possible. 770 /// - Otherwise, walk from A to another clobber or phi, A'. 771 /// - If A' is a def, we're done. 772 /// - If A' is a phi, try to optimize it. 773 /// 774 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path 775 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. 776 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, 777 const MemoryLocation &Loc) { 778 assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation && 779 "Reset the optimization state."); 780 781 Paths.emplace_back(Loc, Start, Phi, None); 782 // Stores how many "valid" optimization nodes we had prior to calling 783 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. 784 auto PriorPathsSize = Paths.size(); 785 786 SmallVector<ListIndex, 16> PausedSearches; 787 SmallVector<ListIndex, 8> NewPaused; 788 SmallVector<TerminatedPath, 4> TerminatedPaths; 789 790 addSearches(Phi, PausedSearches, 0); 791 792 // Moves the TerminatedPath with the "most dominated" Clobber to the end of 793 // Paths. 794 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { 795 assert(!Paths.empty() && "Need a path to move"); 796 auto Dom = Paths.begin(); 797 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) 798 if (!MSSA.dominates(I->Clobber, Dom->Clobber)) 799 Dom = I; 800 auto Last = Paths.end() - 1; 801 if (Last != Dom) 802 std::iter_swap(Last, Dom); 803 }; 804 805 MemoryPhi *Current = Phi; 806 while (true) { 807 assert(!MSSA.isLiveOnEntryDef(Current) && 808 "liveOnEntry wasn't treated as a clobber?"); 809 810 const auto *Target = getWalkTarget(Current); 811 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal 812 // optimization for the prior phi. 813 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { 814 return MSSA.dominates(P.Clobber, Target); 815 })); 816 817 // FIXME: This is broken, because the Blocker may be reported to be 818 // liveOnEntry, and we'll happily wait for that to disappear (read: never) 819 // For the moment, this is fine, since we do nothing with blocker info. 820 if (Optional<TerminatedPath> Blocker = getBlockingAccess( 821 Target, PausedSearches, NewPaused, TerminatedPaths)) { 822 823 // Find the node we started at. We can't search based on N->Last, since 824 // we may have gone around a loop with a different MemoryLocation. 825 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { 826 return defPathIndex(N) < PriorPathsSize; 827 }); 828 assert(Iter != def_path_iterator()); 829 830 DefPath &CurNode = *Iter; 831 assert(CurNode.Last == Current); 832 833 // Two things: 834 // A. We can't reliably cache all of NewPaused back. Consider a case 835 // where we have two paths in NewPaused; one of which can't optimize 836 // above this phi, whereas the other can. If we cache the second path 837 // back, we'll end up with suboptimal cache entries. We can handle 838 // cases like this a bit better when we either try to find all 839 // clobbers that block phi optimization, or when our cache starts 840 // supporting unfinished searches. 841 // B. We can't reliably cache TerminatedPaths back here without doing 842 // extra checks; consider a case like: 843 // T 844 // / \ 845 // D C 846 // \ / 847 // S 848 // Where T is our target, C is a node with a clobber on it, D is a 849 // diamond (with a clobber *only* on the left or right node, N), and 850 // S is our start. Say we walk to D, through the node opposite N 851 // (read: ignoring the clobber), and see a cache entry in the top 852 // node of D. That cache entry gets put into TerminatedPaths. We then 853 // walk up to C (N is later in our worklist), find the clobber, and 854 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache 855 // the bottom part of D to the cached clobber, ignoring the clobber 856 // in N. Again, this problem goes away if we start tracking all 857 // blockers for a given phi optimization. 858 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; 859 return {Result, {}}; 860 } 861 862 // If there's nothing left to search, then all paths led to valid clobbers 863 // that we got from our cache; pick the nearest to the start, and allow 864 // the rest to be cached back. 865 if (NewPaused.empty()) { 866 MoveDominatedPathToEnd(TerminatedPaths); 867 TerminatedPath Result = TerminatedPaths.pop_back_val(); 868 return {Result, std::move(TerminatedPaths)}; 869 } 870 871 MemoryAccess *DefChainEnd = nullptr; 872 SmallVector<TerminatedPath, 4> Clobbers; 873 for (ListIndex Paused : NewPaused) { 874 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); 875 if (WR.IsKnownClobber) 876 Clobbers.push_back({WR.Result, Paused}); 877 else 878 // Micro-opt: If we hit the end of the chain, save it. 879 DefChainEnd = WR.Result; 880 } 881 882 if (!TerminatedPaths.empty()) { 883 // If we couldn't find the dominating phi/liveOnEntry in the above loop, 884 // do it now. 885 if (!DefChainEnd) 886 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target))) 887 DefChainEnd = MA; 888 assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry"); 889 890 // If any of the terminated paths don't dominate the phi we'll try to 891 // optimize, we need to figure out what they are and quit. 892 const BasicBlock *ChainBB = DefChainEnd->getBlock(); 893 for (const TerminatedPath &TP : TerminatedPaths) { 894 // Because we know that DefChainEnd is as "high" as we can go, we 895 // don't need local dominance checks; BB dominance is sufficient. 896 if (DT.dominates(ChainBB, TP.Clobber->getBlock())) 897 Clobbers.push_back(TP); 898 } 899 } 900 901 // If we have clobbers in the def chain, find the one closest to Current 902 // and quit. 903 if (!Clobbers.empty()) { 904 MoveDominatedPathToEnd(Clobbers); 905 TerminatedPath Result = Clobbers.pop_back_val(); 906 return {Result, std::move(Clobbers)}; 907 } 908 909 assert(all_of(NewPaused, 910 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); 911 912 // Because liveOnEntry is a clobber, this must be a phi. 913 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); 914 915 PriorPathsSize = Paths.size(); 916 PausedSearches.clear(); 917 for (ListIndex I : NewPaused) 918 addSearches(DefChainPhi, PausedSearches, I); 919 NewPaused.clear(); 920 921 Current = DefChainPhi; 922 } 923 } 924 925 void verifyOptResult(const OptznResult &R) const { 926 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { 927 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); 928 })); 929 } 930 931 void resetPhiOptznState() { 932 Paths.clear(); 933 VisitedPhis.clear(); 934 PerformedPhiTranslation = false; 935 } 936 937 public: 938 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT) 939 : MSSA(MSSA), AA(AA), DT(DT) {} 940 941 AliasAnalysisType *getAA() { return &AA; } 942 /// Finds the nearest clobber for the given query, optimizing phis if 943 /// possible. 944 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, 945 unsigned &UpWalkLimit) { 946 Query = &Q; 947 UpwardWalkLimit = &UpWalkLimit; 948 // Starting limit must be > 0. 949 if (!UpWalkLimit) 950 UpWalkLimit++; 951 952 MemoryAccess *Current = Start; 953 // This walker pretends uses don't exist. If we're handed one, silently grab 954 // its def. (This has the nice side-effect of ensuring we never cache uses) 955 if (auto *MU = dyn_cast<MemoryUse>(Start)) 956 Current = MU->getDefiningAccess(); 957 958 DefPath FirstDesc(Q.StartingLoc, Current, Current, None); 959 // Fast path for the overly-common case (no crazy phi optimization 960 // necessary) 961 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); 962 MemoryAccess *Result; 963 if (WalkResult.IsKnownClobber) { 964 Result = WalkResult.Result; 965 Q.AR = WalkResult.AR; 966 } else { 967 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), 968 Current, Q.StartingLoc); 969 verifyOptResult(OptRes); 970 resetPhiOptznState(); 971 Result = OptRes.PrimaryClobber.Clobber; 972 } 973 974 #ifdef EXPENSIVE_CHECKS 975 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0) 976 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); 977 #endif 978 return Result; 979 } 980 }; 981 982 struct RenamePassData { 983 DomTreeNode *DTN; 984 DomTreeNode::const_iterator ChildIt; 985 MemoryAccess *IncomingVal; 986 987 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, 988 MemoryAccess *M) 989 : DTN(D), ChildIt(It), IncomingVal(M) {} 990 991 void swap(RenamePassData &RHS) { 992 std::swap(DTN, RHS.DTN); 993 std::swap(ChildIt, RHS.ChildIt); 994 std::swap(IncomingVal, RHS.IncomingVal); 995 } 996 }; 997 998 } // end anonymous namespace 999 1000 namespace llvm { 1001 1002 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase { 1003 ClobberWalker<AliasAnalysisType> Walker; 1004 MemorySSA *MSSA; 1005 1006 public: 1007 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D) 1008 : Walker(*M, *A, *D), MSSA(M) {} 1009 1010 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, 1011 const MemoryLocation &, 1012 unsigned &); 1013 // Third argument (bool), defines whether the clobber search should skip the 1014 // original queried access. If true, there will be a follow-up query searching 1015 // for a clobber access past "self". Note that the Optimized access is not 1016 // updated if a new clobber is found by this SkipSelf search. If this 1017 // additional query becomes heavily used we may decide to cache the result. 1018 // Walker instantiations will decide how to set the SkipSelf bool. 1019 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool); 1020 }; 1021 1022 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no 1023 /// longer does caching on its own, but the name has been retained for the 1024 /// moment. 1025 template <class AliasAnalysisType> 1026 class MemorySSA::CachingWalker final : public MemorySSAWalker { 1027 ClobberWalkerBase<AliasAnalysisType> *Walker; 1028 1029 public: 1030 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1031 : MemorySSAWalker(M), Walker(W) {} 1032 ~CachingWalker() override = default; 1033 1034 using MemorySSAWalker::getClobberingMemoryAccess; 1035 1036 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1037 return Walker->getClobberingMemoryAccessBase(MA, UWL, false); 1038 } 1039 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1040 const MemoryLocation &Loc, 1041 unsigned &UWL) { 1042 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1043 } 1044 1045 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1046 unsigned UpwardWalkLimit = MaxCheckLimit; 1047 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1048 } 1049 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1050 const MemoryLocation &Loc) override { 1051 unsigned UpwardWalkLimit = MaxCheckLimit; 1052 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1053 } 1054 1055 void invalidateInfo(MemoryAccess *MA) override { 1056 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1057 MUD->resetOptimized(); 1058 } 1059 }; 1060 1061 template <class AliasAnalysisType> 1062 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker { 1063 ClobberWalkerBase<AliasAnalysisType> *Walker; 1064 1065 public: 1066 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W) 1067 : MemorySSAWalker(M), Walker(W) {} 1068 ~SkipSelfWalker() override = default; 1069 1070 using MemorySSAWalker::getClobberingMemoryAccess; 1071 1072 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) { 1073 return Walker->getClobberingMemoryAccessBase(MA, UWL, true); 1074 } 1075 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1076 const MemoryLocation &Loc, 1077 unsigned &UWL) { 1078 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL); 1079 } 1080 1081 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override { 1082 unsigned UpwardWalkLimit = MaxCheckLimit; 1083 return getClobberingMemoryAccess(MA, UpwardWalkLimit); 1084 } 1085 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, 1086 const MemoryLocation &Loc) override { 1087 unsigned UpwardWalkLimit = MaxCheckLimit; 1088 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit); 1089 } 1090 1091 void invalidateInfo(MemoryAccess *MA) override { 1092 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1093 MUD->resetOptimized(); 1094 } 1095 }; 1096 1097 } // end namespace llvm 1098 1099 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal, 1100 bool RenameAllUses) { 1101 // Pass through values to our successors 1102 for (const BasicBlock *S : successors(BB)) { 1103 auto It = PerBlockAccesses.find(S); 1104 // Rename the phi nodes in our successor block 1105 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1106 continue; 1107 AccessList *Accesses = It->second.get(); 1108 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1109 if (RenameAllUses) { 1110 bool ReplacementDone = false; 1111 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) 1112 if (Phi->getIncomingBlock(I) == BB) { 1113 Phi->setIncomingValue(I, IncomingVal); 1114 ReplacementDone = true; 1115 } 1116 (void) ReplacementDone; 1117 assert(ReplacementDone && "Incomplete phi during partial rename"); 1118 } else 1119 Phi->addIncoming(IncomingVal, BB); 1120 } 1121 } 1122 1123 /// Rename a single basic block into MemorySSA form. 1124 /// Uses the standard SSA renaming algorithm. 1125 /// \returns The new incoming value. 1126 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal, 1127 bool RenameAllUses) { 1128 auto It = PerBlockAccesses.find(BB); 1129 // Skip most processing if the list is empty. 1130 if (It != PerBlockAccesses.end()) { 1131 AccessList *Accesses = It->second.get(); 1132 for (MemoryAccess &L : *Accesses) { 1133 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { 1134 if (MUD->getDefiningAccess() == nullptr || RenameAllUses) 1135 MUD->setDefiningAccess(IncomingVal); 1136 if (isa<MemoryDef>(&L)) 1137 IncomingVal = &L; 1138 } else { 1139 IncomingVal = &L; 1140 } 1141 } 1142 } 1143 return IncomingVal; 1144 } 1145 1146 /// This is the standard SSA renaming algorithm. 1147 /// 1148 /// We walk the dominator tree in preorder, renaming accesses, and then filling 1149 /// in phi nodes in our successors. 1150 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, 1151 SmallPtrSetImpl<BasicBlock *> &Visited, 1152 bool SkipVisited, bool RenameAllUses) { 1153 assert(Root && "Trying to rename accesses in an unreachable block"); 1154 1155 SmallVector<RenamePassData, 32> WorkStack; 1156 // Skip everything if we already renamed this block and we are skipping. 1157 // Note: You can't sink this into the if, because we need it to occur 1158 // regardless of whether we skip blocks or not. 1159 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second; 1160 if (SkipVisited && AlreadyVisited) 1161 return; 1162 1163 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses); 1164 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses); 1165 WorkStack.push_back({Root, Root->begin(), IncomingVal}); 1166 1167 while (!WorkStack.empty()) { 1168 DomTreeNode *Node = WorkStack.back().DTN; 1169 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; 1170 IncomingVal = WorkStack.back().IncomingVal; 1171 1172 if (ChildIt == Node->end()) { 1173 WorkStack.pop_back(); 1174 } else { 1175 DomTreeNode *Child = *ChildIt; 1176 ++WorkStack.back().ChildIt; 1177 BasicBlock *BB = Child->getBlock(); 1178 // Note: You can't sink this into the if, because we need it to occur 1179 // regardless of whether we skip blocks or not. 1180 AlreadyVisited = !Visited.insert(BB).second; 1181 if (SkipVisited && AlreadyVisited) { 1182 // We already visited this during our renaming, which can happen when 1183 // being asked to rename multiple blocks. Figure out the incoming val, 1184 // which is the last def. 1185 // Incoming value can only change if there is a block def, and in that 1186 // case, it's the last block def in the list. 1187 if (auto *BlockDefs = getWritableBlockDefs(BB)) 1188 IncomingVal = &*BlockDefs->rbegin(); 1189 } else 1190 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses); 1191 renameSuccessorPhis(BB, IncomingVal, RenameAllUses); 1192 WorkStack.push_back({Child, Child->begin(), IncomingVal}); 1193 } 1194 } 1195 } 1196 1197 /// This handles unreachable block accesses by deleting phi nodes in 1198 /// unreachable blocks, and marking all other unreachable MemoryAccess's as 1199 /// being uses of the live on entry definition. 1200 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { 1201 assert(!DT->isReachableFromEntry(BB) && 1202 "Reachable block found while handling unreachable blocks"); 1203 1204 // Make sure phi nodes in our reachable successors end up with a 1205 // LiveOnEntryDef for our incoming edge, even though our block is forward 1206 // unreachable. We could just disconnect these blocks from the CFG fully, 1207 // but we do not right now. 1208 for (const BasicBlock *S : successors(BB)) { 1209 if (!DT->isReachableFromEntry(S)) 1210 continue; 1211 auto It = PerBlockAccesses.find(S); 1212 // Rename the phi nodes in our successor block 1213 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) 1214 continue; 1215 AccessList *Accesses = It->second.get(); 1216 auto *Phi = cast<MemoryPhi>(&Accesses->front()); 1217 Phi->addIncoming(LiveOnEntryDef.get(), BB); 1218 } 1219 1220 auto It = PerBlockAccesses.find(BB); 1221 if (It == PerBlockAccesses.end()) 1222 return; 1223 1224 auto &Accesses = It->second; 1225 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { 1226 auto Next = std::next(AI); 1227 // If we have a phi, just remove it. We are going to replace all 1228 // users with live on entry. 1229 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) 1230 UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); 1231 else 1232 Accesses->erase(AI); 1233 AI = Next; 1234 } 1235 } 1236 1237 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) 1238 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), 1239 SkipWalker(nullptr), NextID(0) { 1240 // Build MemorySSA using a batch alias analysis. This reuses the internal 1241 // state that AA collects during an alias()/getModRefInfo() call. This is 1242 // safe because there are no CFG changes while building MemorySSA and can 1243 // significantly reduce the time spent by the compiler in AA, because we will 1244 // make queries about all the instructions in the Function. 1245 assert(AA && "No alias analysis?"); 1246 BatchAAResults BatchAA(*AA); 1247 buildMemorySSA(BatchAA); 1248 // Intentionally leave AA to nullptr while building so we don't accidently 1249 // use non-batch AliasAnalysis. 1250 this->AA = AA; 1251 // Also create the walker here. 1252 getWalker(); 1253 } 1254 1255 MemorySSA::~MemorySSA() { 1256 // Drop all our references 1257 for (const auto &Pair : PerBlockAccesses) 1258 for (MemoryAccess &MA : *Pair.second) 1259 MA.dropAllReferences(); 1260 } 1261 1262 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { 1263 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); 1264 1265 if (Res.second) 1266 Res.first->second = std::make_unique<AccessList>(); 1267 return Res.first->second.get(); 1268 } 1269 1270 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) { 1271 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr)); 1272 1273 if (Res.second) 1274 Res.first->second = std::make_unique<DefsList>(); 1275 return Res.first->second.get(); 1276 } 1277 1278 namespace llvm { 1279 1280 /// This class is a batch walker of all MemoryUse's in the program, and points 1281 /// their defining access at the thing that actually clobbers them. Because it 1282 /// is a batch walker that touches everything, it does not operate like the 1283 /// other walkers. This walker is basically performing a top-down SSA renaming 1284 /// pass, where the version stack is used as the cache. This enables it to be 1285 /// significantly more time and memory efficient than using the regular walker, 1286 /// which is walking bottom-up. 1287 class MemorySSA::OptimizeUses { 1288 public: 1289 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker, 1290 BatchAAResults *BAA, DominatorTree *DT) 1291 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {} 1292 1293 void optimizeUses(); 1294 1295 private: 1296 /// This represents where a given memorylocation is in the stack. 1297 struct MemlocStackInfo { 1298 // This essentially is keeping track of versions of the stack. Whenever 1299 // the stack changes due to pushes or pops, these versions increase. 1300 unsigned long StackEpoch; 1301 unsigned long PopEpoch; 1302 // This is the lower bound of places on the stack to check. It is equal to 1303 // the place the last stack walk ended. 1304 // Note: Correctness depends on this being initialized to 0, which densemap 1305 // does 1306 unsigned long LowerBound; 1307 const BasicBlock *LowerBoundBlock; 1308 // This is where the last walk for this memory location ended. 1309 unsigned long LastKill; 1310 bool LastKillValid; 1311 Optional<AliasResult> AR; 1312 }; 1313 1314 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, 1315 SmallVectorImpl<MemoryAccess *> &, 1316 DenseMap<MemoryLocOrCall, MemlocStackInfo> &); 1317 1318 MemorySSA *MSSA; 1319 CachingWalker<BatchAAResults> *Walker; 1320 BatchAAResults *AA; 1321 DominatorTree *DT; 1322 }; 1323 1324 } // end namespace llvm 1325 1326 /// Optimize the uses in a given block This is basically the SSA renaming 1327 /// algorithm, with one caveat: We are able to use a single stack for all 1328 /// MemoryUses. This is because the set of *possible* reaching MemoryDefs is 1329 /// the same for every MemoryUse. The *actual* clobbering MemoryDef is just 1330 /// going to be some position in that stack of possible ones. 1331 /// 1332 /// We track the stack positions that each MemoryLocation needs 1333 /// to check, and last ended at. This is because we only want to check the 1334 /// things that changed since last time. The same MemoryLocation should 1335 /// get clobbered by the same store (getModRefInfo does not use invariantness or 1336 /// things like this, and if they start, we can modify MemoryLocOrCall to 1337 /// include relevant data) 1338 void MemorySSA::OptimizeUses::optimizeUsesInBlock( 1339 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, 1340 SmallVectorImpl<MemoryAccess *> &VersionStack, 1341 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { 1342 1343 /// If no accesses, nothing to do. 1344 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); 1345 if (Accesses == nullptr) 1346 return; 1347 1348 // Pop everything that doesn't dominate the current block off the stack, 1349 // increment the PopEpoch to account for this. 1350 while (true) { 1351 assert( 1352 !VersionStack.empty() && 1353 "Version stack should have liveOnEntry sentinel dominating everything"); 1354 BasicBlock *BackBlock = VersionStack.back()->getBlock(); 1355 if (DT->dominates(BackBlock, BB)) 1356 break; 1357 while (VersionStack.back()->getBlock() == BackBlock) 1358 VersionStack.pop_back(); 1359 ++PopEpoch; 1360 } 1361 1362 for (MemoryAccess &MA : *Accesses) { 1363 auto *MU = dyn_cast<MemoryUse>(&MA); 1364 if (!MU) { 1365 VersionStack.push_back(&MA); 1366 ++StackEpoch; 1367 continue; 1368 } 1369 1370 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { 1371 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None); 1372 continue; 1373 } 1374 1375 MemoryLocOrCall UseMLOC(MU); 1376 auto &LocInfo = LocStackInfo[UseMLOC]; 1377 // If the pop epoch changed, it means we've removed stuff from top of 1378 // stack due to changing blocks. We may have to reset the lower bound or 1379 // last kill info. 1380 if (LocInfo.PopEpoch != PopEpoch) { 1381 LocInfo.PopEpoch = PopEpoch; 1382 LocInfo.StackEpoch = StackEpoch; 1383 // If the lower bound was in something that no longer dominates us, we 1384 // have to reset it. 1385 // We can't simply track stack size, because the stack may have had 1386 // pushes/pops in the meantime. 1387 // XXX: This is non-optimal, but only is slower cases with heavily 1388 // branching dominator trees. To get the optimal number of queries would 1389 // be to make lowerbound and lastkill a per-loc stack, and pop it until 1390 // the top of that stack dominates us. This does not seem worth it ATM. 1391 // A much cheaper optimization would be to always explore the deepest 1392 // branch of the dominator tree first. This will guarantee this resets on 1393 // the smallest set of blocks. 1394 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && 1395 !DT->dominates(LocInfo.LowerBoundBlock, BB)) { 1396 // Reset the lower bound of things to check. 1397 // TODO: Some day we should be able to reset to last kill, rather than 1398 // 0. 1399 LocInfo.LowerBound = 0; 1400 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); 1401 LocInfo.LastKillValid = false; 1402 } 1403 } else if (LocInfo.StackEpoch != StackEpoch) { 1404 // If all that has changed is the StackEpoch, we only have to check the 1405 // new things on the stack, because we've checked everything before. In 1406 // this case, the lower bound of things to check remains the same. 1407 LocInfo.PopEpoch = PopEpoch; 1408 LocInfo.StackEpoch = StackEpoch; 1409 } 1410 if (!LocInfo.LastKillValid) { 1411 LocInfo.LastKill = VersionStack.size() - 1; 1412 LocInfo.LastKillValid = true; 1413 LocInfo.AR = AliasResult::MayAlias; 1414 } 1415 1416 // At this point, we should have corrected last kill and LowerBound to be 1417 // in bounds. 1418 assert(LocInfo.LowerBound < VersionStack.size() && 1419 "Lower bound out of range"); 1420 assert(LocInfo.LastKill < VersionStack.size() && 1421 "Last kill info out of range"); 1422 // In any case, the new upper bound is the top of the stack. 1423 unsigned long UpperBound = VersionStack.size() - 1; 1424 1425 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { 1426 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" 1427 << *(MU->getMemoryInst()) << ")" 1428 << " because there are " 1429 << UpperBound - LocInfo.LowerBound 1430 << " stores to disambiguate\n"); 1431 // Because we did not walk, LastKill is no longer valid, as this may 1432 // have been a kill. 1433 LocInfo.LastKillValid = false; 1434 continue; 1435 } 1436 bool FoundClobberResult = false; 1437 unsigned UpwardWalkLimit = MaxCheckLimit; 1438 while (UpperBound > LocInfo.LowerBound) { 1439 if (isa<MemoryPhi>(VersionStack[UpperBound])) { 1440 // For phis, use the walker, see where we ended up, go there 1441 MemoryAccess *Result = 1442 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit); 1443 // We are guaranteed to find it or something is wrong 1444 while (VersionStack[UpperBound] != Result) { 1445 assert(UpperBound != 0); 1446 --UpperBound; 1447 } 1448 FoundClobberResult = true; 1449 break; 1450 } 1451 1452 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); 1453 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA); 1454 if (CA.IsClobber) { 1455 FoundClobberResult = true; 1456 LocInfo.AR = CA.AR; 1457 break; 1458 } 1459 --UpperBound; 1460 } 1461 1462 // Note: Phis always have AliasResult AR set to MayAlias ATM. 1463 1464 // At the end of this loop, UpperBound is either a clobber, or lower bound 1465 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. 1466 if (FoundClobberResult || UpperBound < LocInfo.LastKill) { 1467 // We were last killed now by where we got to 1468 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound])) 1469 LocInfo.AR = None; 1470 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR); 1471 LocInfo.LastKill = UpperBound; 1472 } else { 1473 // Otherwise, we checked all the new ones, and now we know we can get to 1474 // LastKill. 1475 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR); 1476 } 1477 LocInfo.LowerBound = VersionStack.size() - 1; 1478 LocInfo.LowerBoundBlock = BB; 1479 } 1480 } 1481 1482 /// Optimize uses to point to their actual clobbering definitions. 1483 void MemorySSA::OptimizeUses::optimizeUses() { 1484 SmallVector<MemoryAccess *, 16> VersionStack; 1485 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; 1486 VersionStack.push_back(MSSA->getLiveOnEntryDef()); 1487 1488 unsigned long StackEpoch = 1; 1489 unsigned long PopEpoch = 1; 1490 // We perform a non-recursive top-down dominator tree walk. 1491 for (const auto *DomNode : depth_first(DT->getRootNode())) 1492 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, 1493 LocStackInfo); 1494 } 1495 1496 void MemorySSA::placePHINodes( 1497 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) { 1498 // Determine where our MemoryPhi's should go 1499 ForwardIDFCalculator IDFs(*DT); 1500 IDFs.setDefiningBlocks(DefiningBlocks); 1501 SmallVector<BasicBlock *, 32> IDFBlocks; 1502 IDFs.calculate(IDFBlocks); 1503 1504 // Now place MemoryPhi nodes. 1505 for (auto &BB : IDFBlocks) 1506 createMemoryPhi(BB); 1507 } 1508 1509 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) { 1510 // We create an access to represent "live on entry", for things like 1511 // arguments or users of globals, where the memory they use is defined before 1512 // the beginning of the function. We do not actually insert it into the IR. 1513 // We do not define a live on exit for the immediate uses, and thus our 1514 // semantics do *not* imply that something with no immediate uses can simply 1515 // be removed. 1516 BasicBlock &StartingPoint = F.getEntryBlock(); 1517 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr, 1518 &StartingPoint, NextID++)); 1519 1520 // We maintain lists of memory accesses per-block, trading memory for time. We 1521 // could just look up the memory access for every possible instruction in the 1522 // stream. 1523 SmallPtrSet<BasicBlock *, 32> DefiningBlocks; 1524 // Go through each block, figure out where defs occur, and chain together all 1525 // the accesses. 1526 for (BasicBlock &B : F) { 1527 bool InsertIntoDef = false; 1528 AccessList *Accesses = nullptr; 1529 DefsList *Defs = nullptr; 1530 for (Instruction &I : B) { 1531 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA); 1532 if (!MUD) 1533 continue; 1534 1535 if (!Accesses) 1536 Accesses = getOrCreateAccessList(&B); 1537 Accesses->push_back(MUD); 1538 if (isa<MemoryDef>(MUD)) { 1539 InsertIntoDef = true; 1540 if (!Defs) 1541 Defs = getOrCreateDefsList(&B); 1542 Defs->push_back(*MUD); 1543 } 1544 } 1545 if (InsertIntoDef) 1546 DefiningBlocks.insert(&B); 1547 } 1548 placePHINodes(DefiningBlocks); 1549 1550 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get 1551 // filled in with all blocks. 1552 SmallPtrSet<BasicBlock *, 16> Visited; 1553 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); 1554 1555 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT); 1556 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase); 1557 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses(); 1558 1559 // Mark the uses in unreachable blocks as live on entry, so that they go 1560 // somewhere. 1561 for (auto &BB : F) 1562 if (!Visited.count(&BB)) 1563 markUnreachableAsLiveOnEntry(&BB); 1564 } 1565 1566 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } 1567 1568 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() { 1569 if (Walker) 1570 return Walker.get(); 1571 1572 if (!WalkerBase) 1573 WalkerBase = 1574 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1575 1576 Walker = 1577 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get()); 1578 return Walker.get(); 1579 } 1580 1581 MemorySSAWalker *MemorySSA::getSkipSelfWalker() { 1582 if (SkipWalker) 1583 return SkipWalker.get(); 1584 1585 if (!WalkerBase) 1586 WalkerBase = 1587 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT); 1588 1589 SkipWalker = 1590 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get()); 1591 return SkipWalker.get(); 1592 } 1593 1594 1595 // This is a helper function used by the creation routines. It places NewAccess 1596 // into the access and defs lists for a given basic block, at the given 1597 // insertion point. 1598 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess, 1599 const BasicBlock *BB, 1600 InsertionPlace Point) { 1601 auto *Accesses = getOrCreateAccessList(BB); 1602 if (Point == Beginning) { 1603 // If it's a phi node, it goes first, otherwise, it goes after any phi 1604 // nodes. 1605 if (isa<MemoryPhi>(NewAccess)) { 1606 Accesses->push_front(NewAccess); 1607 auto *Defs = getOrCreateDefsList(BB); 1608 Defs->push_front(*NewAccess); 1609 } else { 1610 auto AI = find_if_not( 1611 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1612 Accesses->insert(AI, NewAccess); 1613 if (!isa<MemoryUse>(NewAccess)) { 1614 auto *Defs = getOrCreateDefsList(BB); 1615 auto DI = find_if_not( 1616 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); }); 1617 Defs->insert(DI, *NewAccess); 1618 } 1619 } 1620 } else { 1621 Accesses->push_back(NewAccess); 1622 if (!isa<MemoryUse>(NewAccess)) { 1623 auto *Defs = getOrCreateDefsList(BB); 1624 Defs->push_back(*NewAccess); 1625 } 1626 } 1627 BlockNumberingValid.erase(BB); 1628 } 1629 1630 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB, 1631 AccessList::iterator InsertPt) { 1632 auto *Accesses = getWritableBlockAccesses(BB); 1633 bool WasEnd = InsertPt == Accesses->end(); 1634 Accesses->insert(AccessList::iterator(InsertPt), What); 1635 if (!isa<MemoryUse>(What)) { 1636 auto *Defs = getOrCreateDefsList(BB); 1637 // If we got asked to insert at the end, we have an easy job, just shove it 1638 // at the end. If we got asked to insert before an existing def, we also get 1639 // an iterator. If we got asked to insert before a use, we have to hunt for 1640 // the next def. 1641 if (WasEnd) { 1642 Defs->push_back(*What); 1643 } else if (isa<MemoryDef>(InsertPt)) { 1644 Defs->insert(InsertPt->getDefsIterator(), *What); 1645 } else { 1646 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt)) 1647 ++InsertPt; 1648 // Either we found a def, or we are inserting at the end 1649 if (InsertPt == Accesses->end()) 1650 Defs->push_back(*What); 1651 else 1652 Defs->insert(InsertPt->getDefsIterator(), *What); 1653 } 1654 } 1655 BlockNumberingValid.erase(BB); 1656 } 1657 1658 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) { 1659 // Keep it in the lookup tables, remove from the lists 1660 removeFromLists(What, false); 1661 1662 // Note that moving should implicitly invalidate the optimized state of a 1663 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a 1664 // MemoryDef. 1665 if (auto *MD = dyn_cast<MemoryDef>(What)) 1666 MD->resetOptimized(); 1667 What->setBlock(BB); 1668 } 1669 1670 // Move What before Where in the IR. The end result is that What will belong to 1671 // the right lists and have the right Block set, but will not otherwise be 1672 // correct. It will not have the right defining access, and if it is a def, 1673 // things below it will not properly be updated. 1674 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB, 1675 AccessList::iterator Where) { 1676 prepareForMoveTo(What, BB); 1677 insertIntoListsBefore(What, BB, Where); 1678 } 1679 1680 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB, 1681 InsertionPlace Point) { 1682 if (isa<MemoryPhi>(What)) { 1683 assert(Point == Beginning && 1684 "Can only move a Phi at the beginning of the block"); 1685 // Update lookup table entry 1686 ValueToMemoryAccess.erase(What->getBlock()); 1687 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second; 1688 (void)Inserted; 1689 assert(Inserted && "Cannot move a Phi to a block that already has one"); 1690 } 1691 1692 prepareForMoveTo(What, BB); 1693 insertIntoListsForBlock(What, BB, Point); 1694 } 1695 1696 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { 1697 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); 1698 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); 1699 // Phi's always are placed at the front of the block. 1700 insertIntoListsForBlock(Phi, BB, Beginning); 1701 ValueToMemoryAccess[BB] = Phi; 1702 return Phi; 1703 } 1704 1705 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, 1706 MemoryAccess *Definition, 1707 const MemoryUseOrDef *Template, 1708 bool CreationMustSucceed) { 1709 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); 1710 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template); 1711 if (CreationMustSucceed) 1712 assert(NewAccess != nullptr && "Tried to create a memory access for a " 1713 "non-memory touching instruction"); 1714 if (NewAccess) { 1715 assert((!Definition || !isa<MemoryUse>(Definition)) && 1716 "A use cannot be a defining access"); 1717 NewAccess->setDefiningAccess(Definition); 1718 } 1719 return NewAccess; 1720 } 1721 1722 // Return true if the instruction has ordering constraints. 1723 // Note specifically that this only considers stores and loads 1724 // because others are still considered ModRef by getModRefInfo. 1725 static inline bool isOrdered(const Instruction *I) { 1726 if (auto *SI = dyn_cast<StoreInst>(I)) { 1727 if (!SI->isUnordered()) 1728 return true; 1729 } else if (auto *LI = dyn_cast<LoadInst>(I)) { 1730 if (!LI->isUnordered()) 1731 return true; 1732 } 1733 return false; 1734 } 1735 1736 /// Helper function to create new memory accesses 1737 template <typename AliasAnalysisType> 1738 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I, 1739 AliasAnalysisType *AAP, 1740 const MemoryUseOrDef *Template) { 1741 // The assume intrinsic has a control dependency which we model by claiming 1742 // that it writes arbitrarily. Debuginfo intrinsics may be considered 1743 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory 1744 // dependencies here. 1745 // FIXME: Replace this special casing with a more accurate modelling of 1746 // assume's control dependency. 1747 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1748 switch (II->getIntrinsicID()) { 1749 default: 1750 break; 1751 case Intrinsic::assume: 1752 case Intrinsic::experimental_noalias_scope_decl: 1753 return nullptr; 1754 } 1755 } 1756 1757 // Using a nonstandard AA pipelines might leave us with unexpected modref 1758 // results for I, so add a check to not model instructions that may not read 1759 // from or write to memory. This is necessary for correctness. 1760 if (!I->mayReadFromMemory() && !I->mayWriteToMemory()) 1761 return nullptr; 1762 1763 bool Def, Use; 1764 if (Template) { 1765 Def = isa<MemoryDef>(Template); 1766 Use = isa<MemoryUse>(Template); 1767 #if !defined(NDEBUG) 1768 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1769 bool DefCheck, UseCheck; 1770 DefCheck = isModSet(ModRef) || isOrdered(I); 1771 UseCheck = isRefSet(ModRef); 1772 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template"); 1773 #endif 1774 } else { 1775 // Find out what affect this instruction has on memory. 1776 ModRefInfo ModRef = AAP->getModRefInfo(I, None); 1777 // The isOrdered check is used to ensure that volatiles end up as defs 1778 // (atomics end up as ModRef right now anyway). Until we separate the 1779 // ordering chain from the memory chain, this enables people to see at least 1780 // some relative ordering to volatiles. Note that getClobberingMemoryAccess 1781 // will still give an answer that bypasses other volatile loads. TODO: 1782 // Separate memory aliasing and ordering into two different chains so that 1783 // we can precisely represent both "what memory will this read/write/is 1784 // clobbered by" and "what instructions can I move this past". 1785 Def = isModSet(ModRef) || isOrdered(I); 1786 Use = isRefSet(ModRef); 1787 } 1788 1789 // It's possible for an instruction to not modify memory at all. During 1790 // construction, we ignore them. 1791 if (!Def && !Use) 1792 return nullptr; 1793 1794 MemoryUseOrDef *MUD; 1795 if (Def) 1796 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); 1797 else 1798 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); 1799 ValueToMemoryAccess[I] = MUD; 1800 return MUD; 1801 } 1802 1803 /// Properly remove \p MA from all of MemorySSA's lookup tables. 1804 void MemorySSA::removeFromLookups(MemoryAccess *MA) { 1805 assert(MA->use_empty() && 1806 "Trying to remove memory access that still has uses"); 1807 BlockNumbering.erase(MA); 1808 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1809 MUD->setDefiningAccess(nullptr); 1810 // Invalidate our walker's cache if necessary 1811 if (!isa<MemoryUse>(MA)) 1812 getWalker()->invalidateInfo(MA); 1813 1814 Value *MemoryInst; 1815 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) 1816 MemoryInst = MUD->getMemoryInst(); 1817 else 1818 MemoryInst = MA->getBlock(); 1819 1820 auto VMA = ValueToMemoryAccess.find(MemoryInst); 1821 if (VMA->second == MA) 1822 ValueToMemoryAccess.erase(VMA); 1823 } 1824 1825 /// Properly remove \p MA from all of MemorySSA's lists. 1826 /// 1827 /// Because of the way the intrusive list and use lists work, it is important to 1828 /// do removal in the right order. 1829 /// ShouldDelete defaults to true, and will cause the memory access to also be 1830 /// deleted, not just removed. 1831 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) { 1832 BasicBlock *BB = MA->getBlock(); 1833 // The access list owns the reference, so we erase it from the non-owning list 1834 // first. 1835 if (!isa<MemoryUse>(MA)) { 1836 auto DefsIt = PerBlockDefs.find(BB); 1837 std::unique_ptr<DefsList> &Defs = DefsIt->second; 1838 Defs->remove(*MA); 1839 if (Defs->empty()) 1840 PerBlockDefs.erase(DefsIt); 1841 } 1842 1843 // The erase call here will delete it. If we don't want it deleted, we call 1844 // remove instead. 1845 auto AccessIt = PerBlockAccesses.find(BB); 1846 std::unique_ptr<AccessList> &Accesses = AccessIt->second; 1847 if (ShouldDelete) 1848 Accesses->erase(MA); 1849 else 1850 Accesses->remove(MA); 1851 1852 if (Accesses->empty()) { 1853 PerBlockAccesses.erase(AccessIt); 1854 BlockNumberingValid.erase(BB); 1855 } 1856 } 1857 1858 void MemorySSA::print(raw_ostream &OS) const { 1859 MemorySSAAnnotatedWriter Writer(this); 1860 F.print(OS, &Writer); 1861 } 1862 1863 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1864 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); } 1865 #endif 1866 1867 void MemorySSA::verifyMemorySSA() const { 1868 verifyOrderingDominationAndDefUses(F); 1869 verifyDominationNumbers(F); 1870 verifyPrevDefInPhis(F); 1871 // Previously, the verification used to also verify that the clobberingAccess 1872 // cached by MemorySSA is the same as the clobberingAccess found at a later 1873 // query to AA. This does not hold true in general due to the current fragility 1874 // of BasicAA which has arbitrary caps on the things it analyzes before giving 1875 // up. As a result, transformations that are correct, will lead to BasicAA 1876 // returning different Alias answers before and after that transformation. 1877 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so 1878 // random, in the worst case we'd need to rebuild MemorySSA from scratch after 1879 // every transformation, which defeats the purpose of using it. For such an 1880 // example, see test4 added in D51960. 1881 } 1882 1883 void MemorySSA::verifyPrevDefInPhis(Function &F) const { 1884 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS) 1885 for (const BasicBlock &BB : F) { 1886 if (MemoryPhi *Phi = getMemoryAccess(&BB)) { 1887 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1888 auto *Pred = Phi->getIncomingBlock(I); 1889 auto *IncAcc = Phi->getIncomingValue(I); 1890 // If Pred has no unreachable predecessors, get last def looking at 1891 // IDoms. If, while walkings IDoms, any of these has an unreachable 1892 // predecessor, then the incoming def can be any access. 1893 if (auto *DTNode = DT->getNode(Pred)) { 1894 while (DTNode) { 1895 if (auto *DefList = getBlockDefs(DTNode->getBlock())) { 1896 auto *LastAcc = &*(--DefList->end()); 1897 assert(LastAcc == IncAcc && 1898 "Incorrect incoming access into phi."); 1899 break; 1900 } 1901 DTNode = DTNode->getIDom(); 1902 } 1903 } else { 1904 // If Pred has unreachable predecessors, but has at least a Def, the 1905 // incoming access can be the last Def in Pred, or it could have been 1906 // optimized to LoE. After an update, though, the LoE may have been 1907 // replaced by another access, so IncAcc may be any access. 1908 // If Pred has unreachable predecessors and no Defs, incoming access 1909 // should be LoE; However, after an update, it may be any access. 1910 } 1911 } 1912 } 1913 } 1914 #endif 1915 } 1916 1917 /// Verify that all of the blocks we believe to have valid domination numbers 1918 /// actually have valid domination numbers. 1919 void MemorySSA::verifyDominationNumbers(const Function &F) const { 1920 #ifndef NDEBUG 1921 if (BlockNumberingValid.empty()) 1922 return; 1923 1924 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid; 1925 for (const BasicBlock &BB : F) { 1926 if (!ValidBlocks.count(&BB)) 1927 continue; 1928 1929 ValidBlocks.erase(&BB); 1930 1931 const AccessList *Accesses = getBlockAccesses(&BB); 1932 // It's correct to say an empty block has valid numbering. 1933 if (!Accesses) 1934 continue; 1935 1936 // Block numbering starts at 1. 1937 unsigned long LastNumber = 0; 1938 for (const MemoryAccess &MA : *Accesses) { 1939 auto ThisNumberIter = BlockNumbering.find(&MA); 1940 assert(ThisNumberIter != BlockNumbering.end() && 1941 "MemoryAccess has no domination number in a valid block!"); 1942 1943 unsigned long ThisNumber = ThisNumberIter->second; 1944 assert(ThisNumber > LastNumber && 1945 "Domination numbers should be strictly increasing!"); 1946 LastNumber = ThisNumber; 1947 } 1948 } 1949 1950 assert(ValidBlocks.empty() && 1951 "All valid BasicBlocks should exist in F -- dangling pointers?"); 1952 #endif 1953 } 1954 1955 /// Verify ordering: the order and existence of MemoryAccesses matches the 1956 /// order and existence of memory affecting instructions. 1957 /// Verify domination: each definition dominates all of its uses. 1958 /// Verify def-uses: the immediate use information - walk all the memory 1959 /// accesses and verifying that, for each use, it appears in the appropriate 1960 /// def's use list 1961 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const { 1962 #if !defined(NDEBUG) 1963 // Walk all the blocks, comparing what the lookups think and what the access 1964 // lists think, as well as the order in the blocks vs the order in the access 1965 // lists. 1966 SmallVector<MemoryAccess *, 32> ActualAccesses; 1967 SmallVector<MemoryAccess *, 32> ActualDefs; 1968 for (BasicBlock &B : F) { 1969 const AccessList *AL = getBlockAccesses(&B); 1970 const auto *DL = getBlockDefs(&B); 1971 MemoryPhi *Phi = getMemoryAccess(&B); 1972 if (Phi) { 1973 // Verify ordering. 1974 ActualAccesses.push_back(Phi); 1975 ActualDefs.push_back(Phi); 1976 // Verify domination 1977 for (const Use &U : Phi->uses()) 1978 assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses"); 1979 #if defined(EXPENSIVE_CHECKS) 1980 // Verify def-uses. 1981 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( 1982 pred_begin(&B), pred_end(&B))) && 1983 "Incomplete MemoryPhi Node"); 1984 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1985 verifyUseInDefs(Phi->getIncomingValue(I), Phi); 1986 assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) && 1987 "Incoming phi block not a block predecessor"); 1988 } 1989 #endif 1990 } 1991 1992 for (Instruction &I : B) { 1993 MemoryUseOrDef *MA = getMemoryAccess(&I); 1994 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) && 1995 "We have memory affecting instructions " 1996 "in this block but they are not in the " 1997 "access list or defs list"); 1998 if (MA) { 1999 // Verify ordering. 2000 ActualAccesses.push_back(MA); 2001 if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) { 2002 // Verify ordering. 2003 ActualDefs.push_back(MA); 2004 // Verify domination. 2005 for (const Use &U : MD->uses()) 2006 assert(dominates(MD, U) && 2007 "Memory Def does not dominate it's uses"); 2008 } 2009 #if defined(EXPENSIVE_CHECKS) 2010 // Verify def-uses. 2011 verifyUseInDefs(MA->getDefiningAccess(), MA); 2012 #endif 2013 } 2014 } 2015 // Either we hit the assert, really have no accesses, or we have both 2016 // accesses and an access list. Same with defs. 2017 if (!AL && !DL) 2018 continue; 2019 // Verify ordering. 2020 assert(AL->size() == ActualAccesses.size() && 2021 "We don't have the same number of accesses in the block as on the " 2022 "access list"); 2023 assert((DL || ActualDefs.size() == 0) && 2024 "Either we should have a defs list, or we should have no defs"); 2025 assert((!DL || DL->size() == ActualDefs.size()) && 2026 "We don't have the same number of defs in the block as on the " 2027 "def list"); 2028 auto ALI = AL->begin(); 2029 auto AAI = ActualAccesses.begin(); 2030 while (ALI != AL->end() && AAI != ActualAccesses.end()) { 2031 assert(&*ALI == *AAI && "Not the same accesses in the same order"); 2032 ++ALI; 2033 ++AAI; 2034 } 2035 ActualAccesses.clear(); 2036 if (DL) { 2037 auto DLI = DL->begin(); 2038 auto ADI = ActualDefs.begin(); 2039 while (DLI != DL->end() && ADI != ActualDefs.end()) { 2040 assert(&*DLI == *ADI && "Not the same defs in the same order"); 2041 ++DLI; 2042 ++ADI; 2043 } 2044 } 2045 ActualDefs.clear(); 2046 } 2047 #endif 2048 } 2049 2050 /// Verify the def-use lists in MemorySSA, by verifying that \p Use 2051 /// appears in the use list of \p Def. 2052 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { 2053 #ifndef NDEBUG 2054 // The live on entry use may cause us to get a NULL def here 2055 if (!Def) 2056 assert(isLiveOnEntryDef(Use) && 2057 "Null def but use not point to live on entry def"); 2058 else 2059 assert(is_contained(Def->users(), Use) && 2060 "Did not find use in def's use list"); 2061 #endif 2062 } 2063 2064 /// Perform a local numbering on blocks so that instruction ordering can be 2065 /// determined in constant time. 2066 /// TODO: We currently just number in order. If we numbered by N, we could 2067 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least 2068 /// log2(N) sequences of mixed before and after) without needing to invalidate 2069 /// the numbering. 2070 void MemorySSA::renumberBlock(const BasicBlock *B) const { 2071 // The pre-increment ensures the numbers really start at 1. 2072 unsigned long CurrentNumber = 0; 2073 const AccessList *AL = getBlockAccesses(B); 2074 assert(AL != nullptr && "Asking to renumber an empty block"); 2075 for (const auto &I : *AL) 2076 BlockNumbering[&I] = ++CurrentNumber; 2077 BlockNumberingValid.insert(B); 2078 } 2079 2080 /// Determine, for two memory accesses in the same block, 2081 /// whether \p Dominator dominates \p Dominatee. 2082 /// \returns True if \p Dominator dominates \p Dominatee. 2083 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, 2084 const MemoryAccess *Dominatee) const { 2085 const BasicBlock *DominatorBlock = Dominator->getBlock(); 2086 2087 assert((DominatorBlock == Dominatee->getBlock()) && 2088 "Asking for local domination when accesses are in different blocks!"); 2089 // A node dominates itself. 2090 if (Dominatee == Dominator) 2091 return true; 2092 2093 // When Dominatee is defined on function entry, it is not dominated by another 2094 // memory access. 2095 if (isLiveOnEntryDef(Dominatee)) 2096 return false; 2097 2098 // When Dominator is defined on function entry, it dominates the other memory 2099 // access. 2100 if (isLiveOnEntryDef(Dominator)) 2101 return true; 2102 2103 if (!BlockNumberingValid.count(DominatorBlock)) 2104 renumberBlock(DominatorBlock); 2105 2106 unsigned long DominatorNum = BlockNumbering.lookup(Dominator); 2107 // All numbers start with 1 2108 assert(DominatorNum != 0 && "Block was not numbered properly"); 2109 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); 2110 assert(DominateeNum != 0 && "Block was not numbered properly"); 2111 return DominatorNum < DominateeNum; 2112 } 2113 2114 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2115 const MemoryAccess *Dominatee) const { 2116 if (Dominator == Dominatee) 2117 return true; 2118 2119 if (isLiveOnEntryDef(Dominatee)) 2120 return false; 2121 2122 if (Dominator->getBlock() != Dominatee->getBlock()) 2123 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); 2124 return locallyDominates(Dominator, Dominatee); 2125 } 2126 2127 bool MemorySSA::dominates(const MemoryAccess *Dominator, 2128 const Use &Dominatee) const { 2129 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { 2130 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); 2131 // The def must dominate the incoming block of the phi. 2132 if (UseBB != Dominator->getBlock()) 2133 return DT->dominates(Dominator->getBlock(), UseBB); 2134 // If the UseBB and the DefBB are the same, compare locally. 2135 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); 2136 } 2137 // If it's not a PHI node use, the normal dominates can already handle it. 2138 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); 2139 } 2140 2141 const static char LiveOnEntryStr[] = "liveOnEntry"; 2142 2143 void MemoryAccess::print(raw_ostream &OS) const { 2144 switch (getValueID()) { 2145 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS); 2146 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS); 2147 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS); 2148 } 2149 llvm_unreachable("invalid value id"); 2150 } 2151 2152 void MemoryDef::print(raw_ostream &OS) const { 2153 MemoryAccess *UO = getDefiningAccess(); 2154 2155 auto printID = [&OS](MemoryAccess *A) { 2156 if (A && A->getID()) 2157 OS << A->getID(); 2158 else 2159 OS << LiveOnEntryStr; 2160 }; 2161 2162 OS << getID() << " = MemoryDef("; 2163 printID(UO); 2164 OS << ")"; 2165 2166 if (isOptimized()) { 2167 OS << "->"; 2168 printID(getOptimized()); 2169 2170 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2171 OS << " " << *AR; 2172 } 2173 } 2174 2175 void MemoryPhi::print(raw_ostream &OS) const { 2176 ListSeparator LS(","); 2177 OS << getID() << " = MemoryPhi("; 2178 for (const auto &Op : operands()) { 2179 BasicBlock *BB = getIncomingBlock(Op); 2180 MemoryAccess *MA = cast<MemoryAccess>(Op); 2181 2182 OS << LS << '{'; 2183 if (BB->hasName()) 2184 OS << BB->getName(); 2185 else 2186 BB->printAsOperand(OS, false); 2187 OS << ','; 2188 if (unsigned ID = MA->getID()) 2189 OS << ID; 2190 else 2191 OS << LiveOnEntryStr; 2192 OS << '}'; 2193 } 2194 OS << ')'; 2195 } 2196 2197 void MemoryUse::print(raw_ostream &OS) const { 2198 MemoryAccess *UO = getDefiningAccess(); 2199 OS << "MemoryUse("; 2200 if (UO && UO->getID()) 2201 OS << UO->getID(); 2202 else 2203 OS << LiveOnEntryStr; 2204 OS << ')'; 2205 2206 if (Optional<AliasResult> AR = getOptimizedAccessType()) 2207 OS << " " << *AR; 2208 } 2209 2210 void MemoryAccess::dump() const { 2211 // Cannot completely remove virtual function even in release mode. 2212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2213 print(dbgs()); 2214 dbgs() << "\n"; 2215 #endif 2216 } 2217 2218 char MemorySSAPrinterLegacyPass::ID = 0; 2219 2220 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { 2221 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 2222 } 2223 2224 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { 2225 AU.setPreservesAll(); 2226 AU.addRequired<MemorySSAWrapperPass>(); 2227 } 2228 2229 class DOTFuncMSSAInfo { 2230 private: 2231 const Function &F; 2232 MemorySSAAnnotatedWriter MSSAWriter; 2233 2234 public: 2235 DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA) 2236 : F(F), MSSAWriter(&MSSA) {} 2237 2238 const Function *getFunction() { return &F; } 2239 MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; } 2240 }; 2241 2242 namespace llvm { 2243 2244 template <> 2245 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> { 2246 static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) { 2247 return &(CFGInfo->getFunction()->getEntryBlock()); 2248 } 2249 2250 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 2251 using nodes_iterator = pointer_iterator<Function::const_iterator>; 2252 2253 static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) { 2254 return nodes_iterator(CFGInfo->getFunction()->begin()); 2255 } 2256 2257 static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) { 2258 return nodes_iterator(CFGInfo->getFunction()->end()); 2259 } 2260 2261 static size_t size(DOTFuncMSSAInfo *CFGInfo) { 2262 return CFGInfo->getFunction()->size(); 2263 } 2264 }; 2265 2266 template <> 2267 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits { 2268 2269 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {} 2270 2271 static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) { 2272 return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() + 2273 "' function"; 2274 } 2275 2276 std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) { 2277 return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel( 2278 Node, nullptr, 2279 [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void { 2280 BB.print(OS, &CFGInfo->getWriter(), true, true); 2281 }, 2282 [](std::string &S, unsigned &I, unsigned Idx) -> void { 2283 std::string Str = S.substr(I, Idx - I); 2284 StringRef SR = Str; 2285 if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") || 2286 SR.count("MemoryUse(")) 2287 return; 2288 DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx); 2289 }); 2290 } 2291 2292 static std::string getEdgeSourceLabel(const BasicBlock *Node, 2293 const_succ_iterator I) { 2294 return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I); 2295 } 2296 2297 /// Display the raw branch weights from PGO. 2298 std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I, 2299 DOTFuncMSSAInfo *CFGInfo) { 2300 return ""; 2301 } 2302 2303 std::string getNodeAttributes(const BasicBlock *Node, 2304 DOTFuncMSSAInfo *CFGInfo) { 2305 return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos 2306 ? "style=filled, fillcolor=lightpink" 2307 : ""; 2308 } 2309 }; 2310 2311 } // namespace llvm 2312 2313 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { 2314 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2315 if (DotCFGMSSA != "") { 2316 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2317 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2318 } else 2319 MSSA.print(dbgs()); 2320 2321 if (VerifyMemorySSA) 2322 MSSA.verifyMemorySSA(); 2323 return false; 2324 } 2325 2326 AnalysisKey MemorySSAAnalysis::Key; 2327 2328 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, 2329 FunctionAnalysisManager &AM) { 2330 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 2331 auto &AA = AM.getResult<AAManager>(F); 2332 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT)); 2333 } 2334 2335 bool MemorySSAAnalysis::Result::invalidate( 2336 Function &F, const PreservedAnalyses &PA, 2337 FunctionAnalysisManager::Invalidator &Inv) { 2338 auto PAC = PA.getChecker<MemorySSAAnalysis>(); 2339 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 2340 Inv.invalidate<AAManager>(F, PA) || 2341 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 2342 } 2343 2344 PreservedAnalyses MemorySSAPrinterPass::run(Function &F, 2345 FunctionAnalysisManager &AM) { 2346 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 2347 if (DotCFGMSSA != "") { 2348 DOTFuncMSSAInfo CFGInfo(F, MSSA); 2349 WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA); 2350 } else { 2351 OS << "MemorySSA for function: " << F.getName() << "\n"; 2352 MSSA.print(OS); 2353 } 2354 2355 return PreservedAnalyses::all(); 2356 } 2357 2358 PreservedAnalyses MemorySSAVerifierPass::run(Function &F, 2359 FunctionAnalysisManager &AM) { 2360 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); 2361 2362 return PreservedAnalyses::all(); 2363 } 2364 2365 char MemorySSAWrapperPass::ID = 0; 2366 2367 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { 2368 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); 2369 } 2370 2371 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } 2372 2373 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2374 AU.setPreservesAll(); 2375 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2376 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2377 } 2378 2379 bool MemorySSAWrapperPass::runOnFunction(Function &F) { 2380 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2381 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 2382 MSSA.reset(new MemorySSA(F, &AA, &DT)); 2383 return false; 2384 } 2385 2386 void MemorySSAWrapperPass::verifyAnalysis() const { 2387 if (VerifyMemorySSA) 2388 MSSA->verifyMemorySSA(); 2389 } 2390 2391 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { 2392 MSSA->print(OS); 2393 } 2394 2395 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} 2396 2397 /// Walk the use-def chains starting at \p StartingAccess and find 2398 /// the MemoryAccess that actually clobbers Loc. 2399 /// 2400 /// \returns our clobbering memory access 2401 template <typename AliasAnalysisType> 2402 MemoryAccess * 2403 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2404 MemoryAccess *StartingAccess, const MemoryLocation &Loc, 2405 unsigned &UpwardWalkLimit) { 2406 assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access"); 2407 2408 Instruction *I = nullptr; 2409 if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) { 2410 if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) 2411 return StartingUseOrDef; 2412 2413 I = StartingUseOrDef->getMemoryInst(); 2414 2415 // Conservatively, fences are always clobbers, so don't perform the walk if 2416 // we hit a fence. 2417 if (!isa<CallBase>(I) && I->isFenceLike()) 2418 return StartingUseOrDef; 2419 } 2420 2421 UpwardsMemoryQuery Q; 2422 Q.OriginalAccess = StartingAccess; 2423 Q.StartingLoc = Loc; 2424 Q.Inst = nullptr; 2425 Q.IsCall = false; 2426 2427 // Unlike the other function, do not walk to the def of a def, because we are 2428 // handed something we already believe is the clobbering access. 2429 // We never set SkipSelf to true in Q in this method. 2430 MemoryAccess *Clobber = 2431 Walker.findClobber(StartingAccess, Q, UpwardWalkLimit); 2432 LLVM_DEBUG({ 2433 dbgs() << "Clobber starting at access " << *StartingAccess << "\n"; 2434 if (I) 2435 dbgs() << " for instruction " << *I << "\n"; 2436 dbgs() << " is " << *Clobber << "\n"; 2437 }); 2438 return Clobber; 2439 } 2440 2441 template <typename AliasAnalysisType> 2442 MemoryAccess * 2443 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase( 2444 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) { 2445 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); 2446 // If this is a MemoryPhi, we can't do anything. 2447 if (!StartingAccess) 2448 return MA; 2449 2450 bool IsOptimized = false; 2451 2452 // If this is an already optimized use or def, return the optimized result. 2453 // Note: Currently, we store the optimized def result in a separate field, 2454 // since we can't use the defining access. 2455 if (StartingAccess->isOptimized()) { 2456 if (!SkipSelf || !isa<MemoryDef>(StartingAccess)) 2457 return StartingAccess->getOptimized(); 2458 IsOptimized = true; 2459 } 2460 2461 const Instruction *I = StartingAccess->getMemoryInst(); 2462 // We can't sanely do anything with a fence, since they conservatively clobber 2463 // all memory, and have no locations to get pointers from to try to 2464 // disambiguate. 2465 if (!isa<CallBase>(I) && I->isFenceLike()) 2466 return StartingAccess; 2467 2468 UpwardsMemoryQuery Q(I, StartingAccess); 2469 2470 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) { 2471 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); 2472 StartingAccess->setOptimized(LiveOnEntry); 2473 StartingAccess->setOptimizedAccessType(None); 2474 return LiveOnEntry; 2475 } 2476 2477 MemoryAccess *OptimizedAccess; 2478 if (!IsOptimized) { 2479 // Start with the thing we already think clobbers this location 2480 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); 2481 2482 // At this point, DefiningAccess may be the live on entry def. 2483 // If it is, we will not get a better result. 2484 if (MSSA->isLiveOnEntryDef(DefiningAccess)) { 2485 StartingAccess->setOptimized(DefiningAccess); 2486 StartingAccess->setOptimizedAccessType(None); 2487 return DefiningAccess; 2488 } 2489 2490 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit); 2491 StartingAccess->setOptimized(OptimizedAccess); 2492 if (MSSA->isLiveOnEntryDef(OptimizedAccess)) 2493 StartingAccess->setOptimizedAccessType(None); 2494 else if (Q.AR && *Q.AR == AliasResult::MustAlias) 2495 StartingAccess->setOptimizedAccessType( 2496 AliasResult(AliasResult::MustAlias)); 2497 } else 2498 OptimizedAccess = StartingAccess->getOptimized(); 2499 2500 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); 2501 LLVM_DEBUG(dbgs() << *StartingAccess << "\n"); 2502 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is "); 2503 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n"); 2504 2505 MemoryAccess *Result; 2506 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) && 2507 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) { 2508 assert(isa<MemoryDef>(Q.OriginalAccess)); 2509 Q.SkipSelfAccess = true; 2510 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit); 2511 } else 2512 Result = OptimizedAccess; 2513 2514 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf); 2515 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n"); 2516 2517 return Result; 2518 } 2519 2520 MemoryAccess * 2521 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { 2522 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) 2523 return Use->getDefiningAccess(); 2524 return MA; 2525 } 2526 2527 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( 2528 MemoryAccess *StartingAccess, const MemoryLocation &) { 2529 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) 2530 return Use->getDefiningAccess(); 2531 return StartingAccess; 2532 } 2533 2534 void MemoryPhi::deleteMe(DerivedUser *Self) { 2535 delete static_cast<MemoryPhi *>(Self); 2536 } 2537 2538 void MemoryDef::deleteMe(DerivedUser *Self) { 2539 delete static_cast<MemoryDef *>(Self); 2540 } 2541 2542 void MemoryUse::deleteMe(DerivedUser *Self) { 2543 delete static_cast<MemoryUse *>(Self); 2544 } 2545 2546 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const { 2547 auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) { 2548 Ptr = Ptr->stripPointerCasts(); 2549 if (!isa<Instruction>(Ptr)) 2550 return true; 2551 return isa<AllocaInst>(Ptr); 2552 }; 2553 2554 Ptr = Ptr->stripPointerCasts(); 2555 if (auto *I = dyn_cast<Instruction>(Ptr)) { 2556 if (I->getParent()->isEntryBlock()) 2557 return true; 2558 } 2559 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2560 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) && 2561 GEP->hasAllConstantIndices(); 2562 } 2563 return IsGuaranteedLoopInvariantBase(Ptr); 2564 } 2565