1fcaf7f86SDimitry Andric //===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
2fcaf7f86SDimitry Andric //
3fcaf7f86SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4fcaf7f86SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5fcaf7f86SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6fcaf7f86SDimitry Andric //
7fcaf7f86SDimitry Andric //===----------------------------------------------------------------------===//
8fcaf7f86SDimitry Andric //
9fcaf7f86SDimitry Andric // This file contains utilities to analyze memory profile information.
10fcaf7f86SDimitry Andric //
11fcaf7f86SDimitry Andric //===----------------------------------------------------------------------===//
12fcaf7f86SDimitry Andric
13fcaf7f86SDimitry Andric #include "llvm/Analysis/MemoryProfileInfo.h"
14fcaf7f86SDimitry Andric #include "llvm/Support/CommandLine.h"
15fcaf7f86SDimitry Andric
16fcaf7f86SDimitry Andric using namespace llvm;
17fcaf7f86SDimitry Andric using namespace llvm::memprof;
18fcaf7f86SDimitry Andric
19fcaf7f86SDimitry Andric #define DEBUG_TYPE "memory-profile-info"
20fcaf7f86SDimitry Andric
2106c3fb27SDimitry Andric // Upper bound on lifetime access density (accesses per byte per lifetime sec)
2206c3fb27SDimitry Andric // for marking an allocation cold.
2306c3fb27SDimitry Andric cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
2406c3fb27SDimitry Andric "memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
2506c3fb27SDimitry Andric cl::Hidden,
2606c3fb27SDimitry Andric cl::desc("The threshold the lifetime access density (accesses per byte per "
2706c3fb27SDimitry Andric "lifetime sec) must be under to consider an allocation cold"));
28fcaf7f86SDimitry Andric
29fcaf7f86SDimitry Andric // Lower bound on lifetime to mark an allocation cold (in addition to accesses
3006c3fb27SDimitry Andric // per byte per sec above). This is to avoid pessimizing short lived objects.
3106c3fb27SDimitry Andric cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
3206c3fb27SDimitry Andric "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
3306c3fb27SDimitry Andric cl::desc("The average lifetime (s) for an allocation to be considered "
34fcaf7f86SDimitry Andric "cold"));
35fcaf7f86SDimitry Andric
3606c3fb27SDimitry Andric // Lower bound on average lifetime accesses density (total life time access
3706c3fb27SDimitry Andric // density / alloc count) for marking an allocation hot.
3806c3fb27SDimitry Andric cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
3906c3fb27SDimitry Andric "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
4006c3fb27SDimitry Andric cl::Hidden,
4106c3fb27SDimitry Andric cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
4206c3fb27SDimitry Andric "allocation to be considered hot"));
4306c3fb27SDimitry Andric
44*0fca6ea1SDimitry Andric cl::opt<bool> MemProfReportHintedSizes(
45*0fca6ea1SDimitry Andric "memprof-report-hinted-sizes", cl::init(false), cl::Hidden,
46*0fca6ea1SDimitry Andric cl::desc("Report total allocation sizes of hinted allocations"));
47*0fca6ea1SDimitry Andric
getAllocType(uint64_t TotalLifetimeAccessDensity,uint64_t AllocCount,uint64_t TotalLifetime)4806c3fb27SDimitry Andric AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
4906c3fb27SDimitry Andric uint64_t AllocCount,
5006c3fb27SDimitry Andric uint64_t TotalLifetime) {
5106c3fb27SDimitry Andric // The access densities are multiplied by 100 to hold 2 decimal places of
5206c3fb27SDimitry Andric // precision, so need to divide by 100.
5306c3fb27SDimitry Andric if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
5406c3fb27SDimitry Andric MemProfLifetimeAccessDensityColdThreshold
5506c3fb27SDimitry Andric // Lifetime is expected to be in ms, so convert the threshold to ms.
5606c3fb27SDimitry Andric && ((float)TotalLifetime) / AllocCount >=
5706c3fb27SDimitry Andric MemProfAveLifetimeColdThreshold * 1000)
58fcaf7f86SDimitry Andric return AllocationType::Cold;
5906c3fb27SDimitry Andric
6006c3fb27SDimitry Andric // The access densities are multiplied by 100 to hold 2 decimal places of
6106c3fb27SDimitry Andric // precision, so need to divide by 100.
6206c3fb27SDimitry Andric if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
6306c3fb27SDimitry Andric MemProfMinAveLifetimeAccessDensityHotThreshold)
6406c3fb27SDimitry Andric return AllocationType::Hot;
6506c3fb27SDimitry Andric
66fcaf7f86SDimitry Andric return AllocationType::NotCold;
67fcaf7f86SDimitry Andric }
68fcaf7f86SDimitry Andric
buildCallstackMetadata(ArrayRef<uint64_t> CallStack,LLVMContext & Ctx)69fcaf7f86SDimitry Andric MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
70fcaf7f86SDimitry Andric LLVMContext &Ctx) {
71fcaf7f86SDimitry Andric std::vector<Metadata *> StackVals;
72fcaf7f86SDimitry Andric for (auto Id : CallStack) {
73fcaf7f86SDimitry Andric auto *StackValMD =
74fcaf7f86SDimitry Andric ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
75fcaf7f86SDimitry Andric StackVals.push_back(StackValMD);
76fcaf7f86SDimitry Andric }
77fcaf7f86SDimitry Andric return MDNode::get(Ctx, StackVals);
78fcaf7f86SDimitry Andric }
79fcaf7f86SDimitry Andric
getMIBStackNode(const MDNode * MIB)80fcaf7f86SDimitry Andric MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
81*0fca6ea1SDimitry Andric assert(MIB->getNumOperands() >= 2);
82fcaf7f86SDimitry Andric // The stack metadata is the first operand of each memprof MIB metadata.
83fcaf7f86SDimitry Andric return cast<MDNode>(MIB->getOperand(0));
84fcaf7f86SDimitry Andric }
85fcaf7f86SDimitry Andric
getMIBAllocType(const MDNode * MIB)86fcaf7f86SDimitry Andric AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
87*0fca6ea1SDimitry Andric assert(MIB->getNumOperands() >= 2);
88fcaf7f86SDimitry Andric // The allocation type is currently the second operand of each memprof
89fcaf7f86SDimitry Andric // MIB metadata. This will need to change as we add additional allocation
90fcaf7f86SDimitry Andric // types that can be applied based on the allocation profile data.
91fcaf7f86SDimitry Andric auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
92fcaf7f86SDimitry Andric assert(MDS);
93*0fca6ea1SDimitry Andric if (MDS->getString() == "cold") {
94fcaf7f86SDimitry Andric return AllocationType::Cold;
95*0fca6ea1SDimitry Andric } else if (MDS->getString() == "hot") {
9606c3fb27SDimitry Andric return AllocationType::Hot;
9706c3fb27SDimitry Andric }
98fcaf7f86SDimitry Andric return AllocationType::NotCold;
99fcaf7f86SDimitry Andric }
100fcaf7f86SDimitry Andric
getMIBTotalSize(const MDNode * MIB)101*0fca6ea1SDimitry Andric uint64_t llvm::memprof::getMIBTotalSize(const MDNode *MIB) {
102*0fca6ea1SDimitry Andric if (MIB->getNumOperands() < 3)
103*0fca6ea1SDimitry Andric return 0;
104*0fca6ea1SDimitry Andric return mdconst::dyn_extract<ConstantInt>(MIB->getOperand(2))->getZExtValue();
105*0fca6ea1SDimitry Andric }
106*0fca6ea1SDimitry Andric
getAllocTypeAttributeString(AllocationType Type)10706c3fb27SDimitry Andric std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
108fcaf7f86SDimitry Andric switch (Type) {
109fcaf7f86SDimitry Andric case AllocationType::NotCold:
110fcaf7f86SDimitry Andric return "notcold";
111fcaf7f86SDimitry Andric break;
112fcaf7f86SDimitry Andric case AllocationType::Cold:
113fcaf7f86SDimitry Andric return "cold";
114fcaf7f86SDimitry Andric break;
11506c3fb27SDimitry Andric case AllocationType::Hot:
11606c3fb27SDimitry Andric return "hot";
11706c3fb27SDimitry Andric break;
118fcaf7f86SDimitry Andric default:
119fcaf7f86SDimitry Andric assert(false && "Unexpected alloc type");
120fcaf7f86SDimitry Andric }
121fcaf7f86SDimitry Andric llvm_unreachable("invalid alloc type");
122fcaf7f86SDimitry Andric }
123fcaf7f86SDimitry Andric
addAllocTypeAttribute(LLVMContext & Ctx,CallBase * CI,AllocationType AllocType)124fcaf7f86SDimitry Andric static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
125fcaf7f86SDimitry Andric AllocationType AllocType) {
126fcaf7f86SDimitry Andric auto AllocTypeString = getAllocTypeAttributeString(AllocType);
127fcaf7f86SDimitry Andric auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
128fcaf7f86SDimitry Andric CI->addFnAttr(A);
129fcaf7f86SDimitry Andric }
130fcaf7f86SDimitry Andric
hasSingleAllocType(uint8_t AllocTypes)13106c3fb27SDimitry Andric bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
132bdd1243dSDimitry Andric const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
133fcaf7f86SDimitry Andric assert(NumAllocTypes != 0);
134fcaf7f86SDimitry Andric return NumAllocTypes == 1;
135fcaf7f86SDimitry Andric }
136fcaf7f86SDimitry Andric
addCallStack(AllocationType AllocType,ArrayRef<uint64_t> StackIds,uint64_t TotalSize)137fcaf7f86SDimitry Andric void CallStackTrie::addCallStack(AllocationType AllocType,
138*0fca6ea1SDimitry Andric ArrayRef<uint64_t> StackIds,
139*0fca6ea1SDimitry Andric uint64_t TotalSize) {
140fcaf7f86SDimitry Andric bool First = true;
141fcaf7f86SDimitry Andric CallStackTrieNode *Curr = nullptr;
142fcaf7f86SDimitry Andric for (auto StackId : StackIds) {
143fcaf7f86SDimitry Andric // If this is the first stack frame, add or update alloc node.
144fcaf7f86SDimitry Andric if (First) {
145fcaf7f86SDimitry Andric First = false;
146fcaf7f86SDimitry Andric if (Alloc) {
147fcaf7f86SDimitry Andric assert(AllocStackId == StackId);
148fcaf7f86SDimitry Andric Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
149*0fca6ea1SDimitry Andric Alloc->TotalSize += TotalSize;
150fcaf7f86SDimitry Andric } else {
151fcaf7f86SDimitry Andric AllocStackId = StackId;
152*0fca6ea1SDimitry Andric Alloc = new CallStackTrieNode(AllocType, TotalSize);
153fcaf7f86SDimitry Andric }
154fcaf7f86SDimitry Andric Curr = Alloc;
155fcaf7f86SDimitry Andric continue;
156fcaf7f86SDimitry Andric }
157fcaf7f86SDimitry Andric // Update existing caller node if it exists.
158fcaf7f86SDimitry Andric auto Next = Curr->Callers.find(StackId);
159fcaf7f86SDimitry Andric if (Next != Curr->Callers.end()) {
160fcaf7f86SDimitry Andric Curr = Next->second;
161fcaf7f86SDimitry Andric Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
162*0fca6ea1SDimitry Andric Curr->TotalSize += TotalSize;
163fcaf7f86SDimitry Andric continue;
164fcaf7f86SDimitry Andric }
165fcaf7f86SDimitry Andric // Otherwise add a new caller node.
166*0fca6ea1SDimitry Andric auto *New = new CallStackTrieNode(AllocType, TotalSize);
167fcaf7f86SDimitry Andric Curr->Callers[StackId] = New;
168fcaf7f86SDimitry Andric Curr = New;
169fcaf7f86SDimitry Andric }
170fcaf7f86SDimitry Andric assert(Curr);
171fcaf7f86SDimitry Andric }
172fcaf7f86SDimitry Andric
addCallStack(MDNode * MIB)173fcaf7f86SDimitry Andric void CallStackTrie::addCallStack(MDNode *MIB) {
174fcaf7f86SDimitry Andric MDNode *StackMD = getMIBStackNode(MIB);
175fcaf7f86SDimitry Andric assert(StackMD);
176fcaf7f86SDimitry Andric std::vector<uint64_t> CallStack;
177fcaf7f86SDimitry Andric CallStack.reserve(StackMD->getNumOperands());
178bdd1243dSDimitry Andric for (const auto &MIBStackIter : StackMD->operands()) {
179fcaf7f86SDimitry Andric auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
180fcaf7f86SDimitry Andric assert(StackId);
181fcaf7f86SDimitry Andric CallStack.push_back(StackId->getZExtValue());
182fcaf7f86SDimitry Andric }
183*0fca6ea1SDimitry Andric addCallStack(getMIBAllocType(MIB), CallStack, getMIBTotalSize(MIB));
184fcaf7f86SDimitry Andric }
185fcaf7f86SDimitry Andric
createMIBNode(LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,AllocationType AllocType,uint64_t TotalSize)186fcaf7f86SDimitry Andric static MDNode *createMIBNode(LLVMContext &Ctx,
187fcaf7f86SDimitry Andric std::vector<uint64_t> &MIBCallStack,
188*0fca6ea1SDimitry Andric AllocationType AllocType, uint64_t TotalSize) {
189fcaf7f86SDimitry Andric std::vector<Metadata *> MIBPayload(
190fcaf7f86SDimitry Andric {buildCallstackMetadata(MIBCallStack, Ctx)});
191fcaf7f86SDimitry Andric MIBPayload.push_back(
192fcaf7f86SDimitry Andric MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
193*0fca6ea1SDimitry Andric if (TotalSize)
194*0fca6ea1SDimitry Andric MIBPayload.push_back(ValueAsMetadata::get(
195*0fca6ea1SDimitry Andric ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize)));
196fcaf7f86SDimitry Andric return MDNode::get(Ctx, MIBPayload);
197fcaf7f86SDimitry Andric }
198fcaf7f86SDimitry Andric
199fcaf7f86SDimitry Andric // Recursive helper to trim contexts and create metadata nodes.
200fcaf7f86SDimitry Andric // Caller should have pushed Node's loc to MIBCallStack. Doing this in the
201fcaf7f86SDimitry Andric // caller makes it simpler to handle the many early returns in this method.
buildMIBNodes(CallStackTrieNode * Node,LLVMContext & Ctx,std::vector<uint64_t> & MIBCallStack,std::vector<Metadata * > & MIBNodes,bool CalleeHasAmbiguousCallerContext)202fcaf7f86SDimitry Andric bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
203fcaf7f86SDimitry Andric std::vector<uint64_t> &MIBCallStack,
204fcaf7f86SDimitry Andric std::vector<Metadata *> &MIBNodes,
205fcaf7f86SDimitry Andric bool CalleeHasAmbiguousCallerContext) {
206fcaf7f86SDimitry Andric // Trim context below the first node in a prefix with a single alloc type.
207fcaf7f86SDimitry Andric // Add an MIB record for the current call stack prefix.
208fcaf7f86SDimitry Andric if (hasSingleAllocType(Node->AllocTypes)) {
209*0fca6ea1SDimitry Andric MIBNodes.push_back(createMIBNode(
210*0fca6ea1SDimitry Andric Ctx, MIBCallStack, (AllocationType)Node->AllocTypes, Node->TotalSize));
211fcaf7f86SDimitry Andric return true;
212fcaf7f86SDimitry Andric }
213fcaf7f86SDimitry Andric
214fcaf7f86SDimitry Andric // We don't have a single allocation for all the contexts sharing this prefix,
215fcaf7f86SDimitry Andric // so recursively descend into callers in trie.
216fcaf7f86SDimitry Andric if (!Node->Callers.empty()) {
217fcaf7f86SDimitry Andric bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
218fcaf7f86SDimitry Andric bool AddedMIBNodesForAllCallerContexts = true;
219fcaf7f86SDimitry Andric for (auto &Caller : Node->Callers) {
220fcaf7f86SDimitry Andric MIBCallStack.push_back(Caller.first);
221fcaf7f86SDimitry Andric AddedMIBNodesForAllCallerContexts &=
222fcaf7f86SDimitry Andric buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
223fcaf7f86SDimitry Andric NodeHasAmbiguousCallerContext);
224fcaf7f86SDimitry Andric // Remove Caller.
225fcaf7f86SDimitry Andric MIBCallStack.pop_back();
226fcaf7f86SDimitry Andric }
227fcaf7f86SDimitry Andric if (AddedMIBNodesForAllCallerContexts)
228fcaf7f86SDimitry Andric return true;
229fcaf7f86SDimitry Andric // We expect that the callers should be forced to add MIBs to disambiguate
230fcaf7f86SDimitry Andric // the context in this case (see below).
231fcaf7f86SDimitry Andric assert(!NodeHasAmbiguousCallerContext);
232fcaf7f86SDimitry Andric }
233fcaf7f86SDimitry Andric
234fcaf7f86SDimitry Andric // If we reached here, then this node does not have a single allocation type,
235fcaf7f86SDimitry Andric // and we didn't add metadata for a longer call stack prefix including any of
236fcaf7f86SDimitry Andric // Node's callers. That means we never hit a single allocation type along all
237fcaf7f86SDimitry Andric // call stacks with this prefix. This can happen due to recursion collapsing
238fcaf7f86SDimitry Andric // or the stack being deeper than tracked by the profiler runtime, leading to
239fcaf7f86SDimitry Andric // contexts with different allocation types being merged. In that case, we
240fcaf7f86SDimitry Andric // trim the context just below the deepest context split, which is this
241fcaf7f86SDimitry Andric // node if the callee has an ambiguous caller context (multiple callers),
242fcaf7f86SDimitry Andric // since the recursive calls above returned false. Conservatively give it
243fcaf7f86SDimitry Andric // non-cold allocation type.
244fcaf7f86SDimitry Andric if (!CalleeHasAmbiguousCallerContext)
245fcaf7f86SDimitry Andric return false;
246*0fca6ea1SDimitry Andric MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold,
247*0fca6ea1SDimitry Andric Node->TotalSize));
248fcaf7f86SDimitry Andric return true;
249fcaf7f86SDimitry Andric }
250fcaf7f86SDimitry Andric
251fcaf7f86SDimitry Andric // Build and attach the minimal necessary MIB metadata. If the alloc has a
252fcaf7f86SDimitry Andric // single allocation type, add a function attribute instead. Returns true if
253fcaf7f86SDimitry Andric // memprof metadata attached, false if not (attribute added).
buildAndAttachMIBMetadata(CallBase * CI)254fcaf7f86SDimitry Andric bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
255fcaf7f86SDimitry Andric auto &Ctx = CI->getContext();
256fcaf7f86SDimitry Andric if (hasSingleAllocType(Alloc->AllocTypes)) {
257fcaf7f86SDimitry Andric addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes);
258*0fca6ea1SDimitry Andric if (MemProfReportHintedSizes) {
259*0fca6ea1SDimitry Andric assert(Alloc->TotalSize);
260*0fca6ea1SDimitry Andric errs() << "Total size for allocation with location hash " << AllocStackId
261*0fca6ea1SDimitry Andric << " and single alloc type "
262*0fca6ea1SDimitry Andric << getAllocTypeAttributeString((AllocationType)Alloc->AllocTypes)
263*0fca6ea1SDimitry Andric << ": " << Alloc->TotalSize << "\n";
264*0fca6ea1SDimitry Andric }
265fcaf7f86SDimitry Andric return false;
266fcaf7f86SDimitry Andric }
267fcaf7f86SDimitry Andric std::vector<uint64_t> MIBCallStack;
268fcaf7f86SDimitry Andric MIBCallStack.push_back(AllocStackId);
269fcaf7f86SDimitry Andric std::vector<Metadata *> MIBNodes;
270fcaf7f86SDimitry Andric assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
271*0fca6ea1SDimitry Andric // The last parameter is meant to say whether the callee of the given node
272*0fca6ea1SDimitry Andric // has more than one caller. Here the node being passed in is the alloc
273*0fca6ea1SDimitry Andric // and it has no callees. So it's false.
274*0fca6ea1SDimitry Andric if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes, false)) {
275fcaf7f86SDimitry Andric assert(MIBCallStack.size() == 1 &&
276fcaf7f86SDimitry Andric "Should only be left with Alloc's location in stack");
277fcaf7f86SDimitry Andric CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
278fcaf7f86SDimitry Andric return true;
279fcaf7f86SDimitry Andric }
280*0fca6ea1SDimitry Andric // If there exists corner case that CallStackTrie has one chain to leaf
281*0fca6ea1SDimitry Andric // and all node in the chain have multi alloc type, conservatively give
282*0fca6ea1SDimitry Andric // it non-cold allocation type.
283*0fca6ea1SDimitry Andric // FIXME: Avoid this case before memory profile created.
284*0fca6ea1SDimitry Andric addAllocTypeAttribute(Ctx, CI, AllocationType::NotCold);
285*0fca6ea1SDimitry Andric return false;
286*0fca6ea1SDimitry Andric }
287bdd1243dSDimitry Andric
288bdd1243dSDimitry Andric template <>
CallStackIterator(const MDNode * N,bool End)289bdd1243dSDimitry Andric CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
290bdd1243dSDimitry Andric const MDNode *N, bool End)
291bdd1243dSDimitry Andric : N(N) {
292bdd1243dSDimitry Andric if (!N)
293bdd1243dSDimitry Andric return;
294bdd1243dSDimitry Andric Iter = End ? N->op_end() : N->op_begin();
295bdd1243dSDimitry Andric }
296bdd1243dSDimitry Andric
297bdd1243dSDimitry Andric template <>
298bdd1243dSDimitry Andric uint64_t
operator *()299bdd1243dSDimitry Andric CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
300bdd1243dSDimitry Andric assert(Iter != N->op_end());
301bdd1243dSDimitry Andric ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
302bdd1243dSDimitry Andric assert(StackIdCInt);
303bdd1243dSDimitry Andric return StackIdCInt->getZExtValue();
304bdd1243dSDimitry Andric }
30506c3fb27SDimitry Andric
back() const30606c3fb27SDimitry Andric template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
30706c3fb27SDimitry Andric assert(N);
30806c3fb27SDimitry Andric return mdconst::dyn_extract<ConstantInt>(N->operands().back())
30906c3fb27SDimitry Andric ->getZExtValue();
31006c3fb27SDimitry Andric }
311