xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryLocation.cpp (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 //===- MemoryLocation.cpp - Memory location descriptions -------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/MemoryLocation.h"
10 #include "llvm/Analysis/TargetLibraryInfo.h"
11 #include "llvm/IR/BasicBlock.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instructions.h"
14 #include "llvm/IR/IntrinsicInst.h"
15 #include "llvm/IR/IntrinsicsARM.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Type.h"
19 using namespace llvm;
20 
21 void LocationSize::print(raw_ostream &OS) const {
22   OS << "LocationSize::";
23   if (*this == beforeOrAfterPointer())
24     OS << "beforeOrAfterPointer";
25   else if (*this == afterPointer())
26     OS << "afterPointer";
27   else if (*this == mapEmpty())
28     OS << "mapEmpty";
29   else if (*this == mapTombstone())
30     OS << "mapTombstone";
31   else if (isPrecise())
32     OS << "precise(" << getValue() << ')';
33   else
34     OS << "upperBound(" << getValue() << ')';
35 }
36 
37 MemoryLocation MemoryLocation::get(const LoadInst *LI) {
38   const auto &DL = LI->getModule()->getDataLayout();
39 
40   return MemoryLocation(
41       LI->getPointerOperand(),
42       LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
43       LI->getAAMetadata());
44 }
45 
46 MemoryLocation MemoryLocation::get(const StoreInst *SI) {
47   const auto &DL = SI->getModule()->getDataLayout();
48 
49   return MemoryLocation(SI->getPointerOperand(),
50                         LocationSize::precise(DL.getTypeStoreSize(
51                             SI->getValueOperand()->getType())),
52                         SI->getAAMetadata());
53 }
54 
55 MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
56   return MemoryLocation(VI->getPointerOperand(),
57                         LocationSize::afterPointer(), VI->getAAMetadata());
58 }
59 
60 MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
61   const auto &DL = CXI->getModule()->getDataLayout();
62 
63   return MemoryLocation(CXI->getPointerOperand(),
64                         LocationSize::precise(DL.getTypeStoreSize(
65                             CXI->getCompareOperand()->getType())),
66                         CXI->getAAMetadata());
67 }
68 
69 MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
70   const auto &DL = RMWI->getModule()->getDataLayout();
71 
72   return MemoryLocation(RMWI->getPointerOperand(),
73                         LocationSize::precise(DL.getTypeStoreSize(
74                             RMWI->getValOperand()->getType())),
75                         RMWI->getAAMetadata());
76 }
77 
78 Optional<MemoryLocation> MemoryLocation::getOrNone(const Instruction *Inst) {
79   switch (Inst->getOpcode()) {
80   case Instruction::Load:
81     return get(cast<LoadInst>(Inst));
82   case Instruction::Store:
83     return get(cast<StoreInst>(Inst));
84   case Instruction::VAArg:
85     return get(cast<VAArgInst>(Inst));
86   case Instruction::AtomicCmpXchg:
87     return get(cast<AtomicCmpXchgInst>(Inst));
88   case Instruction::AtomicRMW:
89     return get(cast<AtomicRMWInst>(Inst));
90   default:
91     return None;
92   }
93 }
94 
95 MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
96   return getForSource(cast<AnyMemTransferInst>(MTI));
97 }
98 
99 MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
100   return getForSource(cast<AnyMemTransferInst>(MTI));
101 }
102 
103 MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
104   assert(MTI->getRawSource() == MTI->getArgOperand(1));
105   return getForArgument(MTI, 1, nullptr);
106 }
107 
108 MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
109   return getForDest(cast<AnyMemIntrinsic>(MI));
110 }
111 
112 MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
113   return getForDest(cast<AnyMemIntrinsic>(MI));
114 }
115 
116 MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
117   assert(MI->getRawDest() == MI->getArgOperand(0));
118   return getForArgument(MI, 0, nullptr);
119 }
120 
121 Optional<MemoryLocation>
122 MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
123   if (!CB->onlyAccessesArgMemory())
124     return None;
125 
126   if (CB->hasOperandBundles())
127     // TODO: remove implementation restriction
128     return None;
129 
130   Value *UsedV = nullptr;
131   Optional<unsigned> UsedIdx;
132   for (unsigned i = 0; i < CB->arg_size(); i++) {
133     if (!CB->getArgOperand(i)->getType()->isPointerTy())
134       continue;
135      if (CB->onlyReadsMemory(i))
136        continue;
137     if (!UsedV) {
138       // First potentially writing parameter
139       UsedV = CB->getArgOperand(i);
140       UsedIdx = i;
141       continue;
142     }
143     UsedIdx = None;
144     if (UsedV != CB->getArgOperand(i))
145       // Can't describe writing to two distinct locations.
146       // TODO: This results in an inprecision when two values derived from the
147       // same object are passed as arguments to the same function.
148       return None;
149   }
150   if (!UsedV)
151     // We don't currently have a way to represent a "does not write" result
152     // and thus have to be conservative and return unknown.
153     return None;
154 
155   if (UsedIdx)
156     return getForArgument(CB, *UsedIdx, &TLI);
157   return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
158 }
159 
160 MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
161                                               unsigned ArgIdx,
162                                               const TargetLibraryInfo *TLI) {
163   AAMDNodes AATags = Call->getAAMetadata();
164   const Value *Arg = Call->getArgOperand(ArgIdx);
165 
166   // We may be able to produce an exact size for known intrinsics.
167   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
168     const DataLayout &DL = II->getModule()->getDataLayout();
169 
170     switch (II->getIntrinsicID()) {
171     default:
172       break;
173     case Intrinsic::memset:
174     case Intrinsic::memcpy:
175     case Intrinsic::memcpy_inline:
176     case Intrinsic::memmove:
177     case Intrinsic::memcpy_element_unordered_atomic:
178     case Intrinsic::memmove_element_unordered_atomic:
179     case Intrinsic::memset_element_unordered_atomic:
180       assert((ArgIdx == 0 || ArgIdx == 1) &&
181              "Invalid argument index for memory intrinsic");
182       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
183         return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
184                               AATags);
185       return MemoryLocation::getAfter(Arg, AATags);
186 
187     case Intrinsic::lifetime_start:
188     case Intrinsic::lifetime_end:
189     case Intrinsic::invariant_start:
190       assert(ArgIdx == 1 && "Invalid argument index");
191       return MemoryLocation(
192           Arg,
193           LocationSize::precise(
194               cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
195           AATags);
196 
197     case Intrinsic::masked_load:
198       assert(ArgIdx == 0 && "Invalid argument index");
199       return MemoryLocation(
200           Arg,
201           LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
202           AATags);
203 
204     case Intrinsic::masked_store:
205       assert(ArgIdx == 1 && "Invalid argument index");
206       return MemoryLocation(
207           Arg,
208           LocationSize::upperBound(
209               DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
210           AATags);
211 
212     case Intrinsic::invariant_end:
213       // The first argument to an invariant.end is a "descriptor" type (e.g. a
214       // pointer to a empty struct) which is never actually dereferenced.
215       if (ArgIdx == 0)
216         return MemoryLocation(Arg, LocationSize::precise(0), AATags);
217       assert(ArgIdx == 2 && "Invalid argument index");
218       return MemoryLocation(
219           Arg,
220           LocationSize::precise(
221               cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
222           AATags);
223 
224     case Intrinsic::arm_neon_vld1:
225       assert(ArgIdx == 0 && "Invalid argument index");
226       // LLVM's vld1 and vst1 intrinsics currently only support a single
227       // vector register.
228       return MemoryLocation(
229           Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
230           AATags);
231 
232     case Intrinsic::arm_neon_vst1:
233       assert(ArgIdx == 0 && "Invalid argument index");
234       return MemoryLocation(Arg,
235                             LocationSize::precise(DL.getTypeStoreSize(
236                                 II->getArgOperand(1)->getType())),
237                             AATags);
238     }
239 
240     assert(
241         !isa<AnyMemTransferInst>(II) &&
242         "all memory transfer intrinsics should be handled by the switch above");
243   }
244 
245   // We can bound the aliasing properties of memset_pattern16 just as we can
246   // for memcpy/memset.  This is particularly important because the
247   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
248   // whenever possible.
249   LibFunc F;
250   if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
251     switch (F) {
252     case LibFunc_strcpy:
253     case LibFunc_strcat:
254     case LibFunc_strncat:
255       assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
256       return MemoryLocation::getAfter(Arg, AATags);
257 
258     case LibFunc_memset_chk: {
259       assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
260       LocationSize Size = LocationSize::afterPointer();
261       if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
262         // memset_chk writes at most Len bytes. It may write less, if Len
263         // exceeds the specified max size and aborts.
264         Size = LocationSize::upperBound(Len->getZExtValue());
265       }
266       return MemoryLocation(Arg, Size, AATags);
267     }
268     case LibFunc_strncpy: {
269       assert((ArgIdx == 0 || ArgIdx == 1) &&
270              "Invalid argument index for strncpy");
271       LocationSize Size = LocationSize::afterPointer();
272       if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
273         // strncpy is guaranteed to write Len bytes, but only reads up to Len
274         // bytes.
275         Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
276                            : LocationSize::upperBound(Len->getZExtValue());
277       }
278       return MemoryLocation(Arg, Size, AATags);
279     }
280     case LibFunc_memset_pattern16:
281     case LibFunc_memset_pattern4:
282     case LibFunc_memset_pattern8:
283       assert((ArgIdx == 0 || ArgIdx == 1) &&
284              "Invalid argument index for memset_pattern16");
285       if (ArgIdx == 1) {
286         unsigned Size = 16;
287         if (F == LibFunc_memset_pattern4)
288           Size = 4;
289         else if (F == LibFunc_memset_pattern8)
290           Size = 8;
291         return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
292       }
293       if (const ConstantInt *LenCI =
294               dyn_cast<ConstantInt>(Call->getArgOperand(2)))
295         return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
296                               AATags);
297       return MemoryLocation::getAfter(Arg, AATags);
298     case LibFunc_bcmp:
299     case LibFunc_memcmp:
300       assert((ArgIdx == 0 || ArgIdx == 1) &&
301              "Invalid argument index for memcmp/bcmp");
302       if (const ConstantInt *LenCI =
303               dyn_cast<ConstantInt>(Call->getArgOperand(2)))
304         return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
305                               AATags);
306       return MemoryLocation::getAfter(Arg, AATags);
307     case LibFunc_memchr:
308       assert((ArgIdx == 0) && "Invalid argument index for memchr");
309       if (const ConstantInt *LenCI =
310               dyn_cast<ConstantInt>(Call->getArgOperand(2)))
311         return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
312                               AATags);
313       return MemoryLocation::getAfter(Arg, AATags);
314     case LibFunc_memccpy:
315       assert((ArgIdx == 0 || ArgIdx == 1) &&
316              "Invalid argument index for memccpy");
317       // We only know an upper bound on the number of bytes read/written.
318       if (const ConstantInt *LenCI =
319               dyn_cast<ConstantInt>(Call->getArgOperand(3)))
320         return MemoryLocation(
321             Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
322       return MemoryLocation::getAfter(Arg, AATags);
323     default:
324       break;
325     };
326   }
327 
328   return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
329 }
330