xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryLocation.cpp (revision c989957f28ef5b03f594265612e3437c1e826ed4)
1  //===- MemoryLocation.cpp - Memory location descriptions -------------------==//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "llvm/Analysis/MemoryLocation.h"
10  #include "llvm/Analysis/TargetLibraryInfo.h"
11  #include "llvm/IR/DataLayout.h"
12  #include "llvm/IR/Instructions.h"
13  #include "llvm/IR/IntrinsicInst.h"
14  #include "llvm/IR/IntrinsicsARM.h"
15  #include "llvm/IR/Module.h"
16  #include "llvm/IR/Type.h"
17  #include <optional>
18  using namespace llvm;
19  
20  void LocationSize::print(raw_ostream &OS) const {
21    OS << "LocationSize::";
22    if (*this == beforeOrAfterPointer())
23      OS << "beforeOrAfterPointer";
24    else if (*this == afterPointer())
25      OS << "afterPointer";
26    else if (*this == mapEmpty())
27      OS << "mapEmpty";
28    else if (*this == mapTombstone())
29      OS << "mapTombstone";
30    else if (isPrecise())
31      OS << "precise(" << getValue() << ')';
32    else
33      OS << "upperBound(" << getValue() << ')';
34  }
35  
36  MemoryLocation MemoryLocation::get(const LoadInst *LI) {
37    const auto &DL = LI->getModule()->getDataLayout();
38  
39    return MemoryLocation(
40        LI->getPointerOperand(),
41        LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
42        LI->getAAMetadata());
43  }
44  
45  MemoryLocation MemoryLocation::get(const StoreInst *SI) {
46    const auto &DL = SI->getModule()->getDataLayout();
47  
48    return MemoryLocation(SI->getPointerOperand(),
49                          LocationSize::precise(DL.getTypeStoreSize(
50                              SI->getValueOperand()->getType())),
51                          SI->getAAMetadata());
52  }
53  
54  MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
55    return MemoryLocation(VI->getPointerOperand(),
56                          LocationSize::afterPointer(), VI->getAAMetadata());
57  }
58  
59  MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
60    const auto &DL = CXI->getModule()->getDataLayout();
61  
62    return MemoryLocation(CXI->getPointerOperand(),
63                          LocationSize::precise(DL.getTypeStoreSize(
64                              CXI->getCompareOperand()->getType())),
65                          CXI->getAAMetadata());
66  }
67  
68  MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
69    const auto &DL = RMWI->getModule()->getDataLayout();
70  
71    return MemoryLocation(RMWI->getPointerOperand(),
72                          LocationSize::precise(DL.getTypeStoreSize(
73                              RMWI->getValOperand()->getType())),
74                          RMWI->getAAMetadata());
75  }
76  
77  std::optional<MemoryLocation>
78  MemoryLocation::getOrNone(const Instruction *Inst) {
79    switch (Inst->getOpcode()) {
80    case Instruction::Load:
81      return get(cast<LoadInst>(Inst));
82    case Instruction::Store:
83      return get(cast<StoreInst>(Inst));
84    case Instruction::VAArg:
85      return get(cast<VAArgInst>(Inst));
86    case Instruction::AtomicCmpXchg:
87      return get(cast<AtomicCmpXchgInst>(Inst));
88    case Instruction::AtomicRMW:
89      return get(cast<AtomicRMWInst>(Inst));
90    default:
91      return std::nullopt;
92    }
93  }
94  
95  MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
96    return getForSource(cast<AnyMemTransferInst>(MTI));
97  }
98  
99  MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
100    return getForSource(cast<AnyMemTransferInst>(MTI));
101  }
102  
103  MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
104    assert(MTI->getRawSource() == MTI->getArgOperand(1));
105    return getForArgument(MTI, 1, nullptr);
106  }
107  
108  MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
109    return getForDest(cast<AnyMemIntrinsic>(MI));
110  }
111  
112  MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
113    return getForDest(cast<AnyMemIntrinsic>(MI));
114  }
115  
116  MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
117    assert(MI->getRawDest() == MI->getArgOperand(0));
118    return getForArgument(MI, 0, nullptr);
119  }
120  
121  std::optional<MemoryLocation>
122  MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
123    if (!CB->onlyAccessesArgMemory())
124      return std::nullopt;
125  
126    if (CB->hasOperandBundles())
127      // TODO: remove implementation restriction
128      return std::nullopt;
129  
130    Value *UsedV = nullptr;
131    std::optional<unsigned> UsedIdx;
132    for (unsigned i = 0; i < CB->arg_size(); i++) {
133      if (!CB->getArgOperand(i)->getType()->isPointerTy())
134        continue;
135      if (CB->onlyReadsMemory(i))
136        continue;
137      if (!UsedV) {
138        // First potentially writing parameter
139        UsedV = CB->getArgOperand(i);
140        UsedIdx = i;
141        continue;
142      }
143      UsedIdx = std::nullopt;
144      if (UsedV != CB->getArgOperand(i))
145        // Can't describe writing to two distinct locations.
146        // TODO: This results in an inprecision when two values derived from the
147        // same object are passed as arguments to the same function.
148        return std::nullopt;
149    }
150    if (!UsedV)
151      // We don't currently have a way to represent a "does not write" result
152      // and thus have to be conservative and return unknown.
153      return std::nullopt;
154  
155    if (UsedIdx)
156      return getForArgument(CB, *UsedIdx, &TLI);
157    return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
158  }
159  
160  MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
161                                                unsigned ArgIdx,
162                                                const TargetLibraryInfo *TLI) {
163    AAMDNodes AATags = Call->getAAMetadata();
164    const Value *Arg = Call->getArgOperand(ArgIdx);
165  
166    // We may be able to produce an exact size for known intrinsics.
167    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
168      const DataLayout &DL = II->getModule()->getDataLayout();
169  
170      switch (II->getIntrinsicID()) {
171      default:
172        break;
173      case Intrinsic::memset:
174      case Intrinsic::memcpy:
175      case Intrinsic::memcpy_inline:
176      case Intrinsic::memmove:
177      case Intrinsic::memcpy_element_unordered_atomic:
178      case Intrinsic::memmove_element_unordered_atomic:
179      case Intrinsic::memset_element_unordered_atomic:
180        assert((ArgIdx == 0 || ArgIdx == 1) &&
181               "Invalid argument index for memory intrinsic");
182        if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
183          return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
184                                AATags);
185        return MemoryLocation::getAfter(Arg, AATags);
186  
187      case Intrinsic::lifetime_start:
188      case Intrinsic::lifetime_end:
189      case Intrinsic::invariant_start:
190        assert(ArgIdx == 1 && "Invalid argument index");
191        return MemoryLocation(
192            Arg,
193            LocationSize::precise(
194                cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
195            AATags);
196  
197      case Intrinsic::masked_load:
198        assert(ArgIdx == 0 && "Invalid argument index");
199        return MemoryLocation(
200            Arg,
201            LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
202            AATags);
203  
204      case Intrinsic::masked_store:
205        assert(ArgIdx == 1 && "Invalid argument index");
206        return MemoryLocation(
207            Arg,
208            LocationSize::upperBound(
209                DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
210            AATags);
211  
212      case Intrinsic::invariant_end:
213        // The first argument to an invariant.end is a "descriptor" type (e.g. a
214        // pointer to a empty struct) which is never actually dereferenced.
215        if (ArgIdx == 0)
216          return MemoryLocation(Arg, LocationSize::precise(0), AATags);
217        assert(ArgIdx == 2 && "Invalid argument index");
218        return MemoryLocation(
219            Arg,
220            LocationSize::precise(
221                cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
222            AATags);
223  
224      case Intrinsic::arm_neon_vld1:
225        assert(ArgIdx == 0 && "Invalid argument index");
226        // LLVM's vld1 and vst1 intrinsics currently only support a single
227        // vector register.
228        return MemoryLocation(
229            Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
230            AATags);
231  
232      case Intrinsic::arm_neon_vst1:
233        assert(ArgIdx == 0 && "Invalid argument index");
234        return MemoryLocation(Arg,
235                              LocationSize::precise(DL.getTypeStoreSize(
236                                  II->getArgOperand(1)->getType())),
237                              AATags);
238      }
239  
240      assert(
241          !isa<AnyMemTransferInst>(II) &&
242          "all memory transfer intrinsics should be handled by the switch above");
243    }
244  
245    // We can bound the aliasing properties of memset_pattern16 just as we can
246    // for memcpy/memset.  This is particularly important because the
247    // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
248    // whenever possible.
249    LibFunc F;
250    if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
251      switch (F) {
252      case LibFunc_strcpy:
253      case LibFunc_strcat:
254      case LibFunc_strncat:
255        assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
256        return MemoryLocation::getAfter(Arg, AATags);
257  
258      case LibFunc_memset_chk:
259        assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
260        LLVM_FALLTHROUGH;
261      case LibFunc_memcpy_chk: {
262        assert((ArgIdx == 0 || ArgIdx == 1) &&
263               "Invalid argument index for memcpy_chk");
264        LocationSize Size = LocationSize::afterPointer();
265        if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
266          // memset_chk writes at most Len bytes, memcpy_chk reads/writes at most
267          // Len bytes. They may read/write less, if Len exceeds the specified max
268          // size and aborts.
269          Size = LocationSize::upperBound(Len->getZExtValue());
270        }
271        return MemoryLocation(Arg, Size, AATags);
272      }
273      case LibFunc_strncpy: {
274        assert((ArgIdx == 0 || ArgIdx == 1) &&
275               "Invalid argument index for strncpy");
276        LocationSize Size = LocationSize::afterPointer();
277        if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
278          // strncpy is guaranteed to write Len bytes, but only reads up to Len
279          // bytes.
280          Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
281                             : LocationSize::upperBound(Len->getZExtValue());
282        }
283        return MemoryLocation(Arg, Size, AATags);
284      }
285      case LibFunc_memset_pattern16:
286      case LibFunc_memset_pattern4:
287      case LibFunc_memset_pattern8:
288        assert((ArgIdx == 0 || ArgIdx == 1) &&
289               "Invalid argument index for memset_pattern16");
290        if (ArgIdx == 1) {
291          unsigned Size = 16;
292          if (F == LibFunc_memset_pattern4)
293            Size = 4;
294          else if (F == LibFunc_memset_pattern8)
295            Size = 8;
296          return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
297        }
298        if (const ConstantInt *LenCI =
299                dyn_cast<ConstantInt>(Call->getArgOperand(2)))
300          return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
301                                AATags);
302        return MemoryLocation::getAfter(Arg, AATags);
303      case LibFunc_bcmp:
304      case LibFunc_memcmp:
305        assert((ArgIdx == 0 || ArgIdx == 1) &&
306               "Invalid argument index for memcmp/bcmp");
307        if (const ConstantInt *LenCI =
308                dyn_cast<ConstantInt>(Call->getArgOperand(2)))
309          return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
310                                AATags);
311        return MemoryLocation::getAfter(Arg, AATags);
312      case LibFunc_memchr:
313        assert((ArgIdx == 0) && "Invalid argument index for memchr");
314        if (const ConstantInt *LenCI =
315                dyn_cast<ConstantInt>(Call->getArgOperand(2)))
316          return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
317                                AATags);
318        return MemoryLocation::getAfter(Arg, AATags);
319      case LibFunc_memccpy:
320        assert((ArgIdx == 0 || ArgIdx == 1) &&
321               "Invalid argument index for memccpy");
322        // We only know an upper bound on the number of bytes read/written.
323        if (const ConstantInt *LenCI =
324                dyn_cast<ConstantInt>(Call->getArgOperand(3)))
325          return MemoryLocation(
326              Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
327        return MemoryLocation::getAfter(Arg, AATags);
328      default:
329        break;
330      };
331    }
332  
333    return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
334  }
335