1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/OrderedBasicBlock.h" 27 #include "llvm/Analysis/PHITransAddr.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Use.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/AtomicOrdering.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "memdep" 67 68 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 69 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 70 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 71 72 STATISTIC(NumCacheNonLocalPtr, 73 "Number of fully cached non-local ptr responses"); 74 STATISTIC(NumCacheDirtyNonLocalPtr, 75 "Number of cached, but dirty, non-local ptr responses"); 76 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 77 STATISTIC(NumCacheCompleteNonLocalPtr, 78 "Number of block queries that were completely cached"); 79 80 // Limit for the number of instructions to scan in a block. 81 82 static cl::opt<unsigned> BlockScanLimit( 83 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 84 cl::desc("The number of instructions to scan in a block in memory " 85 "dependency analysis (default = 100)")); 86 87 static cl::opt<unsigned> 88 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 89 cl::desc("The number of blocks to scan during memory " 90 "dependency analysis (default = 1000)")); 91 92 // Limit on the number of memdep results to process. 93 static const unsigned int NumResultsLimit = 100; 94 95 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 96 /// 97 /// If the set becomes empty, remove Inst's entry. 98 template <typename KeyTy> 99 static void 100 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 101 Instruction *Inst, KeyTy Val) { 102 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 103 ReverseMap.find(Inst); 104 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 105 bool Found = InstIt->second.erase(Val); 106 assert(Found && "Invalid reverse map!"); 107 (void)Found; 108 if (InstIt->second.empty()) 109 ReverseMap.erase(InstIt); 110 } 111 112 /// If the given instruction references a specific memory location, fill in Loc 113 /// with the details, otherwise set Loc.Ptr to null. 114 /// 115 /// Returns a ModRefInfo value describing the general behavior of the 116 /// instruction. 117 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 118 const TargetLibraryInfo &TLI) { 119 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 120 if (LI->isUnordered()) { 121 Loc = MemoryLocation::get(LI); 122 return ModRefInfo::Ref; 123 } 124 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 125 Loc = MemoryLocation::get(LI); 126 return ModRefInfo::ModRef; 127 } 128 Loc = MemoryLocation(); 129 return ModRefInfo::ModRef; 130 } 131 132 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 133 if (SI->isUnordered()) { 134 Loc = MemoryLocation::get(SI); 135 return ModRefInfo::Mod; 136 } 137 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 138 Loc = MemoryLocation::get(SI); 139 return ModRefInfo::ModRef; 140 } 141 Loc = MemoryLocation(); 142 return ModRefInfo::ModRef; 143 } 144 145 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 146 Loc = MemoryLocation::get(V); 147 return ModRefInfo::ModRef; 148 } 149 150 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 151 // calls to free() deallocate the entire structure 152 Loc = MemoryLocation(CI->getArgOperand(0)); 153 return ModRefInfo::Mod; 154 } 155 156 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 157 switch (II->getIntrinsicID()) { 158 case Intrinsic::lifetime_start: 159 case Intrinsic::lifetime_end: 160 case Intrinsic::invariant_start: 161 Loc = MemoryLocation::getForArgument(II, 1, TLI); 162 // These intrinsics don't really modify the memory, but returning Mod 163 // will allow them to be handled conservatively. 164 return ModRefInfo::Mod; 165 case Intrinsic::invariant_end: 166 Loc = MemoryLocation::getForArgument(II, 2, TLI); 167 // These intrinsics don't really modify the memory, but returning Mod 168 // will allow them to be handled conservatively. 169 return ModRefInfo::Mod; 170 default: 171 break; 172 } 173 } 174 175 // Otherwise, just do the coarse-grained thing that always works. 176 if (Inst->mayWriteToMemory()) 177 return ModRefInfo::ModRef; 178 if (Inst->mayReadFromMemory()) 179 return ModRefInfo::Ref; 180 return ModRefInfo::NoModRef; 181 } 182 183 /// Private helper for finding the local dependencies of a call site. 184 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 185 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 186 BasicBlock *BB) { 187 unsigned Limit = getDefaultBlockScanLimit(); 188 189 // Walk backwards through the block, looking for dependencies. 190 while (ScanIt != BB->begin()) { 191 Instruction *Inst = &*--ScanIt; 192 // Debug intrinsics don't cause dependences and should not affect Limit 193 if (isa<DbgInfoIntrinsic>(Inst)) 194 continue; 195 196 // Limit the amount of scanning we do so we don't end up with quadratic 197 // running time on extreme testcases. 198 --Limit; 199 if (!Limit) 200 return MemDepResult::getUnknown(); 201 202 // If this inst is a memory op, get the pointer it accessed 203 MemoryLocation Loc; 204 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 205 if (Loc.Ptr) { 206 // A simple instruction. 207 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 208 return MemDepResult::getClobber(Inst); 209 continue; 210 } 211 212 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 213 // If these two calls do not interfere, look past it. 214 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 215 // If the two calls are the same, return Inst as a Def, so that 216 // Call can be found redundant and eliminated. 217 if (isReadOnlyCall && !isModSet(MR) && 218 Call->isIdenticalToWhenDefined(CallB)) 219 return MemDepResult::getDef(Inst); 220 221 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 222 // keep scanning. 223 continue; 224 } else 225 return MemDepResult::getClobber(Inst); 226 } 227 228 // If we could not obtain a pointer for the instruction and the instruction 229 // touches memory then assume that this is a dependency. 230 if (isModOrRefSet(MR)) 231 return MemDepResult::getClobber(Inst); 232 } 233 234 // No dependence found. If this is the entry block of the function, it is 235 // unknown, otherwise it is non-local. 236 if (BB != &BB->getParent()->getEntryBlock()) 237 return MemDepResult::getNonLocal(); 238 return MemDepResult::getNonFuncLocal(); 239 } 240 241 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 242 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 243 const LoadInst *LI) { 244 // We can only extend simple integer loads. 245 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 246 return 0; 247 248 // Load widening is hostile to ThreadSanitizer: it may cause false positives 249 // or make the reports more cryptic (access sizes are wrong). 250 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 251 return 0; 252 253 const DataLayout &DL = LI->getModule()->getDataLayout(); 254 255 // Get the base of this load. 256 int64_t LIOffs = 0; 257 const Value *LIBase = 258 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 259 260 // If the two pointers are not based on the same pointer, we can't tell that 261 // they are related. 262 if (LIBase != MemLocBase) 263 return 0; 264 265 // Okay, the two values are based on the same pointer, but returned as 266 // no-alias. This happens when we have things like two byte loads at "P+1" 267 // and "P+3". Check to see if increasing the size of the "LI" load up to its 268 // alignment (or the largest native integer type) will allow us to load all 269 // the bits required by MemLoc. 270 271 // If MemLoc is before LI, then no widening of LI will help us out. 272 if (MemLocOffs < LIOffs) 273 return 0; 274 275 // Get the alignment of the load in bytes. We assume that it is safe to load 276 // any legal integer up to this size without a problem. For example, if we're 277 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 278 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 279 // to i16. 280 unsigned LoadAlign = LI->getAlignment(); 281 282 int64_t MemLocEnd = MemLocOffs + MemLocSize; 283 284 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 285 if (LIOffs + LoadAlign < MemLocEnd) 286 return 0; 287 288 // This is the size of the load to try. Start with the next larger power of 289 // two. 290 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 291 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 292 293 while (true) { 294 // If this load size is bigger than our known alignment or would not fit 295 // into a native integer register, then we fail. 296 if (NewLoadByteSize > LoadAlign || 297 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 298 return 0; 299 300 if (LIOffs + NewLoadByteSize > MemLocEnd && 301 (LI->getParent()->getParent()->hasFnAttribute( 302 Attribute::SanitizeAddress) || 303 LI->getParent()->getParent()->hasFnAttribute( 304 Attribute::SanitizeHWAddress))) 305 // We will be reading past the location accessed by the original program. 306 // While this is safe in a regular build, Address Safety analysis tools 307 // may start reporting false warnings. So, don't do widening. 308 return 0; 309 310 // If a load of this width would include all of MemLoc, then we succeed. 311 if (LIOffs + NewLoadByteSize >= MemLocEnd) 312 return NewLoadByteSize; 313 314 NewLoadByteSize <<= 1; 315 } 316 } 317 318 static bool isVolatile(Instruction *Inst) { 319 if (auto *LI = dyn_cast<LoadInst>(Inst)) 320 return LI->isVolatile(); 321 if (auto *SI = dyn_cast<StoreInst>(Inst)) 322 return SI->isVolatile(); 323 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 324 return AI->isVolatile(); 325 return false; 326 } 327 328 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 329 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 330 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 331 OrderedBasicBlock *OBB) { 332 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 333 if (QueryInst != nullptr) { 334 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 335 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 336 337 if (InvariantGroupDependency.isDef()) 338 return InvariantGroupDependency; 339 } 340 } 341 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 342 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB); 343 if (SimpleDep.isDef()) 344 return SimpleDep; 345 // Non-local invariant group dependency indicates there is non local Def 346 // (it only returns nonLocal if it finds nonLocal def), which is better than 347 // local clobber and everything else. 348 if (InvariantGroupDependency.isNonLocal()) 349 return InvariantGroupDependency; 350 351 assert(InvariantGroupDependency.isUnknown() && 352 "InvariantGroupDependency should be only unknown at this point"); 353 return SimpleDep; 354 } 355 356 MemDepResult 357 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 358 BasicBlock *BB) { 359 360 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 361 return MemDepResult::getUnknown(); 362 363 // Take the ptr operand after all casts and geps 0. This way we can search 364 // cast graph down only. 365 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 366 367 // It's is not safe to walk the use list of global value, because function 368 // passes aren't allowed to look outside their functions. 369 // FIXME: this could be fixed by filtering instructions from outside 370 // of current function. 371 if (isa<GlobalValue>(LoadOperand)) 372 return MemDepResult::getUnknown(); 373 374 // Queue to process all pointers that are equivalent to load operand. 375 SmallVector<const Value *, 8> LoadOperandsQueue; 376 LoadOperandsQueue.push_back(LoadOperand); 377 378 Instruction *ClosestDependency = nullptr; 379 // Order of instructions in uses list is unpredictible. In order to always 380 // get the same result, we will look for the closest dominance. 381 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 382 assert(Other && "Must call it with not null instruction"); 383 if (Best == nullptr || DT.dominates(Best, Other)) 384 return Other; 385 return Best; 386 }; 387 388 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 389 // we will see all the instructions. This should be fixed in MSSA. 390 while (!LoadOperandsQueue.empty()) { 391 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 392 assert(Ptr && !isa<GlobalValue>(Ptr) && 393 "Null or GlobalValue should not be inserted"); 394 395 for (const Use &Us : Ptr->uses()) { 396 auto *U = dyn_cast<Instruction>(Us.getUser()); 397 if (!U || U == LI || !DT.dominates(U, LI)) 398 continue; 399 400 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 401 // users. U = bitcast Ptr 402 if (isa<BitCastInst>(U)) { 403 LoadOperandsQueue.push_back(U); 404 continue; 405 } 406 // Gep with zeros is equivalent to bitcast. 407 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 408 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 409 // typeless pointers will be ready then both cases will be gone 410 // (and this BFS also won't be needed). 411 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 412 if (GEP->hasAllZeroIndices()) { 413 LoadOperandsQueue.push_back(U); 414 continue; 415 } 416 417 // If we hit load/store with the same invariant.group metadata (and the 418 // same pointer operand) we can assume that value pointed by pointer 419 // operand didn't change. 420 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 421 U->hasMetadata(LLVMContext::MD_invariant_group)) 422 ClosestDependency = GetClosestDependency(ClosestDependency, U); 423 } 424 } 425 426 if (!ClosestDependency) 427 return MemDepResult::getUnknown(); 428 if (ClosestDependency->getParent() == BB) 429 return MemDepResult::getDef(ClosestDependency); 430 // Def(U) can't be returned here because it is non-local. If local 431 // dependency won't be found then return nonLocal counting that the 432 // user will call getNonLocalPointerDependency, which will return cached 433 // result. 434 NonLocalDefsCache.try_emplace( 435 LI, NonLocalDepResult(ClosestDependency->getParent(), 436 MemDepResult::getDef(ClosestDependency), nullptr)); 437 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 438 return MemDepResult::getNonLocal(); 439 } 440 441 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 442 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 443 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 444 OrderedBasicBlock *OBB) { 445 bool isInvariantLoad = false; 446 447 unsigned DefaultLimit = getDefaultBlockScanLimit(); 448 if (!Limit) 449 Limit = &DefaultLimit; 450 451 // We must be careful with atomic accesses, as they may allow another thread 452 // to touch this location, clobbering it. We are conservative: if the 453 // QueryInst is not a simple (non-atomic) memory access, we automatically 454 // return getClobber. 455 // If it is simple, we know based on the results of 456 // "Compiler testing via a theory of sound optimisations in the C11/C++11 457 // memory model" in PLDI 2013, that a non-atomic location can only be 458 // clobbered between a pair of a release and an acquire action, with no 459 // access to the location in between. 460 // Here is an example for giving the general intuition behind this rule. 461 // In the following code: 462 // store x 0; 463 // release action; [1] 464 // acquire action; [4] 465 // %val = load x; 466 // It is unsafe to replace %val by 0 because another thread may be running: 467 // acquire action; [2] 468 // store x 42; 469 // release action; [3] 470 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 471 // being 42. A key property of this program however is that if either 472 // 1 or 4 were missing, there would be a race between the store of 42 473 // either the store of 0 or the load (making the whole program racy). 474 // The paper mentioned above shows that the same property is respected 475 // by every program that can detect any optimization of that kind: either 476 // it is racy (undefined) or there is a release followed by an acquire 477 // between the pair of accesses under consideration. 478 479 // If the load is invariant, we "know" that it doesn't alias *any* write. We 480 // do want to respect mustalias results since defs are useful for value 481 // forwarding, but any mayalias write can be assumed to be noalias. 482 // Arguably, this logic should be pushed inside AliasAnalysis itself. 483 if (isLoad && QueryInst) { 484 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 485 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 486 isInvariantLoad = true; 487 } 488 489 const DataLayout &DL = BB->getModule()->getDataLayout(); 490 491 // If the caller did not provide an ordered basic block, 492 // create one to lazily compute and cache instruction 493 // positions inside a BB. This is used to provide fast queries for relative 494 // position between two instructions in a BB and can be used by 495 // AliasAnalysis::callCapturesBefore. 496 OrderedBasicBlock OBBTmp(BB); 497 if (!OBB) 498 OBB = &OBBTmp; 499 500 // Return "true" if and only if the instruction I is either a non-simple 501 // load or a non-simple store. 502 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 503 if (auto *LI = dyn_cast<LoadInst>(I)) 504 return !LI->isSimple(); 505 if (auto *SI = dyn_cast<StoreInst>(I)) 506 return !SI->isSimple(); 507 return false; 508 }; 509 510 // Return "true" if I is not a load and not a store, but it does access 511 // memory. 512 auto isOtherMemAccess = [](Instruction *I) -> bool { 513 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 514 }; 515 516 // Walk backwards through the basic block, looking for dependencies. 517 while (ScanIt != BB->begin()) { 518 Instruction *Inst = &*--ScanIt; 519 520 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 521 // Debug intrinsics don't (and can't) cause dependencies. 522 if (isa<DbgInfoIntrinsic>(II)) 523 continue; 524 525 // Limit the amount of scanning we do so we don't end up with quadratic 526 // running time on extreme testcases. 527 --*Limit; 528 if (!*Limit) 529 return MemDepResult::getUnknown(); 530 531 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 532 // If we reach a lifetime begin or end marker, then the query ends here 533 // because the value is undefined. 534 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 535 // FIXME: This only considers queries directly on the invariant-tagged 536 // pointer, not on query pointers that are indexed off of them. It'd 537 // be nice to handle that at some point (the right approach is to use 538 // GetPointerBaseWithConstantOffset). 539 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 540 return MemDepResult::getDef(II); 541 continue; 542 } 543 } 544 545 // Values depend on loads if the pointers are must aliased. This means 546 // that a load depends on another must aliased load from the same value. 547 // One exception is atomic loads: a value can depend on an atomic load that 548 // it does not alias with when this atomic load indicates that another 549 // thread may be accessing the location. 550 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 551 // While volatile access cannot be eliminated, they do not have to clobber 552 // non-aliasing locations, as normal accesses, for example, can be safely 553 // reordered with volatile accesses. 554 if (LI->isVolatile()) { 555 if (!QueryInst) 556 // Original QueryInst *may* be volatile 557 return MemDepResult::getClobber(LI); 558 if (isVolatile(QueryInst)) 559 // Ordering required if QueryInst is itself volatile 560 return MemDepResult::getClobber(LI); 561 // Otherwise, volatile doesn't imply any special ordering 562 } 563 564 // Atomic loads have complications involved. 565 // A Monotonic (or higher) load is OK if the query inst is itself not 566 // atomic. 567 // FIXME: This is overly conservative. 568 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 569 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 570 isOtherMemAccess(QueryInst)) 571 return MemDepResult::getClobber(LI); 572 if (LI->getOrdering() != AtomicOrdering::Monotonic) 573 return MemDepResult::getClobber(LI); 574 } 575 576 MemoryLocation LoadLoc = MemoryLocation::get(LI); 577 578 // If we found a pointer, check if it could be the same as our pointer. 579 AliasResult R = AA.alias(LoadLoc, MemLoc); 580 581 if (isLoad) { 582 if (R == NoAlias) 583 continue; 584 585 // Must aliased loads are defs of each other. 586 if (R == MustAlias) 587 return MemDepResult::getDef(Inst); 588 589 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 590 // in terms of clobbering loads, but since it does this by looking 591 // at the clobbering load directly, it doesn't know about any 592 // phi translation that may have happened along the way. 593 594 // If we have a partial alias, then return this as a clobber for the 595 // client to handle. 596 if (R == PartialAlias) 597 return MemDepResult::getClobber(Inst); 598 #endif 599 600 // Random may-alias loads don't depend on each other without a 601 // dependence. 602 continue; 603 } 604 605 // Stores don't depend on other no-aliased accesses. 606 if (R == NoAlias) 607 continue; 608 609 // Stores don't alias loads from read-only memory. 610 if (AA.pointsToConstantMemory(LoadLoc)) 611 continue; 612 613 // Stores depend on may/must aliased loads. 614 return MemDepResult::getDef(Inst); 615 } 616 617 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 618 // Atomic stores have complications involved. 619 // A Monotonic store is OK if the query inst is itself not atomic. 620 // FIXME: This is overly conservative. 621 if (!SI->isUnordered() && SI->isAtomic()) { 622 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 623 isOtherMemAccess(QueryInst)) 624 return MemDepResult::getClobber(SI); 625 if (SI->getOrdering() != AtomicOrdering::Monotonic) 626 return MemDepResult::getClobber(SI); 627 } 628 629 // FIXME: this is overly conservative. 630 // While volatile access cannot be eliminated, they do not have to clobber 631 // non-aliasing locations, as normal accesses can for example be reordered 632 // with volatile accesses. 633 if (SI->isVolatile()) 634 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 635 isOtherMemAccess(QueryInst)) 636 return MemDepResult::getClobber(SI); 637 638 // If alias analysis can tell that this store is guaranteed to not modify 639 // the query pointer, ignore it. Use getModRefInfo to handle cases where 640 // the query pointer points to constant memory etc. 641 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 642 continue; 643 644 // Ok, this store might clobber the query pointer. Check to see if it is 645 // a must alias: in this case, we want to return this as a def. 646 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 647 MemoryLocation StoreLoc = MemoryLocation::get(SI); 648 649 // If we found a pointer, check if it could be the same as our pointer. 650 AliasResult R = AA.alias(StoreLoc, MemLoc); 651 652 if (R == NoAlias) 653 continue; 654 if (R == MustAlias) 655 return MemDepResult::getDef(Inst); 656 if (isInvariantLoad) 657 continue; 658 return MemDepResult::getClobber(Inst); 659 } 660 661 // If this is an allocation, and if we know that the accessed pointer is to 662 // the allocation, return Def. This means that there is no dependence and 663 // the access can be optimized based on that. For example, a load could 664 // turn into undef. Note that we can bypass the allocation itself when 665 // looking for a clobber in many cases; that's an alias property and is 666 // handled by BasicAA. 667 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 668 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 669 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 670 return MemDepResult::getDef(Inst); 671 } 672 673 if (isInvariantLoad) 674 continue; 675 676 // A release fence requires that all stores complete before it, but does 677 // not prevent the reordering of following loads or stores 'before' the 678 // fence. As a result, we look past it when finding a dependency for 679 // loads. DSE uses this to find preceding stores to delete and thus we 680 // can't bypass the fence if the query instruction is a store. 681 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 682 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 683 continue; 684 685 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 686 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 687 // If necessary, perform additional analysis. 688 if (isModAndRefSet(MR)) 689 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB); 690 switch (clearMust(MR)) { 691 case ModRefInfo::NoModRef: 692 // If the call has no effect on the queried pointer, just ignore it. 693 continue; 694 case ModRefInfo::Mod: 695 return MemDepResult::getClobber(Inst); 696 case ModRefInfo::Ref: 697 // If the call is known to never store to the pointer, and if this is a 698 // load query, we can safely ignore it (scan past it). 699 if (isLoad) 700 continue; 701 LLVM_FALLTHROUGH; 702 default: 703 // Otherwise, there is a potential dependence. Return a clobber. 704 return MemDepResult::getClobber(Inst); 705 } 706 } 707 708 // No dependence found. If this is the entry block of the function, it is 709 // unknown, otherwise it is non-local. 710 if (BB != &BB->getParent()->getEntryBlock()) 711 return MemDepResult::getNonLocal(); 712 return MemDepResult::getNonFuncLocal(); 713 } 714 715 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst, 716 OrderedBasicBlock *OBB) { 717 Instruction *ScanPos = QueryInst; 718 719 // Check for a cached result 720 MemDepResult &LocalCache = LocalDeps[QueryInst]; 721 722 // If the cached entry is non-dirty, just return it. Note that this depends 723 // on MemDepResult's default constructing to 'dirty'. 724 if (!LocalCache.isDirty()) 725 return LocalCache; 726 727 // Otherwise, if we have a dirty entry, we know we can start the scan at that 728 // instruction, which may save us some work. 729 if (Instruction *Inst = LocalCache.getInst()) { 730 ScanPos = Inst; 731 732 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 733 } 734 735 BasicBlock *QueryParent = QueryInst->getParent(); 736 737 // Do the scan. 738 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 739 // No dependence found. If this is the entry block of the function, it is 740 // unknown, otherwise it is non-local. 741 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 742 LocalCache = MemDepResult::getNonLocal(); 743 else 744 LocalCache = MemDepResult::getNonFuncLocal(); 745 } else { 746 MemoryLocation MemLoc; 747 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 748 if (MemLoc.Ptr) { 749 // If we can do a pointer scan, make it happen. 750 bool isLoad = !isModSet(MR); 751 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 752 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 753 754 LocalCache = 755 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 756 QueryParent, QueryInst, nullptr, OBB); 757 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 758 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 759 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 760 ScanPos->getIterator(), QueryParent); 761 } else 762 // Non-memory instruction. 763 LocalCache = MemDepResult::getUnknown(); 764 } 765 766 // Remember the result! 767 if (Instruction *I = LocalCache.getInst()) 768 ReverseLocalDeps[I].insert(QueryInst); 769 770 return LocalCache; 771 } 772 773 #ifndef NDEBUG 774 /// This method is used when -debug is specified to verify that cache arrays 775 /// are properly kept sorted. 776 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 777 int Count = -1) { 778 if (Count == -1) 779 Count = Cache.size(); 780 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 781 "Cache isn't sorted!"); 782 } 783 #endif 784 785 const MemoryDependenceResults::NonLocalDepInfo & 786 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 787 assert(getDependency(QueryCall).isNonLocal() && 788 "getNonLocalCallDependency should only be used on calls with " 789 "non-local deps!"); 790 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 791 NonLocalDepInfo &Cache = CacheP.first; 792 793 // This is the set of blocks that need to be recomputed. In the cached case, 794 // this can happen due to instructions being deleted etc. In the uncached 795 // case, this starts out as the set of predecessors we care about. 796 SmallVector<BasicBlock *, 32> DirtyBlocks; 797 798 if (!Cache.empty()) { 799 // Okay, we have a cache entry. If we know it is not dirty, just return it 800 // with no computation. 801 if (!CacheP.second) { 802 ++NumCacheNonLocal; 803 return Cache; 804 } 805 806 // If we already have a partially computed set of results, scan them to 807 // determine what is dirty, seeding our initial DirtyBlocks worklist. 808 for (auto &Entry : Cache) 809 if (Entry.getResult().isDirty()) 810 DirtyBlocks.push_back(Entry.getBB()); 811 812 // Sort the cache so that we can do fast binary search lookups below. 813 llvm::sort(Cache); 814 815 ++NumCacheDirtyNonLocal; 816 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 817 // << Cache.size() << " cached: " << *QueryInst; 818 } else { 819 // Seed DirtyBlocks with each of the preds of QueryInst's block. 820 BasicBlock *QueryBB = QueryCall->getParent(); 821 for (BasicBlock *Pred : PredCache.get(QueryBB)) 822 DirtyBlocks.push_back(Pred); 823 ++NumUncacheNonLocal; 824 } 825 826 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 827 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 828 829 SmallPtrSet<BasicBlock *, 32> Visited; 830 831 unsigned NumSortedEntries = Cache.size(); 832 LLVM_DEBUG(AssertSorted(Cache)); 833 834 // Iterate while we still have blocks to update. 835 while (!DirtyBlocks.empty()) { 836 BasicBlock *DirtyBB = DirtyBlocks.back(); 837 DirtyBlocks.pop_back(); 838 839 // Already processed this block? 840 if (!Visited.insert(DirtyBB).second) 841 continue; 842 843 // Do a binary search to see if we already have an entry for this block in 844 // the cache set. If so, find it. 845 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 846 NonLocalDepInfo::iterator Entry = 847 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 848 NonLocalDepEntry(DirtyBB)); 849 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 850 --Entry; 851 852 NonLocalDepEntry *ExistingResult = nullptr; 853 if (Entry != Cache.begin() + NumSortedEntries && 854 Entry->getBB() == DirtyBB) { 855 // If we already have an entry, and if it isn't already dirty, the block 856 // is done. 857 if (!Entry->getResult().isDirty()) 858 continue; 859 860 // Otherwise, remember this slot so we can update the value. 861 ExistingResult = &*Entry; 862 } 863 864 // If the dirty entry has a pointer, start scanning from it so we don't have 865 // to rescan the entire block. 866 BasicBlock::iterator ScanPos = DirtyBB->end(); 867 if (ExistingResult) { 868 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 869 ScanPos = Inst->getIterator(); 870 // We're removing QueryInst's use of Inst. 871 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 872 QueryCall); 873 } 874 } 875 876 // Find out if this block has a local dependency for QueryInst. 877 MemDepResult Dep; 878 879 if (ScanPos != DirtyBB->begin()) { 880 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 881 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 882 // No dependence found. If this is the entry block of the function, it is 883 // a clobber, otherwise it is unknown. 884 Dep = MemDepResult::getNonLocal(); 885 } else { 886 Dep = MemDepResult::getNonFuncLocal(); 887 } 888 889 // If we had a dirty entry for the block, update it. Otherwise, just add 890 // a new entry. 891 if (ExistingResult) 892 ExistingResult->setResult(Dep); 893 else 894 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 895 896 // If the block has a dependency (i.e. it isn't completely transparent to 897 // the value), remember the association! 898 if (!Dep.isNonLocal()) { 899 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 900 // update this when we remove instructions. 901 if (Instruction *Inst = Dep.getInst()) 902 ReverseNonLocalDeps[Inst].insert(QueryCall); 903 } else { 904 905 // If the block *is* completely transparent to the load, we need to check 906 // the predecessors of this block. Add them to our worklist. 907 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 908 DirtyBlocks.push_back(Pred); 909 } 910 } 911 912 return Cache; 913 } 914 915 void MemoryDependenceResults::getNonLocalPointerDependency( 916 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 917 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 918 bool isLoad = isa<LoadInst>(QueryInst); 919 BasicBlock *FromBB = QueryInst->getParent(); 920 assert(FromBB); 921 922 assert(Loc.Ptr->getType()->isPointerTy() && 923 "Can't get pointer deps of a non-pointer!"); 924 Result.clear(); 925 { 926 // Check if there is cached Def with invariant.group. 927 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 928 if (NonLocalDefIt != NonLocalDefsCache.end()) { 929 Result.push_back(NonLocalDefIt->second); 930 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 931 .erase(QueryInst); 932 NonLocalDefsCache.erase(NonLocalDefIt); 933 return; 934 } 935 } 936 // This routine does not expect to deal with volatile instructions. 937 // Doing so would require piping through the QueryInst all the way through. 938 // TODO: volatiles can't be elided, but they can be reordered with other 939 // non-volatile accesses. 940 941 // We currently give up on any instruction which is ordered, but we do handle 942 // atomic instructions which are unordered. 943 // TODO: Handle ordered instructions 944 auto isOrdered = [](Instruction *Inst) { 945 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 946 return !LI->isUnordered(); 947 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 948 return !SI->isUnordered(); 949 } 950 return false; 951 }; 952 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 953 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 954 const_cast<Value *>(Loc.Ptr))); 955 return; 956 } 957 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 958 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 959 960 // This is the set of blocks we've inspected, and the pointer we consider in 961 // each block. Because of critical edges, we currently bail out if querying 962 // a block with multiple different pointers. This can happen during PHI 963 // translation. 964 DenseMap<BasicBlock *, Value *> Visited; 965 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 966 Result, Visited, true)) 967 return; 968 Result.clear(); 969 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 970 const_cast<Value *>(Loc.Ptr))); 971 } 972 973 /// Compute the memdep value for BB with Pointer/PointeeSize using either 974 /// cached information in Cache or by doing a lookup (which may use dirty cache 975 /// info if available). 976 /// 977 /// If we do a lookup, add the result to the cache. 978 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 979 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 980 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 981 982 // Do a binary search to see if we already have an entry for this block in 983 // the cache set. If so, find it. 984 NonLocalDepInfo::iterator Entry = std::upper_bound( 985 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 986 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 987 --Entry; 988 989 NonLocalDepEntry *ExistingResult = nullptr; 990 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 991 ExistingResult = &*Entry; 992 993 // If we have a cached entry, and it is non-dirty, use it as the value for 994 // this dependency. 995 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 996 ++NumCacheNonLocalPtr; 997 return ExistingResult->getResult(); 998 } 999 1000 // Otherwise, we have to scan for the value. If we have a dirty cache 1001 // entry, start scanning from its position, otherwise we scan from the end 1002 // of the block. 1003 BasicBlock::iterator ScanPos = BB->end(); 1004 if (ExistingResult && ExistingResult->getResult().getInst()) { 1005 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1006 "Instruction invalidated?"); 1007 ++NumCacheDirtyNonLocalPtr; 1008 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1009 1010 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1011 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1012 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1013 } else { 1014 ++NumUncacheNonLocalPtr; 1015 } 1016 1017 // Scan the block for the dependency. 1018 MemDepResult Dep = 1019 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1020 1021 // If we had a dirty entry for the block, update it. Otherwise, just add 1022 // a new entry. 1023 if (ExistingResult) 1024 ExistingResult->setResult(Dep); 1025 else 1026 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1027 1028 // If the block has a dependency (i.e. it isn't completely transparent to 1029 // the value), remember the reverse association because we just added it 1030 // to Cache! 1031 if (!Dep.isDef() && !Dep.isClobber()) 1032 return Dep; 1033 1034 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1035 // update MemDep when we remove instructions. 1036 Instruction *Inst = Dep.getInst(); 1037 assert(Inst && "Didn't depend on anything?"); 1038 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1039 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1040 return Dep; 1041 } 1042 1043 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1044 /// array that are already properly ordered. 1045 /// 1046 /// This is optimized for the case when only a few entries are added. 1047 static void 1048 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1049 unsigned NumSortedEntries) { 1050 switch (Cache.size() - NumSortedEntries) { 1051 case 0: 1052 // done, no new entries. 1053 break; 1054 case 2: { 1055 // Two new entries, insert the last one into place. 1056 NonLocalDepEntry Val = Cache.back(); 1057 Cache.pop_back(); 1058 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1059 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1060 Cache.insert(Entry, Val); 1061 LLVM_FALLTHROUGH; 1062 } 1063 case 1: 1064 // One new entry, Just insert the new value at the appropriate position. 1065 if (Cache.size() != 1) { 1066 NonLocalDepEntry Val = Cache.back(); 1067 Cache.pop_back(); 1068 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1069 std::upper_bound(Cache.begin(), Cache.end(), Val); 1070 Cache.insert(Entry, Val); 1071 } 1072 break; 1073 default: 1074 // Added many values, do a full scale sort. 1075 llvm::sort(Cache); 1076 break; 1077 } 1078 } 1079 1080 /// Perform a dependency query based on pointer/pointeesize starting at the end 1081 /// of StartBB. 1082 /// 1083 /// Add any clobber/def results to the results vector and keep track of which 1084 /// blocks are visited in 'Visited'. 1085 /// 1086 /// This has special behavior for the first block queries (when SkipFirstBlock 1087 /// is true). In this special case, it ignores the contents of the specified 1088 /// block and starts returning dependence info for its predecessors. 1089 /// 1090 /// This function returns true on success, or false to indicate that it could 1091 /// not compute dependence information for some reason. This should be treated 1092 /// as a clobber dependence on the first instruction in the predecessor block. 1093 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1094 Instruction *QueryInst, const PHITransAddr &Pointer, 1095 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1096 SmallVectorImpl<NonLocalDepResult> &Result, 1097 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1098 // Look up the cached info for Pointer. 1099 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1100 1101 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1102 // CacheKey, this value will be inserted as the associated value. Otherwise, 1103 // it'll be ignored, and we'll have to check to see if the cached size and 1104 // aa tags are consistent with the current query. 1105 NonLocalPointerInfo InitialNLPI; 1106 InitialNLPI.Size = Loc.Size; 1107 InitialNLPI.AATags = Loc.AATags; 1108 1109 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1110 // already have one. 1111 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1112 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1113 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1114 1115 // If we already have a cache entry for this CacheKey, we may need to do some 1116 // work to reconcile the cache entry and the current query. 1117 if (!Pair.second) { 1118 if (CacheInfo->Size != Loc.Size) { 1119 bool ThrowOutEverything; 1120 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1121 // FIXME: We may be able to do better in the face of results with mixed 1122 // precision. We don't appear to get them in practice, though, so just 1123 // be conservative. 1124 ThrowOutEverything = 1125 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1126 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1127 } else { 1128 // For our purposes, unknown size > all others. 1129 ThrowOutEverything = !Loc.Size.hasValue(); 1130 } 1131 1132 if (ThrowOutEverything) { 1133 // The query's Size is greater than the cached one. Throw out the 1134 // cached data and proceed with the query at the greater size. 1135 CacheInfo->Pair = BBSkipFirstBlockPair(); 1136 CacheInfo->Size = Loc.Size; 1137 for (auto &Entry : CacheInfo->NonLocalDeps) 1138 if (Instruction *Inst = Entry.getResult().getInst()) 1139 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1140 CacheInfo->NonLocalDeps.clear(); 1141 } else { 1142 // This query's Size is less than the cached one. Conservatively restart 1143 // the query using the greater size. 1144 return getNonLocalPointerDepFromBB( 1145 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1146 StartBB, Result, Visited, SkipFirstBlock); 1147 } 1148 } 1149 1150 // If the query's AATags are inconsistent with the cached one, 1151 // conservatively throw out the cached data and restart the query with 1152 // no tag if needed. 1153 if (CacheInfo->AATags != Loc.AATags) { 1154 if (CacheInfo->AATags) { 1155 CacheInfo->Pair = BBSkipFirstBlockPair(); 1156 CacheInfo->AATags = AAMDNodes(); 1157 for (auto &Entry : CacheInfo->NonLocalDeps) 1158 if (Instruction *Inst = Entry.getResult().getInst()) 1159 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1160 CacheInfo->NonLocalDeps.clear(); 1161 } 1162 if (Loc.AATags) 1163 return getNonLocalPointerDepFromBB( 1164 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1165 Visited, SkipFirstBlock); 1166 } 1167 } 1168 1169 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1170 1171 // If we have valid cached information for exactly the block we are 1172 // investigating, just return it with no recomputation. 1173 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1174 // We have a fully cached result for this query then we can just return the 1175 // cached results and populate the visited set. However, we have to verify 1176 // that we don't already have conflicting results for these blocks. Check 1177 // to ensure that if a block in the results set is in the visited set that 1178 // it was for the same pointer query. 1179 if (!Visited.empty()) { 1180 for (auto &Entry : *Cache) { 1181 DenseMap<BasicBlock *, Value *>::iterator VI = 1182 Visited.find(Entry.getBB()); 1183 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1184 continue; 1185 1186 // We have a pointer mismatch in a block. Just return false, saying 1187 // that something was clobbered in this result. We could also do a 1188 // non-fully cached query, but there is little point in doing this. 1189 return false; 1190 } 1191 } 1192 1193 Value *Addr = Pointer.getAddr(); 1194 for (auto &Entry : *Cache) { 1195 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1196 if (Entry.getResult().isNonLocal()) { 1197 continue; 1198 } 1199 1200 if (DT.isReachableFromEntry(Entry.getBB())) { 1201 Result.push_back( 1202 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1203 } 1204 } 1205 ++NumCacheCompleteNonLocalPtr; 1206 return true; 1207 } 1208 1209 // Otherwise, either this is a new block, a block with an invalid cache 1210 // pointer or one that we're about to invalidate by putting more info into it 1211 // than its valid cache info. If empty, the result will be valid cache info, 1212 // otherwise it isn't. 1213 if (Cache->empty()) 1214 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1215 else 1216 CacheInfo->Pair = BBSkipFirstBlockPair(); 1217 1218 SmallVector<BasicBlock *, 32> Worklist; 1219 Worklist.push_back(StartBB); 1220 1221 // PredList used inside loop. 1222 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1223 1224 // Keep track of the entries that we know are sorted. Previously cached 1225 // entries will all be sorted. The entries we add we only sort on demand (we 1226 // don't insert every element into its sorted position). We know that we 1227 // won't get any reuse from currently inserted values, because we don't 1228 // revisit blocks after we insert info for them. 1229 unsigned NumSortedEntries = Cache->size(); 1230 unsigned WorklistEntries = BlockNumberLimit; 1231 bool GotWorklistLimit = false; 1232 LLVM_DEBUG(AssertSorted(*Cache)); 1233 1234 while (!Worklist.empty()) { 1235 BasicBlock *BB = Worklist.pop_back_val(); 1236 1237 // If we do process a large number of blocks it becomes very expensive and 1238 // likely it isn't worth worrying about 1239 if (Result.size() > NumResultsLimit) { 1240 Worklist.clear(); 1241 // Sort it now (if needed) so that recursive invocations of 1242 // getNonLocalPointerDepFromBB and other routines that could reuse the 1243 // cache value will only see properly sorted cache arrays. 1244 if (Cache && NumSortedEntries != Cache->size()) { 1245 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1246 } 1247 // Since we bail out, the "Cache" set won't contain all of the 1248 // results for the query. This is ok (we can still use it to accelerate 1249 // specific block queries) but we can't do the fastpath "return all 1250 // results from the set". Clear out the indicator for this. 1251 CacheInfo->Pair = BBSkipFirstBlockPair(); 1252 return false; 1253 } 1254 1255 // Skip the first block if we have it. 1256 if (!SkipFirstBlock) { 1257 // Analyze the dependency of *Pointer in FromBB. See if we already have 1258 // been here. 1259 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1260 1261 // Get the dependency info for Pointer in BB. If we have cached 1262 // information, we will use it, otherwise we compute it. 1263 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1264 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1265 Cache, NumSortedEntries); 1266 1267 // If we got a Def or Clobber, add this to the list of results. 1268 if (!Dep.isNonLocal()) { 1269 if (DT.isReachableFromEntry(BB)) { 1270 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1271 continue; 1272 } 1273 } 1274 } 1275 1276 // If 'Pointer' is an instruction defined in this block, then we need to do 1277 // phi translation to change it into a value live in the predecessor block. 1278 // If not, we just add the predecessors to the worklist and scan them with 1279 // the same Pointer. 1280 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1281 SkipFirstBlock = false; 1282 SmallVector<BasicBlock *, 16> NewBlocks; 1283 for (BasicBlock *Pred : PredCache.get(BB)) { 1284 // Verify that we haven't looked at this block yet. 1285 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1286 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1287 if (InsertRes.second) { 1288 // First time we've looked at *PI. 1289 NewBlocks.push_back(Pred); 1290 continue; 1291 } 1292 1293 // If we have seen this block before, but it was with a different 1294 // pointer then we have a phi translation failure and we have to treat 1295 // this as a clobber. 1296 if (InsertRes.first->second != Pointer.getAddr()) { 1297 // Make sure to clean up the Visited map before continuing on to 1298 // PredTranslationFailure. 1299 for (unsigned i = 0; i < NewBlocks.size(); i++) 1300 Visited.erase(NewBlocks[i]); 1301 goto PredTranslationFailure; 1302 } 1303 } 1304 if (NewBlocks.size() > WorklistEntries) { 1305 // Make sure to clean up the Visited map before continuing on to 1306 // PredTranslationFailure. 1307 for (unsigned i = 0; i < NewBlocks.size(); i++) 1308 Visited.erase(NewBlocks[i]); 1309 GotWorklistLimit = true; 1310 goto PredTranslationFailure; 1311 } 1312 WorklistEntries -= NewBlocks.size(); 1313 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1314 continue; 1315 } 1316 1317 // We do need to do phi translation, if we know ahead of time we can't phi 1318 // translate this value, don't even try. 1319 if (!Pointer.IsPotentiallyPHITranslatable()) 1320 goto PredTranslationFailure; 1321 1322 // We may have added values to the cache list before this PHI translation. 1323 // If so, we haven't done anything to ensure that the cache remains sorted. 1324 // Sort it now (if needed) so that recursive invocations of 1325 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1326 // value will only see properly sorted cache arrays. 1327 if (Cache && NumSortedEntries != Cache->size()) { 1328 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1329 NumSortedEntries = Cache->size(); 1330 } 1331 Cache = nullptr; 1332 1333 PredList.clear(); 1334 for (BasicBlock *Pred : PredCache.get(BB)) { 1335 PredList.push_back(std::make_pair(Pred, Pointer)); 1336 1337 // Get the PHI translated pointer in this predecessor. This can fail if 1338 // not translatable, in which case the getAddr() returns null. 1339 PHITransAddr &PredPointer = PredList.back().second; 1340 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1341 Value *PredPtrVal = PredPointer.getAddr(); 1342 1343 // Check to see if we have already visited this pred block with another 1344 // pointer. If so, we can't do this lookup. This failure can occur 1345 // with PHI translation when a critical edge exists and the PHI node in 1346 // the successor translates to a pointer value different than the 1347 // pointer the block was first analyzed with. 1348 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1349 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1350 1351 if (!InsertRes.second) { 1352 // We found the pred; take it off the list of preds to visit. 1353 PredList.pop_back(); 1354 1355 // If the predecessor was visited with PredPtr, then we already did 1356 // the analysis and can ignore it. 1357 if (InsertRes.first->second == PredPtrVal) 1358 continue; 1359 1360 // Otherwise, the block was previously analyzed with a different 1361 // pointer. We can't represent the result of this case, so we just 1362 // treat this as a phi translation failure. 1363 1364 // Make sure to clean up the Visited map before continuing on to 1365 // PredTranslationFailure. 1366 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1367 Visited.erase(PredList[i].first); 1368 1369 goto PredTranslationFailure; 1370 } 1371 } 1372 1373 // Actually process results here; this need to be a separate loop to avoid 1374 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1375 // any results for. (getNonLocalPointerDepFromBB will modify our 1376 // datastructures in ways the code after the PredTranslationFailure label 1377 // doesn't expect.) 1378 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1379 BasicBlock *Pred = PredList[i].first; 1380 PHITransAddr &PredPointer = PredList[i].second; 1381 Value *PredPtrVal = PredPointer.getAddr(); 1382 1383 bool CanTranslate = true; 1384 // If PHI translation was unable to find an available pointer in this 1385 // predecessor, then we have to assume that the pointer is clobbered in 1386 // that predecessor. We can still do PRE of the load, which would insert 1387 // a computation of the pointer in this predecessor. 1388 if (!PredPtrVal) 1389 CanTranslate = false; 1390 1391 // FIXME: it is entirely possible that PHI translating will end up with 1392 // the same value. Consider PHI translating something like: 1393 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1394 // to recurse here, pedantically speaking. 1395 1396 // If getNonLocalPointerDepFromBB fails here, that means the cached 1397 // result conflicted with the Visited list; we have to conservatively 1398 // assume it is unknown, but this also does not block PRE of the load. 1399 if (!CanTranslate || 1400 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1401 Loc.getWithNewPtr(PredPtrVal), isLoad, 1402 Pred, Result, Visited)) { 1403 // Add the entry to the Result list. 1404 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1405 Result.push_back(Entry); 1406 1407 // Since we had a phi translation failure, the cache for CacheKey won't 1408 // include all of the entries that we need to immediately satisfy future 1409 // queries. Mark this in NonLocalPointerDeps by setting the 1410 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1411 // cached value to do more work but not miss the phi trans failure. 1412 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1413 NLPI.Pair = BBSkipFirstBlockPair(); 1414 continue; 1415 } 1416 } 1417 1418 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1419 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1420 Cache = &CacheInfo->NonLocalDeps; 1421 NumSortedEntries = Cache->size(); 1422 1423 // Since we did phi translation, the "Cache" set won't contain all of the 1424 // results for the query. This is ok (we can still use it to accelerate 1425 // specific block queries) but we can't do the fastpath "return all 1426 // results from the set" Clear out the indicator for this. 1427 CacheInfo->Pair = BBSkipFirstBlockPair(); 1428 SkipFirstBlock = false; 1429 continue; 1430 1431 PredTranslationFailure: 1432 // The following code is "failure"; we can't produce a sane translation 1433 // for the given block. It assumes that we haven't modified any of 1434 // our datastructures while processing the current block. 1435 1436 if (!Cache) { 1437 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1438 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1439 Cache = &CacheInfo->NonLocalDeps; 1440 NumSortedEntries = Cache->size(); 1441 } 1442 1443 // Since we failed phi translation, the "Cache" set won't contain all of the 1444 // results for the query. This is ok (we can still use it to accelerate 1445 // specific block queries) but we can't do the fastpath "return all 1446 // results from the set". Clear out the indicator for this. 1447 CacheInfo->Pair = BBSkipFirstBlockPair(); 1448 1449 // If *nothing* works, mark the pointer as unknown. 1450 // 1451 // If this is the magic first block, return this as a clobber of the whole 1452 // incoming value. Since we can't phi translate to one of the predecessors, 1453 // we have to bail out. 1454 if (SkipFirstBlock) 1455 return false; 1456 1457 bool foundBlock = false; 1458 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1459 if (I.getBB() != BB) 1460 continue; 1461 1462 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1463 !DT.isReachableFromEntry(BB)) && 1464 "Should only be here with transparent block"); 1465 foundBlock = true; 1466 I.setResult(MemDepResult::getUnknown()); 1467 Result.push_back( 1468 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1469 break; 1470 } 1471 (void)foundBlock; (void)GotWorklistLimit; 1472 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1473 } 1474 1475 // Okay, we're done now. If we added new values to the cache, re-sort it. 1476 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1477 LLVM_DEBUG(AssertSorted(*Cache)); 1478 return true; 1479 } 1480 1481 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1482 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1483 ValueIsLoadPair P) { 1484 1485 // Most of the time this cache is empty. 1486 if (!NonLocalDefsCache.empty()) { 1487 auto it = NonLocalDefsCache.find(P.getPointer()); 1488 if (it != NonLocalDefsCache.end()) { 1489 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1490 it->second.getResult().getInst(), P.getPointer()); 1491 NonLocalDefsCache.erase(it); 1492 } 1493 1494 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1495 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1496 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1497 for (const auto *entry : toRemoveIt->second) 1498 NonLocalDefsCache.erase(entry); 1499 ReverseNonLocalDefsCache.erase(toRemoveIt); 1500 } 1501 } 1502 } 1503 1504 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1505 if (It == NonLocalPointerDeps.end()) 1506 return; 1507 1508 // Remove all of the entries in the BB->val map. This involves removing 1509 // instructions from the reverse map. 1510 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1511 1512 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1513 Instruction *Target = PInfo[i].getResult().getInst(); 1514 if (!Target) 1515 continue; // Ignore non-local dep results. 1516 assert(Target->getParent() == PInfo[i].getBB()); 1517 1518 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1519 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1520 } 1521 1522 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1523 NonLocalPointerDeps.erase(It); 1524 } 1525 1526 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1527 // If Ptr isn't really a pointer, just ignore it. 1528 if (!Ptr->getType()->isPointerTy()) 1529 return; 1530 // Flush store info for the pointer. 1531 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1532 // Flush load info for the pointer. 1533 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1534 // Invalidate phis that use the pointer. 1535 PV.invalidateValue(Ptr); 1536 } 1537 1538 void MemoryDependenceResults::invalidateCachedPredecessors() { 1539 PredCache.clear(); 1540 } 1541 1542 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1543 // Walk through the Non-local dependencies, removing this one as the value 1544 // for any cached queries. 1545 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1546 if (NLDI != NonLocalDeps.end()) { 1547 NonLocalDepInfo &BlockMap = NLDI->second.first; 1548 for (auto &Entry : BlockMap) 1549 if (Instruction *Inst = Entry.getResult().getInst()) 1550 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1551 NonLocalDeps.erase(NLDI); 1552 } 1553 1554 // If we have a cached local dependence query for this instruction, remove it. 1555 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1556 if (LocalDepEntry != LocalDeps.end()) { 1557 // Remove us from DepInst's reverse set now that the local dep info is gone. 1558 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1559 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1560 1561 // Remove this local dependency info. 1562 LocalDeps.erase(LocalDepEntry); 1563 } 1564 1565 // If we have any cached pointer dependencies on this instruction, remove 1566 // them. If the instruction has non-pointer type, then it can't be a pointer 1567 // base. 1568 1569 // Remove it from both the load info and the store info. The instruction 1570 // can't be in either of these maps if it is non-pointer. 1571 if (RemInst->getType()->isPointerTy()) { 1572 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1573 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1574 } 1575 1576 // Loop over all of the things that depend on the instruction we're removing. 1577 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1578 1579 // If we find RemInst as a clobber or Def in any of the maps for other values, 1580 // we need to replace its entry with a dirty version of the instruction after 1581 // it. If RemInst is a terminator, we use a null dirty value. 1582 // 1583 // Using a dirty version of the instruction after RemInst saves having to scan 1584 // the entire block to get to this point. 1585 MemDepResult NewDirtyVal; 1586 if (!RemInst->isTerminator()) 1587 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1588 1589 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1590 if (ReverseDepIt != ReverseLocalDeps.end()) { 1591 // RemInst can't be the terminator if it has local stuff depending on it. 1592 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1593 "Nothing can locally depend on a terminator"); 1594 1595 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1596 assert(InstDependingOnRemInst != RemInst && 1597 "Already removed our local dep info"); 1598 1599 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1600 1601 // Make sure to remember that new things depend on NewDepInst. 1602 assert(NewDirtyVal.getInst() && 1603 "There is no way something else can have " 1604 "a local dep on this if it is a terminator!"); 1605 ReverseDepsToAdd.push_back( 1606 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1607 } 1608 1609 ReverseLocalDeps.erase(ReverseDepIt); 1610 1611 // Add new reverse deps after scanning the set, to avoid invalidating the 1612 // 'ReverseDeps' reference. 1613 while (!ReverseDepsToAdd.empty()) { 1614 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1615 ReverseDepsToAdd.back().second); 1616 ReverseDepsToAdd.pop_back(); 1617 } 1618 } 1619 1620 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1621 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1622 for (Instruction *I : ReverseDepIt->second) { 1623 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1624 1625 PerInstNLInfo &INLD = NonLocalDeps[I]; 1626 // The information is now dirty! 1627 INLD.second = true; 1628 1629 for (auto &Entry : INLD.first) { 1630 if (Entry.getResult().getInst() != RemInst) 1631 continue; 1632 1633 // Convert to a dirty entry for the subsequent instruction. 1634 Entry.setResult(NewDirtyVal); 1635 1636 if (Instruction *NextI = NewDirtyVal.getInst()) 1637 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1638 } 1639 } 1640 1641 ReverseNonLocalDeps.erase(ReverseDepIt); 1642 1643 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1644 while (!ReverseDepsToAdd.empty()) { 1645 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1646 ReverseDepsToAdd.back().second); 1647 ReverseDepsToAdd.pop_back(); 1648 } 1649 } 1650 1651 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1652 // value in the NonLocalPointerDeps info. 1653 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1654 ReverseNonLocalPtrDeps.find(RemInst); 1655 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1656 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1657 ReversePtrDepsToAdd; 1658 1659 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1660 assert(P.getPointer() != RemInst && 1661 "Already removed NonLocalPointerDeps info for RemInst"); 1662 1663 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1664 1665 // The cache is not valid for any specific block anymore. 1666 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1667 1668 // Update any entries for RemInst to use the instruction after it. 1669 for (auto &Entry : NLPDI) { 1670 if (Entry.getResult().getInst() != RemInst) 1671 continue; 1672 1673 // Convert to a dirty entry for the subsequent instruction. 1674 Entry.setResult(NewDirtyVal); 1675 1676 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1677 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1678 } 1679 1680 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1681 // subsequent value may invalidate the sortedness. 1682 llvm::sort(NLPDI); 1683 } 1684 1685 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1686 1687 while (!ReversePtrDepsToAdd.empty()) { 1688 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1689 ReversePtrDepsToAdd.back().second); 1690 ReversePtrDepsToAdd.pop_back(); 1691 } 1692 } 1693 1694 // Invalidate phis that use the removed instruction. 1695 PV.invalidateValue(RemInst); 1696 1697 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1698 LLVM_DEBUG(verifyRemoved(RemInst)); 1699 } 1700 1701 /// Verify that the specified instruction does not occur in our internal data 1702 /// structures. 1703 /// 1704 /// This function verifies by asserting in debug builds. 1705 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1706 #ifndef NDEBUG 1707 for (const auto &DepKV : LocalDeps) { 1708 assert(DepKV.first != D && "Inst occurs in data structures"); 1709 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1710 } 1711 1712 for (const auto &DepKV : NonLocalPointerDeps) { 1713 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1714 for (const auto &Entry : DepKV.second.NonLocalDeps) 1715 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1716 } 1717 1718 for (const auto &DepKV : NonLocalDeps) { 1719 assert(DepKV.first != D && "Inst occurs in data structures"); 1720 const PerInstNLInfo &INLD = DepKV.second; 1721 for (const auto &Entry : INLD.first) 1722 assert(Entry.getResult().getInst() != D && 1723 "Inst occurs in data structures"); 1724 } 1725 1726 for (const auto &DepKV : ReverseLocalDeps) { 1727 assert(DepKV.first != D && "Inst occurs in data structures"); 1728 for (Instruction *Inst : DepKV.second) 1729 assert(Inst != D && "Inst occurs in data structures"); 1730 } 1731 1732 for (const auto &DepKV : ReverseNonLocalDeps) { 1733 assert(DepKV.first != D && "Inst occurs in data structures"); 1734 for (Instruction *Inst : DepKV.second) 1735 assert(Inst != D && "Inst occurs in data structures"); 1736 } 1737 1738 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1739 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1740 1741 for (ValueIsLoadPair P : DepKV.second) 1742 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1743 "Inst occurs in ReverseNonLocalPtrDeps map"); 1744 } 1745 #endif 1746 } 1747 1748 AnalysisKey MemoryDependenceAnalysis::Key; 1749 1750 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1751 : DefaultBlockScanLimit(BlockScanLimit) {} 1752 1753 MemoryDependenceResults 1754 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1755 auto &AA = AM.getResult<AAManager>(F); 1756 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1757 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1758 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1759 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1760 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1761 } 1762 1763 char MemoryDependenceWrapperPass::ID = 0; 1764 1765 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1766 "Memory Dependence Analysis", false, true) 1767 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1768 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1770 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1771 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1772 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1773 "Memory Dependence Analysis", false, true) 1774 1775 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1776 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1777 } 1778 1779 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1780 1781 void MemoryDependenceWrapperPass::releaseMemory() { 1782 MemDep.reset(); 1783 } 1784 1785 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1786 AU.setPreservesAll(); 1787 AU.addRequired<AssumptionCacheTracker>(); 1788 AU.addRequired<DominatorTreeWrapperPass>(); 1789 AU.addRequired<PhiValuesWrapperPass>(); 1790 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1791 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1792 } 1793 1794 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1795 FunctionAnalysisManager::Invalidator &Inv) { 1796 // Check whether our analysis is preserved. 1797 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1798 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1799 // If not, give up now. 1800 return true; 1801 1802 // Check whether the analyses we depend on became invalid for any reason. 1803 if (Inv.invalidate<AAManager>(F, PA) || 1804 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1805 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1806 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1807 return true; 1808 1809 // Otherwise this analysis result remains valid. 1810 return false; 1811 } 1812 1813 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1814 return DefaultBlockScanLimit; 1815 } 1816 1817 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1818 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1819 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1820 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1821 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1822 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1823 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1824 return false; 1825 } 1826