1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/OrderedBasicBlock.h" 27 #include "llvm/Analysis/PHITransAddr.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PredIteratorCache.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Use.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = getDefaultBlockScanLimit(); 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize( 241 const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, 242 const LoadInst *LI) { 243 // We can only extend simple integer loads. 244 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) 245 return 0; 246 247 // Load widening is hostile to ThreadSanitizer: it may cause false positives 248 // or make the reports more cryptic (access sizes are wrong). 249 if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 250 return 0; 251 252 const DataLayout &DL = LI->getModule()->getDataLayout(); 253 254 // Get the base of this load. 255 int64_t LIOffs = 0; 256 const Value *LIBase = 257 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL); 258 259 // If the two pointers are not based on the same pointer, we can't tell that 260 // they are related. 261 if (LIBase != MemLocBase) 262 return 0; 263 264 // Okay, the two values are based on the same pointer, but returned as 265 // no-alias. This happens when we have things like two byte loads at "P+1" 266 // and "P+3". Check to see if increasing the size of the "LI" load up to its 267 // alignment (or the largest native integer type) will allow us to load all 268 // the bits required by MemLoc. 269 270 // If MemLoc is before LI, then no widening of LI will help us out. 271 if (MemLocOffs < LIOffs) 272 return 0; 273 274 // Get the alignment of the load in bytes. We assume that it is safe to load 275 // any legal integer up to this size without a problem. For example, if we're 276 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can 277 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it 278 // to i16. 279 unsigned LoadAlign = LI->getAlignment(); 280 281 int64_t MemLocEnd = MemLocOffs + MemLocSize; 282 283 // If no amount of rounding up will let MemLoc fit into LI, then bail out. 284 if (LIOffs + LoadAlign < MemLocEnd) 285 return 0; 286 287 // This is the size of the load to try. Start with the next larger power of 288 // two. 289 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U; 290 NewLoadByteSize = NextPowerOf2(NewLoadByteSize); 291 292 while (true) { 293 // If this load size is bigger than our known alignment or would not fit 294 // into a native integer register, then we fail. 295 if (NewLoadByteSize > LoadAlign || 296 !DL.fitsInLegalInteger(NewLoadByteSize * 8)) 297 return 0; 298 299 if (LIOffs + NewLoadByteSize > MemLocEnd && 300 (LI->getParent()->getParent()->hasFnAttribute( 301 Attribute::SanitizeAddress) || 302 LI->getParent()->getParent()->hasFnAttribute( 303 Attribute::SanitizeHWAddress))) 304 // We will be reading past the location accessed by the original program. 305 // While this is safe in a regular build, Address Safety analysis tools 306 // may start reporting false warnings. So, don't do widening. 307 return 0; 308 309 // If a load of this width would include all of MemLoc, then we succeed. 310 if (LIOffs + NewLoadByteSize >= MemLocEnd) 311 return NewLoadByteSize; 312 313 NewLoadByteSize <<= 1; 314 } 315 } 316 317 static bool isVolatile(Instruction *Inst) { 318 if (auto *LI = dyn_cast<LoadInst>(Inst)) 319 return LI->isVolatile(); 320 if (auto *SI = dyn_cast<StoreInst>(Inst)) 321 return SI->isVolatile(); 322 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 323 return AI->isVolatile(); 324 return false; 325 } 326 327 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 328 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 329 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 330 OrderedBasicBlock *OBB) { 331 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 332 if (QueryInst != nullptr) { 333 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 334 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 335 336 if (InvariantGroupDependency.isDef()) 337 return InvariantGroupDependency; 338 } 339 } 340 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 341 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, OBB); 342 if (SimpleDep.isDef()) 343 return SimpleDep; 344 // Non-local invariant group dependency indicates there is non local Def 345 // (it only returns nonLocal if it finds nonLocal def), which is better than 346 // local clobber and everything else. 347 if (InvariantGroupDependency.isNonLocal()) 348 return InvariantGroupDependency; 349 350 assert(InvariantGroupDependency.isUnknown() && 351 "InvariantGroupDependency should be only unknown at this point"); 352 return SimpleDep; 353 } 354 355 MemDepResult 356 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 357 BasicBlock *BB) { 358 359 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 360 return MemDepResult::getUnknown(); 361 362 // Take the ptr operand after all casts and geps 0. This way we can search 363 // cast graph down only. 364 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 365 366 // It's is not safe to walk the use list of global value, because function 367 // passes aren't allowed to look outside their functions. 368 // FIXME: this could be fixed by filtering instructions from outside 369 // of current function. 370 if (isa<GlobalValue>(LoadOperand)) 371 return MemDepResult::getUnknown(); 372 373 // Queue to process all pointers that are equivalent to load operand. 374 SmallVector<const Value *, 8> LoadOperandsQueue; 375 LoadOperandsQueue.push_back(LoadOperand); 376 377 Instruction *ClosestDependency = nullptr; 378 // Order of instructions in uses list is unpredictible. In order to always 379 // get the same result, we will look for the closest dominance. 380 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 381 assert(Other && "Must call it with not null instruction"); 382 if (Best == nullptr || DT.dominates(Best, Other)) 383 return Other; 384 return Best; 385 }; 386 387 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 388 // we will see all the instructions. This should be fixed in MSSA. 389 while (!LoadOperandsQueue.empty()) { 390 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 391 assert(Ptr && !isa<GlobalValue>(Ptr) && 392 "Null or GlobalValue should not be inserted"); 393 394 for (const Use &Us : Ptr->uses()) { 395 auto *U = dyn_cast<Instruction>(Us.getUser()); 396 if (!U || U == LI || !DT.dominates(U, LI)) 397 continue; 398 399 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 400 // users. U = bitcast Ptr 401 if (isa<BitCastInst>(U)) { 402 LoadOperandsQueue.push_back(U); 403 continue; 404 } 405 // Gep with zeros is equivalent to bitcast. 406 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 407 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 408 // typeless pointers will be ready then both cases will be gone 409 // (and this BFS also won't be needed). 410 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 411 if (GEP->hasAllZeroIndices()) { 412 LoadOperandsQueue.push_back(U); 413 continue; 414 } 415 416 // If we hit load/store with the same invariant.group metadata (and the 417 // same pointer operand) we can assume that value pointed by pointer 418 // operand didn't change. 419 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 420 U->hasMetadata(LLVMContext::MD_invariant_group)) 421 ClosestDependency = GetClosestDependency(ClosestDependency, U); 422 } 423 } 424 425 if (!ClosestDependency) 426 return MemDepResult::getUnknown(); 427 if (ClosestDependency->getParent() == BB) 428 return MemDepResult::getDef(ClosestDependency); 429 // Def(U) can't be returned here because it is non-local. If local 430 // dependency won't be found then return nonLocal counting that the 431 // user will call getNonLocalPointerDependency, which will return cached 432 // result. 433 NonLocalDefsCache.try_emplace( 434 LI, NonLocalDepResult(ClosestDependency->getParent(), 435 MemDepResult::getDef(ClosestDependency), nullptr)); 436 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 437 return MemDepResult::getNonLocal(); 438 } 439 440 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 441 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 442 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 443 OrderedBasicBlock *OBB) { 444 bool isInvariantLoad = false; 445 446 unsigned DefaultLimit = getDefaultBlockScanLimit(); 447 if (!Limit) 448 Limit = &DefaultLimit; 449 450 // We must be careful with atomic accesses, as they may allow another thread 451 // to touch this location, clobbering it. We are conservative: if the 452 // QueryInst is not a simple (non-atomic) memory access, we automatically 453 // return getClobber. 454 // If it is simple, we know based on the results of 455 // "Compiler testing via a theory of sound optimisations in the C11/C++11 456 // memory model" in PLDI 2013, that a non-atomic location can only be 457 // clobbered between a pair of a release and an acquire action, with no 458 // access to the location in between. 459 // Here is an example for giving the general intuition behind this rule. 460 // In the following code: 461 // store x 0; 462 // release action; [1] 463 // acquire action; [4] 464 // %val = load x; 465 // It is unsafe to replace %val by 0 because another thread may be running: 466 // acquire action; [2] 467 // store x 42; 468 // release action; [3] 469 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 470 // being 42. A key property of this program however is that if either 471 // 1 or 4 were missing, there would be a race between the store of 42 472 // either the store of 0 or the load (making the whole program racy). 473 // The paper mentioned above shows that the same property is respected 474 // by every program that can detect any optimization of that kind: either 475 // it is racy (undefined) or there is a release followed by an acquire 476 // between the pair of accesses under consideration. 477 478 // If the load is invariant, we "know" that it doesn't alias *any* write. We 479 // do want to respect mustalias results since defs are useful for value 480 // forwarding, but any mayalias write can be assumed to be noalias. 481 // Arguably, this logic should be pushed inside AliasAnalysis itself. 482 if (isLoad && QueryInst) { 483 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 484 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 485 isInvariantLoad = true; 486 } 487 488 const DataLayout &DL = BB->getModule()->getDataLayout(); 489 490 // If the caller did not provide an ordered basic block, 491 // create one to lazily compute and cache instruction 492 // positions inside a BB. This is used to provide fast queries for relative 493 // position between two instructions in a BB and can be used by 494 // AliasAnalysis::callCapturesBefore. 495 OrderedBasicBlock OBBTmp(BB); 496 if (!OBB) 497 OBB = &OBBTmp; 498 499 // Return "true" if and only if the instruction I is either a non-simple 500 // load or a non-simple store. 501 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 502 if (auto *LI = dyn_cast<LoadInst>(I)) 503 return !LI->isSimple(); 504 if (auto *SI = dyn_cast<StoreInst>(I)) 505 return !SI->isSimple(); 506 return false; 507 }; 508 509 // Return "true" if I is not a load and not a store, but it does access 510 // memory. 511 auto isOtherMemAccess = [](Instruction *I) -> bool { 512 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 513 }; 514 515 // Walk backwards through the basic block, looking for dependencies. 516 while (ScanIt != BB->begin()) { 517 Instruction *Inst = &*--ScanIt; 518 519 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 520 // Debug intrinsics don't (and can't) cause dependencies. 521 if (isa<DbgInfoIntrinsic>(II)) 522 continue; 523 524 // Limit the amount of scanning we do so we don't end up with quadratic 525 // running time on extreme testcases. 526 --*Limit; 527 if (!*Limit) 528 return MemDepResult::getUnknown(); 529 530 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 531 // If we reach a lifetime begin or end marker, then the query ends here 532 // because the value is undefined. 533 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 534 // FIXME: This only considers queries directly on the invariant-tagged 535 // pointer, not on query pointers that are indexed off of them. It'd 536 // be nice to handle that at some point (the right approach is to use 537 // GetPointerBaseWithConstantOffset). 538 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 539 return MemDepResult::getDef(II); 540 continue; 541 } 542 } 543 544 // Values depend on loads if the pointers are must aliased. This means 545 // that a load depends on another must aliased load from the same value. 546 // One exception is atomic loads: a value can depend on an atomic load that 547 // it does not alias with when this atomic load indicates that another 548 // thread may be accessing the location. 549 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 550 // While volatile access cannot be eliminated, they do not have to clobber 551 // non-aliasing locations, as normal accesses, for example, can be safely 552 // reordered with volatile accesses. 553 if (LI->isVolatile()) { 554 if (!QueryInst) 555 // Original QueryInst *may* be volatile 556 return MemDepResult::getClobber(LI); 557 if (isVolatile(QueryInst)) 558 // Ordering required if QueryInst is itself volatile 559 return MemDepResult::getClobber(LI); 560 // Otherwise, volatile doesn't imply any special ordering 561 } 562 563 // Atomic loads have complications involved. 564 // A Monotonic (or higher) load is OK if the query inst is itself not 565 // atomic. 566 // FIXME: This is overly conservative. 567 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 568 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 569 isOtherMemAccess(QueryInst)) 570 return MemDepResult::getClobber(LI); 571 if (LI->getOrdering() != AtomicOrdering::Monotonic) 572 return MemDepResult::getClobber(LI); 573 } 574 575 MemoryLocation LoadLoc = MemoryLocation::get(LI); 576 577 // If we found a pointer, check if it could be the same as our pointer. 578 AliasResult R = AA.alias(LoadLoc, MemLoc); 579 580 if (isLoad) { 581 if (R == NoAlias) 582 continue; 583 584 // Must aliased loads are defs of each other. 585 if (R == MustAlias) 586 return MemDepResult::getDef(Inst); 587 588 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 589 // in terms of clobbering loads, but since it does this by looking 590 // at the clobbering load directly, it doesn't know about any 591 // phi translation that may have happened along the way. 592 593 // If we have a partial alias, then return this as a clobber for the 594 // client to handle. 595 if (R == PartialAlias) 596 return MemDepResult::getClobber(Inst); 597 #endif 598 599 // Random may-alias loads don't depend on each other without a 600 // dependence. 601 continue; 602 } 603 604 // Stores don't depend on other no-aliased accesses. 605 if (R == NoAlias) 606 continue; 607 608 // Stores don't alias loads from read-only memory. 609 if (AA.pointsToConstantMemory(LoadLoc)) 610 continue; 611 612 // Stores depend on may/must aliased loads. 613 return MemDepResult::getDef(Inst); 614 } 615 616 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 617 // Atomic stores have complications involved. 618 // A Monotonic store is OK if the query inst is itself not atomic. 619 // FIXME: This is overly conservative. 620 if (!SI->isUnordered() && SI->isAtomic()) { 621 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 622 isOtherMemAccess(QueryInst)) 623 return MemDepResult::getClobber(SI); 624 if (SI->getOrdering() != AtomicOrdering::Monotonic) 625 return MemDepResult::getClobber(SI); 626 } 627 628 // FIXME: this is overly conservative. 629 // While volatile access cannot be eliminated, they do not have to clobber 630 // non-aliasing locations, as normal accesses can for example be reordered 631 // with volatile accesses. 632 if (SI->isVolatile()) 633 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 634 isOtherMemAccess(QueryInst)) 635 return MemDepResult::getClobber(SI); 636 637 // If alias analysis can tell that this store is guaranteed to not modify 638 // the query pointer, ignore it. Use getModRefInfo to handle cases where 639 // the query pointer points to constant memory etc. 640 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 641 continue; 642 643 // Ok, this store might clobber the query pointer. Check to see if it is 644 // a must alias: in this case, we want to return this as a def. 645 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 646 MemoryLocation StoreLoc = MemoryLocation::get(SI); 647 648 // If we found a pointer, check if it could be the same as our pointer. 649 AliasResult R = AA.alias(StoreLoc, MemLoc); 650 651 if (R == NoAlias) 652 continue; 653 if (R == MustAlias) 654 return MemDepResult::getDef(Inst); 655 if (isInvariantLoad) 656 continue; 657 return MemDepResult::getClobber(Inst); 658 } 659 660 // If this is an allocation, and if we know that the accessed pointer is to 661 // the allocation, return Def. This means that there is no dependence and 662 // the access can be optimized based on that. For example, a load could 663 // turn into undef. Note that we can bypass the allocation itself when 664 // looking for a clobber in many cases; that's an alias property and is 665 // handled by BasicAA. 666 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 667 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 668 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 669 return MemDepResult::getDef(Inst); 670 } 671 672 if (isInvariantLoad) 673 continue; 674 675 // A release fence requires that all stores complete before it, but does 676 // not prevent the reordering of following loads or stores 'before' the 677 // fence. As a result, we look past it when finding a dependency for 678 // loads. DSE uses this to find preceding stores to delete and thus we 679 // can't bypass the fence if the query instruction is a store. 680 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 681 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 682 continue; 683 684 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 685 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 686 // If necessary, perform additional analysis. 687 if (isModAndRefSet(MR)) 688 MR = AA.callCapturesBefore(Inst, MemLoc, &DT, OBB); 689 switch (clearMust(MR)) { 690 case ModRefInfo::NoModRef: 691 // If the call has no effect on the queried pointer, just ignore it. 692 continue; 693 case ModRefInfo::Mod: 694 return MemDepResult::getClobber(Inst); 695 case ModRefInfo::Ref: 696 // If the call is known to never store to the pointer, and if this is a 697 // load query, we can safely ignore it (scan past it). 698 if (isLoad) 699 continue; 700 LLVM_FALLTHROUGH; 701 default: 702 // Otherwise, there is a potential dependence. Return a clobber. 703 return MemDepResult::getClobber(Inst); 704 } 705 } 706 707 // No dependence found. If this is the entry block of the function, it is 708 // unknown, otherwise it is non-local. 709 if (BB != &BB->getParent()->getEntryBlock()) 710 return MemDepResult::getNonLocal(); 711 return MemDepResult::getNonFuncLocal(); 712 } 713 714 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst, 715 OrderedBasicBlock *OBB) { 716 Instruction *ScanPos = QueryInst; 717 718 // Check for a cached result 719 MemDepResult &LocalCache = LocalDeps[QueryInst]; 720 721 // If the cached entry is non-dirty, just return it. Note that this depends 722 // on MemDepResult's default constructing to 'dirty'. 723 if (!LocalCache.isDirty()) 724 return LocalCache; 725 726 // Otherwise, if we have a dirty entry, we know we can start the scan at that 727 // instruction, which may save us some work. 728 if (Instruction *Inst = LocalCache.getInst()) { 729 ScanPos = Inst; 730 731 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 732 } 733 734 BasicBlock *QueryParent = QueryInst->getParent(); 735 736 // Do the scan. 737 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 738 // No dependence found. If this is the entry block of the function, it is 739 // unknown, otherwise it is non-local. 740 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 741 LocalCache = MemDepResult::getNonLocal(); 742 else 743 LocalCache = MemDepResult::getNonFuncLocal(); 744 } else { 745 MemoryLocation MemLoc; 746 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 747 if (MemLoc.Ptr) { 748 // If we can do a pointer scan, make it happen. 749 bool isLoad = !isModSet(MR); 750 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 751 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 752 753 LocalCache = 754 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 755 QueryParent, QueryInst, nullptr, OBB); 756 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 757 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 758 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 759 ScanPos->getIterator(), QueryParent); 760 } else 761 // Non-memory instruction. 762 LocalCache = MemDepResult::getUnknown(); 763 } 764 765 // Remember the result! 766 if (Instruction *I = LocalCache.getInst()) 767 ReverseLocalDeps[I].insert(QueryInst); 768 769 return LocalCache; 770 } 771 772 #ifndef NDEBUG 773 /// This method is used when -debug is specified to verify that cache arrays 774 /// are properly kept sorted. 775 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 776 int Count = -1) { 777 if (Count == -1) 778 Count = Cache.size(); 779 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 780 "Cache isn't sorted!"); 781 } 782 #endif 783 784 const MemoryDependenceResults::NonLocalDepInfo & 785 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 786 assert(getDependency(QueryCall).isNonLocal() && 787 "getNonLocalCallDependency should only be used on calls with " 788 "non-local deps!"); 789 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 790 NonLocalDepInfo &Cache = CacheP.first; 791 792 // This is the set of blocks that need to be recomputed. In the cached case, 793 // this can happen due to instructions being deleted etc. In the uncached 794 // case, this starts out as the set of predecessors we care about. 795 SmallVector<BasicBlock *, 32> DirtyBlocks; 796 797 if (!Cache.empty()) { 798 // Okay, we have a cache entry. If we know it is not dirty, just return it 799 // with no computation. 800 if (!CacheP.second) { 801 ++NumCacheNonLocal; 802 return Cache; 803 } 804 805 // If we already have a partially computed set of results, scan them to 806 // determine what is dirty, seeding our initial DirtyBlocks worklist. 807 for (auto &Entry : Cache) 808 if (Entry.getResult().isDirty()) 809 DirtyBlocks.push_back(Entry.getBB()); 810 811 // Sort the cache so that we can do fast binary search lookups below. 812 llvm::sort(Cache); 813 814 ++NumCacheDirtyNonLocal; 815 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 816 // << Cache.size() << " cached: " << *QueryInst; 817 } else { 818 // Seed DirtyBlocks with each of the preds of QueryInst's block. 819 BasicBlock *QueryBB = QueryCall->getParent(); 820 for (BasicBlock *Pred : PredCache.get(QueryBB)) 821 DirtyBlocks.push_back(Pred); 822 ++NumUncacheNonLocal; 823 } 824 825 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 826 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 827 828 SmallPtrSet<BasicBlock *, 32> Visited; 829 830 unsigned NumSortedEntries = Cache.size(); 831 LLVM_DEBUG(AssertSorted(Cache)); 832 833 // Iterate while we still have blocks to update. 834 while (!DirtyBlocks.empty()) { 835 BasicBlock *DirtyBB = DirtyBlocks.back(); 836 DirtyBlocks.pop_back(); 837 838 // Already processed this block? 839 if (!Visited.insert(DirtyBB).second) 840 continue; 841 842 // Do a binary search to see if we already have an entry for this block in 843 // the cache set. If so, find it. 844 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 845 NonLocalDepInfo::iterator Entry = 846 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 847 NonLocalDepEntry(DirtyBB)); 848 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 849 --Entry; 850 851 NonLocalDepEntry *ExistingResult = nullptr; 852 if (Entry != Cache.begin() + NumSortedEntries && 853 Entry->getBB() == DirtyBB) { 854 // If we already have an entry, and if it isn't already dirty, the block 855 // is done. 856 if (!Entry->getResult().isDirty()) 857 continue; 858 859 // Otherwise, remember this slot so we can update the value. 860 ExistingResult = &*Entry; 861 } 862 863 // If the dirty entry has a pointer, start scanning from it so we don't have 864 // to rescan the entire block. 865 BasicBlock::iterator ScanPos = DirtyBB->end(); 866 if (ExistingResult) { 867 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 868 ScanPos = Inst->getIterator(); 869 // We're removing QueryInst's use of Inst. 870 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 871 QueryCall); 872 } 873 } 874 875 // Find out if this block has a local dependency for QueryInst. 876 MemDepResult Dep; 877 878 if (ScanPos != DirtyBB->begin()) { 879 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 880 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 881 // No dependence found. If this is the entry block of the function, it is 882 // a clobber, otherwise it is unknown. 883 Dep = MemDepResult::getNonLocal(); 884 } else { 885 Dep = MemDepResult::getNonFuncLocal(); 886 } 887 888 // If we had a dirty entry for the block, update it. Otherwise, just add 889 // a new entry. 890 if (ExistingResult) 891 ExistingResult->setResult(Dep); 892 else 893 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 894 895 // If the block has a dependency (i.e. it isn't completely transparent to 896 // the value), remember the association! 897 if (!Dep.isNonLocal()) { 898 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 899 // update this when we remove instructions. 900 if (Instruction *Inst = Dep.getInst()) 901 ReverseNonLocalDeps[Inst].insert(QueryCall); 902 } else { 903 904 // If the block *is* completely transparent to the load, we need to check 905 // the predecessors of this block. Add them to our worklist. 906 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 907 DirtyBlocks.push_back(Pred); 908 } 909 } 910 911 return Cache; 912 } 913 914 void MemoryDependenceResults::getNonLocalPointerDependency( 915 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 916 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 917 bool isLoad = isa<LoadInst>(QueryInst); 918 BasicBlock *FromBB = QueryInst->getParent(); 919 assert(FromBB); 920 921 assert(Loc.Ptr->getType()->isPointerTy() && 922 "Can't get pointer deps of a non-pointer!"); 923 Result.clear(); 924 { 925 // Check if there is cached Def with invariant.group. 926 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 927 if (NonLocalDefIt != NonLocalDefsCache.end()) { 928 Result.push_back(NonLocalDefIt->second); 929 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 930 .erase(QueryInst); 931 NonLocalDefsCache.erase(NonLocalDefIt); 932 return; 933 } 934 } 935 // This routine does not expect to deal with volatile instructions. 936 // Doing so would require piping through the QueryInst all the way through. 937 // TODO: volatiles can't be elided, but they can be reordered with other 938 // non-volatile accesses. 939 940 // We currently give up on any instruction which is ordered, but we do handle 941 // atomic instructions which are unordered. 942 // TODO: Handle ordered instructions 943 auto isOrdered = [](Instruction *Inst) { 944 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 945 return !LI->isUnordered(); 946 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 947 return !SI->isUnordered(); 948 } 949 return false; 950 }; 951 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 952 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 953 const_cast<Value *>(Loc.Ptr))); 954 return; 955 } 956 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 957 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 958 959 // This is the set of blocks we've inspected, and the pointer we consider in 960 // each block. Because of critical edges, we currently bail out if querying 961 // a block with multiple different pointers. This can happen during PHI 962 // translation. 963 DenseMap<BasicBlock *, Value *> Visited; 964 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 965 Result, Visited, true)) 966 return; 967 Result.clear(); 968 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 969 const_cast<Value *>(Loc.Ptr))); 970 } 971 972 /// Compute the memdep value for BB with Pointer/PointeeSize using either 973 /// cached information in Cache or by doing a lookup (which may use dirty cache 974 /// info if available). 975 /// 976 /// If we do a lookup, add the result to the cache. 977 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 978 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 979 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 980 981 // Do a binary search to see if we already have an entry for this block in 982 // the cache set. If so, find it. 983 NonLocalDepInfo::iterator Entry = std::upper_bound( 984 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 985 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 986 --Entry; 987 988 NonLocalDepEntry *ExistingResult = nullptr; 989 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 990 ExistingResult = &*Entry; 991 992 // If we have a cached entry, and it is non-dirty, use it as the value for 993 // this dependency. 994 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 995 ++NumCacheNonLocalPtr; 996 return ExistingResult->getResult(); 997 } 998 999 // Otherwise, we have to scan for the value. If we have a dirty cache 1000 // entry, start scanning from its position, otherwise we scan from the end 1001 // of the block. 1002 BasicBlock::iterator ScanPos = BB->end(); 1003 if (ExistingResult && ExistingResult->getResult().getInst()) { 1004 assert(ExistingResult->getResult().getInst()->getParent() == BB && 1005 "Instruction invalidated?"); 1006 ++NumCacheDirtyNonLocalPtr; 1007 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 1008 1009 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1010 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1011 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 1012 } else { 1013 ++NumUncacheNonLocalPtr; 1014 } 1015 1016 // Scan the block for the dependency. 1017 MemDepResult Dep = 1018 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 1019 1020 // If we had a dirty entry for the block, update it. Otherwise, just add 1021 // a new entry. 1022 if (ExistingResult) 1023 ExistingResult->setResult(Dep); 1024 else 1025 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1026 1027 // If the block has a dependency (i.e. it isn't completely transparent to 1028 // the value), remember the reverse association because we just added it 1029 // to Cache! 1030 if (!Dep.isDef() && !Dep.isClobber()) 1031 return Dep; 1032 1033 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1034 // update MemDep when we remove instructions. 1035 Instruction *Inst = Dep.getInst(); 1036 assert(Inst && "Didn't depend on anything?"); 1037 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1038 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1039 return Dep; 1040 } 1041 1042 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1043 /// array that are already properly ordered. 1044 /// 1045 /// This is optimized for the case when only a few entries are added. 1046 static void 1047 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1048 unsigned NumSortedEntries) { 1049 switch (Cache.size() - NumSortedEntries) { 1050 case 0: 1051 // done, no new entries. 1052 break; 1053 case 2: { 1054 // Two new entries, insert the last one into place. 1055 NonLocalDepEntry Val = Cache.back(); 1056 Cache.pop_back(); 1057 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1058 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1059 Cache.insert(Entry, Val); 1060 LLVM_FALLTHROUGH; 1061 } 1062 case 1: 1063 // One new entry, Just insert the new value at the appropriate position. 1064 if (Cache.size() != 1) { 1065 NonLocalDepEntry Val = Cache.back(); 1066 Cache.pop_back(); 1067 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1068 std::upper_bound(Cache.begin(), Cache.end(), Val); 1069 Cache.insert(Entry, Val); 1070 } 1071 break; 1072 default: 1073 // Added many values, do a full scale sort. 1074 llvm::sort(Cache); 1075 break; 1076 } 1077 } 1078 1079 /// Perform a dependency query based on pointer/pointeesize starting at the end 1080 /// of StartBB. 1081 /// 1082 /// Add any clobber/def results to the results vector and keep track of which 1083 /// blocks are visited in 'Visited'. 1084 /// 1085 /// This has special behavior for the first block queries (when SkipFirstBlock 1086 /// is true). In this special case, it ignores the contents of the specified 1087 /// block and starts returning dependence info for its predecessors. 1088 /// 1089 /// This function returns true on success, or false to indicate that it could 1090 /// not compute dependence information for some reason. This should be treated 1091 /// as a clobber dependence on the first instruction in the predecessor block. 1092 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1093 Instruction *QueryInst, const PHITransAddr &Pointer, 1094 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1095 SmallVectorImpl<NonLocalDepResult> &Result, 1096 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock) { 1097 // Look up the cached info for Pointer. 1098 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1099 1100 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1101 // CacheKey, this value will be inserted as the associated value. Otherwise, 1102 // it'll be ignored, and we'll have to check to see if the cached size and 1103 // aa tags are consistent with the current query. 1104 NonLocalPointerInfo InitialNLPI; 1105 InitialNLPI.Size = Loc.Size; 1106 InitialNLPI.AATags = Loc.AATags; 1107 1108 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1109 // already have one. 1110 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1111 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1112 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1113 1114 // If we already have a cache entry for this CacheKey, we may need to do some 1115 // work to reconcile the cache entry and the current query. 1116 if (!Pair.second) { 1117 if (CacheInfo->Size != Loc.Size) { 1118 bool ThrowOutEverything; 1119 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1120 // FIXME: We may be able to do better in the face of results with mixed 1121 // precision. We don't appear to get them in practice, though, so just 1122 // be conservative. 1123 ThrowOutEverything = 1124 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1125 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1126 } else { 1127 // For our purposes, unknown size > all others. 1128 ThrowOutEverything = !Loc.Size.hasValue(); 1129 } 1130 1131 if (ThrowOutEverything) { 1132 // The query's Size is greater than the cached one. Throw out the 1133 // cached data and proceed with the query at the greater size. 1134 CacheInfo->Pair = BBSkipFirstBlockPair(); 1135 CacheInfo->Size = Loc.Size; 1136 for (auto &Entry : CacheInfo->NonLocalDeps) 1137 if (Instruction *Inst = Entry.getResult().getInst()) 1138 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1139 CacheInfo->NonLocalDeps.clear(); 1140 } else { 1141 // This query's Size is less than the cached one. Conservatively restart 1142 // the query using the greater size. 1143 return getNonLocalPointerDepFromBB( 1144 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1145 StartBB, Result, Visited, SkipFirstBlock); 1146 } 1147 } 1148 1149 // If the query's AATags are inconsistent with the cached one, 1150 // conservatively throw out the cached data and restart the query with 1151 // no tag if needed. 1152 if (CacheInfo->AATags != Loc.AATags) { 1153 if (CacheInfo->AATags) { 1154 CacheInfo->Pair = BBSkipFirstBlockPair(); 1155 CacheInfo->AATags = AAMDNodes(); 1156 for (auto &Entry : CacheInfo->NonLocalDeps) 1157 if (Instruction *Inst = Entry.getResult().getInst()) 1158 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1159 CacheInfo->NonLocalDeps.clear(); 1160 } 1161 if (Loc.AATags) 1162 return getNonLocalPointerDepFromBB( 1163 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1164 Visited, SkipFirstBlock); 1165 } 1166 } 1167 1168 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1169 1170 // If we have valid cached information for exactly the block we are 1171 // investigating, just return it with no recomputation. 1172 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1173 // We have a fully cached result for this query then we can just return the 1174 // cached results and populate the visited set. However, we have to verify 1175 // that we don't already have conflicting results for these blocks. Check 1176 // to ensure that if a block in the results set is in the visited set that 1177 // it was for the same pointer query. 1178 if (!Visited.empty()) { 1179 for (auto &Entry : *Cache) { 1180 DenseMap<BasicBlock *, Value *>::iterator VI = 1181 Visited.find(Entry.getBB()); 1182 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1183 continue; 1184 1185 // We have a pointer mismatch in a block. Just return false, saying 1186 // that something was clobbered in this result. We could also do a 1187 // non-fully cached query, but there is little point in doing this. 1188 return false; 1189 } 1190 } 1191 1192 Value *Addr = Pointer.getAddr(); 1193 for (auto &Entry : *Cache) { 1194 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1195 if (Entry.getResult().isNonLocal()) { 1196 continue; 1197 } 1198 1199 if (DT.isReachableFromEntry(Entry.getBB())) { 1200 Result.push_back( 1201 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1202 } 1203 } 1204 ++NumCacheCompleteNonLocalPtr; 1205 return true; 1206 } 1207 1208 // Otherwise, either this is a new block, a block with an invalid cache 1209 // pointer or one that we're about to invalidate by putting more info into it 1210 // than its valid cache info. If empty, the result will be valid cache info, 1211 // otherwise it isn't. 1212 if (Cache->empty()) 1213 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1214 else 1215 CacheInfo->Pair = BBSkipFirstBlockPair(); 1216 1217 SmallVector<BasicBlock *, 32> Worklist; 1218 Worklist.push_back(StartBB); 1219 1220 // PredList used inside loop. 1221 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1222 1223 // Keep track of the entries that we know are sorted. Previously cached 1224 // entries will all be sorted. The entries we add we only sort on demand (we 1225 // don't insert every element into its sorted position). We know that we 1226 // won't get any reuse from currently inserted values, because we don't 1227 // revisit blocks after we insert info for them. 1228 unsigned NumSortedEntries = Cache->size(); 1229 unsigned WorklistEntries = BlockNumberLimit; 1230 bool GotWorklistLimit = false; 1231 LLVM_DEBUG(AssertSorted(*Cache)); 1232 1233 while (!Worklist.empty()) { 1234 BasicBlock *BB = Worklist.pop_back_val(); 1235 1236 // If we do process a large number of blocks it becomes very expensive and 1237 // likely it isn't worth worrying about 1238 if (Result.size() > NumResultsLimit) { 1239 Worklist.clear(); 1240 // Sort it now (if needed) so that recursive invocations of 1241 // getNonLocalPointerDepFromBB and other routines that could reuse the 1242 // cache value will only see properly sorted cache arrays. 1243 if (Cache && NumSortedEntries != Cache->size()) { 1244 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1245 } 1246 // Since we bail out, the "Cache" set won't contain all of the 1247 // results for the query. This is ok (we can still use it to accelerate 1248 // specific block queries) but we can't do the fastpath "return all 1249 // results from the set". Clear out the indicator for this. 1250 CacheInfo->Pair = BBSkipFirstBlockPair(); 1251 return false; 1252 } 1253 1254 // Skip the first block if we have it. 1255 if (!SkipFirstBlock) { 1256 // Analyze the dependency of *Pointer in FromBB. See if we already have 1257 // been here. 1258 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1259 1260 // Get the dependency info for Pointer in BB. If we have cached 1261 // information, we will use it, otherwise we compute it. 1262 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1263 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1264 Cache, NumSortedEntries); 1265 1266 // If we got a Def or Clobber, add this to the list of results. 1267 if (!Dep.isNonLocal()) { 1268 if (DT.isReachableFromEntry(BB)) { 1269 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1270 continue; 1271 } 1272 } 1273 } 1274 1275 // If 'Pointer' is an instruction defined in this block, then we need to do 1276 // phi translation to change it into a value live in the predecessor block. 1277 // If not, we just add the predecessors to the worklist and scan them with 1278 // the same Pointer. 1279 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1280 SkipFirstBlock = false; 1281 SmallVector<BasicBlock *, 16> NewBlocks; 1282 for (BasicBlock *Pred : PredCache.get(BB)) { 1283 // Verify that we haven't looked at this block yet. 1284 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1285 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1286 if (InsertRes.second) { 1287 // First time we've looked at *PI. 1288 NewBlocks.push_back(Pred); 1289 continue; 1290 } 1291 1292 // If we have seen this block before, but it was with a different 1293 // pointer then we have a phi translation failure and we have to treat 1294 // this as a clobber. 1295 if (InsertRes.first->second != Pointer.getAddr()) { 1296 // Make sure to clean up the Visited map before continuing on to 1297 // PredTranslationFailure. 1298 for (unsigned i = 0; i < NewBlocks.size(); i++) 1299 Visited.erase(NewBlocks[i]); 1300 goto PredTranslationFailure; 1301 } 1302 } 1303 if (NewBlocks.size() > WorklistEntries) { 1304 // Make sure to clean up the Visited map before continuing on to 1305 // PredTranslationFailure. 1306 for (unsigned i = 0; i < NewBlocks.size(); i++) 1307 Visited.erase(NewBlocks[i]); 1308 GotWorklistLimit = true; 1309 goto PredTranslationFailure; 1310 } 1311 WorklistEntries -= NewBlocks.size(); 1312 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1313 continue; 1314 } 1315 1316 // We do need to do phi translation, if we know ahead of time we can't phi 1317 // translate this value, don't even try. 1318 if (!Pointer.IsPotentiallyPHITranslatable()) 1319 goto PredTranslationFailure; 1320 1321 // We may have added values to the cache list before this PHI translation. 1322 // If so, we haven't done anything to ensure that the cache remains sorted. 1323 // Sort it now (if needed) so that recursive invocations of 1324 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1325 // value will only see properly sorted cache arrays. 1326 if (Cache && NumSortedEntries != Cache->size()) { 1327 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1328 NumSortedEntries = Cache->size(); 1329 } 1330 Cache = nullptr; 1331 1332 PredList.clear(); 1333 for (BasicBlock *Pred : PredCache.get(BB)) { 1334 PredList.push_back(std::make_pair(Pred, Pointer)); 1335 1336 // Get the PHI translated pointer in this predecessor. This can fail if 1337 // not translatable, in which case the getAddr() returns null. 1338 PHITransAddr &PredPointer = PredList.back().second; 1339 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1340 Value *PredPtrVal = PredPointer.getAddr(); 1341 1342 // Check to see if we have already visited this pred block with another 1343 // pointer. If so, we can't do this lookup. This failure can occur 1344 // with PHI translation when a critical edge exists and the PHI node in 1345 // the successor translates to a pointer value different than the 1346 // pointer the block was first analyzed with. 1347 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1348 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1349 1350 if (!InsertRes.second) { 1351 // We found the pred; take it off the list of preds to visit. 1352 PredList.pop_back(); 1353 1354 // If the predecessor was visited with PredPtr, then we already did 1355 // the analysis and can ignore it. 1356 if (InsertRes.first->second == PredPtrVal) 1357 continue; 1358 1359 // Otherwise, the block was previously analyzed with a different 1360 // pointer. We can't represent the result of this case, so we just 1361 // treat this as a phi translation failure. 1362 1363 // Make sure to clean up the Visited map before continuing on to 1364 // PredTranslationFailure. 1365 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1366 Visited.erase(PredList[i].first); 1367 1368 goto PredTranslationFailure; 1369 } 1370 } 1371 1372 // Actually process results here; this need to be a separate loop to avoid 1373 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1374 // any results for. (getNonLocalPointerDepFromBB will modify our 1375 // datastructures in ways the code after the PredTranslationFailure label 1376 // doesn't expect.) 1377 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1378 BasicBlock *Pred = PredList[i].first; 1379 PHITransAddr &PredPointer = PredList[i].second; 1380 Value *PredPtrVal = PredPointer.getAddr(); 1381 1382 bool CanTranslate = true; 1383 // If PHI translation was unable to find an available pointer in this 1384 // predecessor, then we have to assume that the pointer is clobbered in 1385 // that predecessor. We can still do PRE of the load, which would insert 1386 // a computation of the pointer in this predecessor. 1387 if (!PredPtrVal) 1388 CanTranslate = false; 1389 1390 // FIXME: it is entirely possible that PHI translating will end up with 1391 // the same value. Consider PHI translating something like: 1392 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1393 // to recurse here, pedantically speaking. 1394 1395 // If getNonLocalPointerDepFromBB fails here, that means the cached 1396 // result conflicted with the Visited list; we have to conservatively 1397 // assume it is unknown, but this also does not block PRE of the load. 1398 if (!CanTranslate || 1399 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1400 Loc.getWithNewPtr(PredPtrVal), isLoad, 1401 Pred, Result, Visited)) { 1402 // Add the entry to the Result list. 1403 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1404 Result.push_back(Entry); 1405 1406 // Since we had a phi translation failure, the cache for CacheKey won't 1407 // include all of the entries that we need to immediately satisfy future 1408 // queries. Mark this in NonLocalPointerDeps by setting the 1409 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1410 // cached value to do more work but not miss the phi trans failure. 1411 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1412 NLPI.Pair = BBSkipFirstBlockPair(); 1413 continue; 1414 } 1415 } 1416 1417 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1418 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1419 Cache = &CacheInfo->NonLocalDeps; 1420 NumSortedEntries = Cache->size(); 1421 1422 // Since we did phi translation, the "Cache" set won't contain all of the 1423 // results for the query. This is ok (we can still use it to accelerate 1424 // specific block queries) but we can't do the fastpath "return all 1425 // results from the set" Clear out the indicator for this. 1426 CacheInfo->Pair = BBSkipFirstBlockPair(); 1427 SkipFirstBlock = false; 1428 continue; 1429 1430 PredTranslationFailure: 1431 // The following code is "failure"; we can't produce a sane translation 1432 // for the given block. It assumes that we haven't modified any of 1433 // our datastructures while processing the current block. 1434 1435 if (!Cache) { 1436 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1437 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1438 Cache = &CacheInfo->NonLocalDeps; 1439 NumSortedEntries = Cache->size(); 1440 } 1441 1442 // Since we failed phi translation, the "Cache" set won't contain all of the 1443 // results for the query. This is ok (we can still use it to accelerate 1444 // specific block queries) but we can't do the fastpath "return all 1445 // results from the set". Clear out the indicator for this. 1446 CacheInfo->Pair = BBSkipFirstBlockPair(); 1447 1448 // If *nothing* works, mark the pointer as unknown. 1449 // 1450 // If this is the magic first block, return this as a clobber of the whole 1451 // incoming value. Since we can't phi translate to one of the predecessors, 1452 // we have to bail out. 1453 if (SkipFirstBlock) 1454 return false; 1455 1456 bool foundBlock = false; 1457 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1458 if (I.getBB() != BB) 1459 continue; 1460 1461 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1462 !DT.isReachableFromEntry(BB)) && 1463 "Should only be here with transparent block"); 1464 foundBlock = true; 1465 I.setResult(MemDepResult::getUnknown()); 1466 Result.push_back( 1467 NonLocalDepResult(I.getBB(), I.getResult(), Pointer.getAddr())); 1468 break; 1469 } 1470 (void)foundBlock; (void)GotWorklistLimit; 1471 assert((foundBlock || GotWorklistLimit) && "Current block not in cache?"); 1472 } 1473 1474 // Okay, we're done now. If we added new values to the cache, re-sort it. 1475 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1476 LLVM_DEBUG(AssertSorted(*Cache)); 1477 return true; 1478 } 1479 1480 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1481 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1482 ValueIsLoadPair P) { 1483 1484 // Most of the time this cache is empty. 1485 if (!NonLocalDefsCache.empty()) { 1486 auto it = NonLocalDefsCache.find(P.getPointer()); 1487 if (it != NonLocalDefsCache.end()) { 1488 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1489 it->second.getResult().getInst(), P.getPointer()); 1490 NonLocalDefsCache.erase(it); 1491 } 1492 1493 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1494 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1495 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1496 for (const auto &entry : toRemoveIt->second) 1497 NonLocalDefsCache.erase(entry); 1498 ReverseNonLocalDefsCache.erase(toRemoveIt); 1499 } 1500 } 1501 } 1502 1503 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1504 if (It == NonLocalPointerDeps.end()) 1505 return; 1506 1507 // Remove all of the entries in the BB->val map. This involves removing 1508 // instructions from the reverse map. 1509 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1510 1511 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1512 Instruction *Target = PInfo[i].getResult().getInst(); 1513 if (!Target) 1514 continue; // Ignore non-local dep results. 1515 assert(Target->getParent() == PInfo[i].getBB()); 1516 1517 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1518 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1519 } 1520 1521 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1522 NonLocalPointerDeps.erase(It); 1523 } 1524 1525 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1526 // If Ptr isn't really a pointer, just ignore it. 1527 if (!Ptr->getType()->isPointerTy()) 1528 return; 1529 // Flush store info for the pointer. 1530 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1531 // Flush load info for the pointer. 1532 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1533 // Invalidate phis that use the pointer. 1534 PV.invalidateValue(Ptr); 1535 } 1536 1537 void MemoryDependenceResults::invalidateCachedPredecessors() { 1538 PredCache.clear(); 1539 } 1540 1541 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1542 // Walk through the Non-local dependencies, removing this one as the value 1543 // for any cached queries. 1544 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1545 if (NLDI != NonLocalDeps.end()) { 1546 NonLocalDepInfo &BlockMap = NLDI->second.first; 1547 for (auto &Entry : BlockMap) 1548 if (Instruction *Inst = Entry.getResult().getInst()) 1549 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1550 NonLocalDeps.erase(NLDI); 1551 } 1552 1553 // If we have a cached local dependence query for this instruction, remove it. 1554 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1555 if (LocalDepEntry != LocalDeps.end()) { 1556 // Remove us from DepInst's reverse set now that the local dep info is gone. 1557 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1558 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1559 1560 // Remove this local dependency info. 1561 LocalDeps.erase(LocalDepEntry); 1562 } 1563 1564 // If we have any cached pointer dependencies on this instruction, remove 1565 // them. If the instruction has non-pointer type, then it can't be a pointer 1566 // base. 1567 1568 // Remove it from both the load info and the store info. The instruction 1569 // can't be in either of these maps if it is non-pointer. 1570 if (RemInst->getType()->isPointerTy()) { 1571 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1572 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1573 } 1574 1575 // Loop over all of the things that depend on the instruction we're removing. 1576 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1577 1578 // If we find RemInst as a clobber or Def in any of the maps for other values, 1579 // we need to replace its entry with a dirty version of the instruction after 1580 // it. If RemInst is a terminator, we use a null dirty value. 1581 // 1582 // Using a dirty version of the instruction after RemInst saves having to scan 1583 // the entire block to get to this point. 1584 MemDepResult NewDirtyVal; 1585 if (!RemInst->isTerminator()) 1586 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1587 1588 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1589 if (ReverseDepIt != ReverseLocalDeps.end()) { 1590 // RemInst can't be the terminator if it has local stuff depending on it. 1591 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1592 "Nothing can locally depend on a terminator"); 1593 1594 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1595 assert(InstDependingOnRemInst != RemInst && 1596 "Already removed our local dep info"); 1597 1598 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1599 1600 // Make sure to remember that new things depend on NewDepInst. 1601 assert(NewDirtyVal.getInst() && 1602 "There is no way something else can have " 1603 "a local dep on this if it is a terminator!"); 1604 ReverseDepsToAdd.push_back( 1605 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1606 } 1607 1608 ReverseLocalDeps.erase(ReverseDepIt); 1609 1610 // Add new reverse deps after scanning the set, to avoid invalidating the 1611 // 'ReverseDeps' reference. 1612 while (!ReverseDepsToAdd.empty()) { 1613 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1614 ReverseDepsToAdd.back().second); 1615 ReverseDepsToAdd.pop_back(); 1616 } 1617 } 1618 1619 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1620 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1621 for (Instruction *I : ReverseDepIt->second) { 1622 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1623 1624 PerInstNLInfo &INLD = NonLocalDeps[I]; 1625 // The information is now dirty! 1626 INLD.second = true; 1627 1628 for (auto &Entry : INLD.first) { 1629 if (Entry.getResult().getInst() != RemInst) 1630 continue; 1631 1632 // Convert to a dirty entry for the subsequent instruction. 1633 Entry.setResult(NewDirtyVal); 1634 1635 if (Instruction *NextI = NewDirtyVal.getInst()) 1636 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1637 } 1638 } 1639 1640 ReverseNonLocalDeps.erase(ReverseDepIt); 1641 1642 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1643 while (!ReverseDepsToAdd.empty()) { 1644 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1645 ReverseDepsToAdd.back().second); 1646 ReverseDepsToAdd.pop_back(); 1647 } 1648 } 1649 1650 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1651 // value in the NonLocalPointerDeps info. 1652 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1653 ReverseNonLocalPtrDeps.find(RemInst); 1654 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1655 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1656 ReversePtrDepsToAdd; 1657 1658 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1659 assert(P.getPointer() != RemInst && 1660 "Already removed NonLocalPointerDeps info for RemInst"); 1661 1662 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1663 1664 // The cache is not valid for any specific block anymore. 1665 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1666 1667 // Update any entries for RemInst to use the instruction after it. 1668 for (auto &Entry : NLPDI) { 1669 if (Entry.getResult().getInst() != RemInst) 1670 continue; 1671 1672 // Convert to a dirty entry for the subsequent instruction. 1673 Entry.setResult(NewDirtyVal); 1674 1675 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1676 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1677 } 1678 1679 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1680 // subsequent value may invalidate the sortedness. 1681 llvm::sort(NLPDI); 1682 } 1683 1684 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1685 1686 while (!ReversePtrDepsToAdd.empty()) { 1687 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1688 ReversePtrDepsToAdd.back().second); 1689 ReversePtrDepsToAdd.pop_back(); 1690 } 1691 } 1692 1693 // Invalidate phis that use the removed instruction. 1694 PV.invalidateValue(RemInst); 1695 1696 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1697 LLVM_DEBUG(verifyRemoved(RemInst)); 1698 } 1699 1700 /// Verify that the specified instruction does not occur in our internal data 1701 /// structures. 1702 /// 1703 /// This function verifies by asserting in debug builds. 1704 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1705 #ifndef NDEBUG 1706 for (const auto &DepKV : LocalDeps) { 1707 assert(DepKV.first != D && "Inst occurs in data structures"); 1708 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1709 } 1710 1711 for (const auto &DepKV : NonLocalPointerDeps) { 1712 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1713 for (const auto &Entry : DepKV.second.NonLocalDeps) 1714 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1715 } 1716 1717 for (const auto &DepKV : NonLocalDeps) { 1718 assert(DepKV.first != D && "Inst occurs in data structures"); 1719 const PerInstNLInfo &INLD = DepKV.second; 1720 for (const auto &Entry : INLD.first) 1721 assert(Entry.getResult().getInst() != D && 1722 "Inst occurs in data structures"); 1723 } 1724 1725 for (const auto &DepKV : ReverseLocalDeps) { 1726 assert(DepKV.first != D && "Inst occurs in data structures"); 1727 for (Instruction *Inst : DepKV.second) 1728 assert(Inst != D && "Inst occurs in data structures"); 1729 } 1730 1731 for (const auto &DepKV : ReverseNonLocalDeps) { 1732 assert(DepKV.first != D && "Inst occurs in data structures"); 1733 for (Instruction *Inst : DepKV.second) 1734 assert(Inst != D && "Inst occurs in data structures"); 1735 } 1736 1737 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1738 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1739 1740 for (ValueIsLoadPair P : DepKV.second) 1741 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1742 "Inst occurs in ReverseNonLocalPtrDeps map"); 1743 } 1744 #endif 1745 } 1746 1747 AnalysisKey MemoryDependenceAnalysis::Key; 1748 1749 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1750 : DefaultBlockScanLimit(BlockScanLimit) {} 1751 1752 MemoryDependenceResults 1753 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1754 auto &AA = AM.getResult<AAManager>(F); 1755 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1756 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1757 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1758 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1759 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1760 } 1761 1762 char MemoryDependenceWrapperPass::ID = 0; 1763 1764 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1765 "Memory Dependence Analysis", false, true) 1766 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1767 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1768 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1769 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1770 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1771 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1772 "Memory Dependence Analysis", false, true) 1773 1774 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1775 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1776 } 1777 1778 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1779 1780 void MemoryDependenceWrapperPass::releaseMemory() { 1781 MemDep.reset(); 1782 } 1783 1784 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1785 AU.setPreservesAll(); 1786 AU.addRequired<AssumptionCacheTracker>(); 1787 AU.addRequired<DominatorTreeWrapperPass>(); 1788 AU.addRequired<PhiValuesWrapperPass>(); 1789 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1790 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1791 } 1792 1793 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1794 FunctionAnalysisManager::Invalidator &Inv) { 1795 // Check whether our analysis is preserved. 1796 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1797 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1798 // If not, give up now. 1799 return true; 1800 1801 // Check whether the analyses we depend on became invalid for any reason. 1802 if (Inv.invalidate<AAManager>(F, PA) || 1803 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1804 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1805 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1806 return true; 1807 1808 // Otherwise this analysis result remains valid. 1809 return false; 1810 } 1811 1812 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1813 return DefaultBlockScanLimit; 1814 } 1815 1816 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1817 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1818 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1819 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1820 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1821 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1822 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1823 return false; 1824 } 1825