1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/PredIteratorCache.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "memdep" 66 67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 70 71 STATISTIC(NumCacheNonLocalPtr, 72 "Number of fully cached non-local ptr responses"); 73 STATISTIC(NumCacheDirtyNonLocalPtr, 74 "Number of cached, but dirty, non-local ptr responses"); 75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 76 STATISTIC(NumCacheCompleteNonLocalPtr, 77 "Number of block queries that were completely cached"); 78 79 // Limit for the number of instructions to scan in a block. 80 81 static cl::opt<unsigned> BlockScanLimit( 82 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 83 cl::desc("The number of instructions to scan in a block in memory " 84 "dependency analysis (default = 100)")); 85 86 static cl::opt<unsigned> 87 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000), 88 cl::desc("The number of blocks to scan during memory " 89 "dependency analysis (default = 1000)")); 90 91 // Limit on the number of memdep results to process. 92 static const unsigned int NumResultsLimit = 100; 93 94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 95 /// 96 /// If the set becomes empty, remove Inst's entry. 97 template <typename KeyTy> 98 static void 99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 100 Instruction *Inst, KeyTy Val) { 101 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 102 ReverseMap.find(Inst); 103 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 104 bool Found = InstIt->second.erase(Val); 105 assert(Found && "Invalid reverse map!"); 106 (void)Found; 107 if (InstIt->second.empty()) 108 ReverseMap.erase(InstIt); 109 } 110 111 /// If the given instruction references a specific memory location, fill in Loc 112 /// with the details, otherwise set Loc.Ptr to null. 113 /// 114 /// Returns a ModRefInfo value describing the general behavior of the 115 /// instruction. 116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 117 const TargetLibraryInfo &TLI) { 118 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 119 if (LI->isUnordered()) { 120 Loc = MemoryLocation::get(LI); 121 return ModRefInfo::Ref; 122 } 123 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 124 Loc = MemoryLocation::get(LI); 125 return ModRefInfo::ModRef; 126 } 127 Loc = MemoryLocation(); 128 return ModRefInfo::ModRef; 129 } 130 131 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 132 if (SI->isUnordered()) { 133 Loc = MemoryLocation::get(SI); 134 return ModRefInfo::Mod; 135 } 136 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 137 Loc = MemoryLocation::get(SI); 138 return ModRefInfo::ModRef; 139 } 140 Loc = MemoryLocation(); 141 return ModRefInfo::ModRef; 142 } 143 144 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 145 Loc = MemoryLocation::get(V); 146 return ModRefInfo::ModRef; 147 } 148 149 if (const CallInst *CI = isFreeCall(Inst, &TLI)) { 150 // calls to free() deallocate the entire structure 151 Loc = MemoryLocation(CI->getArgOperand(0)); 152 return ModRefInfo::Mod; 153 } 154 155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 156 switch (II->getIntrinsicID()) { 157 case Intrinsic::lifetime_start: 158 case Intrinsic::lifetime_end: 159 case Intrinsic::invariant_start: 160 Loc = MemoryLocation::getForArgument(II, 1, TLI); 161 // These intrinsics don't really modify the memory, but returning Mod 162 // will allow them to be handled conservatively. 163 return ModRefInfo::Mod; 164 case Intrinsic::invariant_end: 165 Loc = MemoryLocation::getForArgument(II, 2, TLI); 166 // These intrinsics don't really modify the memory, but returning Mod 167 // will allow them to be handled conservatively. 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = getDefaultBlockScanLimit(); 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 static bool isVolatile(Instruction *Inst) { 241 if (auto *LI = dyn_cast<LoadInst>(Inst)) 242 return LI->isVolatile(); 243 if (auto *SI = dyn_cast<StoreInst>(Inst)) 244 return SI->isVolatile(); 245 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst)) 246 return AI->isVolatile(); 247 return false; 248 } 249 250 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 251 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 252 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 253 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 254 if (QueryInst != nullptr) { 255 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 256 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 257 258 if (InvariantGroupDependency.isDef()) 259 return InvariantGroupDependency; 260 } 261 } 262 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 263 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit); 264 if (SimpleDep.isDef()) 265 return SimpleDep; 266 // Non-local invariant group dependency indicates there is non local Def 267 // (it only returns nonLocal if it finds nonLocal def), which is better than 268 // local clobber and everything else. 269 if (InvariantGroupDependency.isNonLocal()) 270 return InvariantGroupDependency; 271 272 assert(InvariantGroupDependency.isUnknown() && 273 "InvariantGroupDependency should be only unknown at this point"); 274 return SimpleDep; 275 } 276 277 MemDepResult 278 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 279 BasicBlock *BB) { 280 281 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 282 return MemDepResult::getUnknown(); 283 284 // Take the ptr operand after all casts and geps 0. This way we can search 285 // cast graph down only. 286 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 287 288 // It's is not safe to walk the use list of global value, because function 289 // passes aren't allowed to look outside their functions. 290 // FIXME: this could be fixed by filtering instructions from outside 291 // of current function. 292 if (isa<GlobalValue>(LoadOperand)) 293 return MemDepResult::getUnknown(); 294 295 // Queue to process all pointers that are equivalent to load operand. 296 SmallVector<const Value *, 8> LoadOperandsQueue; 297 LoadOperandsQueue.push_back(LoadOperand); 298 299 Instruction *ClosestDependency = nullptr; 300 // Order of instructions in uses list is unpredictible. In order to always 301 // get the same result, we will look for the closest dominance. 302 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 303 assert(Other && "Must call it with not null instruction"); 304 if (Best == nullptr || DT.dominates(Best, Other)) 305 return Other; 306 return Best; 307 }; 308 309 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 310 // we will see all the instructions. This should be fixed in MSSA. 311 while (!LoadOperandsQueue.empty()) { 312 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 313 assert(Ptr && !isa<GlobalValue>(Ptr) && 314 "Null or GlobalValue should not be inserted"); 315 316 for (const Use &Us : Ptr->uses()) { 317 auto *U = dyn_cast<Instruction>(Us.getUser()); 318 if (!U || U == LI || !DT.dominates(U, LI)) 319 continue; 320 321 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 322 // users. U = bitcast Ptr 323 if (isa<BitCastInst>(U)) { 324 LoadOperandsQueue.push_back(U); 325 continue; 326 } 327 // Gep with zeros is equivalent to bitcast. 328 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 329 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 330 // typeless pointers will be ready then both cases will be gone 331 // (and this BFS also won't be needed). 332 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 333 if (GEP->hasAllZeroIndices()) { 334 LoadOperandsQueue.push_back(U); 335 continue; 336 } 337 338 // If we hit load/store with the same invariant.group metadata (and the 339 // same pointer operand) we can assume that value pointed by pointer 340 // operand didn't change. 341 if ((isa<LoadInst>(U) || isa<StoreInst>(U)) && 342 U->hasMetadata(LLVMContext::MD_invariant_group)) 343 ClosestDependency = GetClosestDependency(ClosestDependency, U); 344 } 345 } 346 347 if (!ClosestDependency) 348 return MemDepResult::getUnknown(); 349 if (ClosestDependency->getParent() == BB) 350 return MemDepResult::getDef(ClosestDependency); 351 // Def(U) can't be returned here because it is non-local. If local 352 // dependency won't be found then return nonLocal counting that the 353 // user will call getNonLocalPointerDependency, which will return cached 354 // result. 355 NonLocalDefsCache.try_emplace( 356 LI, NonLocalDepResult(ClosestDependency->getParent(), 357 MemDepResult::getDef(ClosestDependency), nullptr)); 358 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 359 return MemDepResult::getNonLocal(); 360 } 361 362 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 363 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 364 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 365 bool isInvariantLoad = false; 366 367 unsigned DefaultLimit = getDefaultBlockScanLimit(); 368 if (!Limit) 369 Limit = &DefaultLimit; 370 371 // We must be careful with atomic accesses, as they may allow another thread 372 // to touch this location, clobbering it. We are conservative: if the 373 // QueryInst is not a simple (non-atomic) memory access, we automatically 374 // return getClobber. 375 // If it is simple, we know based on the results of 376 // "Compiler testing via a theory of sound optimisations in the C11/C++11 377 // memory model" in PLDI 2013, that a non-atomic location can only be 378 // clobbered between a pair of a release and an acquire action, with no 379 // access to the location in between. 380 // Here is an example for giving the general intuition behind this rule. 381 // In the following code: 382 // store x 0; 383 // release action; [1] 384 // acquire action; [4] 385 // %val = load x; 386 // It is unsafe to replace %val by 0 because another thread may be running: 387 // acquire action; [2] 388 // store x 42; 389 // release action; [3] 390 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 391 // being 42. A key property of this program however is that if either 392 // 1 or 4 were missing, there would be a race between the store of 42 393 // either the store of 0 or the load (making the whole program racy). 394 // The paper mentioned above shows that the same property is respected 395 // by every program that can detect any optimization of that kind: either 396 // it is racy (undefined) or there is a release followed by an acquire 397 // between the pair of accesses under consideration. 398 399 // If the load is invariant, we "know" that it doesn't alias *any* write. We 400 // do want to respect mustalias results since defs are useful for value 401 // forwarding, but any mayalias write can be assumed to be noalias. 402 // Arguably, this logic should be pushed inside AliasAnalysis itself. 403 if (isLoad && QueryInst) { 404 LoadInst *LI = dyn_cast<LoadInst>(QueryInst); 405 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load)) 406 isInvariantLoad = true; 407 } 408 409 const DataLayout &DL = BB->getModule()->getDataLayout(); 410 411 // Return "true" if and only if the instruction I is either a non-simple 412 // load or a non-simple store. 413 auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool { 414 if (auto *LI = dyn_cast<LoadInst>(I)) 415 return !LI->isSimple(); 416 if (auto *SI = dyn_cast<StoreInst>(I)) 417 return !SI->isSimple(); 418 return false; 419 }; 420 421 // Return "true" if I is not a load and not a store, but it does access 422 // memory. 423 auto isOtherMemAccess = [](Instruction *I) -> bool { 424 return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory(); 425 }; 426 427 // Walk backwards through the basic block, looking for dependencies. 428 while (ScanIt != BB->begin()) { 429 Instruction *Inst = &*--ScanIt; 430 431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 432 // Debug intrinsics don't (and can't) cause dependencies. 433 if (isa<DbgInfoIntrinsic>(II)) 434 continue; 435 436 // Limit the amount of scanning we do so we don't end up with quadratic 437 // running time on extreme testcases. 438 --*Limit; 439 if (!*Limit) 440 return MemDepResult::getUnknown(); 441 442 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 443 // If we reach a lifetime begin or end marker, then the query ends here 444 // because the value is undefined. 445 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 446 // FIXME: This only considers queries directly on the invariant-tagged 447 // pointer, not on query pointers that are indexed off of them. It'd 448 // be nice to handle that at some point (the right approach is to use 449 // GetPointerBaseWithConstantOffset). 450 if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc)) 451 return MemDepResult::getDef(II); 452 continue; 453 } 454 } 455 456 // Values depend on loads if the pointers are must aliased. This means 457 // that a load depends on another must aliased load from the same value. 458 // One exception is atomic loads: a value can depend on an atomic load that 459 // it does not alias with when this atomic load indicates that another 460 // thread may be accessing the location. 461 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 462 // While volatile access cannot be eliminated, they do not have to clobber 463 // non-aliasing locations, as normal accesses, for example, can be safely 464 // reordered with volatile accesses. 465 if (LI->isVolatile()) { 466 if (!QueryInst) 467 // Original QueryInst *may* be volatile 468 return MemDepResult::getClobber(LI); 469 if (isVolatile(QueryInst)) 470 // Ordering required if QueryInst is itself volatile 471 return MemDepResult::getClobber(LI); 472 // Otherwise, volatile doesn't imply any special ordering 473 } 474 475 // Atomic loads have complications involved. 476 // A Monotonic (or higher) load is OK if the query inst is itself not 477 // atomic. 478 // FIXME: This is overly conservative. 479 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 480 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 481 isOtherMemAccess(QueryInst)) 482 return MemDepResult::getClobber(LI); 483 if (LI->getOrdering() != AtomicOrdering::Monotonic) 484 return MemDepResult::getClobber(LI); 485 } 486 487 MemoryLocation LoadLoc = MemoryLocation::get(LI); 488 489 // If we found a pointer, check if it could be the same as our pointer. 490 AliasResult R = AA.alias(LoadLoc, MemLoc); 491 492 if (isLoad) { 493 if (R == NoAlias) 494 continue; 495 496 // Must aliased loads are defs of each other. 497 if (R == MustAlias) 498 return MemDepResult::getDef(Inst); 499 500 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads 501 // in terms of clobbering loads, but since it does this by looking 502 // at the clobbering load directly, it doesn't know about any 503 // phi translation that may have happened along the way. 504 505 // If we have a partial alias, then return this as a clobber for the 506 // client to handle. 507 if (R == PartialAlias) 508 return MemDepResult::getClobber(Inst); 509 #endif 510 511 // Random may-alias loads don't depend on each other without a 512 // dependence. 513 continue; 514 } 515 516 // Stores don't depend on other no-aliased accesses. 517 if (R == NoAlias) 518 continue; 519 520 // Stores don't alias loads from read-only memory. 521 if (AA.pointsToConstantMemory(LoadLoc)) 522 continue; 523 524 // Stores depend on may/must aliased loads. 525 return MemDepResult::getDef(Inst); 526 } 527 528 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 529 // Atomic stores have complications involved. 530 // A Monotonic store is OK if the query inst is itself not atomic. 531 // FIXME: This is overly conservative. 532 if (!SI->isUnordered() && SI->isAtomic()) { 533 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 534 isOtherMemAccess(QueryInst)) 535 return MemDepResult::getClobber(SI); 536 if (SI->getOrdering() != AtomicOrdering::Monotonic) 537 return MemDepResult::getClobber(SI); 538 } 539 540 // FIXME: this is overly conservative. 541 // While volatile access cannot be eliminated, they do not have to clobber 542 // non-aliasing locations, as normal accesses can for example be reordered 543 // with volatile accesses. 544 if (SI->isVolatile()) 545 if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) || 546 isOtherMemAccess(QueryInst)) 547 return MemDepResult::getClobber(SI); 548 549 // If alias analysis can tell that this store is guaranteed to not modify 550 // the query pointer, ignore it. Use getModRefInfo to handle cases where 551 // the query pointer points to constant memory etc. 552 if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc))) 553 continue; 554 555 // Ok, this store might clobber the query pointer. Check to see if it is 556 // a must alias: in this case, we want to return this as a def. 557 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 558 MemoryLocation StoreLoc = MemoryLocation::get(SI); 559 560 // If we found a pointer, check if it could be the same as our pointer. 561 AliasResult R = AA.alias(StoreLoc, MemLoc); 562 563 if (R == NoAlias) 564 continue; 565 if (R == MustAlias) 566 return MemDepResult::getDef(Inst); 567 if (isInvariantLoad) 568 continue; 569 return MemDepResult::getClobber(Inst); 570 } 571 572 // If this is an allocation, and if we know that the accessed pointer is to 573 // the allocation, return Def. This means that there is no dependence and 574 // the access can be optimized based on that. For example, a load could 575 // turn into undef. Note that we can bypass the allocation itself when 576 // looking for a clobber in many cases; that's an alias property and is 577 // handled by BasicAA. 578 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) { 579 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL); 580 if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr)) 581 return MemDepResult::getDef(Inst); 582 } 583 584 if (isInvariantLoad) 585 continue; 586 587 // A release fence requires that all stores complete before it, but does 588 // not prevent the reordering of following loads or stores 'before' the 589 // fence. As a result, we look past it when finding a dependency for 590 // loads. DSE uses this to find preceding stores to delete and thus we 591 // can't bypass the fence if the query instruction is a store. 592 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 593 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 594 continue; 595 596 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 597 ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc); 598 // If necessary, perform additional analysis. 599 if (isModAndRefSet(MR)) 600 MR = AA.callCapturesBefore(Inst, MemLoc, &DT); 601 switch (clearMust(MR)) { 602 case ModRefInfo::NoModRef: 603 // If the call has no effect on the queried pointer, just ignore it. 604 continue; 605 case ModRefInfo::Mod: 606 return MemDepResult::getClobber(Inst); 607 case ModRefInfo::Ref: 608 // If the call is known to never store to the pointer, and if this is a 609 // load query, we can safely ignore it (scan past it). 610 if (isLoad) 611 continue; 612 LLVM_FALLTHROUGH; 613 default: 614 // Otherwise, there is a potential dependence. Return a clobber. 615 return MemDepResult::getClobber(Inst); 616 } 617 } 618 619 // No dependence found. If this is the entry block of the function, it is 620 // unknown, otherwise it is non-local. 621 if (BB != &BB->getParent()->getEntryBlock()) 622 return MemDepResult::getNonLocal(); 623 return MemDepResult::getNonFuncLocal(); 624 } 625 626 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 627 Instruction *ScanPos = QueryInst; 628 629 // Check for a cached result 630 MemDepResult &LocalCache = LocalDeps[QueryInst]; 631 632 // If the cached entry is non-dirty, just return it. Note that this depends 633 // on MemDepResult's default constructing to 'dirty'. 634 if (!LocalCache.isDirty()) 635 return LocalCache; 636 637 // Otherwise, if we have a dirty entry, we know we can start the scan at that 638 // instruction, which may save us some work. 639 if (Instruction *Inst = LocalCache.getInst()) { 640 ScanPos = Inst; 641 642 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 643 } 644 645 BasicBlock *QueryParent = QueryInst->getParent(); 646 647 // Do the scan. 648 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 649 // No dependence found. If this is the entry block of the function, it is 650 // unknown, otherwise it is non-local. 651 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 652 LocalCache = MemDepResult::getNonLocal(); 653 else 654 LocalCache = MemDepResult::getNonFuncLocal(); 655 } else { 656 MemoryLocation MemLoc; 657 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 658 if (MemLoc.Ptr) { 659 // If we can do a pointer scan, make it happen. 660 bool isLoad = !isModSet(MR); 661 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 662 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 663 664 LocalCache = 665 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 666 QueryParent, QueryInst, nullptr); 667 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 668 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 669 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 670 ScanPos->getIterator(), QueryParent); 671 } else 672 // Non-memory instruction. 673 LocalCache = MemDepResult::getUnknown(); 674 } 675 676 // Remember the result! 677 if (Instruction *I = LocalCache.getInst()) 678 ReverseLocalDeps[I].insert(QueryInst); 679 680 return LocalCache; 681 } 682 683 #ifndef NDEBUG 684 /// This method is used when -debug is specified to verify that cache arrays 685 /// are properly kept sorted. 686 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 687 int Count = -1) { 688 if (Count == -1) 689 Count = Cache.size(); 690 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 691 "Cache isn't sorted!"); 692 } 693 #endif 694 695 const MemoryDependenceResults::NonLocalDepInfo & 696 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 697 assert(getDependency(QueryCall).isNonLocal() && 698 "getNonLocalCallDependency should only be used on calls with " 699 "non-local deps!"); 700 PerInstNLInfo &CacheP = NonLocalDeps[QueryCall]; 701 NonLocalDepInfo &Cache = CacheP.first; 702 703 // This is the set of blocks that need to be recomputed. In the cached case, 704 // this can happen due to instructions being deleted etc. In the uncached 705 // case, this starts out as the set of predecessors we care about. 706 SmallVector<BasicBlock *, 32> DirtyBlocks; 707 708 if (!Cache.empty()) { 709 // Okay, we have a cache entry. If we know it is not dirty, just return it 710 // with no computation. 711 if (!CacheP.second) { 712 ++NumCacheNonLocal; 713 return Cache; 714 } 715 716 // If we already have a partially computed set of results, scan them to 717 // determine what is dirty, seeding our initial DirtyBlocks worklist. 718 for (auto &Entry : Cache) 719 if (Entry.getResult().isDirty()) 720 DirtyBlocks.push_back(Entry.getBB()); 721 722 // Sort the cache so that we can do fast binary search lookups below. 723 llvm::sort(Cache); 724 725 ++NumCacheDirtyNonLocal; 726 // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: " 727 // << Cache.size() << " cached: " << *QueryInst; 728 } else { 729 // Seed DirtyBlocks with each of the preds of QueryInst's block. 730 BasicBlock *QueryBB = QueryCall->getParent(); 731 for (BasicBlock *Pred : PredCache.get(QueryBB)) 732 DirtyBlocks.push_back(Pred); 733 ++NumUncacheNonLocal; 734 } 735 736 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 737 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 738 739 SmallPtrSet<BasicBlock *, 32> Visited; 740 741 unsigned NumSortedEntries = Cache.size(); 742 LLVM_DEBUG(AssertSorted(Cache)); 743 744 // Iterate while we still have blocks to update. 745 while (!DirtyBlocks.empty()) { 746 BasicBlock *DirtyBB = DirtyBlocks.back(); 747 DirtyBlocks.pop_back(); 748 749 // Already processed this block? 750 if (!Visited.insert(DirtyBB).second) 751 continue; 752 753 // Do a binary search to see if we already have an entry for this block in 754 // the cache set. If so, find it. 755 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 756 NonLocalDepInfo::iterator Entry = 757 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 758 NonLocalDepEntry(DirtyBB)); 759 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 760 --Entry; 761 762 NonLocalDepEntry *ExistingResult = nullptr; 763 if (Entry != Cache.begin() + NumSortedEntries && 764 Entry->getBB() == DirtyBB) { 765 // If we already have an entry, and if it isn't already dirty, the block 766 // is done. 767 if (!Entry->getResult().isDirty()) 768 continue; 769 770 // Otherwise, remember this slot so we can update the value. 771 ExistingResult = &*Entry; 772 } 773 774 // If the dirty entry has a pointer, start scanning from it so we don't have 775 // to rescan the entire block. 776 BasicBlock::iterator ScanPos = DirtyBB->end(); 777 if (ExistingResult) { 778 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 779 ScanPos = Inst->getIterator(); 780 // We're removing QueryInst's use of Inst. 781 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 782 QueryCall); 783 } 784 } 785 786 // Find out if this block has a local dependency for QueryInst. 787 MemDepResult Dep; 788 789 if (ScanPos != DirtyBB->begin()) { 790 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 791 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 792 // No dependence found. If this is the entry block of the function, it is 793 // a clobber, otherwise it is unknown. 794 Dep = MemDepResult::getNonLocal(); 795 } else { 796 Dep = MemDepResult::getNonFuncLocal(); 797 } 798 799 // If we had a dirty entry for the block, update it. Otherwise, just add 800 // a new entry. 801 if (ExistingResult) 802 ExistingResult->setResult(Dep); 803 else 804 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 805 806 // If the block has a dependency (i.e. it isn't completely transparent to 807 // the value), remember the association! 808 if (!Dep.isNonLocal()) { 809 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 810 // update this when we remove instructions. 811 if (Instruction *Inst = Dep.getInst()) 812 ReverseNonLocalDeps[Inst].insert(QueryCall); 813 } else { 814 815 // If the block *is* completely transparent to the load, we need to check 816 // the predecessors of this block. Add them to our worklist. 817 for (BasicBlock *Pred : PredCache.get(DirtyBB)) 818 DirtyBlocks.push_back(Pred); 819 } 820 } 821 822 return Cache; 823 } 824 825 void MemoryDependenceResults::getNonLocalPointerDependency( 826 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 827 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 828 bool isLoad = isa<LoadInst>(QueryInst); 829 BasicBlock *FromBB = QueryInst->getParent(); 830 assert(FromBB); 831 832 assert(Loc.Ptr->getType()->isPointerTy() && 833 "Can't get pointer deps of a non-pointer!"); 834 Result.clear(); 835 { 836 // Check if there is cached Def with invariant.group. 837 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 838 if (NonLocalDefIt != NonLocalDefsCache.end()) { 839 Result.push_back(NonLocalDefIt->second); 840 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 841 .erase(QueryInst); 842 NonLocalDefsCache.erase(NonLocalDefIt); 843 return; 844 } 845 } 846 // This routine does not expect to deal with volatile instructions. 847 // Doing so would require piping through the QueryInst all the way through. 848 // TODO: volatiles can't be elided, but they can be reordered with other 849 // non-volatile accesses. 850 851 // We currently give up on any instruction which is ordered, but we do handle 852 // atomic instructions which are unordered. 853 // TODO: Handle ordered instructions 854 auto isOrdered = [](Instruction *Inst) { 855 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 856 return !LI->isUnordered(); 857 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 858 return !SI->isUnordered(); 859 } 860 return false; 861 }; 862 if (isVolatile(QueryInst) || isOrdered(QueryInst)) { 863 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 864 const_cast<Value *>(Loc.Ptr))); 865 return; 866 } 867 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 868 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 869 870 // This is the set of blocks we've inspected, and the pointer we consider in 871 // each block. Because of critical edges, we currently bail out if querying 872 // a block with multiple different pointers. This can happen during PHI 873 // translation. 874 DenseMap<BasicBlock *, Value *> Visited; 875 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 876 Result, Visited, true)) 877 return; 878 Result.clear(); 879 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 880 const_cast<Value *>(Loc.Ptr))); 881 } 882 883 /// Compute the memdep value for BB with Pointer/PointeeSize using either 884 /// cached information in Cache or by doing a lookup (which may use dirty cache 885 /// info if available). 886 /// 887 /// If we do a lookup, add the result to the cache. 888 MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock( 889 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 890 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) { 891 892 bool isInvariantLoad = false; 893 894 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 895 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 896 897 // Do a binary search to see if we already have an entry for this block in 898 // the cache set. If so, find it. 899 NonLocalDepInfo::iterator Entry = std::upper_bound( 900 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 901 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 902 --Entry; 903 904 NonLocalDepEntry *ExistingResult = nullptr; 905 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 906 ExistingResult = &*Entry; 907 908 // Use cached result for invariant load only if there is no dependency for non 909 // invariant load. In this case invariant load can not have any dependency as 910 // well. 911 if (ExistingResult && isInvariantLoad && 912 !ExistingResult->getResult().isNonFuncLocal()) 913 ExistingResult = nullptr; 914 915 // If we have a cached entry, and it is non-dirty, use it as the value for 916 // this dependency. 917 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 918 ++NumCacheNonLocalPtr; 919 return ExistingResult->getResult(); 920 } 921 922 // Otherwise, we have to scan for the value. If we have a dirty cache 923 // entry, start scanning from its position, otherwise we scan from the end 924 // of the block. 925 BasicBlock::iterator ScanPos = BB->end(); 926 if (ExistingResult && ExistingResult->getResult().getInst()) { 927 assert(ExistingResult->getResult().getInst()->getParent() == BB && 928 "Instruction invalidated?"); 929 ++NumCacheDirtyNonLocalPtr; 930 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 931 932 // Eliminating the dirty entry from 'Cache', so update the reverse info. 933 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 934 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 935 } else { 936 ++NumUncacheNonLocalPtr; 937 } 938 939 // Scan the block for the dependency. 940 MemDepResult Dep = 941 getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst); 942 943 // Don't cache results for invariant load. 944 if (isInvariantLoad) 945 return Dep; 946 947 // If we had a dirty entry for the block, update it. Otherwise, just add 948 // a new entry. 949 if (ExistingResult) 950 ExistingResult->setResult(Dep); 951 else 952 Cache->push_back(NonLocalDepEntry(BB, Dep)); 953 954 // If the block has a dependency (i.e. it isn't completely transparent to 955 // the value), remember the reverse association because we just added it 956 // to Cache! 957 if (!Dep.isDef() && !Dep.isClobber()) 958 return Dep; 959 960 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 961 // update MemDep when we remove instructions. 962 Instruction *Inst = Dep.getInst(); 963 assert(Inst && "Didn't depend on anything?"); 964 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 965 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 966 return Dep; 967 } 968 969 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 970 /// array that are already properly ordered. 971 /// 972 /// This is optimized for the case when only a few entries are added. 973 static void 974 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 975 unsigned NumSortedEntries) { 976 switch (Cache.size() - NumSortedEntries) { 977 case 0: 978 // done, no new entries. 979 break; 980 case 2: { 981 // Two new entries, insert the last one into place. 982 NonLocalDepEntry Val = Cache.back(); 983 Cache.pop_back(); 984 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 985 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 986 Cache.insert(Entry, Val); 987 LLVM_FALLTHROUGH; 988 } 989 case 1: 990 // One new entry, Just insert the new value at the appropriate position. 991 if (Cache.size() != 1) { 992 NonLocalDepEntry Val = Cache.back(); 993 Cache.pop_back(); 994 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 995 std::upper_bound(Cache.begin(), Cache.end(), Val); 996 Cache.insert(Entry, Val); 997 } 998 break; 999 default: 1000 // Added many values, do a full scale sort. 1001 llvm::sort(Cache); 1002 break; 1003 } 1004 } 1005 1006 /// Perform a dependency query based on pointer/pointeesize starting at the end 1007 /// of StartBB. 1008 /// 1009 /// Add any clobber/def results to the results vector and keep track of which 1010 /// blocks are visited in 'Visited'. 1011 /// 1012 /// This has special behavior for the first block queries (when SkipFirstBlock 1013 /// is true). In this special case, it ignores the contents of the specified 1014 /// block and starts returning dependence info for its predecessors. 1015 /// 1016 /// This function returns true on success, or false to indicate that it could 1017 /// not compute dependence information for some reason. This should be treated 1018 /// as a clobber dependence on the first instruction in the predecessor block. 1019 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1020 Instruction *QueryInst, const PHITransAddr &Pointer, 1021 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1022 SmallVectorImpl<NonLocalDepResult> &Result, 1023 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1024 bool IsIncomplete) { 1025 // Look up the cached info for Pointer. 1026 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1027 1028 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1029 // CacheKey, this value will be inserted as the associated value. Otherwise, 1030 // it'll be ignored, and we'll have to check to see if the cached size and 1031 // aa tags are consistent with the current query. 1032 NonLocalPointerInfo InitialNLPI; 1033 InitialNLPI.Size = Loc.Size; 1034 InitialNLPI.AATags = Loc.AATags; 1035 1036 bool isInvariantLoad = false; 1037 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1038 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1039 1040 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1041 // already have one. 1042 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1043 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1044 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1045 1046 // If we already have a cache entry for this CacheKey, we may need to do some 1047 // work to reconcile the cache entry and the current query. 1048 // Invariant loads don't participate in caching. Thus no need to reconcile. 1049 if (!isInvariantLoad && !Pair.second) { 1050 if (CacheInfo->Size != Loc.Size) { 1051 bool ThrowOutEverything; 1052 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1053 // FIXME: We may be able to do better in the face of results with mixed 1054 // precision. We don't appear to get them in practice, though, so just 1055 // be conservative. 1056 ThrowOutEverything = 1057 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1058 CacheInfo->Size.getValue() < Loc.Size.getValue(); 1059 } else { 1060 // For our purposes, unknown size > all others. 1061 ThrowOutEverything = !Loc.Size.hasValue(); 1062 } 1063 1064 if (ThrowOutEverything) { 1065 // The query's Size is greater than the cached one. Throw out the 1066 // cached data and proceed with the query at the greater size. 1067 CacheInfo->Pair = BBSkipFirstBlockPair(); 1068 CacheInfo->Size = Loc.Size; 1069 for (auto &Entry : CacheInfo->NonLocalDeps) 1070 if (Instruction *Inst = Entry.getResult().getInst()) 1071 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1072 CacheInfo->NonLocalDeps.clear(); 1073 // The cache is cleared (in the above line) so we will have lost 1074 // information about blocks we have already visited. We therefore must 1075 // assume that the cache information is incomplete. 1076 IsIncomplete = true; 1077 } else { 1078 // This query's Size is less than the cached one. Conservatively restart 1079 // the query using the greater size. 1080 return getNonLocalPointerDepFromBB( 1081 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1082 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1083 } 1084 } 1085 1086 // If the query's AATags are inconsistent with the cached one, 1087 // conservatively throw out the cached data and restart the query with 1088 // no tag if needed. 1089 if (CacheInfo->AATags != Loc.AATags) { 1090 if (CacheInfo->AATags) { 1091 CacheInfo->Pair = BBSkipFirstBlockPair(); 1092 CacheInfo->AATags = AAMDNodes(); 1093 for (auto &Entry : CacheInfo->NonLocalDeps) 1094 if (Instruction *Inst = Entry.getResult().getInst()) 1095 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1096 CacheInfo->NonLocalDeps.clear(); 1097 // The cache is cleared (in the above line) so we will have lost 1098 // information about blocks we have already visited. We therefore must 1099 // assume that the cache information is incomplete. 1100 IsIncomplete = true; 1101 } 1102 if (Loc.AATags) 1103 return getNonLocalPointerDepFromBB( 1104 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1105 Visited, SkipFirstBlock, IsIncomplete); 1106 } 1107 } 1108 1109 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1110 1111 // If we have valid cached information for exactly the block we are 1112 // investigating, just return it with no recomputation. 1113 // Don't use cached information for invariant loads since it is valid for 1114 // non-invariant loads only. 1115 // 1116 // Don't use cached information for invariant loads since it is valid for 1117 // non-invariant loads only. 1118 if (!IsIncomplete && !isInvariantLoad && 1119 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1120 // We have a fully cached result for this query then we can just return the 1121 // cached results and populate the visited set. However, we have to verify 1122 // that we don't already have conflicting results for these blocks. Check 1123 // to ensure that if a block in the results set is in the visited set that 1124 // it was for the same pointer query. 1125 if (!Visited.empty()) { 1126 for (auto &Entry : *Cache) { 1127 DenseMap<BasicBlock *, Value *>::iterator VI = 1128 Visited.find(Entry.getBB()); 1129 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1130 continue; 1131 1132 // We have a pointer mismatch in a block. Just return false, saying 1133 // that something was clobbered in this result. We could also do a 1134 // non-fully cached query, but there is little point in doing this. 1135 return false; 1136 } 1137 } 1138 1139 Value *Addr = Pointer.getAddr(); 1140 for (auto &Entry : *Cache) { 1141 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1142 if (Entry.getResult().isNonLocal()) { 1143 continue; 1144 } 1145 1146 if (DT.isReachableFromEntry(Entry.getBB())) { 1147 Result.push_back( 1148 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1149 } 1150 } 1151 ++NumCacheCompleteNonLocalPtr; 1152 return true; 1153 } 1154 1155 // Otherwise, either this is a new block, a block with an invalid cache 1156 // pointer or one that we're about to invalidate by putting more info into 1157 // it than its valid cache info. If empty and not explicitly indicated as 1158 // incomplete, the result will be valid cache info, otherwise it isn't. 1159 // 1160 // Invariant loads don't affect cache in any way thus no need to update 1161 // CacheInfo as well. 1162 if (!isInvariantLoad) { 1163 if (!IsIncomplete && Cache->empty()) 1164 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1165 else 1166 CacheInfo->Pair = BBSkipFirstBlockPair(); 1167 } 1168 1169 SmallVector<BasicBlock *, 32> Worklist; 1170 Worklist.push_back(StartBB); 1171 1172 // PredList used inside loop. 1173 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1174 1175 // Keep track of the entries that we know are sorted. Previously cached 1176 // entries will all be sorted. The entries we add we only sort on demand (we 1177 // don't insert every element into its sorted position). We know that we 1178 // won't get any reuse from currently inserted values, because we don't 1179 // revisit blocks after we insert info for them. 1180 unsigned NumSortedEntries = Cache->size(); 1181 unsigned WorklistEntries = BlockNumberLimit; 1182 bool GotWorklistLimit = false; 1183 LLVM_DEBUG(AssertSorted(*Cache)); 1184 1185 while (!Worklist.empty()) { 1186 BasicBlock *BB = Worklist.pop_back_val(); 1187 1188 // If we do process a large number of blocks it becomes very expensive and 1189 // likely it isn't worth worrying about 1190 if (Result.size() > NumResultsLimit) { 1191 Worklist.clear(); 1192 // Sort it now (if needed) so that recursive invocations of 1193 // getNonLocalPointerDepFromBB and other routines that could reuse the 1194 // cache value will only see properly sorted cache arrays. 1195 if (Cache && NumSortedEntries != Cache->size()) { 1196 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1197 } 1198 // Since we bail out, the "Cache" set won't contain all of the 1199 // results for the query. This is ok (we can still use it to accelerate 1200 // specific block queries) but we can't do the fastpath "return all 1201 // results from the set". Clear out the indicator for this. 1202 CacheInfo->Pair = BBSkipFirstBlockPair(); 1203 return false; 1204 } 1205 1206 // Skip the first block if we have it. 1207 if (!SkipFirstBlock) { 1208 // Analyze the dependency of *Pointer in FromBB. See if we already have 1209 // been here. 1210 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1211 1212 // Get the dependency info for Pointer in BB. If we have cached 1213 // information, we will use it, otherwise we compute it. 1214 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1215 MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB, 1216 Cache, NumSortedEntries); 1217 1218 // If we got a Def or Clobber, add this to the list of results. 1219 if (!Dep.isNonLocal()) { 1220 if (DT.isReachableFromEntry(BB)) { 1221 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1222 continue; 1223 } 1224 } 1225 } 1226 1227 // If 'Pointer' is an instruction defined in this block, then we need to do 1228 // phi translation to change it into a value live in the predecessor block. 1229 // If not, we just add the predecessors to the worklist and scan them with 1230 // the same Pointer. 1231 if (!Pointer.NeedsPHITranslationFromBlock(BB)) { 1232 SkipFirstBlock = false; 1233 SmallVector<BasicBlock *, 16> NewBlocks; 1234 for (BasicBlock *Pred : PredCache.get(BB)) { 1235 // Verify that we haven't looked at this block yet. 1236 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1237 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1238 if (InsertRes.second) { 1239 // First time we've looked at *PI. 1240 NewBlocks.push_back(Pred); 1241 continue; 1242 } 1243 1244 // If we have seen this block before, but it was with a different 1245 // pointer then we have a phi translation failure and we have to treat 1246 // this as a clobber. 1247 if (InsertRes.first->second != Pointer.getAddr()) { 1248 // Make sure to clean up the Visited map before continuing on to 1249 // PredTranslationFailure. 1250 for (unsigned i = 0; i < NewBlocks.size(); i++) 1251 Visited.erase(NewBlocks[i]); 1252 goto PredTranslationFailure; 1253 } 1254 } 1255 if (NewBlocks.size() > WorklistEntries) { 1256 // Make sure to clean up the Visited map before continuing on to 1257 // PredTranslationFailure. 1258 for (unsigned i = 0; i < NewBlocks.size(); i++) 1259 Visited.erase(NewBlocks[i]); 1260 GotWorklistLimit = true; 1261 goto PredTranslationFailure; 1262 } 1263 WorklistEntries -= NewBlocks.size(); 1264 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1265 continue; 1266 } 1267 1268 // We do need to do phi translation, if we know ahead of time we can't phi 1269 // translate this value, don't even try. 1270 if (!Pointer.IsPotentiallyPHITranslatable()) 1271 goto PredTranslationFailure; 1272 1273 // We may have added values to the cache list before this PHI translation. 1274 // If so, we haven't done anything to ensure that the cache remains sorted. 1275 // Sort it now (if needed) so that recursive invocations of 1276 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1277 // value will only see properly sorted cache arrays. 1278 if (Cache && NumSortedEntries != Cache->size()) { 1279 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1280 NumSortedEntries = Cache->size(); 1281 } 1282 Cache = nullptr; 1283 1284 PredList.clear(); 1285 for (BasicBlock *Pred : PredCache.get(BB)) { 1286 PredList.push_back(std::make_pair(Pred, Pointer)); 1287 1288 // Get the PHI translated pointer in this predecessor. This can fail if 1289 // not translatable, in which case the getAddr() returns null. 1290 PHITransAddr &PredPointer = PredList.back().second; 1291 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false); 1292 Value *PredPtrVal = PredPointer.getAddr(); 1293 1294 // Check to see if we have already visited this pred block with another 1295 // pointer. If so, we can't do this lookup. This failure can occur 1296 // with PHI translation when a critical edge exists and the PHI node in 1297 // the successor translates to a pointer value different than the 1298 // pointer the block was first analyzed with. 1299 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1300 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1301 1302 if (!InsertRes.second) { 1303 // We found the pred; take it off the list of preds to visit. 1304 PredList.pop_back(); 1305 1306 // If the predecessor was visited with PredPtr, then we already did 1307 // the analysis and can ignore it. 1308 if (InsertRes.first->second == PredPtrVal) 1309 continue; 1310 1311 // Otherwise, the block was previously analyzed with a different 1312 // pointer. We can't represent the result of this case, so we just 1313 // treat this as a phi translation failure. 1314 1315 // Make sure to clean up the Visited map before continuing on to 1316 // PredTranslationFailure. 1317 for (unsigned i = 0, n = PredList.size(); i < n; ++i) 1318 Visited.erase(PredList[i].first); 1319 1320 goto PredTranslationFailure; 1321 } 1322 } 1323 1324 // Actually process results here; this need to be a separate loop to avoid 1325 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1326 // any results for. (getNonLocalPointerDepFromBB will modify our 1327 // datastructures in ways the code after the PredTranslationFailure label 1328 // doesn't expect.) 1329 for (unsigned i = 0, n = PredList.size(); i < n; ++i) { 1330 BasicBlock *Pred = PredList[i].first; 1331 PHITransAddr &PredPointer = PredList[i].second; 1332 Value *PredPtrVal = PredPointer.getAddr(); 1333 1334 bool CanTranslate = true; 1335 // If PHI translation was unable to find an available pointer in this 1336 // predecessor, then we have to assume that the pointer is clobbered in 1337 // that predecessor. We can still do PRE of the load, which would insert 1338 // a computation of the pointer in this predecessor. 1339 if (!PredPtrVal) 1340 CanTranslate = false; 1341 1342 // FIXME: it is entirely possible that PHI translating will end up with 1343 // the same value. Consider PHI translating something like: 1344 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1345 // to recurse here, pedantically speaking. 1346 1347 // If getNonLocalPointerDepFromBB fails here, that means the cached 1348 // result conflicted with the Visited list; we have to conservatively 1349 // assume it is unknown, but this also does not block PRE of the load. 1350 if (!CanTranslate || 1351 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1352 Loc.getWithNewPtr(PredPtrVal), isLoad, 1353 Pred, Result, Visited)) { 1354 // Add the entry to the Result list. 1355 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1356 Result.push_back(Entry); 1357 1358 // Since we had a phi translation failure, the cache for CacheKey won't 1359 // include all of the entries that we need to immediately satisfy future 1360 // queries. Mark this in NonLocalPointerDeps by setting the 1361 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1362 // cached value to do more work but not miss the phi trans failure. 1363 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1364 NLPI.Pair = BBSkipFirstBlockPair(); 1365 continue; 1366 } 1367 } 1368 1369 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1370 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1371 Cache = &CacheInfo->NonLocalDeps; 1372 NumSortedEntries = Cache->size(); 1373 1374 // Since we did phi translation, the "Cache" set won't contain all of the 1375 // results for the query. This is ok (we can still use it to accelerate 1376 // specific block queries) but we can't do the fastpath "return all 1377 // results from the set" Clear out the indicator for this. 1378 CacheInfo->Pair = BBSkipFirstBlockPair(); 1379 SkipFirstBlock = false; 1380 continue; 1381 1382 PredTranslationFailure: 1383 // The following code is "failure"; we can't produce a sane translation 1384 // for the given block. It assumes that we haven't modified any of 1385 // our datastructures while processing the current block. 1386 1387 if (!Cache) { 1388 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1389 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1390 Cache = &CacheInfo->NonLocalDeps; 1391 NumSortedEntries = Cache->size(); 1392 } 1393 1394 // Since we failed phi translation, the "Cache" set won't contain all of the 1395 // results for the query. This is ok (we can still use it to accelerate 1396 // specific block queries) but we can't do the fastpath "return all 1397 // results from the set". Clear out the indicator for this. 1398 CacheInfo->Pair = BBSkipFirstBlockPair(); 1399 1400 // If *nothing* works, mark the pointer as unknown. 1401 // 1402 // If this is the magic first block, return this as a clobber of the whole 1403 // incoming value. Since we can't phi translate to one of the predecessors, 1404 // we have to bail out. 1405 if (SkipFirstBlock) 1406 return false; 1407 1408 // Results of invariant loads are not cached thus no need to update cached 1409 // information. 1410 if (!isInvariantLoad) { 1411 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1412 if (I.getBB() != BB) 1413 continue; 1414 1415 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1416 !DT.isReachableFromEntry(BB)) && 1417 "Should only be here with transparent block"); 1418 1419 I.setResult(MemDepResult::getUnknown()); 1420 1421 1422 break; 1423 } 1424 } 1425 (void)GotWorklistLimit; 1426 // Go ahead and report unknown dependence. 1427 Result.push_back( 1428 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1429 } 1430 1431 // Okay, we're done now. If we added new values to the cache, re-sort it. 1432 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1433 LLVM_DEBUG(AssertSorted(*Cache)); 1434 return true; 1435 } 1436 1437 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1438 void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies( 1439 ValueIsLoadPair P) { 1440 1441 // Most of the time this cache is empty. 1442 if (!NonLocalDefsCache.empty()) { 1443 auto it = NonLocalDefsCache.find(P.getPointer()); 1444 if (it != NonLocalDefsCache.end()) { 1445 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1446 it->second.getResult().getInst(), P.getPointer()); 1447 NonLocalDefsCache.erase(it); 1448 } 1449 1450 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1451 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1452 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1453 for (const auto *entry : toRemoveIt->second) 1454 NonLocalDefsCache.erase(entry); 1455 ReverseNonLocalDefsCache.erase(toRemoveIt); 1456 } 1457 } 1458 } 1459 1460 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1461 if (It == NonLocalPointerDeps.end()) 1462 return; 1463 1464 // Remove all of the entries in the BB->val map. This involves removing 1465 // instructions from the reverse map. 1466 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1467 1468 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) { 1469 Instruction *Target = PInfo[i].getResult().getInst(); 1470 if (!Target) 1471 continue; // Ignore non-local dep results. 1472 assert(Target->getParent() == PInfo[i].getBB()); 1473 1474 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1475 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1476 } 1477 1478 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1479 NonLocalPointerDeps.erase(It); 1480 } 1481 1482 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1483 // If Ptr isn't really a pointer, just ignore it. 1484 if (!Ptr->getType()->isPointerTy()) 1485 return; 1486 // Flush store info for the pointer. 1487 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1488 // Flush load info for the pointer. 1489 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1490 // Invalidate phis that use the pointer. 1491 PV.invalidateValue(Ptr); 1492 } 1493 1494 void MemoryDependenceResults::invalidateCachedPredecessors() { 1495 PredCache.clear(); 1496 } 1497 1498 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1499 // Walk through the Non-local dependencies, removing this one as the value 1500 // for any cached queries. 1501 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst); 1502 if (NLDI != NonLocalDeps.end()) { 1503 NonLocalDepInfo &BlockMap = NLDI->second.first; 1504 for (auto &Entry : BlockMap) 1505 if (Instruction *Inst = Entry.getResult().getInst()) 1506 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1507 NonLocalDeps.erase(NLDI); 1508 } 1509 1510 // If we have a cached local dependence query for this instruction, remove it. 1511 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1512 if (LocalDepEntry != LocalDeps.end()) { 1513 // Remove us from DepInst's reverse set now that the local dep info is gone. 1514 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1515 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1516 1517 // Remove this local dependency info. 1518 LocalDeps.erase(LocalDepEntry); 1519 } 1520 1521 // If we have any cached dependencies on this instruction, remove 1522 // them. 1523 1524 // If the instruction is a pointer, remove it from both the load info and the 1525 // store info. 1526 if (RemInst->getType()->isPointerTy()) { 1527 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1528 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1529 } else { 1530 // Otherwise, if the instructions is in the map directly, it must be a load. 1531 // Remove it. 1532 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1533 if (toRemoveIt != NonLocalDefsCache.end()) { 1534 assert(isa<LoadInst>(RemInst) && 1535 "only load instructions should be added directly"); 1536 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1537 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1538 NonLocalDefsCache.erase(toRemoveIt); 1539 } 1540 } 1541 1542 // Loop over all of the things that depend on the instruction we're removing. 1543 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1544 1545 // If we find RemInst as a clobber or Def in any of the maps for other values, 1546 // we need to replace its entry with a dirty version of the instruction after 1547 // it. If RemInst is a terminator, we use a null dirty value. 1548 // 1549 // Using a dirty version of the instruction after RemInst saves having to scan 1550 // the entire block to get to this point. 1551 MemDepResult NewDirtyVal; 1552 if (!RemInst->isTerminator()) 1553 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1554 1555 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1556 if (ReverseDepIt != ReverseLocalDeps.end()) { 1557 // RemInst can't be the terminator if it has local stuff depending on it. 1558 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1559 "Nothing can locally depend on a terminator"); 1560 1561 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1562 assert(InstDependingOnRemInst != RemInst && 1563 "Already removed our local dep info"); 1564 1565 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1566 1567 // Make sure to remember that new things depend on NewDepInst. 1568 assert(NewDirtyVal.getInst() && 1569 "There is no way something else can have " 1570 "a local dep on this if it is a terminator!"); 1571 ReverseDepsToAdd.push_back( 1572 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1573 } 1574 1575 ReverseLocalDeps.erase(ReverseDepIt); 1576 1577 // Add new reverse deps after scanning the set, to avoid invalidating the 1578 // 'ReverseDeps' reference. 1579 while (!ReverseDepsToAdd.empty()) { 1580 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1581 ReverseDepsToAdd.back().second); 1582 ReverseDepsToAdd.pop_back(); 1583 } 1584 } 1585 1586 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1587 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1588 for (Instruction *I : ReverseDepIt->second) { 1589 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1590 1591 PerInstNLInfo &INLD = NonLocalDeps[I]; 1592 // The information is now dirty! 1593 INLD.second = true; 1594 1595 for (auto &Entry : INLD.first) { 1596 if (Entry.getResult().getInst() != RemInst) 1597 continue; 1598 1599 // Convert to a dirty entry for the subsequent instruction. 1600 Entry.setResult(NewDirtyVal); 1601 1602 if (Instruction *NextI = NewDirtyVal.getInst()) 1603 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1604 } 1605 } 1606 1607 ReverseNonLocalDeps.erase(ReverseDepIt); 1608 1609 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1610 while (!ReverseDepsToAdd.empty()) { 1611 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1612 ReverseDepsToAdd.back().second); 1613 ReverseDepsToAdd.pop_back(); 1614 } 1615 } 1616 1617 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1618 // value in the NonLocalPointerDeps info. 1619 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1620 ReverseNonLocalPtrDeps.find(RemInst); 1621 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1622 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1623 ReversePtrDepsToAdd; 1624 1625 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1626 assert(P.getPointer() != RemInst && 1627 "Already removed NonLocalPointerDeps info for RemInst"); 1628 1629 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1630 1631 // The cache is not valid for any specific block anymore. 1632 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1633 1634 // Update any entries for RemInst to use the instruction after it. 1635 for (auto &Entry : NLPDI) { 1636 if (Entry.getResult().getInst() != RemInst) 1637 continue; 1638 1639 // Convert to a dirty entry for the subsequent instruction. 1640 Entry.setResult(NewDirtyVal); 1641 1642 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1643 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1644 } 1645 1646 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1647 // subsequent value may invalidate the sortedness. 1648 llvm::sort(NLPDI); 1649 } 1650 1651 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1652 1653 while (!ReversePtrDepsToAdd.empty()) { 1654 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1655 ReversePtrDepsToAdd.back().second); 1656 ReversePtrDepsToAdd.pop_back(); 1657 } 1658 } 1659 1660 // Invalidate phis that use the removed instruction. 1661 PV.invalidateValue(RemInst); 1662 1663 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"); 1664 LLVM_DEBUG(verifyRemoved(RemInst)); 1665 } 1666 1667 /// Verify that the specified instruction does not occur in our internal data 1668 /// structures. 1669 /// 1670 /// This function verifies by asserting in debug builds. 1671 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1672 #ifndef NDEBUG 1673 for (const auto &DepKV : LocalDeps) { 1674 assert(DepKV.first != D && "Inst occurs in data structures"); 1675 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1676 } 1677 1678 for (const auto &DepKV : NonLocalPointerDeps) { 1679 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1680 for (const auto &Entry : DepKV.second.NonLocalDeps) 1681 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1682 } 1683 1684 for (const auto &DepKV : NonLocalDeps) { 1685 assert(DepKV.first != D && "Inst occurs in data structures"); 1686 const PerInstNLInfo &INLD = DepKV.second; 1687 for (const auto &Entry : INLD.first) 1688 assert(Entry.getResult().getInst() != D && 1689 "Inst occurs in data structures"); 1690 } 1691 1692 for (const auto &DepKV : ReverseLocalDeps) { 1693 assert(DepKV.first != D && "Inst occurs in data structures"); 1694 for (Instruction *Inst : DepKV.second) 1695 assert(Inst != D && "Inst occurs in data structures"); 1696 } 1697 1698 for (const auto &DepKV : ReverseNonLocalDeps) { 1699 assert(DepKV.first != D && "Inst occurs in data structures"); 1700 for (Instruction *Inst : DepKV.second) 1701 assert(Inst != D && "Inst occurs in data structures"); 1702 } 1703 1704 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1705 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1706 1707 for (ValueIsLoadPair P : DepKV.second) 1708 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1709 "Inst occurs in ReverseNonLocalPtrDeps map"); 1710 } 1711 #endif 1712 } 1713 1714 AnalysisKey MemoryDependenceAnalysis::Key; 1715 1716 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1717 : DefaultBlockScanLimit(BlockScanLimit) {} 1718 1719 MemoryDependenceResults 1720 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1721 auto &AA = AM.getResult<AAManager>(F); 1722 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1723 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1724 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1725 auto &PV = AM.getResult<PhiValuesAnalysis>(F); 1726 return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit); 1727 } 1728 1729 char MemoryDependenceWrapperPass::ID = 0; 1730 1731 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1732 "Memory Dependence Analysis", false, true) 1733 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1734 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1735 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1736 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1737 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1738 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1739 "Memory Dependence Analysis", false, true) 1740 1741 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1742 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1743 } 1744 1745 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1746 1747 void MemoryDependenceWrapperPass::releaseMemory() { 1748 MemDep.reset(); 1749 } 1750 1751 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1752 AU.setPreservesAll(); 1753 AU.addRequired<AssumptionCacheTracker>(); 1754 AU.addRequired<DominatorTreeWrapperPass>(); 1755 AU.addRequired<PhiValuesWrapperPass>(); 1756 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1757 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1758 } 1759 1760 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1761 FunctionAnalysisManager::Invalidator &Inv) { 1762 // Check whether our analysis is preserved. 1763 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1764 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1765 // If not, give up now. 1766 return true; 1767 1768 // Check whether the analyses we depend on became invalid for any reason. 1769 if (Inv.invalidate<AAManager>(F, PA) || 1770 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1771 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 1772 Inv.invalidate<PhiValuesAnalysis>(F, PA)) 1773 return true; 1774 1775 // Otherwise this analysis result remains valid. 1776 return false; 1777 } 1778 1779 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1780 return DefaultBlockScanLimit; 1781 } 1782 1783 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1784 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1785 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1786 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1787 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1788 auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult(); 1789 MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit); 1790 return false; 1791 } 1792