1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements an analysis that determines, for a given memory 10 // operation, what preceding memory operations it depends on. It builds on 11 // alias analysis information, and tries to provide a lazy, caching interface to 12 // a common kind of alias information query. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/PHITransAddr.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/PredIteratorCache.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/AtomicOrdering.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "memdep" 58 59 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses"); 60 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses"); 61 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses"); 62 63 STATISTIC(NumCacheNonLocalPtr, 64 "Number of fully cached non-local ptr responses"); 65 STATISTIC(NumCacheDirtyNonLocalPtr, 66 "Number of cached, but dirty, non-local ptr responses"); 67 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses"); 68 STATISTIC(NumCacheCompleteNonLocalPtr, 69 "Number of block queries that were completely cached"); 70 71 // Limit for the number of instructions to scan in a block. 72 73 static cl::opt<unsigned> BlockScanLimit( 74 "memdep-block-scan-limit", cl::Hidden, cl::init(100), 75 cl::desc("The number of instructions to scan in a block in memory " 76 "dependency analysis (default = 100)")); 77 78 static cl::opt<unsigned> 79 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(200), 80 cl::desc("The number of blocks to scan during memory " 81 "dependency analysis (default = 200)")); 82 83 // Limit on the number of memdep results to process. 84 static const unsigned int NumResultsLimit = 100; 85 86 /// This is a helper function that removes Val from 'Inst's set in ReverseMap. 87 /// 88 /// If the set becomes empty, remove Inst's entry. 89 template <typename KeyTy> 90 static void 91 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap, 92 Instruction *Inst, KeyTy Val) { 93 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt = 94 ReverseMap.find(Inst); 95 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?"); 96 bool Found = InstIt->second.erase(Val); 97 assert(Found && "Invalid reverse map!"); 98 (void)Found; 99 if (InstIt->second.empty()) 100 ReverseMap.erase(InstIt); 101 } 102 103 /// If the given instruction references a specific memory location, fill in Loc 104 /// with the details, otherwise set Loc.Ptr to null. 105 /// 106 /// Returns a ModRefInfo value describing the general behavior of the 107 /// instruction. 108 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc, 109 const TargetLibraryInfo &TLI) { 110 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 111 if (LI->isUnordered()) { 112 Loc = MemoryLocation::get(LI); 113 return ModRefInfo::Ref; 114 } 115 if (LI->getOrdering() == AtomicOrdering::Monotonic) { 116 Loc = MemoryLocation::get(LI); 117 return ModRefInfo::ModRef; 118 } 119 Loc = MemoryLocation(); 120 return ModRefInfo::ModRef; 121 } 122 123 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 124 if (SI->isUnordered()) { 125 Loc = MemoryLocation::get(SI); 126 return ModRefInfo::Mod; 127 } 128 if (SI->getOrdering() == AtomicOrdering::Monotonic) { 129 Loc = MemoryLocation::get(SI); 130 return ModRefInfo::ModRef; 131 } 132 Loc = MemoryLocation(); 133 return ModRefInfo::ModRef; 134 } 135 136 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) { 137 Loc = MemoryLocation::get(V); 138 return ModRefInfo::ModRef; 139 } 140 141 if (const CallBase *CB = dyn_cast<CallBase>(Inst)) { 142 if (Value *FreedOp = getFreedOperand(CB, &TLI)) { 143 // calls to free() deallocate the entire structure 144 Loc = MemoryLocation::getAfter(FreedOp); 145 return ModRefInfo::Mod; 146 } 147 } 148 149 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 150 switch (II->getIntrinsicID()) { 151 case Intrinsic::lifetime_start: 152 case Intrinsic::lifetime_end: 153 case Intrinsic::invariant_start: 154 Loc = MemoryLocation::getForArgument(II, 1, TLI); 155 // These intrinsics don't really modify the memory, but returning Mod 156 // will allow them to be handled conservatively. 157 return ModRefInfo::Mod; 158 case Intrinsic::invariant_end: 159 Loc = MemoryLocation::getForArgument(II, 2, TLI); 160 // These intrinsics don't really modify the memory, but returning Mod 161 // will allow them to be handled conservatively. 162 return ModRefInfo::Mod; 163 case Intrinsic::masked_load: 164 Loc = MemoryLocation::getForArgument(II, 0, TLI); 165 return ModRefInfo::Ref; 166 case Intrinsic::masked_store: 167 Loc = MemoryLocation::getForArgument(II, 1, TLI); 168 return ModRefInfo::Mod; 169 default: 170 break; 171 } 172 } 173 174 // Otherwise, just do the coarse-grained thing that always works. 175 if (Inst->mayWriteToMemory()) 176 return ModRefInfo::ModRef; 177 if (Inst->mayReadFromMemory()) 178 return ModRefInfo::Ref; 179 return ModRefInfo::NoModRef; 180 } 181 182 /// Private helper for finding the local dependencies of a call site. 183 MemDepResult MemoryDependenceResults::getCallDependencyFrom( 184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt, 185 BasicBlock *BB) { 186 unsigned Limit = getDefaultBlockScanLimit(); 187 188 // Walk backwards through the block, looking for dependencies. 189 while (ScanIt != BB->begin()) { 190 Instruction *Inst = &*--ScanIt; 191 // Debug intrinsics don't cause dependences and should not affect Limit 192 if (isa<DbgInfoIntrinsic>(Inst)) 193 continue; 194 195 // Limit the amount of scanning we do so we don't end up with quadratic 196 // running time on extreme testcases. 197 --Limit; 198 if (!Limit) 199 return MemDepResult::getUnknown(); 200 201 // If this inst is a memory op, get the pointer it accessed 202 MemoryLocation Loc; 203 ModRefInfo MR = GetLocation(Inst, Loc, TLI); 204 if (Loc.Ptr) { 205 // A simple instruction. 206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc))) 207 return MemDepResult::getClobber(Inst); 208 continue; 209 } 210 211 if (auto *CallB = dyn_cast<CallBase>(Inst)) { 212 // If these two calls do not interfere, look past it. 213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) { 214 // If the two calls are the same, return Inst as a Def, so that 215 // Call can be found redundant and eliminated. 216 if (isReadOnlyCall && !isModSet(MR) && 217 Call->isIdenticalToWhenDefined(CallB)) 218 return MemDepResult::getDef(Inst); 219 220 // Otherwise if the two calls don't interact (e.g. CallB is readnone) 221 // keep scanning. 222 continue; 223 } else 224 return MemDepResult::getClobber(Inst); 225 } 226 227 // If we could not obtain a pointer for the instruction and the instruction 228 // touches memory then assume that this is a dependency. 229 if (isModOrRefSet(MR)) 230 return MemDepResult::getClobber(Inst); 231 } 232 233 // No dependence found. If this is the entry block of the function, it is 234 // unknown, otherwise it is non-local. 235 if (BB != &BB->getParent()->getEntryBlock()) 236 return MemDepResult::getNonLocal(); 237 return MemDepResult::getNonFuncLocal(); 238 } 239 240 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 241 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 242 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 243 BatchAAResults &BatchAA) { 244 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown(); 245 if (QueryInst != nullptr) { 246 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) { 247 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB); 248 249 if (InvariantGroupDependency.isDef()) 250 return InvariantGroupDependency; 251 } 252 } 253 MemDepResult SimpleDep = getSimplePointerDependencyFrom( 254 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA); 255 if (SimpleDep.isDef()) 256 return SimpleDep; 257 // Non-local invariant group dependency indicates there is non local Def 258 // (it only returns nonLocal if it finds nonLocal def), which is better than 259 // local clobber and everything else. 260 if (InvariantGroupDependency.isNonLocal()) 261 return InvariantGroupDependency; 262 263 assert(InvariantGroupDependency.isUnknown() && 264 "InvariantGroupDependency should be only unknown at this point"); 265 return SimpleDep; 266 } 267 268 MemDepResult MemoryDependenceResults::getPointerDependencyFrom( 269 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 270 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) { 271 BatchAAResults BatchAA(AA, &EII); 272 return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, 273 BatchAA); 274 } 275 276 MemDepResult 277 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI, 278 BasicBlock *BB) { 279 280 if (!LI->hasMetadata(LLVMContext::MD_invariant_group)) 281 return MemDepResult::getUnknown(); 282 283 // Take the ptr operand after all casts and geps 0. This way we can search 284 // cast graph down only. 285 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts(); 286 287 // It's is not safe to walk the use list of global value, because function 288 // passes aren't allowed to look outside their functions. 289 // FIXME: this could be fixed by filtering instructions from outside 290 // of current function. 291 if (isa<GlobalValue>(LoadOperand)) 292 return MemDepResult::getUnknown(); 293 294 // Queue to process all pointers that are equivalent to load operand. 295 SmallVector<const Value *, 8> LoadOperandsQueue; 296 LoadOperandsQueue.push_back(LoadOperand); 297 298 Instruction *ClosestDependency = nullptr; 299 // Order of instructions in uses list is unpredictible. In order to always 300 // get the same result, we will look for the closest dominance. 301 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) { 302 assert(Other && "Must call it with not null instruction"); 303 if (Best == nullptr || DT.dominates(Best, Other)) 304 return Other; 305 return Best; 306 }; 307 308 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case 309 // we will see all the instructions. This should be fixed in MSSA. 310 while (!LoadOperandsQueue.empty()) { 311 const Value *Ptr = LoadOperandsQueue.pop_back_val(); 312 assert(Ptr && !isa<GlobalValue>(Ptr) && 313 "Null or GlobalValue should not be inserted"); 314 315 for (const Use &Us : Ptr->uses()) { 316 auto *U = dyn_cast<Instruction>(Us.getUser()); 317 if (!U || U == LI || !DT.dominates(U, LI)) 318 continue; 319 320 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's 321 // users. U = bitcast Ptr 322 if (isa<BitCastInst>(U)) { 323 LoadOperandsQueue.push_back(U); 324 continue; 325 } 326 // Gep with zeros is equivalent to bitcast. 327 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0 328 // or gep 0 to bitcast because of SROA, so there are 2 forms. When 329 // typeless pointers will be ready then both cases will be gone 330 // (and this BFS also won't be needed). 331 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 332 if (GEP->hasAllZeroIndices()) { 333 LoadOperandsQueue.push_back(U); 334 continue; 335 } 336 337 // If we hit load/store with the same invariant.group metadata (and the 338 // same pointer operand) we can assume that value pointed by pointer 339 // operand didn't change. 340 if ((isa<LoadInst>(U) || 341 (isa<StoreInst>(U) && 342 cast<StoreInst>(U)->getPointerOperand() == Ptr)) && 343 U->hasMetadata(LLVMContext::MD_invariant_group)) 344 ClosestDependency = GetClosestDependency(ClosestDependency, U); 345 } 346 } 347 348 if (!ClosestDependency) 349 return MemDepResult::getUnknown(); 350 if (ClosestDependency->getParent() == BB) 351 return MemDepResult::getDef(ClosestDependency); 352 // Def(U) can't be returned here because it is non-local. If local 353 // dependency won't be found then return nonLocal counting that the 354 // user will call getNonLocalPointerDependency, which will return cached 355 // result. 356 NonLocalDefsCache.try_emplace( 357 LI, NonLocalDepResult(ClosestDependency->getParent(), 358 MemDepResult::getDef(ClosestDependency), nullptr)); 359 ReverseNonLocalDefsCache[ClosestDependency].insert(LI); 360 return MemDepResult::getNonLocal(); 361 } 362 363 // Check if SI that may alias with MemLoc can be safely skipped. This is 364 // possible in case if SI can only must alias or no alias with MemLoc (no 365 // partial overlapping possible) and it writes the same value that MemLoc 366 // contains now (it was loaded before this store and was not modified in 367 // between). 368 static bool canSkipClobberingStore(const StoreInst *SI, 369 const MemoryLocation &MemLoc, 370 Align MemLocAlign, BatchAAResults &BatchAA, 371 unsigned ScanLimit) { 372 if (!MemLoc.Size.hasValue()) 373 return false; 374 if (MemoryLocation::get(SI).Size != MemLoc.Size) 375 return false; 376 if (MemLoc.Size.isScalable()) 377 return false; 378 if (std::min(MemLocAlign, SI->getAlign()).value() < 379 MemLoc.Size.getValue().getKnownMinValue()) 380 return false; 381 382 auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 383 if (!LI || LI->getParent() != SI->getParent()) 384 return false; 385 if (BatchAA.alias(MemoryLocation::get(LI), MemLoc) != AliasResult::MustAlias) 386 return false; 387 unsigned NumVisitedInsts = 0; 388 for (const Instruction *I = LI; I != SI; I = I->getNextNonDebugInstruction()) 389 if (++NumVisitedInsts > ScanLimit || 390 isModSet(BatchAA.getModRefInfo(I, MemLoc))) 391 return false; 392 393 return true; 394 } 395 396 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom( 397 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt, 398 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit, 399 BatchAAResults &BatchAA) { 400 bool isInvariantLoad = false; 401 Align MemLocAlign = 402 MemLoc.Ptr->getPointerAlignment(BB->getModule()->getDataLayout()); 403 404 unsigned DefaultLimit = getDefaultBlockScanLimit(); 405 if (!Limit) 406 Limit = &DefaultLimit; 407 408 // We must be careful with atomic accesses, as they may allow another thread 409 // to touch this location, clobbering it. We are conservative: if the 410 // QueryInst is not a simple (non-atomic) memory access, we automatically 411 // return getClobber. 412 // If it is simple, we know based on the results of 413 // "Compiler testing via a theory of sound optimisations in the C11/C++11 414 // memory model" in PLDI 2013, that a non-atomic location can only be 415 // clobbered between a pair of a release and an acquire action, with no 416 // access to the location in between. 417 // Here is an example for giving the general intuition behind this rule. 418 // In the following code: 419 // store x 0; 420 // release action; [1] 421 // acquire action; [4] 422 // %val = load x; 423 // It is unsafe to replace %val by 0 because another thread may be running: 424 // acquire action; [2] 425 // store x 42; 426 // release action; [3] 427 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val 428 // being 42. A key property of this program however is that if either 429 // 1 or 4 were missing, there would be a race between the store of 42 430 // either the store of 0 or the load (making the whole program racy). 431 // The paper mentioned above shows that the same property is respected 432 // by every program that can detect any optimization of that kind: either 433 // it is racy (undefined) or there is a release followed by an acquire 434 // between the pair of accesses under consideration. 435 436 // If the load is invariant, we "know" that it doesn't alias *any* write. We 437 // do want to respect mustalias results since defs are useful for value 438 // forwarding, but any mayalias write can be assumed to be noalias. 439 // Arguably, this logic should be pushed inside AliasAnalysis itself. 440 if (isLoad && QueryInst) 441 if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) { 442 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 443 isInvariantLoad = true; 444 MemLocAlign = LI->getAlign(); 445 } 446 447 // True for volatile instruction. 448 // For Load/Store return true if atomic ordering is stronger than AO, 449 // for other instruction just true if it can read or write to memory. 450 auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool { 451 if (I->isVolatile()) 452 return true; 453 if (auto *LI = dyn_cast<LoadInst>(I)) 454 return isStrongerThan(LI->getOrdering(), AO); 455 if (auto *SI = dyn_cast<StoreInst>(I)) 456 return isStrongerThan(SI->getOrdering(), AO); 457 return I->mayReadOrWriteMemory(); 458 }; 459 460 // Walk backwards through the basic block, looking for dependencies. 461 while (ScanIt != BB->begin()) { 462 Instruction *Inst = &*--ScanIt; 463 464 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 465 // Debug intrinsics don't (and can't) cause dependencies. 466 if (isa<DbgInfoIntrinsic>(II)) 467 continue; 468 469 // Limit the amount of scanning we do so we don't end up with quadratic 470 // running time on extreme testcases. 471 --*Limit; 472 if (!*Limit) 473 return MemDepResult::getUnknown(); 474 475 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 476 // If we reach a lifetime begin or end marker, then the query ends here 477 // because the value is undefined. 478 Intrinsic::ID ID = II->getIntrinsicID(); 479 switch (ID) { 480 case Intrinsic::lifetime_start: { 481 // FIXME: This only considers queries directly on the invariant-tagged 482 // pointer, not on query pointers that are indexed off of them. It'd 483 // be nice to handle that at some point (the right approach is to use 484 // GetPointerBaseWithConstantOffset). 485 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1)); 486 if (BatchAA.isMustAlias(ArgLoc, MemLoc)) 487 return MemDepResult::getDef(II); 488 continue; 489 } 490 case Intrinsic::masked_load: 491 case Intrinsic::masked_store: { 492 MemoryLocation Loc; 493 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI); 494 AliasResult R = BatchAA.alias(Loc, MemLoc); 495 if (R == AliasResult::NoAlias) 496 continue; 497 if (R == AliasResult::MustAlias) 498 return MemDepResult::getDef(II); 499 if (ID == Intrinsic::masked_load) 500 continue; 501 return MemDepResult::getClobber(II); 502 } 503 } 504 } 505 506 // Values depend on loads if the pointers are must aliased. This means 507 // that a load depends on another must aliased load from the same value. 508 // One exception is atomic loads: a value can depend on an atomic load that 509 // it does not alias with when this atomic load indicates that another 510 // thread may be accessing the location. 511 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 512 // While volatile access cannot be eliminated, they do not have to clobber 513 // non-aliasing locations, as normal accesses, for example, can be safely 514 // reordered with volatile accesses. 515 if (LI->isVolatile()) { 516 if (!QueryInst) 517 // Original QueryInst *may* be volatile 518 return MemDepResult::getClobber(LI); 519 if (QueryInst->isVolatile()) 520 // Ordering required if QueryInst is itself volatile 521 return MemDepResult::getClobber(LI); 522 // Otherwise, volatile doesn't imply any special ordering 523 } 524 525 // Atomic loads have complications involved. 526 // A Monotonic (or higher) load is OK if the query inst is itself not 527 // atomic. 528 // FIXME: This is overly conservative. 529 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) { 530 if (!QueryInst || 531 isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic)) 532 return MemDepResult::getClobber(LI); 533 if (LI->getOrdering() != AtomicOrdering::Monotonic) 534 return MemDepResult::getClobber(LI); 535 } 536 537 MemoryLocation LoadLoc = MemoryLocation::get(LI); 538 539 // If we found a pointer, check if it could be the same as our pointer. 540 AliasResult R = BatchAA.alias(LoadLoc, MemLoc); 541 542 if (R == AliasResult::NoAlias) 543 continue; 544 545 if (isLoad) { 546 // Must aliased loads are defs of each other. 547 if (R == AliasResult::MustAlias) 548 return MemDepResult::getDef(Inst); 549 550 // If we have a partial alias, then return this as a clobber for the 551 // client to handle. 552 if (R == AliasResult::PartialAlias && R.hasOffset()) { 553 ClobberOffsets[LI] = R.getOffset(); 554 return MemDepResult::getClobber(Inst); 555 } 556 557 // Random may-alias loads don't depend on each other without a 558 // dependence. 559 continue; 560 } 561 562 // Stores don't alias loads from read-only memory. 563 if (!isModSet(BatchAA.getModRefInfoMask(LoadLoc))) 564 continue; 565 566 // Stores depend on may/must aliased loads. 567 return MemDepResult::getDef(Inst); 568 } 569 570 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 571 // Atomic stores have complications involved. 572 // A Monotonic store is OK if the query inst is itself not atomic. 573 // FIXME: This is overly conservative. 574 if (!SI->isUnordered() && SI->isAtomic()) { 575 if (!QueryInst || 576 isComplexForReordering(QueryInst, AtomicOrdering::Unordered)) 577 return MemDepResult::getClobber(SI); 578 // Ok, if we are here the guard above guarantee us that 579 // QueryInst is a non-atomic or unordered load/store. 580 // SI is atomic with monotonic or release semantic (seq_cst for store 581 // is actually a release semantic plus total order over other seq_cst 582 // instructions, as soon as QueryInst is not seq_cst we can consider it 583 // as simple release semantic). 584 // Monotonic and Release semantic allows re-ordering before store 585 // so we are safe to go further and check the aliasing. It will prohibit 586 // re-ordering in case locations are may or must alias. 587 } 588 589 // While volatile access cannot be eliminated, they do not have to clobber 590 // non-aliasing locations, as normal accesses can for example be reordered 591 // with volatile accesses. 592 if (SI->isVolatile()) 593 if (!QueryInst || QueryInst->isVolatile()) 594 return MemDepResult::getClobber(SI); 595 596 // If alias analysis can tell that this store is guaranteed to not modify 597 // the query pointer, ignore it. Use getModRefInfo to handle cases where 598 // the query pointer points to constant memory etc. 599 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc))) 600 continue; 601 602 // Ok, this store might clobber the query pointer. Check to see if it is 603 // a must alias: in this case, we want to return this as a def. 604 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above. 605 MemoryLocation StoreLoc = MemoryLocation::get(SI); 606 607 // If we found a pointer, check if it could be the same as our pointer. 608 AliasResult R = BatchAA.alias(StoreLoc, MemLoc); 609 610 if (R == AliasResult::NoAlias) 611 continue; 612 if (R == AliasResult::MustAlias) 613 return MemDepResult::getDef(Inst); 614 if (isInvariantLoad) 615 continue; 616 if (canSkipClobberingStore(SI, MemLoc, MemLocAlign, BatchAA, *Limit)) 617 continue; 618 return MemDepResult::getClobber(Inst); 619 } 620 621 // If this is an allocation, and if we know that the accessed pointer is to 622 // the allocation, return Def. This means that there is no dependence and 623 // the access can be optimized based on that. For example, a load could 624 // turn into undef. Note that we can bypass the allocation itself when 625 // looking for a clobber in many cases; that's an alias property and is 626 // handled by BasicAA. 627 if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) { 628 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr); 629 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr)) 630 return MemDepResult::getDef(Inst); 631 } 632 633 // If we found a select instruction for MemLoc pointer, return it as Def 634 // dependency. 635 if (isa<SelectInst>(Inst) && MemLoc.Ptr == Inst) 636 return MemDepResult::getDef(Inst); 637 638 if (isInvariantLoad) 639 continue; 640 641 // A release fence requires that all stores complete before it, but does 642 // not prevent the reordering of following loads or stores 'before' the 643 // fence. As a result, we look past it when finding a dependency for 644 // loads. DSE uses this to find preceding stores to delete and thus we 645 // can't bypass the fence if the query instruction is a store. 646 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 647 if (isLoad && FI->getOrdering() == AtomicOrdering::Release) 648 continue; 649 650 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer. 651 switch (BatchAA.getModRefInfo(Inst, MemLoc)) { 652 case ModRefInfo::NoModRef: 653 // If the call has no effect on the queried pointer, just ignore it. 654 continue; 655 case ModRefInfo::Mod: 656 return MemDepResult::getClobber(Inst); 657 case ModRefInfo::Ref: 658 // If the call is known to never store to the pointer, and if this is a 659 // load query, we can safely ignore it (scan past it). 660 if (isLoad) 661 continue; 662 [[fallthrough]]; 663 default: 664 // Otherwise, there is a potential dependence. Return a clobber. 665 return MemDepResult::getClobber(Inst); 666 } 667 } 668 669 // No dependence found. If this is the entry block of the function, it is 670 // unknown, otherwise it is non-local. 671 if (BB != &BB->getParent()->getEntryBlock()) 672 return MemDepResult::getNonLocal(); 673 return MemDepResult::getNonFuncLocal(); 674 } 675 676 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) { 677 ClobberOffsets.clear(); 678 Instruction *ScanPos = QueryInst; 679 680 // Check for a cached result 681 MemDepResult &LocalCache = LocalDeps[QueryInst]; 682 683 // If the cached entry is non-dirty, just return it. Note that this depends 684 // on MemDepResult's default constructing to 'dirty'. 685 if (!LocalCache.isDirty()) 686 return LocalCache; 687 688 // Otherwise, if we have a dirty entry, we know we can start the scan at that 689 // instruction, which may save us some work. 690 if (Instruction *Inst = LocalCache.getInst()) { 691 ScanPos = Inst; 692 693 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst); 694 } 695 696 BasicBlock *QueryParent = QueryInst->getParent(); 697 698 // Do the scan. 699 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) { 700 // No dependence found. If this is the entry block of the function, it is 701 // unknown, otherwise it is non-local. 702 if (QueryParent != &QueryParent->getParent()->getEntryBlock()) 703 LocalCache = MemDepResult::getNonLocal(); 704 else 705 LocalCache = MemDepResult::getNonFuncLocal(); 706 } else { 707 MemoryLocation MemLoc; 708 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI); 709 if (MemLoc.Ptr) { 710 // If we can do a pointer scan, make it happen. 711 bool isLoad = !isModSet(MR); 712 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst)) 713 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start; 714 715 LocalCache = 716 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(), 717 QueryParent, QueryInst, nullptr); 718 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) { 719 bool isReadOnly = AA.onlyReadsMemory(QueryCall); 720 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly, 721 ScanPos->getIterator(), QueryParent); 722 } else 723 // Non-memory instruction. 724 LocalCache = MemDepResult::getUnknown(); 725 } 726 727 // Remember the result! 728 if (Instruction *I = LocalCache.getInst()) 729 ReverseLocalDeps[I].insert(QueryInst); 730 731 return LocalCache; 732 } 733 734 #ifndef NDEBUG 735 /// This method is used when -debug is specified to verify that cache arrays 736 /// are properly kept sorted. 737 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache, 738 int Count = -1) { 739 if (Count == -1) 740 Count = Cache.size(); 741 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) && 742 "Cache isn't sorted!"); 743 } 744 #endif 745 746 const MemoryDependenceResults::NonLocalDepInfo & 747 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) { 748 assert(getDependency(QueryCall).isNonLocal() && 749 "getNonLocalCallDependency should only be used on calls with " 750 "non-local deps!"); 751 PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall]; 752 NonLocalDepInfo &Cache = CacheP.first; 753 754 // This is the set of blocks that need to be recomputed. In the cached case, 755 // this can happen due to instructions being deleted etc. In the uncached 756 // case, this starts out as the set of predecessors we care about. 757 SmallVector<BasicBlock *, 32> DirtyBlocks; 758 759 if (!Cache.empty()) { 760 // Okay, we have a cache entry. If we know it is not dirty, just return it 761 // with no computation. 762 if (!CacheP.second) { 763 ++NumCacheNonLocal; 764 return Cache; 765 } 766 767 // If we already have a partially computed set of results, scan them to 768 // determine what is dirty, seeding our initial DirtyBlocks worklist. 769 for (auto &Entry : Cache) 770 if (Entry.getResult().isDirty()) 771 DirtyBlocks.push_back(Entry.getBB()); 772 773 // Sort the cache so that we can do fast binary search lookups below. 774 llvm::sort(Cache); 775 776 ++NumCacheDirtyNonLocal; 777 } else { 778 // Seed DirtyBlocks with each of the preds of QueryInst's block. 779 BasicBlock *QueryBB = QueryCall->getParent(); 780 append_range(DirtyBlocks, PredCache.get(QueryBB)); 781 ++NumUncacheNonLocal; 782 } 783 784 // isReadonlyCall - If this is a read-only call, we can be more aggressive. 785 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall); 786 787 SmallPtrSet<BasicBlock *, 32> Visited; 788 789 unsigned NumSortedEntries = Cache.size(); 790 LLVM_DEBUG(AssertSorted(Cache)); 791 792 // Iterate while we still have blocks to update. 793 while (!DirtyBlocks.empty()) { 794 BasicBlock *DirtyBB = DirtyBlocks.pop_back_val(); 795 796 // Already processed this block? 797 if (!Visited.insert(DirtyBB).second) 798 continue; 799 800 // Do a binary search to see if we already have an entry for this block in 801 // the cache set. If so, find it. 802 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries)); 803 NonLocalDepInfo::iterator Entry = 804 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries, 805 NonLocalDepEntry(DirtyBB)); 806 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB) 807 --Entry; 808 809 NonLocalDepEntry *ExistingResult = nullptr; 810 if (Entry != Cache.begin() + NumSortedEntries && 811 Entry->getBB() == DirtyBB) { 812 // If we already have an entry, and if it isn't already dirty, the block 813 // is done. 814 if (!Entry->getResult().isDirty()) 815 continue; 816 817 // Otherwise, remember this slot so we can update the value. 818 ExistingResult = &*Entry; 819 } 820 821 // If the dirty entry has a pointer, start scanning from it so we don't have 822 // to rescan the entire block. 823 BasicBlock::iterator ScanPos = DirtyBB->end(); 824 if (ExistingResult) { 825 if (Instruction *Inst = ExistingResult->getResult().getInst()) { 826 ScanPos = Inst->getIterator(); 827 // We're removing QueryInst's use of Inst. 828 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst, 829 QueryCall); 830 } 831 } 832 833 // Find out if this block has a local dependency for QueryInst. 834 MemDepResult Dep; 835 836 if (ScanPos != DirtyBB->begin()) { 837 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB); 838 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) { 839 // No dependence found. If this is the entry block of the function, it is 840 // a clobber, otherwise it is unknown. 841 Dep = MemDepResult::getNonLocal(); 842 } else { 843 Dep = MemDepResult::getNonFuncLocal(); 844 } 845 846 // If we had a dirty entry for the block, update it. Otherwise, just add 847 // a new entry. 848 if (ExistingResult) 849 ExistingResult->setResult(Dep); 850 else 851 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep)); 852 853 // If the block has a dependency (i.e. it isn't completely transparent to 854 // the value), remember the association! 855 if (!Dep.isNonLocal()) { 856 // Keep the ReverseNonLocalDeps map up to date so we can efficiently 857 // update this when we remove instructions. 858 if (Instruction *Inst = Dep.getInst()) 859 ReverseNonLocalDeps[Inst].insert(QueryCall); 860 } else { 861 862 // If the block *is* completely transparent to the load, we need to check 863 // the predecessors of this block. Add them to our worklist. 864 append_range(DirtyBlocks, PredCache.get(DirtyBB)); 865 } 866 } 867 868 return Cache; 869 } 870 871 void MemoryDependenceResults::getNonLocalPointerDependency( 872 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) { 873 const MemoryLocation Loc = MemoryLocation::get(QueryInst); 874 bool isLoad = isa<LoadInst>(QueryInst); 875 BasicBlock *FromBB = QueryInst->getParent(); 876 assert(FromBB); 877 878 assert(Loc.Ptr->getType()->isPointerTy() && 879 "Can't get pointer deps of a non-pointer!"); 880 Result.clear(); 881 { 882 // Check if there is cached Def with invariant.group. 883 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst); 884 if (NonLocalDefIt != NonLocalDefsCache.end()) { 885 Result.push_back(NonLocalDefIt->second); 886 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()] 887 .erase(QueryInst); 888 NonLocalDefsCache.erase(NonLocalDefIt); 889 return; 890 } 891 } 892 // This routine does not expect to deal with volatile instructions. 893 // Doing so would require piping through the QueryInst all the way through. 894 // TODO: volatiles can't be elided, but they can be reordered with other 895 // non-volatile accesses. 896 897 // We currently give up on any instruction which is ordered, but we do handle 898 // atomic instructions which are unordered. 899 // TODO: Handle ordered instructions 900 auto isOrdered = [](Instruction *Inst) { 901 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 902 return !LI->isUnordered(); 903 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 904 return !SI->isUnordered(); 905 } 906 return false; 907 }; 908 if (QueryInst->isVolatile() || isOrdered(QueryInst)) { 909 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 910 const_cast<Value *>(Loc.Ptr))); 911 return; 912 } 913 const DataLayout &DL = FromBB->getModule()->getDataLayout(); 914 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC); 915 916 // This is the set of blocks we've inspected, and the pointer we consider in 917 // each block. Because of critical edges, we currently bail out if querying 918 // a block with multiple different pointers. This can happen during PHI 919 // translation. 920 DenseMap<BasicBlock *, Value *> Visited; 921 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB, 922 Result, Visited, true)) 923 return; 924 Result.clear(); 925 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(), 926 const_cast<Value *>(Loc.Ptr))); 927 } 928 929 /// Compute the memdep value for BB with Pointer/PointeeSize using either 930 /// cached information in Cache or by doing a lookup (which may use dirty cache 931 /// info if available). 932 /// 933 /// If we do a lookup, add the result to the cache. 934 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock( 935 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad, 936 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries, 937 BatchAAResults &BatchAA) { 938 939 bool isInvariantLoad = false; 940 941 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 942 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 943 944 // Do a binary search to see if we already have an entry for this block in 945 // the cache set. If so, find it. 946 NonLocalDepInfo::iterator Entry = std::upper_bound( 947 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB)); 948 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB) 949 --Entry; 950 951 NonLocalDepEntry *ExistingResult = nullptr; 952 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB) 953 ExistingResult = &*Entry; 954 955 // Use cached result for invariant load only if there is no dependency for non 956 // invariant load. In this case invariant load can not have any dependency as 957 // well. 958 if (ExistingResult && isInvariantLoad && 959 !ExistingResult->getResult().isNonFuncLocal()) 960 ExistingResult = nullptr; 961 962 // If we have a cached entry, and it is non-dirty, use it as the value for 963 // this dependency. 964 if (ExistingResult && !ExistingResult->getResult().isDirty()) { 965 ++NumCacheNonLocalPtr; 966 return ExistingResult->getResult(); 967 } 968 969 // Otherwise, we have to scan for the value. If we have a dirty cache 970 // entry, start scanning from its position, otherwise we scan from the end 971 // of the block. 972 BasicBlock::iterator ScanPos = BB->end(); 973 if (ExistingResult && ExistingResult->getResult().getInst()) { 974 assert(ExistingResult->getResult().getInst()->getParent() == BB && 975 "Instruction invalidated?"); 976 ++NumCacheDirtyNonLocalPtr; 977 ScanPos = ExistingResult->getResult().getInst()->getIterator(); 978 979 // Eliminating the dirty entry from 'Cache', so update the reverse info. 980 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 981 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey); 982 } else { 983 ++NumUncacheNonLocalPtr; 984 } 985 986 // Scan the block for the dependency. 987 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, 988 QueryInst, nullptr, BatchAA); 989 990 // Don't cache results for invariant load. 991 if (isInvariantLoad) 992 return Dep; 993 994 // If we had a dirty entry for the block, update it. Otherwise, just add 995 // a new entry. 996 if (ExistingResult) 997 ExistingResult->setResult(Dep); 998 else 999 Cache->push_back(NonLocalDepEntry(BB, Dep)); 1000 1001 // If the block has a dependency (i.e. it isn't completely transparent to 1002 // the value), remember the reverse association because we just added it 1003 // to Cache! 1004 if (!Dep.isLocal()) 1005 return Dep; 1006 1007 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently 1008 // update MemDep when we remove instructions. 1009 Instruction *Inst = Dep.getInst(); 1010 assert(Inst && "Didn't depend on anything?"); 1011 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad); 1012 ReverseNonLocalPtrDeps[Inst].insert(CacheKey); 1013 return Dep; 1014 } 1015 1016 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the 1017 /// array that are already properly ordered. 1018 /// 1019 /// This is optimized for the case when only a few entries are added. 1020 static void 1021 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache, 1022 unsigned NumSortedEntries) { 1023 switch (Cache.size() - NumSortedEntries) { 1024 case 0: 1025 // done, no new entries. 1026 break; 1027 case 2: { 1028 // Two new entries, insert the last one into place. 1029 NonLocalDepEntry Val = Cache.back(); 1030 Cache.pop_back(); 1031 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1032 std::upper_bound(Cache.begin(), Cache.end() - 1, Val); 1033 Cache.insert(Entry, Val); 1034 [[fallthrough]]; 1035 } 1036 case 1: 1037 // One new entry, Just insert the new value at the appropriate position. 1038 if (Cache.size() != 1) { 1039 NonLocalDepEntry Val = Cache.back(); 1040 Cache.pop_back(); 1041 MemoryDependenceResults::NonLocalDepInfo::iterator Entry = 1042 llvm::upper_bound(Cache, Val); 1043 Cache.insert(Entry, Val); 1044 } 1045 break; 1046 default: 1047 // Added many values, do a full scale sort. 1048 llvm::sort(Cache); 1049 break; 1050 } 1051 } 1052 1053 /// Perform a dependency query based on pointer/pointeesize starting at the end 1054 /// of StartBB. 1055 /// 1056 /// Add any clobber/def results to the results vector and keep track of which 1057 /// blocks are visited in 'Visited'. 1058 /// 1059 /// This has special behavior for the first block queries (when SkipFirstBlock 1060 /// is true). In this special case, it ignores the contents of the specified 1061 /// block and starts returning dependence info for its predecessors. 1062 /// 1063 /// This function returns true on success, or false to indicate that it could 1064 /// not compute dependence information for some reason. This should be treated 1065 /// as a clobber dependence on the first instruction in the predecessor block. 1066 bool MemoryDependenceResults::getNonLocalPointerDepFromBB( 1067 Instruction *QueryInst, const PHITransAddr &Pointer, 1068 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB, 1069 SmallVectorImpl<NonLocalDepResult> &Result, 1070 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock, 1071 bool IsIncomplete) { 1072 // Look up the cached info for Pointer. 1073 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad); 1074 1075 // Set up a temporary NLPI value. If the map doesn't yet have an entry for 1076 // CacheKey, this value will be inserted as the associated value. Otherwise, 1077 // it'll be ignored, and we'll have to check to see if the cached size and 1078 // aa tags are consistent with the current query. 1079 NonLocalPointerInfo InitialNLPI; 1080 InitialNLPI.Size = Loc.Size; 1081 InitialNLPI.AATags = Loc.AATags; 1082 1083 bool isInvariantLoad = false; 1084 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst)) 1085 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load); 1086 1087 // Get the NLPI for CacheKey, inserting one into the map if it doesn't 1088 // already have one. 1089 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair = 1090 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI)); 1091 NonLocalPointerInfo *CacheInfo = &Pair.first->second; 1092 1093 // If we already have a cache entry for this CacheKey, we may need to do some 1094 // work to reconcile the cache entry and the current query. 1095 // Invariant loads don't participate in caching. Thus no need to reconcile. 1096 if (!isInvariantLoad && !Pair.second) { 1097 if (CacheInfo->Size != Loc.Size) { 1098 bool ThrowOutEverything; 1099 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) { 1100 // FIXME: We may be able to do better in the face of results with mixed 1101 // precision. We don't appear to get them in practice, though, so just 1102 // be conservative. 1103 ThrowOutEverything = 1104 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() || 1105 !TypeSize::isKnownGE(CacheInfo->Size.getValue(), 1106 Loc.Size.getValue()); 1107 } else { 1108 // For our purposes, unknown size > all others. 1109 ThrowOutEverything = !Loc.Size.hasValue(); 1110 } 1111 1112 if (ThrowOutEverything) { 1113 // The query's Size is greater than the cached one. Throw out the 1114 // cached data and proceed with the query at the greater size. 1115 CacheInfo->Pair = BBSkipFirstBlockPair(); 1116 CacheInfo->Size = Loc.Size; 1117 for (auto &Entry : CacheInfo->NonLocalDeps) 1118 if (Instruction *Inst = Entry.getResult().getInst()) 1119 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1120 CacheInfo->NonLocalDeps.clear(); 1121 // The cache is cleared (in the above line) so we will have lost 1122 // information about blocks we have already visited. We therefore must 1123 // assume that the cache information is incomplete. 1124 IsIncomplete = true; 1125 } else { 1126 // This query's Size is less than the cached one. Conservatively restart 1127 // the query using the greater size. 1128 return getNonLocalPointerDepFromBB( 1129 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad, 1130 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete); 1131 } 1132 } 1133 1134 // If the query's AATags are inconsistent with the cached one, 1135 // conservatively throw out the cached data and restart the query with 1136 // no tag if needed. 1137 if (CacheInfo->AATags != Loc.AATags) { 1138 if (CacheInfo->AATags) { 1139 CacheInfo->Pair = BBSkipFirstBlockPair(); 1140 CacheInfo->AATags = AAMDNodes(); 1141 for (auto &Entry : CacheInfo->NonLocalDeps) 1142 if (Instruction *Inst = Entry.getResult().getInst()) 1143 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey); 1144 CacheInfo->NonLocalDeps.clear(); 1145 // The cache is cleared (in the above line) so we will have lost 1146 // information about blocks we have already visited. We therefore must 1147 // assume that the cache information is incomplete. 1148 IsIncomplete = true; 1149 } 1150 if (Loc.AATags) 1151 return getNonLocalPointerDepFromBB( 1152 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result, 1153 Visited, SkipFirstBlock, IsIncomplete); 1154 } 1155 } 1156 1157 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps; 1158 1159 // If we have valid cached information for exactly the block we are 1160 // investigating, just return it with no recomputation. 1161 // Don't use cached information for invariant loads since it is valid for 1162 // non-invariant loads only. 1163 if (!IsIncomplete && !isInvariantLoad && 1164 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) { 1165 // We have a fully cached result for this query then we can just return the 1166 // cached results and populate the visited set. However, we have to verify 1167 // that we don't already have conflicting results for these blocks. Check 1168 // to ensure that if a block in the results set is in the visited set that 1169 // it was for the same pointer query. 1170 if (!Visited.empty()) { 1171 for (auto &Entry : *Cache) { 1172 DenseMap<BasicBlock *, Value *>::iterator VI = 1173 Visited.find(Entry.getBB()); 1174 if (VI == Visited.end() || VI->second == Pointer.getAddr()) 1175 continue; 1176 1177 // We have a pointer mismatch in a block. Just return false, saying 1178 // that something was clobbered in this result. We could also do a 1179 // non-fully cached query, but there is little point in doing this. 1180 return false; 1181 } 1182 } 1183 1184 Value *Addr = Pointer.getAddr(); 1185 for (auto &Entry : *Cache) { 1186 Visited.insert(std::make_pair(Entry.getBB(), Addr)); 1187 if (Entry.getResult().isNonLocal()) { 1188 continue; 1189 } 1190 1191 if (DT.isReachableFromEntry(Entry.getBB())) { 1192 Result.push_back( 1193 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr)); 1194 } 1195 } 1196 ++NumCacheCompleteNonLocalPtr; 1197 return true; 1198 } 1199 1200 // Otherwise, either this is a new block, a block with an invalid cache 1201 // pointer or one that we're about to invalidate by putting more info into 1202 // it than its valid cache info. If empty and not explicitly indicated as 1203 // incomplete, the result will be valid cache info, otherwise it isn't. 1204 // 1205 // Invariant loads don't affect cache in any way thus no need to update 1206 // CacheInfo as well. 1207 if (!isInvariantLoad) { 1208 if (!IsIncomplete && Cache->empty()) 1209 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock); 1210 else 1211 CacheInfo->Pair = BBSkipFirstBlockPair(); 1212 } 1213 1214 SmallVector<BasicBlock *, 32> Worklist; 1215 Worklist.push_back(StartBB); 1216 1217 // PredList used inside loop. 1218 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList; 1219 1220 // Keep track of the entries that we know are sorted. Previously cached 1221 // entries will all be sorted. The entries we add we only sort on demand (we 1222 // don't insert every element into its sorted position). We know that we 1223 // won't get any reuse from currently inserted values, because we don't 1224 // revisit blocks after we insert info for them. 1225 unsigned NumSortedEntries = Cache->size(); 1226 unsigned WorklistEntries = BlockNumberLimit; 1227 bool GotWorklistLimit = false; 1228 LLVM_DEBUG(AssertSorted(*Cache)); 1229 1230 BatchAAResults BatchAA(AA, &EII); 1231 while (!Worklist.empty()) { 1232 BasicBlock *BB = Worklist.pop_back_val(); 1233 1234 // If we do process a large number of blocks it becomes very expensive and 1235 // likely it isn't worth worrying about 1236 if (Result.size() > NumResultsLimit) { 1237 // Sort it now (if needed) so that recursive invocations of 1238 // getNonLocalPointerDepFromBB and other routines that could reuse the 1239 // cache value will only see properly sorted cache arrays. 1240 if (Cache && NumSortedEntries != Cache->size()) { 1241 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1242 } 1243 // Since we bail out, the "Cache" set won't contain all of the 1244 // results for the query. This is ok (we can still use it to accelerate 1245 // specific block queries) but we can't do the fastpath "return all 1246 // results from the set". Clear out the indicator for this. 1247 CacheInfo->Pair = BBSkipFirstBlockPair(); 1248 return false; 1249 } 1250 1251 // Skip the first block if we have it. 1252 if (!SkipFirstBlock) { 1253 // Analyze the dependency of *Pointer in FromBB. See if we already have 1254 // been here. 1255 assert(Visited.count(BB) && "Should check 'visited' before adding to WL"); 1256 1257 // Get the dependency info for Pointer in BB. If we have cached 1258 // information, we will use it, otherwise we compute it. 1259 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries)); 1260 MemDepResult Dep = getNonLocalInfoForBlock( 1261 QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA); 1262 1263 // If we got a Def or Clobber, add this to the list of results. 1264 if (!Dep.isNonLocal()) { 1265 if (DT.isReachableFromEntry(BB)) { 1266 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr())); 1267 continue; 1268 } 1269 } 1270 } 1271 1272 // If 'Pointer' is an instruction defined in this block, then we need to do 1273 // phi translation to change it into a value live in the predecessor block. 1274 // If not, we just add the predecessors to the worklist and scan them with 1275 // the same Pointer. 1276 if (!Pointer.needsPHITranslationFromBlock(BB)) { 1277 SkipFirstBlock = false; 1278 SmallVector<BasicBlock *, 16> NewBlocks; 1279 for (BasicBlock *Pred : PredCache.get(BB)) { 1280 // Verify that we haven't looked at this block yet. 1281 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1282 Visited.insert(std::make_pair(Pred, Pointer.getAddr())); 1283 if (InsertRes.second) { 1284 // First time we've looked at *PI. 1285 NewBlocks.push_back(Pred); 1286 continue; 1287 } 1288 1289 // If we have seen this block before, but it was with a different 1290 // pointer then we have a phi translation failure and we have to treat 1291 // this as a clobber. 1292 if (InsertRes.first->second != Pointer.getAddr()) { 1293 // Make sure to clean up the Visited map before continuing on to 1294 // PredTranslationFailure. 1295 for (auto *NewBlock : NewBlocks) 1296 Visited.erase(NewBlock); 1297 goto PredTranslationFailure; 1298 } 1299 } 1300 if (NewBlocks.size() > WorklistEntries) { 1301 // Make sure to clean up the Visited map before continuing on to 1302 // PredTranslationFailure. 1303 for (auto *NewBlock : NewBlocks) 1304 Visited.erase(NewBlock); 1305 GotWorklistLimit = true; 1306 goto PredTranslationFailure; 1307 } 1308 WorklistEntries -= NewBlocks.size(); 1309 Worklist.append(NewBlocks.begin(), NewBlocks.end()); 1310 continue; 1311 } 1312 1313 // We do need to do phi translation, if we know ahead of time we can't phi 1314 // translate this value, don't even try. 1315 if (!Pointer.isPotentiallyPHITranslatable()) 1316 goto PredTranslationFailure; 1317 1318 // We may have added values to the cache list before this PHI translation. 1319 // If so, we haven't done anything to ensure that the cache remains sorted. 1320 // Sort it now (if needed) so that recursive invocations of 1321 // getNonLocalPointerDepFromBB and other routines that could reuse the cache 1322 // value will only see properly sorted cache arrays. 1323 if (Cache && NumSortedEntries != Cache->size()) { 1324 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1325 NumSortedEntries = Cache->size(); 1326 } 1327 Cache = nullptr; 1328 1329 PredList.clear(); 1330 for (BasicBlock *Pred : PredCache.get(BB)) { 1331 PredList.push_back(std::make_pair(Pred, Pointer)); 1332 1333 // Get the PHI translated pointer in this predecessor. This can fail if 1334 // not translatable, in which case the getAddr() returns null. 1335 PHITransAddr &PredPointer = PredList.back().second; 1336 Value *PredPtrVal = 1337 PredPointer.translateValue(BB, Pred, &DT, /*MustDominate=*/false); 1338 1339 // Check to see if we have already visited this pred block with another 1340 // pointer. If so, we can't do this lookup. This failure can occur 1341 // with PHI translation when a critical edge exists and the PHI node in 1342 // the successor translates to a pointer value different than the 1343 // pointer the block was first analyzed with. 1344 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes = 1345 Visited.insert(std::make_pair(Pred, PredPtrVal)); 1346 1347 if (!InsertRes.second) { 1348 // We found the pred; take it off the list of preds to visit. 1349 PredList.pop_back(); 1350 1351 // If the predecessor was visited with PredPtr, then we already did 1352 // the analysis and can ignore it. 1353 if (InsertRes.first->second == PredPtrVal) 1354 continue; 1355 1356 // Otherwise, the block was previously analyzed with a different 1357 // pointer. We can't represent the result of this case, so we just 1358 // treat this as a phi translation failure. 1359 1360 // Make sure to clean up the Visited map before continuing on to 1361 // PredTranslationFailure. 1362 for (const auto &Pred : PredList) 1363 Visited.erase(Pred.first); 1364 1365 goto PredTranslationFailure; 1366 } 1367 } 1368 1369 // Actually process results here; this need to be a separate loop to avoid 1370 // calling getNonLocalPointerDepFromBB for blocks we don't want to return 1371 // any results for. (getNonLocalPointerDepFromBB will modify our 1372 // datastructures in ways the code after the PredTranslationFailure label 1373 // doesn't expect.) 1374 for (auto &I : PredList) { 1375 BasicBlock *Pred = I.first; 1376 PHITransAddr &PredPointer = I.second; 1377 Value *PredPtrVal = PredPointer.getAddr(); 1378 1379 bool CanTranslate = true; 1380 // If PHI translation was unable to find an available pointer in this 1381 // predecessor, then we have to assume that the pointer is clobbered in 1382 // that predecessor. We can still do PRE of the load, which would insert 1383 // a computation of the pointer in this predecessor. 1384 if (!PredPtrVal) 1385 CanTranslate = false; 1386 1387 // FIXME: it is entirely possible that PHI translating will end up with 1388 // the same value. Consider PHI translating something like: 1389 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need* 1390 // to recurse here, pedantically speaking. 1391 1392 // If getNonLocalPointerDepFromBB fails here, that means the cached 1393 // result conflicted with the Visited list; we have to conservatively 1394 // assume it is unknown, but this also does not block PRE of the load. 1395 if (!CanTranslate || 1396 !getNonLocalPointerDepFromBB(QueryInst, PredPointer, 1397 Loc.getWithNewPtr(PredPtrVal), isLoad, 1398 Pred, Result, Visited)) { 1399 // Add the entry to the Result list. 1400 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal); 1401 Result.push_back(Entry); 1402 1403 // Since we had a phi translation failure, the cache for CacheKey won't 1404 // include all of the entries that we need to immediately satisfy future 1405 // queries. Mark this in NonLocalPointerDeps by setting the 1406 // BBSkipFirstBlockPair pointer to null. This requires reuse of the 1407 // cached value to do more work but not miss the phi trans failure. 1408 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey]; 1409 NLPI.Pair = BBSkipFirstBlockPair(); 1410 continue; 1411 } 1412 } 1413 1414 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated. 1415 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1416 Cache = &CacheInfo->NonLocalDeps; 1417 NumSortedEntries = Cache->size(); 1418 1419 // Since we did phi translation, the "Cache" set won't contain all of the 1420 // results for the query. This is ok (we can still use it to accelerate 1421 // specific block queries) but we can't do the fastpath "return all 1422 // results from the set" Clear out the indicator for this. 1423 CacheInfo->Pair = BBSkipFirstBlockPair(); 1424 SkipFirstBlock = false; 1425 continue; 1426 1427 PredTranslationFailure: 1428 // The following code is "failure"; we can't produce a sane translation 1429 // for the given block. It assumes that we haven't modified any of 1430 // our datastructures while processing the current block. 1431 1432 if (!Cache) { 1433 // Refresh the CacheInfo/Cache pointer if it got invalidated. 1434 CacheInfo = &NonLocalPointerDeps[CacheKey]; 1435 Cache = &CacheInfo->NonLocalDeps; 1436 NumSortedEntries = Cache->size(); 1437 } 1438 1439 // Since we failed phi translation, the "Cache" set won't contain all of the 1440 // results for the query. This is ok (we can still use it to accelerate 1441 // specific block queries) but we can't do the fastpath "return all 1442 // results from the set". Clear out the indicator for this. 1443 CacheInfo->Pair = BBSkipFirstBlockPair(); 1444 1445 // If *nothing* works, mark the pointer as unknown. 1446 // 1447 // If this is the magic first block, return this as a clobber of the whole 1448 // incoming value. Since we can't phi translate to one of the predecessors, 1449 // we have to bail out. 1450 if (SkipFirstBlock) 1451 return false; 1452 1453 // Results of invariant loads are not cached thus no need to update cached 1454 // information. 1455 if (!isInvariantLoad) { 1456 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) { 1457 if (I.getBB() != BB) 1458 continue; 1459 1460 assert((GotWorklistLimit || I.getResult().isNonLocal() || 1461 !DT.isReachableFromEntry(BB)) && 1462 "Should only be here with transparent block"); 1463 1464 I.setResult(MemDepResult::getUnknown()); 1465 1466 1467 break; 1468 } 1469 } 1470 (void)GotWorklistLimit; 1471 // Go ahead and report unknown dependence. 1472 Result.push_back( 1473 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr())); 1474 } 1475 1476 // Okay, we're done now. If we added new values to the cache, re-sort it. 1477 SortNonLocalDepInfoCache(*Cache, NumSortedEntries); 1478 LLVM_DEBUG(AssertSorted(*Cache)); 1479 return true; 1480 } 1481 1482 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it. 1483 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies( 1484 ValueIsLoadPair P) { 1485 1486 // Most of the time this cache is empty. 1487 if (!NonLocalDefsCache.empty()) { 1488 auto it = NonLocalDefsCache.find(P.getPointer()); 1489 if (it != NonLocalDefsCache.end()) { 1490 RemoveFromReverseMap(ReverseNonLocalDefsCache, 1491 it->second.getResult().getInst(), P.getPointer()); 1492 NonLocalDefsCache.erase(it); 1493 } 1494 1495 if (auto *I = dyn_cast<Instruction>(P.getPointer())) { 1496 auto toRemoveIt = ReverseNonLocalDefsCache.find(I); 1497 if (toRemoveIt != ReverseNonLocalDefsCache.end()) { 1498 for (const auto *entry : toRemoveIt->second) 1499 NonLocalDefsCache.erase(entry); 1500 ReverseNonLocalDefsCache.erase(toRemoveIt); 1501 } 1502 } 1503 } 1504 1505 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P); 1506 if (It == NonLocalPointerDeps.end()) 1507 return; 1508 1509 // Remove all of the entries in the BB->val map. This involves removing 1510 // instructions from the reverse map. 1511 NonLocalDepInfo &PInfo = It->second.NonLocalDeps; 1512 1513 for (const NonLocalDepEntry &DE : PInfo) { 1514 Instruction *Target = DE.getResult().getInst(); 1515 if (!Target) 1516 continue; // Ignore non-local dep results. 1517 assert(Target->getParent() == DE.getBB()); 1518 1519 // Eliminating the dirty entry from 'Cache', so update the reverse info. 1520 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P); 1521 } 1522 1523 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo). 1524 NonLocalPointerDeps.erase(It); 1525 } 1526 1527 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) { 1528 // If Ptr isn't really a pointer, just ignore it. 1529 if (!Ptr->getType()->isPointerTy()) 1530 return; 1531 // Flush store info for the pointer. 1532 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false)); 1533 // Flush load info for the pointer. 1534 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true)); 1535 } 1536 1537 void MemoryDependenceResults::invalidateCachedPredecessors() { 1538 PredCache.clear(); 1539 } 1540 1541 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) { 1542 EII.removeInstruction(RemInst); 1543 1544 // Walk through the Non-local dependencies, removing this one as the value 1545 // for any cached queries. 1546 NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst); 1547 if (NLDI != NonLocalDepsMap.end()) { 1548 NonLocalDepInfo &BlockMap = NLDI->second.first; 1549 for (auto &Entry : BlockMap) 1550 if (Instruction *Inst = Entry.getResult().getInst()) 1551 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst); 1552 NonLocalDepsMap.erase(NLDI); 1553 } 1554 1555 // If we have a cached local dependence query for this instruction, remove it. 1556 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst); 1557 if (LocalDepEntry != LocalDeps.end()) { 1558 // Remove us from DepInst's reverse set now that the local dep info is gone. 1559 if (Instruction *Inst = LocalDepEntry->second.getInst()) 1560 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst); 1561 1562 // Remove this local dependency info. 1563 LocalDeps.erase(LocalDepEntry); 1564 } 1565 1566 // If we have any cached dependencies on this instruction, remove 1567 // them. 1568 1569 // If the instruction is a pointer, remove it from both the load info and the 1570 // store info. 1571 if (RemInst->getType()->isPointerTy()) { 1572 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false)); 1573 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true)); 1574 } else { 1575 // Otherwise, if the instructions is in the map directly, it must be a load. 1576 // Remove it. 1577 auto toRemoveIt = NonLocalDefsCache.find(RemInst); 1578 if (toRemoveIt != NonLocalDefsCache.end()) { 1579 assert(isa<LoadInst>(RemInst) && 1580 "only load instructions should be added directly"); 1581 const Instruction *DepV = toRemoveIt->second.getResult().getInst(); 1582 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst); 1583 NonLocalDefsCache.erase(toRemoveIt); 1584 } 1585 } 1586 1587 // Loop over all of the things that depend on the instruction we're removing. 1588 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd; 1589 1590 // If we find RemInst as a clobber or Def in any of the maps for other values, 1591 // we need to replace its entry with a dirty version of the instruction after 1592 // it. If RemInst is a terminator, we use a null dirty value. 1593 // 1594 // Using a dirty version of the instruction after RemInst saves having to scan 1595 // the entire block to get to this point. 1596 MemDepResult NewDirtyVal; 1597 if (!RemInst->isTerminator()) 1598 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator()); 1599 1600 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst); 1601 if (ReverseDepIt != ReverseLocalDeps.end()) { 1602 // RemInst can't be the terminator if it has local stuff depending on it. 1603 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() && 1604 "Nothing can locally depend on a terminator"); 1605 1606 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) { 1607 assert(InstDependingOnRemInst != RemInst && 1608 "Already removed our local dep info"); 1609 1610 LocalDeps[InstDependingOnRemInst] = NewDirtyVal; 1611 1612 // Make sure to remember that new things depend on NewDepInst. 1613 assert(NewDirtyVal.getInst() && 1614 "There is no way something else can have " 1615 "a local dep on this if it is a terminator!"); 1616 ReverseDepsToAdd.push_back( 1617 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst)); 1618 } 1619 1620 ReverseLocalDeps.erase(ReverseDepIt); 1621 1622 // Add new reverse deps after scanning the set, to avoid invalidating the 1623 // 'ReverseDeps' reference. 1624 while (!ReverseDepsToAdd.empty()) { 1625 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert( 1626 ReverseDepsToAdd.back().second); 1627 ReverseDepsToAdd.pop_back(); 1628 } 1629 } 1630 1631 ReverseDepIt = ReverseNonLocalDeps.find(RemInst); 1632 if (ReverseDepIt != ReverseNonLocalDeps.end()) { 1633 for (Instruction *I : ReverseDepIt->second) { 1634 assert(I != RemInst && "Already removed NonLocalDep info for RemInst"); 1635 1636 PerInstNLInfo &INLD = NonLocalDepsMap[I]; 1637 // The information is now dirty! 1638 INLD.second = true; 1639 1640 for (auto &Entry : INLD.first) { 1641 if (Entry.getResult().getInst() != RemInst) 1642 continue; 1643 1644 // Convert to a dirty entry for the subsequent instruction. 1645 Entry.setResult(NewDirtyVal); 1646 1647 if (Instruction *NextI = NewDirtyVal.getInst()) 1648 ReverseDepsToAdd.push_back(std::make_pair(NextI, I)); 1649 } 1650 } 1651 1652 ReverseNonLocalDeps.erase(ReverseDepIt); 1653 1654 // Add new reverse deps after scanning the set, to avoid invalidating 'Set' 1655 while (!ReverseDepsToAdd.empty()) { 1656 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert( 1657 ReverseDepsToAdd.back().second); 1658 ReverseDepsToAdd.pop_back(); 1659 } 1660 } 1661 1662 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a 1663 // value in the NonLocalPointerDeps info. 1664 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt = 1665 ReverseNonLocalPtrDeps.find(RemInst); 1666 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) { 1667 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8> 1668 ReversePtrDepsToAdd; 1669 1670 for (ValueIsLoadPair P : ReversePtrDepIt->second) { 1671 assert(P.getPointer() != RemInst && 1672 "Already removed NonLocalPointerDeps info for RemInst"); 1673 1674 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps; 1675 1676 // The cache is not valid for any specific block anymore. 1677 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair(); 1678 1679 // Update any entries for RemInst to use the instruction after it. 1680 for (auto &Entry : NLPDI) { 1681 if (Entry.getResult().getInst() != RemInst) 1682 continue; 1683 1684 // Convert to a dirty entry for the subsequent instruction. 1685 Entry.setResult(NewDirtyVal); 1686 1687 if (Instruction *NewDirtyInst = NewDirtyVal.getInst()) 1688 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P)); 1689 } 1690 1691 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its 1692 // subsequent value may invalidate the sortedness. 1693 llvm::sort(NLPDI); 1694 } 1695 1696 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt); 1697 1698 while (!ReversePtrDepsToAdd.empty()) { 1699 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert( 1700 ReversePtrDepsToAdd.back().second); 1701 ReversePtrDepsToAdd.pop_back(); 1702 } 1703 } 1704 1705 assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?"); 1706 LLVM_DEBUG(verifyRemoved(RemInst)); 1707 } 1708 1709 /// Verify that the specified instruction does not occur in our internal data 1710 /// structures. 1711 /// 1712 /// This function verifies by asserting in debug builds. 1713 void MemoryDependenceResults::verifyRemoved(Instruction *D) const { 1714 #ifndef NDEBUG 1715 for (const auto &DepKV : LocalDeps) { 1716 assert(DepKV.first != D && "Inst occurs in data structures"); 1717 assert(DepKV.second.getInst() != D && "Inst occurs in data structures"); 1718 } 1719 1720 for (const auto &DepKV : NonLocalPointerDeps) { 1721 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key"); 1722 for (const auto &Entry : DepKV.second.NonLocalDeps) 1723 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value"); 1724 } 1725 1726 for (const auto &DepKV : NonLocalDepsMap) { 1727 assert(DepKV.first != D && "Inst occurs in data structures"); 1728 const PerInstNLInfo &INLD = DepKV.second; 1729 for (const auto &Entry : INLD.first) 1730 assert(Entry.getResult().getInst() != D && 1731 "Inst occurs in data structures"); 1732 } 1733 1734 for (const auto &DepKV : ReverseLocalDeps) { 1735 assert(DepKV.first != D && "Inst occurs in data structures"); 1736 for (Instruction *Inst : DepKV.second) 1737 assert(Inst != D && "Inst occurs in data structures"); 1738 } 1739 1740 for (const auto &DepKV : ReverseNonLocalDeps) { 1741 assert(DepKV.first != D && "Inst occurs in data structures"); 1742 for (Instruction *Inst : DepKV.second) 1743 assert(Inst != D && "Inst occurs in data structures"); 1744 } 1745 1746 for (const auto &DepKV : ReverseNonLocalPtrDeps) { 1747 assert(DepKV.first != D && "Inst occurs in rev NLPD map"); 1748 1749 for (ValueIsLoadPair P : DepKV.second) 1750 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && 1751 "Inst occurs in ReverseNonLocalPtrDeps map"); 1752 } 1753 #endif 1754 } 1755 1756 AnalysisKey MemoryDependenceAnalysis::Key; 1757 1758 MemoryDependenceAnalysis::MemoryDependenceAnalysis() 1759 : DefaultBlockScanLimit(BlockScanLimit) {} 1760 1761 MemoryDependenceResults 1762 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 1763 auto &AA = AM.getResult<AAManager>(F); 1764 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1765 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1766 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1767 return MemoryDependenceResults(AA, AC, TLI, DT, DefaultBlockScanLimit); 1768 } 1769 1770 char MemoryDependenceWrapperPass::ID = 0; 1771 1772 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep", 1773 "Memory Dependence Analysis", false, true) 1774 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1775 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1776 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1777 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1778 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep", 1779 "Memory Dependence Analysis", false, true) 1780 1781 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) { 1782 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry()); 1783 } 1784 1785 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default; 1786 1787 void MemoryDependenceWrapperPass::releaseMemory() { 1788 MemDep.reset(); 1789 } 1790 1791 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1792 AU.setPreservesAll(); 1793 AU.addRequired<AssumptionCacheTracker>(); 1794 AU.addRequired<DominatorTreeWrapperPass>(); 1795 AU.addRequiredTransitive<AAResultsWrapperPass>(); 1796 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1797 } 1798 1799 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA, 1800 FunctionAnalysisManager::Invalidator &Inv) { 1801 // Check whether our analysis is preserved. 1802 auto PAC = PA.getChecker<MemoryDependenceAnalysis>(); 1803 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 1804 // If not, give up now. 1805 return true; 1806 1807 // Check whether the analyses we depend on became invalid for any reason. 1808 if (Inv.invalidate<AAManager>(F, PA) || 1809 Inv.invalidate<AssumptionAnalysis>(F, PA) || 1810 Inv.invalidate<DominatorTreeAnalysis>(F, PA)) 1811 return true; 1812 1813 // Otherwise this analysis result remains valid. 1814 return false; 1815 } 1816 1817 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const { 1818 return DefaultBlockScanLimit; 1819 } 1820 1821 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) { 1822 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1823 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1824 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1825 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1826 MemDep.emplace(AA, AC, TLI, DT, BlockScanLimit); 1827 return false; 1828 } 1829