xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp (revision ee0fe82ee2892f5ece189db0eab38913aaab5f0f)
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   CallocLike         = 1<<2, // allocates + bzero
56   ReallocLike        = 1<<3, // reallocates
57   StrDupLike         = 1<<4,
58   MallocOrCallocLike = MallocLike | CallocLike,
59   AllocLike          = MallocLike | CallocLike | StrDupLike,
60   AnyAlloc           = AllocLike | ReallocLike
61 };
62 
63 struct AllocFnsTy {
64   AllocType AllocTy;
65   unsigned NumParams;
66   // First and Second size parameters (or -1 if unused)
67   int FstParam, SndParam;
68 };
69 
70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
71 // know which functions are nounwind, noalias, nocapture parameters, etc.
72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
73   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
74   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
76   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
77   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
78   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
79                                 {MallocLike,  3, 0,  -1}},
80   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
81   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
82   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
83   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
84                                 {MallocLike,  3, 0,  -1}},
85   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
86   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
87   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
88   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
89                                 {MallocLike,  3, 0,  -1}},
90   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
91   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
92   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
93   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
94                                  {MallocLike,  3, 0,  -1}},
95   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
96   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
97   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
98   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
99   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
100   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
101   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
102   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
103   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
104   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
105   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
106   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
107   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
108   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
109 };
110 
111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
112                                          bool &IsNoBuiltin) {
113   // Don't care about intrinsics in this case.
114   if (isa<IntrinsicInst>(V))
115     return nullptr;
116 
117   if (LookThroughBitCast)
118     V = V->stripPointerCasts();
119 
120   ImmutableCallSite CS(V);
121   if (!CS.getInstruction())
122     return nullptr;
123 
124   IsNoBuiltin = CS.isNoBuiltin();
125 
126   if (const Function *Callee = CS.getCalledFunction())
127     return Callee;
128   return nullptr;
129 }
130 
131 /// Returns the allocation data for the given value if it's either a call to a
132 /// known allocation function, or a call to a function with the allocsize
133 /// attribute.
134 static Optional<AllocFnsTy>
135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
136                              const TargetLibraryInfo *TLI) {
137   // Make sure that the function is available.
138   StringRef FnName = Callee->getName();
139   LibFunc TLIFn;
140   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
141     return None;
142 
143   const auto *Iter = find_if(
144       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
145         return P.first == TLIFn;
146       });
147 
148   if (Iter == std::end(AllocationFnData))
149     return None;
150 
151   const AllocFnsTy *FnData = &Iter->second;
152   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
153     return None;
154 
155   // Check function prototype.
156   int FstParam = FnData->FstParam;
157   int SndParam = FnData->SndParam;
158   FunctionType *FTy = Callee->getFunctionType();
159 
160   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
161       FTy->getNumParams() == FnData->NumParams &&
162       (FstParam < 0 ||
163        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
164         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
165       (SndParam < 0 ||
166        FTy->getParamType(SndParam)->isIntegerTy(32) ||
167        FTy->getParamType(SndParam)->isIntegerTy(64)))
168     return *FnData;
169   return None;
170 }
171 
172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
173                                               const TargetLibraryInfo *TLI,
174                                               bool LookThroughBitCast = false) {
175   bool IsNoBuiltinCall;
176   if (const Function *Callee =
177           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
178     if (!IsNoBuiltinCall)
179       return getAllocationDataForFunction(Callee, AllocTy, TLI);
180   return None;
181 }
182 
183 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
184                                               const TargetLibraryInfo *TLI) {
185   bool IsNoBuiltinCall;
186   const Function *Callee =
187       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
188   if (!Callee)
189     return None;
190 
191   // Prefer to use existing information over allocsize. This will give us an
192   // accurate AllocTy.
193   if (!IsNoBuiltinCall)
194     if (Optional<AllocFnsTy> Data =
195             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
196       return Data;
197 
198   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
199   if (Attr == Attribute())
200     return None;
201 
202   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
203 
204   AllocFnsTy Result;
205   // Because allocsize only tells us how many bytes are allocated, we're not
206   // really allowed to assume anything, so we use MallocLike.
207   Result.AllocTy = MallocLike;
208   Result.NumParams = Callee->getNumOperands();
209   Result.FstParam = Args.first;
210   Result.SndParam = Args.second.getValueOr(-1);
211   return Result;
212 }
213 
214 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
215   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
216   return CS && CS.hasRetAttr(Attribute::NoAlias);
217 }
218 
219 /// Tests if a value is a call or invoke to a library function that
220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
221 /// like).
222 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
223                           bool LookThroughBitCast) {
224   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
225 }
226 
227 /// Tests if a value is a call or invoke to a function that returns a
228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
229 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
230                        bool LookThroughBitCast) {
231   // it's safe to consider realloc as noalias since accessing the original
232   // pointer is undefined behavior
233   return isAllocationFn(V, TLI, LookThroughBitCast) ||
234          hasNoAliasAttr(V, LookThroughBitCast);
235 }
236 
237 /// Tests if a value is a call or invoke to a library function that
238 /// allocates uninitialized memory (such as malloc).
239 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
240                           bool LookThroughBitCast) {
241   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
242 }
243 
244 /// Tests if a value is a call or invoke to a library function that
245 /// allocates zero-filled memory (such as calloc).
246 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
247                           bool LookThroughBitCast) {
248   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
249 }
250 
251 /// Tests if a value is a call or invoke to a library function that
252 /// allocates memory similar to malloc or calloc.
253 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
254                                   bool LookThroughBitCast) {
255   return getAllocationData(V, MallocOrCallocLike, TLI,
256                            LookThroughBitCast).hasValue();
257 }
258 
259 /// Tests if a value is a call or invoke to a library function that
260 /// allocates memory (either malloc, calloc, or strdup like).
261 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
262                          bool LookThroughBitCast) {
263   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
264 }
265 
266 /// Tests if a value is a call or invoke to a library function that
267 /// reallocates memory (e.g., realloc).
268 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
269                      bool LookThroughBitCast) {
270   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
271 }
272 
273 /// Tests if a functions is a call or invoke to a library function that
274 /// reallocates memory (e.g., realloc).
275 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
276   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
277 }
278 
279 /// extractMallocCall - Returns the corresponding CallInst if the instruction
280 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
281 /// ignore InvokeInst here.
282 const CallInst *llvm::extractMallocCall(const Value *I,
283                                         const TargetLibraryInfo *TLI) {
284   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
285 }
286 
287 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
288                                const TargetLibraryInfo *TLI,
289                                bool LookThroughSExt = false) {
290   if (!CI)
291     return nullptr;
292 
293   // The size of the malloc's result type must be known to determine array size.
294   Type *T = getMallocAllocatedType(CI, TLI);
295   if (!T || !T->isSized())
296     return nullptr;
297 
298   unsigned ElementSize = DL.getTypeAllocSize(T);
299   if (StructType *ST = dyn_cast<StructType>(T))
300     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
301 
302   // If malloc call's arg can be determined to be a multiple of ElementSize,
303   // return the multiple.  Otherwise, return NULL.
304   Value *MallocArg = CI->getArgOperand(0);
305   Value *Multiple = nullptr;
306   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
307     return Multiple;
308 
309   return nullptr;
310 }
311 
312 /// getMallocType - Returns the PointerType resulting from the malloc call.
313 /// The PointerType depends on the number of bitcast uses of the malloc call:
314 ///   0: PointerType is the calls' return type.
315 ///   1: PointerType is the bitcast's result type.
316 ///  >1: Unique PointerType cannot be determined, return NULL.
317 PointerType *llvm::getMallocType(const CallInst *CI,
318                                  const TargetLibraryInfo *TLI) {
319   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
320 
321   PointerType *MallocType = nullptr;
322   unsigned NumOfBitCastUses = 0;
323 
324   // Determine if CallInst has a bitcast use.
325   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
326        UI != E;)
327     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
328       MallocType = cast<PointerType>(BCI->getDestTy());
329       NumOfBitCastUses++;
330     }
331 
332   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
333   if (NumOfBitCastUses == 1)
334     return MallocType;
335 
336   // Malloc call was not bitcast, so type is the malloc function's return type.
337   if (NumOfBitCastUses == 0)
338     return cast<PointerType>(CI->getType());
339 
340   // Type could not be determined.
341   return nullptr;
342 }
343 
344 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
345 /// The Type depends on the number of bitcast uses of the malloc call:
346 ///   0: PointerType is the malloc calls' return type.
347 ///   1: PointerType is the bitcast's result type.
348 ///  >1: Unique PointerType cannot be determined, return NULL.
349 Type *llvm::getMallocAllocatedType(const CallInst *CI,
350                                    const TargetLibraryInfo *TLI) {
351   PointerType *PT = getMallocType(CI, TLI);
352   return PT ? PT->getElementType() : nullptr;
353 }
354 
355 /// getMallocArraySize - Returns the array size of a malloc call.  If the
356 /// argument passed to malloc is a multiple of the size of the malloced type,
357 /// then return that multiple.  For non-array mallocs, the multiple is
358 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
359 /// determined.
360 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
361                                 const TargetLibraryInfo *TLI,
362                                 bool LookThroughSExt) {
363   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
364   return computeArraySize(CI, DL, TLI, LookThroughSExt);
365 }
366 
367 /// extractCallocCall - Returns the corresponding CallInst if the instruction
368 /// is a calloc call.
369 const CallInst *llvm::extractCallocCall(const Value *I,
370                                         const TargetLibraryInfo *TLI) {
371   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
372 }
373 
374 /// isLibFreeFunction - Returns true if the function is a builtin free()
375 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
376   unsigned ExpectedNumParams;
377   if (TLIFn == LibFunc_free ||
378       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
379       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
380       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
381       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
382       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
383       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
384     ExpectedNumParams = 1;
385   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
386            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
387            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
388            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
389            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
390            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
391            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
392            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
393            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
394            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
395            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
396            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
397            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
398            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
399            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
400            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
401     ExpectedNumParams = 2;
402   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
403            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
404     ExpectedNumParams = 3;
405   else
406     return false;
407 
408   // Check free prototype.
409   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
410   // attribute will exist.
411   FunctionType *FTy = F->getFunctionType();
412   if (!FTy->getReturnType()->isVoidTy())
413     return false;
414   if (FTy->getNumParams() != ExpectedNumParams)
415     return false;
416   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
417     return false;
418 
419   return true;
420 }
421 
422 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
423 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
424   bool IsNoBuiltinCall;
425   const Function *Callee =
426       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
427   if (Callee == nullptr || IsNoBuiltinCall)
428     return nullptr;
429 
430   StringRef FnName = Callee->getName();
431   LibFunc TLIFn;
432   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
433     return nullptr;
434 
435   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
436 }
437 
438 
439 //===----------------------------------------------------------------------===//
440 //  Utility functions to compute size of objects.
441 //
442 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
443   if (Data.second.isNegative() || Data.first.ult(Data.second))
444     return APInt(Data.first.getBitWidth(), 0);
445   return Data.first - Data.second;
446 }
447 
448 /// Compute the size of the object pointed by Ptr. Returns true and the
449 /// object size in Size if successful, and false otherwise.
450 /// If RoundToAlign is true, then Size is rounded up to the alignment of
451 /// allocas, byval arguments, and global variables.
452 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
453                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
454   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
455   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
456   if (!Visitor.bothKnown(Data))
457     return false;
458 
459   Size = getSizeWithOverflow(Data).getZExtValue();
460   return true;
461 }
462 
463 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
464                                  const DataLayout &DL,
465                                  const TargetLibraryInfo *TLI,
466                                  bool MustSucceed) {
467   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
468          "ObjectSize must be a call to llvm.objectsize!");
469 
470   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
471   ObjectSizeOpts EvalOptions;
472   // Unless we have to fold this to something, try to be as accurate as
473   // possible.
474   if (MustSucceed)
475     EvalOptions.EvalMode =
476         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
477   else
478     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
479 
480   EvalOptions.NullIsUnknownSize =
481       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
482 
483   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
484   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
485   if (StaticOnly) {
486     // FIXME: Does it make sense to just return a failure value if the size won't
487     // fit in the output and `!MustSucceed`?
488     uint64_t Size;
489     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
490         isUIntN(ResultType->getBitWidth(), Size))
491       return ConstantInt::get(ResultType, Size);
492   } else {
493     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
494     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
495     SizeOffsetEvalType SizeOffsetPair =
496         Eval.compute(ObjectSize->getArgOperand(0));
497 
498     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
499       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
500       Builder.SetInsertPoint(ObjectSize);
501 
502       // If we've outside the end of the object, then we can always access
503       // exactly 0 bytes.
504       Value *ResultSize =
505           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
506       Value *UseZero =
507           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
508       return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0),
509                                   ResultSize);
510     }
511   }
512 
513   if (!MustSucceed)
514     return nullptr;
515 
516   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
517 }
518 
519 STATISTIC(ObjectVisitorArgument,
520           "Number of arguments with unsolved size and offset");
521 STATISTIC(ObjectVisitorLoad,
522           "Number of load instructions with unsolved size and offset");
523 
524 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
525   if (Options.RoundToAlign && Align)
526     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
527   return Size;
528 }
529 
530 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
531                                                  const TargetLibraryInfo *TLI,
532                                                  LLVMContext &Context,
533                                                  ObjectSizeOpts Options)
534     : DL(DL), TLI(TLI), Options(Options) {
535   // Pointer size must be rechecked for each object visited since it could have
536   // a different address space.
537 }
538 
539 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
540   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
541   Zero = APInt::getNullValue(IntTyBits);
542 
543   V = V->stripPointerCasts();
544   if (Instruction *I = dyn_cast<Instruction>(V)) {
545     // If we have already seen this instruction, bail out. Cycles can happen in
546     // unreachable code after constant propagation.
547     if (!SeenInsts.insert(I).second)
548       return unknown();
549 
550     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
551       return visitGEPOperator(*GEP);
552     return visit(*I);
553   }
554   if (Argument *A = dyn_cast<Argument>(V))
555     return visitArgument(*A);
556   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
557     return visitConstantPointerNull(*P);
558   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
559     return visitGlobalAlias(*GA);
560   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
561     return visitGlobalVariable(*GV);
562   if (UndefValue *UV = dyn_cast<UndefValue>(V))
563     return visitUndefValue(*UV);
564   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
565     if (CE->getOpcode() == Instruction::IntToPtr)
566       return unknown(); // clueless
567     if (CE->getOpcode() == Instruction::GetElementPtr)
568       return visitGEPOperator(cast<GEPOperator>(*CE));
569   }
570 
571   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
572                     << *V << '\n');
573   return unknown();
574 }
575 
576 /// When we're compiling N-bit code, and the user uses parameters that are
577 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
578 /// trouble with APInt size issues. This function handles resizing + overflow
579 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
580 /// I's value.
581 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
582   // More bits than we can handle. Checking the bit width isn't necessary, but
583   // it's faster than checking active bits, and should give `false` in the
584   // vast majority of cases.
585   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
586     return false;
587   if (I.getBitWidth() != IntTyBits)
588     I = I.zextOrTrunc(IntTyBits);
589   return true;
590 }
591 
592 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
593   if (!I.getAllocatedType()->isSized())
594     return unknown();
595 
596   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
597   if (!I.isArrayAllocation())
598     return std::make_pair(align(Size, I.getAlignment()), Zero);
599 
600   Value *ArraySize = I.getArraySize();
601   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
602     APInt NumElems = C->getValue();
603     if (!CheckedZextOrTrunc(NumElems))
604       return unknown();
605 
606     bool Overflow;
607     Size = Size.umul_ov(NumElems, Overflow);
608     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
609                                                  Zero);
610   }
611   return unknown();
612 }
613 
614 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
615   // No interprocedural analysis is done at the moment.
616   if (!A.hasByValOrInAllocaAttr()) {
617     ++ObjectVisitorArgument;
618     return unknown();
619   }
620   PointerType *PT = cast<PointerType>(A.getType());
621   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
622   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
623 }
624 
625 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
626   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
627   if (!FnData)
628     return unknown();
629 
630   // Handle strdup-like functions separately.
631   if (FnData->AllocTy == StrDupLike) {
632     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
633     if (!Size)
634       return unknown();
635 
636     // Strndup limits strlen.
637     if (FnData->FstParam > 0) {
638       ConstantInt *Arg =
639           dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
640       if (!Arg)
641         return unknown();
642 
643       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
644       if (Size.ugt(MaxSize))
645         Size = MaxSize + 1;
646     }
647     return std::make_pair(Size, Zero);
648   }
649 
650   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
651   if (!Arg)
652     return unknown();
653 
654   APInt Size = Arg->getValue();
655   if (!CheckedZextOrTrunc(Size))
656     return unknown();
657 
658   // Size is determined by just 1 parameter.
659   if (FnData->SndParam < 0)
660     return std::make_pair(Size, Zero);
661 
662   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
663   if (!Arg)
664     return unknown();
665 
666   APInt NumElems = Arg->getValue();
667   if (!CheckedZextOrTrunc(NumElems))
668     return unknown();
669 
670   bool Overflow;
671   Size = Size.umul_ov(NumElems, Overflow);
672   return Overflow ? unknown() : std::make_pair(Size, Zero);
673 
674   // TODO: handle more standard functions (+ wchar cousins):
675   // - strdup / strndup
676   // - strcpy / strncpy
677   // - strcat / strncat
678   // - memcpy / memmove
679   // - strcat / strncat
680   // - memset
681 }
682 
683 SizeOffsetType
684 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
685   // If null is unknown, there's nothing we can do. Additionally, non-zero
686   // address spaces can make use of null, so we don't presume to know anything
687   // about that.
688   //
689   // TODO: How should this work with address space casts? We currently just drop
690   // them on the floor, but it's unclear what we should do when a NULL from
691   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
692   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
693     return unknown();
694   return std::make_pair(Zero, Zero);
695 }
696 
697 SizeOffsetType
698 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
699   return unknown();
700 }
701 
702 SizeOffsetType
703 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
704   // Easy cases were already folded by previous passes.
705   return unknown();
706 }
707 
708 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
709   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
710   APInt Offset(IntTyBits, 0);
711   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
712     return unknown();
713 
714   return std::make_pair(PtrData.first, PtrData.second + Offset);
715 }
716 
717 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
718   if (GA.isInterposable())
719     return unknown();
720   return compute(GA.getAliasee());
721 }
722 
723 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
724   if (!GV.hasDefinitiveInitializer())
725     return unknown();
726 
727   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
728   return std::make_pair(align(Size, GV.getAlignment()), Zero);
729 }
730 
731 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
732   // clueless
733   return unknown();
734 }
735 
736 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
737   ++ObjectVisitorLoad;
738   return unknown();
739 }
740 
741 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
742   // too complex to analyze statically.
743   return unknown();
744 }
745 
746 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
747   SizeOffsetType TrueSide  = compute(I.getTrueValue());
748   SizeOffsetType FalseSide = compute(I.getFalseValue());
749   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
750     if (TrueSide == FalseSide) {
751         return TrueSide;
752     }
753 
754     APInt TrueResult = getSizeWithOverflow(TrueSide);
755     APInt FalseResult = getSizeWithOverflow(FalseSide);
756 
757     if (TrueResult == FalseResult) {
758       return TrueSide;
759     }
760     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
761       if (TrueResult.slt(FalseResult))
762         return TrueSide;
763       return FalseSide;
764     }
765     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
766       if (TrueResult.sgt(FalseResult))
767         return TrueSide;
768       return FalseSide;
769     }
770   }
771   return unknown();
772 }
773 
774 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
775   return std::make_pair(Zero, Zero);
776 }
777 
778 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
779   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
780                     << '\n');
781   return unknown();
782 }
783 
784 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
785     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
786     ObjectSizeOpts EvalOpts)
787     : DL(DL), TLI(TLI), Context(Context),
788       Builder(Context, TargetFolder(DL),
789               IRBuilderCallbackInserter(
790                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
791       EvalOpts(EvalOpts) {
792   // IntTy and Zero must be set for each compute() since the address space may
793   // be different for later objects.
794 }
795 
796 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
797   // XXX - Are vectors of pointers possible here?
798   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
799   Zero = ConstantInt::get(IntTy, 0);
800 
801   SizeOffsetEvalType Result = compute_(V);
802 
803   if (!bothKnown(Result)) {
804     // Erase everything that was computed in this iteration from the cache, so
805     // that no dangling references are left behind. We could be a bit smarter if
806     // we kept a dependency graph. It's probably not worth the complexity.
807     for (const Value *SeenVal : SeenVals) {
808       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
809       // non-computable results can be safely cached
810       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
811         CacheMap.erase(CacheIt);
812     }
813 
814     // Erase any instructions we inserted as part of the traversal.
815     for (Instruction *I : InsertedInstructions) {
816       I->replaceAllUsesWith(UndefValue::get(I->getType()));
817       I->eraseFromParent();
818     }
819   }
820 
821   SeenVals.clear();
822   InsertedInstructions.clear();
823   return Result;
824 }
825 
826 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
827   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
828   SizeOffsetType Const = Visitor.compute(V);
829   if (Visitor.bothKnown(Const))
830     return std::make_pair(ConstantInt::get(Context, Const.first),
831                           ConstantInt::get(Context, Const.second));
832 
833   V = V->stripPointerCasts();
834 
835   // Check cache.
836   CacheMapTy::iterator CacheIt = CacheMap.find(V);
837   if (CacheIt != CacheMap.end())
838     return CacheIt->second;
839 
840   // Always generate code immediately before the instruction being
841   // processed, so that the generated code dominates the same BBs.
842   BuilderTy::InsertPointGuard Guard(Builder);
843   if (Instruction *I = dyn_cast<Instruction>(V))
844     Builder.SetInsertPoint(I);
845 
846   // Now compute the size and offset.
847   SizeOffsetEvalType Result;
848 
849   // Record the pointers that were handled in this run, so that they can be
850   // cleaned later if something fails. We also use this set to break cycles that
851   // can occur in dead code.
852   if (!SeenVals.insert(V).second) {
853     Result = unknown();
854   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
855     Result = visitGEPOperator(*GEP);
856   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
857     Result = visit(*I);
858   } else if (isa<Argument>(V) ||
859              (isa<ConstantExpr>(V) &&
860               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
861              isa<GlobalAlias>(V) ||
862              isa<GlobalVariable>(V)) {
863     // Ignore values where we cannot do more than ObjectSizeVisitor.
864     Result = unknown();
865   } else {
866     LLVM_DEBUG(
867         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
868                << '\n');
869     Result = unknown();
870   }
871 
872   // Don't reuse CacheIt since it may be invalid at this point.
873   CacheMap[V] = Result;
874   return Result;
875 }
876 
877 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
878   if (!I.getAllocatedType()->isSized())
879     return unknown();
880 
881   // must be a VLA
882   assert(I.isArrayAllocation());
883   Value *ArraySize = I.getArraySize();
884   Value *Size = ConstantInt::get(ArraySize->getType(),
885                                  DL.getTypeAllocSize(I.getAllocatedType()));
886   Size = Builder.CreateMul(Size, ArraySize);
887   return std::make_pair(Size, Zero);
888 }
889 
890 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
891   Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
892   if (!FnData)
893     return unknown();
894 
895   // Handle strdup-like functions separately.
896   if (FnData->AllocTy == StrDupLike) {
897     // TODO
898     return unknown();
899   }
900 
901   Value *FirstArg = CS.getArgument(FnData->FstParam);
902   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
903   if (FnData->SndParam < 0)
904     return std::make_pair(FirstArg, Zero);
905 
906   Value *SecondArg = CS.getArgument(FnData->SndParam);
907   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
908   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
909   return std::make_pair(Size, Zero);
910 
911   // TODO: handle more standard functions (+ wchar cousins):
912   // - strdup / strndup
913   // - strcpy / strncpy
914   // - strcat / strncat
915   // - memcpy / memmove
916   // - strcat / strncat
917   // - memset
918 }
919 
920 SizeOffsetEvalType
921 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
922   return unknown();
923 }
924 
925 SizeOffsetEvalType
926 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
927   return unknown();
928 }
929 
930 SizeOffsetEvalType
931 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
932   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
933   if (!bothKnown(PtrData))
934     return unknown();
935 
936   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
937   Offset = Builder.CreateAdd(PtrData.second, Offset);
938   return std::make_pair(PtrData.first, Offset);
939 }
940 
941 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
942   // clueless
943   return unknown();
944 }
945 
946 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
947   return unknown();
948 }
949 
950 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
951   // Create 2 PHIs: one for size and another for offset.
952   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
953   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
954 
955   // Insert right away in the cache to handle recursive PHIs.
956   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
957 
958   // Compute offset/size for each PHI incoming pointer.
959   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
960     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
961     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
962 
963     if (!bothKnown(EdgeData)) {
964       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
965       OffsetPHI->eraseFromParent();
966       InsertedInstructions.erase(OffsetPHI);
967       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
968       SizePHI->eraseFromParent();
969       InsertedInstructions.erase(SizePHI);
970       return unknown();
971     }
972     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
973     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
974   }
975 
976   Value *Size = SizePHI, *Offset = OffsetPHI;
977   if (Value *Tmp = SizePHI->hasConstantValue()) {
978     Size = Tmp;
979     SizePHI->replaceAllUsesWith(Size);
980     SizePHI->eraseFromParent();
981     InsertedInstructions.erase(SizePHI);
982   }
983   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
984     Offset = Tmp;
985     OffsetPHI->replaceAllUsesWith(Offset);
986     OffsetPHI->eraseFromParent();
987     InsertedInstructions.erase(OffsetPHI);
988   }
989   return std::make_pair(Size, Offset);
990 }
991 
992 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
993   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
994   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
995 
996   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
997     return unknown();
998   if (TrueSide == FalseSide)
999     return TrueSide;
1000 
1001   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1002                                      FalseSide.first);
1003   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1004                                        FalseSide.second);
1005   return std::make_pair(Size, Offset);
1006 }
1007 
1008 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1009   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1010                     << '\n');
1011   return unknown();
1012 }
1013