1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Analysis/TargetFolder.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/Support/Casting.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <cstdint> 45 #include <iterator> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "memory-builtins" 51 52 enum AllocType : uint8_t { 53 OpNewLike = 1<<0, // allocates; never returns null 54 MallocLike = 1<<1 | OpNewLike, // allocates; may return null 55 CallocLike = 1<<2, // allocates + bzero 56 ReallocLike = 1<<3, // reallocates 57 StrDupLike = 1<<4, 58 MallocOrCallocLike = MallocLike | CallocLike, 59 AllocLike = MallocLike | CallocLike | StrDupLike, 60 AnyAlloc = AllocLike | ReallocLike 61 }; 62 63 struct AllocFnsTy { 64 AllocType AllocTy; 65 unsigned NumParams; 66 // First and Second size parameters (or -1 if unused) 67 int FstParam, SndParam; 68 }; 69 70 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 71 // know which functions are nounwind, noalias, nocapture parameters, etc. 72 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 73 {LibFunc_malloc, {MallocLike, 1, 0, -1}}, 74 {LibFunc_valloc, {MallocLike, 1, 0, -1}}, 75 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 76 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 77 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t) 78 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) 79 {MallocLike, 3, 0, -1}}, 80 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long) 81 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow) 82 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t) 83 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) 84 {MallocLike, 3, 0, -1}}, 85 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 86 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 87 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t) 88 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) 89 {MallocLike, 3, 0, -1}}, 90 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long) 91 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow) 92 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t) 93 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) 94 {MallocLike, 3, 0, -1}}, 95 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int) 96 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow) 97 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long) 98 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow) 99 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int) 100 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow) 101 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long) 102 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow) 103 {LibFunc_calloc, {CallocLike, 2, 0, 1}}, 104 {LibFunc_realloc, {ReallocLike, 2, 1, -1}}, 105 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}}, 106 {LibFunc_strdup, {StrDupLike, 1, -1, -1}}, 107 {LibFunc_strndup, {StrDupLike, 2, 1, -1}} 108 // TODO: Handle "int posix_memalign(void **, size_t, size_t)" 109 }; 110 111 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, 112 bool &IsNoBuiltin) { 113 // Don't care about intrinsics in this case. 114 if (isa<IntrinsicInst>(V)) 115 return nullptr; 116 117 if (LookThroughBitCast) 118 V = V->stripPointerCasts(); 119 120 ImmutableCallSite CS(V); 121 if (!CS.getInstruction()) 122 return nullptr; 123 124 IsNoBuiltin = CS.isNoBuiltin(); 125 126 if (const Function *Callee = CS.getCalledFunction()) 127 return Callee; 128 return nullptr; 129 } 130 131 /// Returns the allocation data for the given value if it's either a call to a 132 /// known allocation function, or a call to a function with the allocsize 133 /// attribute. 134 static Optional<AllocFnsTy> 135 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 136 const TargetLibraryInfo *TLI) { 137 // Make sure that the function is available. 138 StringRef FnName = Callee->getName(); 139 LibFunc TLIFn; 140 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 141 return None; 142 143 const auto *Iter = find_if( 144 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 145 return P.first == TLIFn; 146 }); 147 148 if (Iter == std::end(AllocationFnData)) 149 return None; 150 151 const AllocFnsTy *FnData = &Iter->second; 152 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 153 return None; 154 155 // Check function prototype. 156 int FstParam = FnData->FstParam; 157 int SndParam = FnData->SndParam; 158 FunctionType *FTy = Callee->getFunctionType(); 159 160 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && 161 FTy->getNumParams() == FnData->NumParams && 162 (FstParam < 0 || 163 (FTy->getParamType(FstParam)->isIntegerTy(32) || 164 FTy->getParamType(FstParam)->isIntegerTy(64))) && 165 (SndParam < 0 || 166 FTy->getParamType(SndParam)->isIntegerTy(32) || 167 FTy->getParamType(SndParam)->isIntegerTy(64))) 168 return *FnData; 169 return None; 170 } 171 172 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, 173 const TargetLibraryInfo *TLI, 174 bool LookThroughBitCast = false) { 175 bool IsNoBuiltinCall; 176 if (const Function *Callee = 177 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) 178 if (!IsNoBuiltinCall) 179 return getAllocationDataForFunction(Callee, AllocTy, TLI); 180 return None; 181 } 182 183 static Optional<AllocFnsTy> getAllocationSize(const Value *V, 184 const TargetLibraryInfo *TLI) { 185 bool IsNoBuiltinCall; 186 const Function *Callee = 187 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 188 if (!Callee) 189 return None; 190 191 // Prefer to use existing information over allocsize. This will give us an 192 // accurate AllocTy. 193 if (!IsNoBuiltinCall) 194 if (Optional<AllocFnsTy> Data = 195 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 196 return Data; 197 198 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); 199 if (Attr == Attribute()) 200 return None; 201 202 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); 203 204 AllocFnsTy Result; 205 // Because allocsize only tells us how many bytes are allocated, we're not 206 // really allowed to assume anything, so we use MallocLike. 207 Result.AllocTy = MallocLike; 208 Result.NumParams = Callee->getNumOperands(); 209 Result.FstParam = Args.first; 210 Result.SndParam = Args.second.getValueOr(-1); 211 return Result; 212 } 213 214 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { 215 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); 216 return CS && CS.hasRetAttr(Attribute::NoAlias); 217 } 218 219 /// Tests if a value is a call or invoke to a library function that 220 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 221 /// like). 222 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, 223 bool LookThroughBitCast) { 224 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); 225 } 226 227 /// Tests if a value is a call or invoke to a function that returns a 228 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). 229 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, 230 bool LookThroughBitCast) { 231 // it's safe to consider realloc as noalias since accessing the original 232 // pointer is undefined behavior 233 return isAllocationFn(V, TLI, LookThroughBitCast) || 234 hasNoAliasAttr(V, LookThroughBitCast); 235 } 236 237 /// Tests if a value is a call or invoke to a library function that 238 /// allocates uninitialized memory (such as malloc). 239 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 240 bool LookThroughBitCast) { 241 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); 242 } 243 244 /// Tests if a value is a call or invoke to a library function that 245 /// allocates zero-filled memory (such as calloc). 246 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 247 bool LookThroughBitCast) { 248 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); 249 } 250 251 /// Tests if a value is a call or invoke to a library function that 252 /// allocates memory similar to malloc or calloc. 253 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 254 bool LookThroughBitCast) { 255 return getAllocationData(V, MallocOrCallocLike, TLI, 256 LookThroughBitCast).hasValue(); 257 } 258 259 /// Tests if a value is a call or invoke to a library function that 260 /// allocates memory (either malloc, calloc, or strdup like). 261 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 262 bool LookThroughBitCast) { 263 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); 264 } 265 266 /// Tests if a value is a call or invoke to a library function that 267 /// reallocates memory (e.g., realloc). 268 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, 269 bool LookThroughBitCast) { 270 return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue(); 271 } 272 273 /// Tests if a functions is a call or invoke to a library function that 274 /// reallocates memory (e.g., realloc). 275 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) { 276 return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue(); 277 } 278 279 /// extractMallocCall - Returns the corresponding CallInst if the instruction 280 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we 281 /// ignore InvokeInst here. 282 const CallInst *llvm::extractMallocCall(const Value *I, 283 const TargetLibraryInfo *TLI) { 284 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; 285 } 286 287 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, 288 const TargetLibraryInfo *TLI, 289 bool LookThroughSExt = false) { 290 if (!CI) 291 return nullptr; 292 293 // The size of the malloc's result type must be known to determine array size. 294 Type *T = getMallocAllocatedType(CI, TLI); 295 if (!T || !T->isSized()) 296 return nullptr; 297 298 unsigned ElementSize = DL.getTypeAllocSize(T); 299 if (StructType *ST = dyn_cast<StructType>(T)) 300 ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); 301 302 // If malloc call's arg can be determined to be a multiple of ElementSize, 303 // return the multiple. Otherwise, return NULL. 304 Value *MallocArg = CI->getArgOperand(0); 305 Value *Multiple = nullptr; 306 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) 307 return Multiple; 308 309 return nullptr; 310 } 311 312 /// getMallocType - Returns the PointerType resulting from the malloc call. 313 /// The PointerType depends on the number of bitcast uses of the malloc call: 314 /// 0: PointerType is the calls' return type. 315 /// 1: PointerType is the bitcast's result type. 316 /// >1: Unique PointerType cannot be determined, return NULL. 317 PointerType *llvm::getMallocType(const CallInst *CI, 318 const TargetLibraryInfo *TLI) { 319 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); 320 321 PointerType *MallocType = nullptr; 322 unsigned NumOfBitCastUses = 0; 323 324 // Determine if CallInst has a bitcast use. 325 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); 326 UI != E;) 327 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { 328 MallocType = cast<PointerType>(BCI->getDestTy()); 329 NumOfBitCastUses++; 330 } 331 332 // Malloc call has 1 bitcast use, so type is the bitcast's destination type. 333 if (NumOfBitCastUses == 1) 334 return MallocType; 335 336 // Malloc call was not bitcast, so type is the malloc function's return type. 337 if (NumOfBitCastUses == 0) 338 return cast<PointerType>(CI->getType()); 339 340 // Type could not be determined. 341 return nullptr; 342 } 343 344 /// getMallocAllocatedType - Returns the Type allocated by malloc call. 345 /// The Type depends on the number of bitcast uses of the malloc call: 346 /// 0: PointerType is the malloc calls' return type. 347 /// 1: PointerType is the bitcast's result type. 348 /// >1: Unique PointerType cannot be determined, return NULL. 349 Type *llvm::getMallocAllocatedType(const CallInst *CI, 350 const TargetLibraryInfo *TLI) { 351 PointerType *PT = getMallocType(CI, TLI); 352 return PT ? PT->getElementType() : nullptr; 353 } 354 355 /// getMallocArraySize - Returns the array size of a malloc call. If the 356 /// argument passed to malloc is a multiple of the size of the malloced type, 357 /// then return that multiple. For non-array mallocs, the multiple is 358 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be 359 /// determined. 360 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, 361 const TargetLibraryInfo *TLI, 362 bool LookThroughSExt) { 363 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); 364 return computeArraySize(CI, DL, TLI, LookThroughSExt); 365 } 366 367 /// extractCallocCall - Returns the corresponding CallInst if the instruction 368 /// is a calloc call. 369 const CallInst *llvm::extractCallocCall(const Value *I, 370 const TargetLibraryInfo *TLI) { 371 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; 372 } 373 374 /// isLibFreeFunction - Returns true if the function is a builtin free() 375 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 376 unsigned ExpectedNumParams; 377 if (TLIFn == LibFunc_free || 378 TLIFn == LibFunc_ZdlPv || // operator delete(void*) 379 TLIFn == LibFunc_ZdaPv || // operator delete[](void*) 380 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) 381 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) 382 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) 383 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*) 384 ExpectedNumParams = 1; 385 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint) 386 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong) 387 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) 388 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) 389 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint) 390 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong) 391 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) 392 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) 393 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint) 394 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) 395 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) 396 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) 397 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint) 398 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) 399 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) 400 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow) 401 ExpectedNumParams = 2; 402 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) 403 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) 404 ExpectedNumParams = 3; 405 else 406 return false; 407 408 // Check free prototype. 409 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 410 // attribute will exist. 411 FunctionType *FTy = F->getFunctionType(); 412 if (!FTy->getReturnType()->isVoidTy()) 413 return false; 414 if (FTy->getNumParams() != ExpectedNumParams) 415 return false; 416 if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext())) 417 return false; 418 419 return true; 420 } 421 422 /// isFreeCall - Returns non-null if the value is a call to the builtin free() 423 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { 424 bool IsNoBuiltinCall; 425 const Function *Callee = 426 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); 427 if (Callee == nullptr || IsNoBuiltinCall) 428 return nullptr; 429 430 StringRef FnName = Callee->getName(); 431 LibFunc TLIFn; 432 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) 433 return nullptr; 434 435 return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr; 436 } 437 438 439 //===----------------------------------------------------------------------===// 440 // Utility functions to compute size of objects. 441 // 442 static APInt getSizeWithOverflow(const SizeOffsetType &Data) { 443 if (Data.second.isNegative() || Data.first.ult(Data.second)) 444 return APInt(Data.first.getBitWidth(), 0); 445 return Data.first - Data.second; 446 } 447 448 /// Compute the size of the object pointed by Ptr. Returns true and the 449 /// object size in Size if successful, and false otherwise. 450 /// If RoundToAlign is true, then Size is rounded up to the alignment of 451 /// allocas, byval arguments, and global variables. 452 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 453 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 454 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 455 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); 456 if (!Visitor.bothKnown(Data)) 457 return false; 458 459 Size = getSizeWithOverflow(Data).getZExtValue(); 460 return true; 461 } 462 463 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 464 const DataLayout &DL, 465 const TargetLibraryInfo *TLI, 466 bool MustSucceed) { 467 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 468 "ObjectSize must be a call to llvm.objectsize!"); 469 470 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 471 ObjectSizeOpts EvalOptions; 472 // Unless we have to fold this to something, try to be as accurate as 473 // possible. 474 if (MustSucceed) 475 EvalOptions.EvalMode = 476 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 477 else 478 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; 479 480 EvalOptions.NullIsUnknownSize = 481 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 482 483 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 484 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 485 if (StaticOnly) { 486 // FIXME: Does it make sense to just return a failure value if the size won't 487 // fit in the output and `!MustSucceed`? 488 uint64_t Size; 489 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 490 isUIntN(ResultType->getBitWidth(), Size)) 491 return ConstantInt::get(ResultType, Size); 492 } else { 493 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 494 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 495 SizeOffsetEvalType SizeOffsetPair = 496 Eval.compute(ObjectSize->getArgOperand(0)); 497 498 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 499 IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL)); 500 Builder.SetInsertPoint(ObjectSize); 501 502 // If we've outside the end of the object, then we can always access 503 // exactly 0 bytes. 504 Value *ResultSize = 505 Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second); 506 Value *UseZero = 507 Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second); 508 return Builder.CreateSelect(UseZero, ConstantInt::get(ResultType, 0), 509 ResultSize); 510 } 511 } 512 513 if (!MustSucceed) 514 return nullptr; 515 516 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); 517 } 518 519 STATISTIC(ObjectVisitorArgument, 520 "Number of arguments with unsolved size and offset"); 521 STATISTIC(ObjectVisitorLoad, 522 "Number of load instructions with unsolved size and offset"); 523 524 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { 525 if (Options.RoundToAlign && Align) 526 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); 527 return Size; 528 } 529 530 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 531 const TargetLibraryInfo *TLI, 532 LLVMContext &Context, 533 ObjectSizeOpts Options) 534 : DL(DL), TLI(TLI), Options(Options) { 535 // Pointer size must be rechecked for each object visited since it could have 536 // a different address space. 537 } 538 539 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { 540 IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); 541 Zero = APInt::getNullValue(IntTyBits); 542 543 V = V->stripPointerCasts(); 544 if (Instruction *I = dyn_cast<Instruction>(V)) { 545 // If we have already seen this instruction, bail out. Cycles can happen in 546 // unreachable code after constant propagation. 547 if (!SeenInsts.insert(I).second) 548 return unknown(); 549 550 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 551 return visitGEPOperator(*GEP); 552 return visit(*I); 553 } 554 if (Argument *A = dyn_cast<Argument>(V)) 555 return visitArgument(*A); 556 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 557 return visitConstantPointerNull(*P); 558 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 559 return visitGlobalAlias(*GA); 560 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 561 return visitGlobalVariable(*GV); 562 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 563 return visitUndefValue(*UV); 564 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 565 if (CE->getOpcode() == Instruction::IntToPtr) 566 return unknown(); // clueless 567 if (CE->getOpcode() == Instruction::GetElementPtr) 568 return visitGEPOperator(cast<GEPOperator>(*CE)); 569 } 570 571 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 572 << *V << '\n'); 573 return unknown(); 574 } 575 576 /// When we're compiling N-bit code, and the user uses parameters that are 577 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 578 /// trouble with APInt size issues. This function handles resizing + overflow 579 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 580 /// I's value. 581 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 582 // More bits than we can handle. Checking the bit width isn't necessary, but 583 // it's faster than checking active bits, and should give `false` in the 584 // vast majority of cases. 585 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 586 return false; 587 if (I.getBitWidth() != IntTyBits) 588 I = I.zextOrTrunc(IntTyBits); 589 return true; 590 } 591 592 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 593 if (!I.getAllocatedType()->isSized()) 594 return unknown(); 595 596 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); 597 if (!I.isArrayAllocation()) 598 return std::make_pair(align(Size, I.getAlignment()), Zero); 599 600 Value *ArraySize = I.getArraySize(); 601 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 602 APInt NumElems = C->getValue(); 603 if (!CheckedZextOrTrunc(NumElems)) 604 return unknown(); 605 606 bool Overflow; 607 Size = Size.umul_ov(NumElems, Overflow); 608 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), 609 Zero); 610 } 611 return unknown(); 612 } 613 614 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 615 // No interprocedural analysis is done at the moment. 616 if (!A.hasByValOrInAllocaAttr()) { 617 ++ObjectVisitorArgument; 618 return unknown(); 619 } 620 PointerType *PT = cast<PointerType>(A.getType()); 621 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); 622 return std::make_pair(align(Size, A.getParamAlignment()), Zero); 623 } 624 625 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { 626 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 627 if (!FnData) 628 return unknown(); 629 630 // Handle strdup-like functions separately. 631 if (FnData->AllocTy == StrDupLike) { 632 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); 633 if (!Size) 634 return unknown(); 635 636 // Strndup limits strlen. 637 if (FnData->FstParam > 0) { 638 ConstantInt *Arg = 639 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 640 if (!Arg) 641 return unknown(); 642 643 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); 644 if (Size.ugt(MaxSize)) 645 Size = MaxSize + 1; 646 } 647 return std::make_pair(Size, Zero); 648 } 649 650 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); 651 if (!Arg) 652 return unknown(); 653 654 APInt Size = Arg->getValue(); 655 if (!CheckedZextOrTrunc(Size)) 656 return unknown(); 657 658 // Size is determined by just 1 parameter. 659 if (FnData->SndParam < 0) 660 return std::make_pair(Size, Zero); 661 662 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); 663 if (!Arg) 664 return unknown(); 665 666 APInt NumElems = Arg->getValue(); 667 if (!CheckedZextOrTrunc(NumElems)) 668 return unknown(); 669 670 bool Overflow; 671 Size = Size.umul_ov(NumElems, Overflow); 672 return Overflow ? unknown() : std::make_pair(Size, Zero); 673 674 // TODO: handle more standard functions (+ wchar cousins): 675 // - strdup / strndup 676 // - strcpy / strncpy 677 // - strcat / strncat 678 // - memcpy / memmove 679 // - strcat / strncat 680 // - memset 681 } 682 683 SizeOffsetType 684 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { 685 // If null is unknown, there's nothing we can do. Additionally, non-zero 686 // address spaces can make use of null, so we don't presume to know anything 687 // about that. 688 // 689 // TODO: How should this work with address space casts? We currently just drop 690 // them on the floor, but it's unclear what we should do when a NULL from 691 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 692 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 693 return unknown(); 694 return std::make_pair(Zero, Zero); 695 } 696 697 SizeOffsetType 698 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { 699 return unknown(); 700 } 701 702 SizeOffsetType 703 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { 704 // Easy cases were already folded by previous passes. 705 return unknown(); 706 } 707 708 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { 709 SizeOffsetType PtrData = compute(GEP.getPointerOperand()); 710 APInt Offset(IntTyBits, 0); 711 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) 712 return unknown(); 713 714 return std::make_pair(PtrData.first, PtrData.second + Offset); 715 } 716 717 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 718 if (GA.isInterposable()) 719 return unknown(); 720 return compute(GA.getAliasee()); 721 } 722 723 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ 724 if (!GV.hasDefinitiveInitializer()) 725 return unknown(); 726 727 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 728 return std::make_pair(align(Size, GV.getAlignment()), Zero); 729 } 730 731 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { 732 // clueless 733 return unknown(); 734 } 735 736 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { 737 ++ObjectVisitorLoad; 738 return unknown(); 739 } 740 741 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { 742 // too complex to analyze statically. 743 return unknown(); 744 } 745 746 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 747 SizeOffsetType TrueSide = compute(I.getTrueValue()); 748 SizeOffsetType FalseSide = compute(I.getFalseValue()); 749 if (bothKnown(TrueSide) && bothKnown(FalseSide)) { 750 if (TrueSide == FalseSide) { 751 return TrueSide; 752 } 753 754 APInt TrueResult = getSizeWithOverflow(TrueSide); 755 APInt FalseResult = getSizeWithOverflow(FalseSide); 756 757 if (TrueResult == FalseResult) { 758 return TrueSide; 759 } 760 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { 761 if (TrueResult.slt(FalseResult)) 762 return TrueSide; 763 return FalseSide; 764 } 765 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { 766 if (TrueResult.sgt(FalseResult)) 767 return TrueSide; 768 return FalseSide; 769 } 770 } 771 return unknown(); 772 } 773 774 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { 775 return std::make_pair(Zero, Zero); 776 } 777 778 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 779 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 780 << '\n'); 781 return unknown(); 782 } 783 784 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 785 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 786 ObjectSizeOpts EvalOpts) 787 : DL(DL), TLI(TLI), Context(Context), 788 Builder(Context, TargetFolder(DL), 789 IRBuilderCallbackInserter( 790 [&](Instruction *I) { InsertedInstructions.insert(I); })), 791 EvalOpts(EvalOpts) { 792 // IntTy and Zero must be set for each compute() since the address space may 793 // be different for later objects. 794 } 795 796 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { 797 // XXX - Are vectors of pointers possible here? 798 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 799 Zero = ConstantInt::get(IntTy, 0); 800 801 SizeOffsetEvalType Result = compute_(V); 802 803 if (!bothKnown(Result)) { 804 // Erase everything that was computed in this iteration from the cache, so 805 // that no dangling references are left behind. We could be a bit smarter if 806 // we kept a dependency graph. It's probably not worth the complexity. 807 for (const Value *SeenVal : SeenVals) { 808 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 809 // non-computable results can be safely cached 810 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) 811 CacheMap.erase(CacheIt); 812 } 813 814 // Erase any instructions we inserted as part of the traversal. 815 for (Instruction *I : InsertedInstructions) { 816 I->replaceAllUsesWith(UndefValue::get(I->getType())); 817 I->eraseFromParent(); 818 } 819 } 820 821 SeenVals.clear(); 822 InsertedInstructions.clear(); 823 return Result; 824 } 825 826 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { 827 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts); 828 SizeOffsetType Const = Visitor.compute(V); 829 if (Visitor.bothKnown(Const)) 830 return std::make_pair(ConstantInt::get(Context, Const.first), 831 ConstantInt::get(Context, Const.second)); 832 833 V = V->stripPointerCasts(); 834 835 // Check cache. 836 CacheMapTy::iterator CacheIt = CacheMap.find(V); 837 if (CacheIt != CacheMap.end()) 838 return CacheIt->second; 839 840 // Always generate code immediately before the instruction being 841 // processed, so that the generated code dominates the same BBs. 842 BuilderTy::InsertPointGuard Guard(Builder); 843 if (Instruction *I = dyn_cast<Instruction>(V)) 844 Builder.SetInsertPoint(I); 845 846 // Now compute the size and offset. 847 SizeOffsetEvalType Result; 848 849 // Record the pointers that were handled in this run, so that they can be 850 // cleaned later if something fails. We also use this set to break cycles that 851 // can occur in dead code. 852 if (!SeenVals.insert(V).second) { 853 Result = unknown(); 854 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 855 Result = visitGEPOperator(*GEP); 856 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 857 Result = visit(*I); 858 } else if (isa<Argument>(V) || 859 (isa<ConstantExpr>(V) && 860 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 861 isa<GlobalAlias>(V) || 862 isa<GlobalVariable>(V)) { 863 // Ignore values where we cannot do more than ObjectSizeVisitor. 864 Result = unknown(); 865 } else { 866 LLVM_DEBUG( 867 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 868 << '\n'); 869 Result = unknown(); 870 } 871 872 // Don't reuse CacheIt since it may be invalid at this point. 873 CacheMap[V] = Result; 874 return Result; 875 } 876 877 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 878 if (!I.getAllocatedType()->isSized()) 879 return unknown(); 880 881 // must be a VLA 882 assert(I.isArrayAllocation()); 883 Value *ArraySize = I.getArraySize(); 884 Value *Size = ConstantInt::get(ArraySize->getType(), 885 DL.getTypeAllocSize(I.getAllocatedType())); 886 Size = Builder.CreateMul(Size, ArraySize); 887 return std::make_pair(Size, Zero); 888 } 889 890 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { 891 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); 892 if (!FnData) 893 return unknown(); 894 895 // Handle strdup-like functions separately. 896 if (FnData->AllocTy == StrDupLike) { 897 // TODO 898 return unknown(); 899 } 900 901 Value *FirstArg = CS.getArgument(FnData->FstParam); 902 FirstArg = Builder.CreateZExt(FirstArg, IntTy); 903 if (FnData->SndParam < 0) 904 return std::make_pair(FirstArg, Zero); 905 906 Value *SecondArg = CS.getArgument(FnData->SndParam); 907 SecondArg = Builder.CreateZExt(SecondArg, IntTy); 908 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 909 return std::make_pair(Size, Zero); 910 911 // TODO: handle more standard functions (+ wchar cousins): 912 // - strdup / strndup 913 // - strcpy / strncpy 914 // - strcat / strncat 915 // - memcpy / memmove 916 // - strcat / strncat 917 // - memset 918 } 919 920 SizeOffsetEvalType 921 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { 922 return unknown(); 923 } 924 925 SizeOffsetEvalType 926 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { 927 return unknown(); 928 } 929 930 SizeOffsetEvalType 931 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 932 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); 933 if (!bothKnown(PtrData)) 934 return unknown(); 935 936 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 937 Offset = Builder.CreateAdd(PtrData.second, Offset); 938 return std::make_pair(PtrData.first, Offset); 939 } 940 941 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { 942 // clueless 943 return unknown(); 944 } 945 946 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { 947 return unknown(); 948 } 949 950 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 951 // Create 2 PHIs: one for size and another for offset. 952 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 953 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 954 955 // Insert right away in the cache to handle recursive PHIs. 956 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); 957 958 // Compute offset/size for each PHI incoming pointer. 959 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 960 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); 961 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); 962 963 if (!bothKnown(EdgeData)) { 964 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); 965 OffsetPHI->eraseFromParent(); 966 InsertedInstructions.erase(OffsetPHI); 967 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); 968 SizePHI->eraseFromParent(); 969 InsertedInstructions.erase(SizePHI); 970 return unknown(); 971 } 972 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); 973 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); 974 } 975 976 Value *Size = SizePHI, *Offset = OffsetPHI; 977 if (Value *Tmp = SizePHI->hasConstantValue()) { 978 Size = Tmp; 979 SizePHI->replaceAllUsesWith(Size); 980 SizePHI->eraseFromParent(); 981 InsertedInstructions.erase(SizePHI); 982 } 983 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 984 Offset = Tmp; 985 OffsetPHI->replaceAllUsesWith(Offset); 986 OffsetPHI->eraseFromParent(); 987 InsertedInstructions.erase(OffsetPHI); 988 } 989 return std::make_pair(Size, Offset); 990 } 991 992 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 993 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue()); 994 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); 995 996 if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) 997 return unknown(); 998 if (TrueSide == FalseSide) 999 return TrueSide; 1000 1001 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, 1002 FalseSide.first); 1003 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, 1004 FalseSide.second); 1005 return std::make_pair(Size, Offset); 1006 } 1007 1008 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1009 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1010 << '\n'); 1011 return unknown(); 1012 } 1013