xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <numeric>
47 #include <type_traits>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "memory-builtins"
53 
54 enum AllocType : uint8_t {
55   OpNewLike          = 1<<0, // allocates; never returns null
56   MallocLike         = 1<<1, // allocates; may return null
57   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
58   CallocLike         = 1<<3, // allocates + bzero
59   ReallocLike        = 1<<4, // reallocates
60   StrDupLike         = 1<<5,
61   MallocOrOpNewLike  = MallocLike | OpNewLike,
62   MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
63   AllocLike          = MallocOrCallocLike | StrDupLike,
64   AnyAlloc           = AllocLike | ReallocLike
65 };
66 
67 enum class MallocFamily {
68   Malloc,
69   CPPNew,             // new(unsigned int)
70   CPPNewAligned,      // new(unsigned int, align_val_t)
71   CPPNewArray,        // new[](unsigned int)
72   CPPNewArrayAligned, // new[](unsigned long, align_val_t)
73   MSVCNew,            // new(unsigned int)
74   MSVCArrayNew,       // new[](unsigned int)
75   VecMalloc,
76   KmpcAllocShared,
77 };
78 
79 StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
80   switch (Family) {
81   case MallocFamily::Malloc:
82     return "malloc";
83   case MallocFamily::CPPNew:
84     return "_Znwm";
85   case MallocFamily::CPPNewAligned:
86     return "_ZnwmSt11align_val_t";
87   case MallocFamily::CPPNewArray:
88     return "_Znam";
89   case MallocFamily::CPPNewArrayAligned:
90     return "_ZnamSt11align_val_t";
91   case MallocFamily::MSVCNew:
92     return "??2@YAPAXI@Z";
93   case MallocFamily::MSVCArrayNew:
94     return "??_U@YAPAXI@Z";
95   case MallocFamily::VecMalloc:
96     return "vec_malloc";
97   case MallocFamily::KmpcAllocShared:
98     return "__kmpc_alloc_shared";
99   }
100   llvm_unreachable("missing an alloc family");
101 }
102 
103 struct AllocFnsTy {
104   AllocType AllocTy;
105   unsigned NumParams;
106   // First and Second size parameters (or -1 if unused)
107   int FstParam, SndParam;
108   // Alignment parameter for aligned_alloc and aligned new
109   int AlignParam;
110   // Name of default allocator function to group malloc/free calls by family
111   MallocFamily Family;
112 };
113 
114 // clang-format off
115 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
116 // know which functions are nounwind, noalias, nocapture parameters, etc.
117 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
118     {LibFunc_vec_malloc,                        {MallocLike,       1,  0, -1, -1, MallocFamily::VecMalloc}},
119     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int)
120     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int, nothrow)
121     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t)
122     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t, nothrow)
123     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long)
124     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow)
125     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t)
126     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t, nothrow)
127     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int)
128     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int, nothrow)
129     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
130     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
131     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long)
132     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long, nothrow)
133     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
134     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
135     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int)
136     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int, nothrow)
137     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long)
138     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long, nothrow)
139     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int)
140     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int, nothrow)
141     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long)
142     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long, nothrow)
143     {LibFunc_memalign,                          {AlignedAllocLike, 2,  1, -1,  0, MallocFamily::Malloc}},
144     {LibFunc_vec_calloc,                        {CallocLike,       2,  0,  1, -1, MallocFamily::VecMalloc}},
145     {LibFunc_vec_realloc,                       {ReallocLike,      2,  1, -1, -1, MallocFamily::VecMalloc}},
146     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
147     {LibFunc_dunder_strdup,                     {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
148     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
149     {LibFunc_dunder_strndup,                    {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
150     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1, MallocFamily::KmpcAllocShared}},
151 };
152 // clang-format on
153 
154 static const Function *getCalledFunction(const Value *V,
155                                          bool &IsNoBuiltin) {
156   // Don't care about intrinsics in this case.
157   if (isa<IntrinsicInst>(V))
158     return nullptr;
159 
160   const auto *CB = dyn_cast<CallBase>(V);
161   if (!CB)
162     return nullptr;
163 
164   IsNoBuiltin = CB->isNoBuiltin();
165 
166   if (const Function *Callee = CB->getCalledFunction())
167     return Callee;
168   return nullptr;
169 }
170 
171 /// Returns the allocation data for the given value if it's a call to a known
172 /// allocation function.
173 static Optional<AllocFnsTy>
174 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
175                              const TargetLibraryInfo *TLI) {
176   // Don't perform a slow TLI lookup, if this function doesn't return a pointer
177   // and thus can't be an allocation function.
178   if (!Callee->getReturnType()->isPointerTy())
179     return None;
180 
181   // Make sure that the function is available.
182   LibFunc TLIFn;
183   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
184     return None;
185 
186   const auto *Iter = find_if(
187       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
188         return P.first == TLIFn;
189       });
190 
191   if (Iter == std::end(AllocationFnData))
192     return None;
193 
194   const AllocFnsTy *FnData = &Iter->second;
195   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
196     return None;
197 
198   // Check function prototype.
199   int FstParam = FnData->FstParam;
200   int SndParam = FnData->SndParam;
201   FunctionType *FTy = Callee->getFunctionType();
202 
203   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
204       FTy->getNumParams() == FnData->NumParams &&
205       (FstParam < 0 ||
206        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
207         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
208       (SndParam < 0 ||
209        FTy->getParamType(SndParam)->isIntegerTy(32) ||
210        FTy->getParamType(SndParam)->isIntegerTy(64)))
211     return *FnData;
212   return None;
213 }
214 
215 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
216                                               const TargetLibraryInfo *TLI) {
217   bool IsNoBuiltinCall;
218   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
219     if (!IsNoBuiltinCall)
220       return getAllocationDataForFunction(Callee, AllocTy, TLI);
221   return None;
222 }
223 
224 static Optional<AllocFnsTy>
225 getAllocationData(const Value *V, AllocType AllocTy,
226                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
227   bool IsNoBuiltinCall;
228   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
229     if (!IsNoBuiltinCall)
230       return getAllocationDataForFunction(
231           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
232   return None;
233 }
234 
235 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
236                                               const TargetLibraryInfo *TLI) {
237   bool IsNoBuiltinCall;
238   const Function *Callee =
239       getCalledFunction(V, IsNoBuiltinCall);
240   if (!Callee)
241     return None;
242 
243   // Prefer to use existing information over allocsize. This will give us an
244   // accurate AllocTy.
245   if (!IsNoBuiltinCall)
246     if (Optional<AllocFnsTy> Data =
247             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
248       return Data;
249 
250   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
251   if (Attr == Attribute())
252     return None;
253 
254   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
255 
256   AllocFnsTy Result;
257   // Because allocsize only tells us how many bytes are allocated, we're not
258   // really allowed to assume anything, so we use MallocLike.
259   Result.AllocTy = MallocLike;
260   Result.NumParams = Callee->getNumOperands();
261   Result.FstParam = Args.first;
262   Result.SndParam = Args.second.value_or(-1);
263   // Allocsize has no way to specify an alignment argument
264   Result.AlignParam = -1;
265   return Result;
266 }
267 
268 static AllocFnKind getAllocFnKind(const Value *V) {
269   if (const auto *CB = dyn_cast<CallBase>(V)) {
270     Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
271     if (Attr.isValid())
272       return AllocFnKind(Attr.getValueAsInt());
273   }
274   return AllocFnKind::Unknown;
275 }
276 
277 static AllocFnKind getAllocFnKind(const Function *F) {
278   Attribute Attr = F->getFnAttribute(Attribute::AllocKind);
279   if (Attr.isValid())
280     return AllocFnKind(Attr.getValueAsInt());
281   return AllocFnKind::Unknown;
282 }
283 
284 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
285   return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
286 }
287 
288 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
289   return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
290 }
291 
292 /// Tests if a value is a call or invoke to a library function that
293 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
294 /// like).
295 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
296   return getAllocationData(V, AnyAlloc, TLI).has_value() ||
297          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
298 }
299 bool llvm::isAllocationFn(
300     const Value *V,
301     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
302   return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
303          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
304 }
305 
306 /// Tests if a value is a call or invoke to a library function that
307 /// allocates uninitialized memory (such as malloc).
308 static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
309   return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
310 }
311 
312 /// Tests if a value is a call or invoke to a library function that
313 /// allocates uninitialized memory with alignment (such as aligned_alloc).
314 static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
315   return getAllocationData(V, AlignedAllocLike, TLI).has_value();
316 }
317 
318 /// Tests if a value is a call or invoke to a library function that
319 /// allocates zero-filled memory (such as calloc).
320 static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
321   return getAllocationData(V, CallocLike, TLI).has_value();
322 }
323 
324 /// Tests if a value is a call or invoke to a library function that
325 /// allocates memory similar to malloc or calloc.
326 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
327   return getAllocationData(V, MallocOrCallocLike, TLI).has_value();
328 }
329 
330 /// Tests if a value is a call or invoke to a library function that
331 /// allocates memory (either malloc, calloc, or strdup like).
332 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
333   return getAllocationData(V, AllocLike, TLI).has_value() ||
334          checkFnAllocKind(V, AllocFnKind::Alloc);
335 }
336 
337 /// Tests if a functions is a call or invoke to a library function that
338 /// reallocates memory (e.g., realloc).
339 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
340   return getAllocationDataForFunction(F, ReallocLike, TLI).has_value() ||
341          checkFnAllocKind(F, AllocFnKind::Realloc);
342 }
343 
344 Value *llvm::getReallocatedOperand(const CallBase *CB,
345                                    const TargetLibraryInfo *TLI) {
346   if (getAllocationData(CB, ReallocLike, TLI).has_value()) {
347     // All currently supported realloc functions reallocate the first argument.
348     return CB->getArgOperand(0);
349   }
350   if (checkFnAllocKind(CB, AllocFnKind::Realloc))
351     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
352   return nullptr;
353 }
354 
355 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
356   // Note: Removability is highly dependent on the source language.  For
357   // example, recent C++ requires direct calls to the global allocation
358   // [basic.stc.dynamic.allocation] to be observable unless part of a new
359   // expression [expr.new paragraph 13].
360 
361   // Historically we've treated the C family allocation routines and operator
362   // new as removable
363   return isAllocLikeFn(CB, TLI);
364 }
365 
366 Value *llvm::getAllocAlignment(const CallBase *V,
367                                const TargetLibraryInfo *TLI) {
368   const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
369   if (FnData && FnData->AlignParam >= 0) {
370     return V->getOperand(FnData->AlignParam);
371   }
372   return V->getArgOperandWithAttribute(Attribute::AllocAlign);
373 }
374 
375 /// When we're compiling N-bit code, and the user uses parameters that are
376 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
377 /// trouble with APInt size issues. This function handles resizing + overflow
378 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
379 /// I's value.
380 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
381   // More bits than we can handle. Checking the bit width isn't necessary, but
382   // it's faster than checking active bits, and should give `false` in the
383   // vast majority of cases.
384   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
385     return false;
386   if (I.getBitWidth() != IntTyBits)
387     I = I.zextOrTrunc(IntTyBits);
388   return true;
389 }
390 
391 Optional<APInt>
392 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
393                    function_ref<const Value *(const Value *)> Mapper) {
394   // Note: This handles both explicitly listed allocation functions and
395   // allocsize.  The code structure could stand to be cleaned up a bit.
396   Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
397   if (!FnData)
398     return None;
399 
400   // Get the index type for this address space, results and intermediate
401   // computations are performed at that width.
402   auto &DL = CB->getModule()->getDataLayout();
403   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
404 
405   // Handle strdup-like functions separately.
406   if (FnData->AllocTy == StrDupLike) {
407     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
408     if (!Size)
409       return None;
410 
411     // Strndup limits strlen.
412     if (FnData->FstParam > 0) {
413       const ConstantInt *Arg =
414         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
415       if (!Arg)
416         return None;
417 
418       APInt MaxSize = Arg->getValue().zext(IntTyBits);
419       if (Size.ugt(MaxSize))
420         Size = MaxSize + 1;
421     }
422     return Size;
423   }
424 
425   const ConstantInt *Arg =
426     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
427   if (!Arg)
428     return None;
429 
430   APInt Size = Arg->getValue();
431   if (!CheckedZextOrTrunc(Size, IntTyBits))
432     return None;
433 
434   // Size is determined by just 1 parameter.
435   if (FnData->SndParam < 0)
436     return Size;
437 
438   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
439   if (!Arg)
440     return None;
441 
442   APInt NumElems = Arg->getValue();
443   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
444     return None;
445 
446   bool Overflow;
447   Size = Size.umul_ov(NumElems, Overflow);
448   if (Overflow)
449     return None;
450   return Size;
451 }
452 
453 Constant *llvm::getInitialValueOfAllocation(const Value *V,
454                                             const TargetLibraryInfo *TLI,
455                                             Type *Ty) {
456   auto *Alloc = dyn_cast<CallBase>(V);
457   if (!Alloc)
458     return nullptr;
459 
460   // malloc and aligned_alloc are uninitialized (undef)
461   if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
462     return UndefValue::get(Ty);
463 
464   // calloc zero initializes
465   if (isCallocLikeFn(Alloc, TLI))
466     return Constant::getNullValue(Ty);
467 
468   AllocFnKind AK = getAllocFnKind(Alloc);
469   if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
470     return UndefValue::get(Ty);
471   if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
472     return Constant::getNullValue(Ty);
473 
474   return nullptr;
475 }
476 
477 struct FreeFnsTy {
478   unsigned NumParams;
479   // Name of default allocator function to group malloc/free calls by family
480   MallocFamily Family;
481 };
482 
483 // clang-format off
484 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
485     {LibFunc_vec_free,                           {1, MallocFamily::VecMalloc}},
486     {LibFunc_ZdlPv,                              {1, MallocFamily::CPPNew}},             // operator delete(void*)
487     {LibFunc_ZdaPv,                              {1, MallocFamily::CPPNewArray}},        // operator delete[](void*)
488     {LibFunc_msvc_delete_ptr32,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
489     {LibFunc_msvc_delete_ptr64,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
490     {LibFunc_msvc_delete_array_ptr32,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
491     {LibFunc_msvc_delete_array_ptr64,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
492     {LibFunc_ZdlPvj,                             {2, MallocFamily::CPPNew}},             // delete(void*, uint)
493     {LibFunc_ZdlPvm,                             {2, MallocFamily::CPPNew}},             // delete(void*, ulong)
494     {LibFunc_ZdlPvRKSt9nothrow_t,                {2, MallocFamily::CPPNew}},             // delete(void*, nothrow)
495     {LibFunc_ZdlPvSt11align_val_t,               {2, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t)
496     {LibFunc_ZdaPvj,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, uint)
497     {LibFunc_ZdaPvm,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, ulong)
498     {LibFunc_ZdaPvRKSt9nothrow_t,                {2, MallocFamily::CPPNewArray}},        // delete[](void*, nothrow)
499     {LibFunc_ZdaPvSt11align_val_t,               {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
500     {LibFunc_msvc_delete_ptr32_int,              {2, MallocFamily::MSVCNew}},            // delete(void*, uint)
501     {LibFunc_msvc_delete_ptr64_longlong,         {2, MallocFamily::MSVCNew}},            // delete(void*, ulonglong)
502     {LibFunc_msvc_delete_ptr32_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
503     {LibFunc_msvc_delete_ptr64_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
504     {LibFunc_msvc_delete_array_ptr32_int,        {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, uint)
505     {LibFunc_msvc_delete_array_ptr64_longlong,   {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, ulonglong)
506     {LibFunc_msvc_delete_array_ptr32_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
507     {LibFunc_msvc_delete_array_ptr64_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
508     {LibFunc___kmpc_free_shared,                 {2, MallocFamily::KmpcAllocShared}},    // OpenMP Offloading RTL free
509     {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t, nothrow)
510     {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
511     {LibFunc_ZdlPvjSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned int, align_val_t)
512     {LibFunc_ZdlPvmSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned long, align_val_t)
513     {LibFunc_ZdaPvjSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
514     {LibFunc_ZdaPvmSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
515 };
516 // clang-format on
517 
518 Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
519                                                    const LibFunc TLIFn) {
520   const auto *Iter =
521       find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
522         return P.first == TLIFn;
523       });
524   if (Iter == std::end(FreeFnData))
525     return None;
526   return Iter->second;
527 }
528 
529 Optional<StringRef> llvm::getAllocationFamily(const Value *I,
530                                               const TargetLibraryInfo *TLI) {
531   bool IsNoBuiltin;
532   const Function *Callee = getCalledFunction(I, IsNoBuiltin);
533   if (Callee == nullptr || IsNoBuiltin)
534     return None;
535   LibFunc TLIFn;
536 
537   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
538     // Callee is some known library function.
539     const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
540     if (AllocData)
541       return mangledNameForMallocFamily(AllocData.value().Family);
542     const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
543     if (FreeData)
544       return mangledNameForMallocFamily(FreeData.value().Family);
545   }
546   // Callee isn't a known library function, still check attributes.
547   if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
548                               AllocFnKind::Realloc)) {
549     Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
550     if (Attr.isValid())
551       return Attr.getValueAsString();
552   }
553   return None;
554 }
555 
556 /// isLibFreeFunction - Returns true if the function is a builtin free()
557 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
558   Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
559   if (!FnData)
560     return checkFnAllocKind(F, AllocFnKind::Free);
561 
562   // Check free prototype.
563   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
564   // attribute will exist.
565   FunctionType *FTy = F->getFunctionType();
566   if (!FTy->getReturnType()->isVoidTy())
567     return false;
568   if (FTy->getNumParams() != FnData->NumParams)
569     return false;
570   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
571     return false;
572 
573   return true;
574 }
575 
576 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
577   bool IsNoBuiltinCall;
578   const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall);
579   if (Callee == nullptr || IsNoBuiltinCall)
580     return nullptr;
581 
582   LibFunc TLIFn;
583   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
584       isLibFreeFunction(Callee, TLIFn)) {
585     // All currently supported free functions free the first argument.
586     return CB->getArgOperand(0);
587   }
588 
589   if (checkFnAllocKind(CB, AllocFnKind::Free))
590     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
591 
592   return nullptr;
593 }
594 
595 //===----------------------------------------------------------------------===//
596 //  Utility functions to compute size of objects.
597 //
598 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
599   if (Data.second.isNegative() || Data.first.ult(Data.second))
600     return APInt(Data.first.getBitWidth(), 0);
601   return Data.first - Data.second;
602 }
603 
604 /// Compute the size of the object pointed by Ptr. Returns true and the
605 /// object size in Size if successful, and false otherwise.
606 /// If RoundToAlign is true, then Size is rounded up to the alignment of
607 /// allocas, byval arguments, and global variables.
608 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
609                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
610   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
611   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
612   if (!Visitor.bothKnown(Data))
613     return false;
614 
615   Size = getSizeWithOverflow(Data).getZExtValue();
616   return true;
617 }
618 
619 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
620                                  const DataLayout &DL,
621                                  const TargetLibraryInfo *TLI,
622                                  bool MustSucceed) {
623   return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
624                              MustSucceed);
625 }
626 
627 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
628                                  const DataLayout &DL,
629                                  const TargetLibraryInfo *TLI, AAResults *AA,
630                                  bool MustSucceed) {
631   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
632          "ObjectSize must be a call to llvm.objectsize!");
633 
634   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
635   ObjectSizeOpts EvalOptions;
636   EvalOptions.AA = AA;
637 
638   // Unless we have to fold this to something, try to be as accurate as
639   // possible.
640   if (MustSucceed)
641     EvalOptions.EvalMode =
642         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
643   else
644     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
645 
646   EvalOptions.NullIsUnknownSize =
647       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
648 
649   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
650   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
651   if (StaticOnly) {
652     // FIXME: Does it make sense to just return a failure value if the size won't
653     // fit in the output and `!MustSucceed`?
654     uint64_t Size;
655     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
656         isUIntN(ResultType->getBitWidth(), Size))
657       return ConstantInt::get(ResultType, Size);
658   } else {
659     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
660     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
661     SizeOffsetEvalType SizeOffsetPair =
662         Eval.compute(ObjectSize->getArgOperand(0));
663 
664     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
665       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
666       Builder.SetInsertPoint(ObjectSize);
667 
668       // If we've outside the end of the object, then we can always access
669       // exactly 0 bytes.
670       Value *ResultSize =
671           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
672       Value *UseZero =
673           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
674       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
675       Value *Ret = Builder.CreateSelect(
676           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
677 
678       // The non-constant size expression cannot evaluate to -1.
679       if (!isa<Constant>(SizeOffsetPair.first) ||
680           !isa<Constant>(SizeOffsetPair.second))
681         Builder.CreateAssumption(
682             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
683 
684       return Ret;
685     }
686   }
687 
688   if (!MustSucceed)
689     return nullptr;
690 
691   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
692 }
693 
694 STATISTIC(ObjectVisitorArgument,
695           "Number of arguments with unsolved size and offset");
696 STATISTIC(ObjectVisitorLoad,
697           "Number of load instructions with unsolved size and offset");
698 
699 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
700   if (Options.RoundToAlign && Alignment)
701     return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
702   return Size;
703 }
704 
705 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
706                                                  const TargetLibraryInfo *TLI,
707                                                  LLVMContext &Context,
708                                                  ObjectSizeOpts Options)
709     : DL(DL), TLI(TLI), Options(Options) {
710   // Pointer size must be rechecked for each object visited since it could have
711   // a different address space.
712 }
713 
714 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
715   unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
716 
717   // Stripping pointer casts can strip address space casts which can change the
718   // index type size. The invariant is that we use the value type to determine
719   // the index type size and if we stripped address space casts we have to
720   // readjust the APInt as we pass it upwards in order for the APInt to match
721   // the type the caller passed in.
722   APInt Offset(InitialIntTyBits, 0);
723   V = V->stripAndAccumulateConstantOffsets(
724       DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
725 
726   // Later we use the index type size and zero but it will match the type of the
727   // value that is passed to computeImpl.
728   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
729   Zero = APInt::getZero(IntTyBits);
730 
731   bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
732   if (!IndexTypeSizeChanged && Offset.isZero())
733     return computeImpl(V);
734 
735   // We stripped an address space cast that changed the index type size or we
736   // accumulated some constant offset (or both). Readjust the bit width to match
737   // the argument index type size and apply the offset, as required.
738   SizeOffsetType SOT = computeImpl(V);
739   if (IndexTypeSizeChanged) {
740     if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
741       SOT.first = APInt();
742     if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
743       SOT.second = APInt();
744   }
745   // If the computed offset is "unknown" we cannot add the stripped offset.
746   return {SOT.first,
747           SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
748 }
749 
750 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
751   if (Instruction *I = dyn_cast<Instruction>(V)) {
752     // If we have already seen this instruction, bail out. Cycles can happen in
753     // unreachable code after constant propagation.
754     if (!SeenInsts.insert(I).second)
755       return unknown();
756 
757     return visit(*I);
758   }
759   if (Argument *A = dyn_cast<Argument>(V))
760     return visitArgument(*A);
761   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
762     return visitConstantPointerNull(*P);
763   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
764     return visitGlobalAlias(*GA);
765   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
766     return visitGlobalVariable(*GV);
767   if (UndefValue *UV = dyn_cast<UndefValue>(V))
768     return visitUndefValue(*UV);
769 
770   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
771                     << *V << '\n');
772   return unknown();
773 }
774 
775 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
776   return ::CheckedZextOrTrunc(I, IntTyBits);
777 }
778 
779 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
780   if (!I.getAllocatedType()->isSized())
781     return unknown();
782 
783   TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
784   if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
785     return unknown();
786   APInt Size(IntTyBits, ElemSize.getKnownMinSize());
787   if (!I.isArrayAllocation())
788     return std::make_pair(align(Size, I.getAlign()), Zero);
789 
790   Value *ArraySize = I.getArraySize();
791   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
792     APInt NumElems = C->getValue();
793     if (!CheckedZextOrTrunc(NumElems))
794       return unknown();
795 
796     bool Overflow;
797     Size = Size.umul_ov(NumElems, Overflow);
798     return Overflow ? unknown()
799                     : std::make_pair(align(Size, I.getAlign()), Zero);
800   }
801   return unknown();
802 }
803 
804 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
805   Type *MemoryTy = A.getPointeeInMemoryValueType();
806   // No interprocedural analysis is done at the moment.
807   if (!MemoryTy|| !MemoryTy->isSized()) {
808     ++ObjectVisitorArgument;
809     return unknown();
810   }
811 
812   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
813   return std::make_pair(align(Size, A.getParamAlign()), Zero);
814 }
815 
816 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
817   if (Optional<APInt> Size = getAllocSize(&CB, TLI))
818     return std::make_pair(*Size, Zero);
819   return unknown();
820 }
821 
822 SizeOffsetType
823 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
824   // If null is unknown, there's nothing we can do. Additionally, non-zero
825   // address spaces can make use of null, so we don't presume to know anything
826   // about that.
827   //
828   // TODO: How should this work with address space casts? We currently just drop
829   // them on the floor, but it's unclear what we should do when a NULL from
830   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
831   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
832     return unknown();
833   return std::make_pair(Zero, Zero);
834 }
835 
836 SizeOffsetType
837 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
838   return unknown();
839 }
840 
841 SizeOffsetType
842 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
843   // Easy cases were already folded by previous passes.
844   return unknown();
845 }
846 
847 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
848   if (GA.isInterposable())
849     return unknown();
850   return compute(GA.getAliasee());
851 }
852 
853 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
854   if (!GV.hasDefinitiveInitializer())
855     return unknown();
856 
857   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
858   return std::make_pair(align(Size, GV.getAlign()), Zero);
859 }
860 
861 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
862   // clueless
863   return unknown();
864 }
865 
866 SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset(
867     LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
868     SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks,
869     unsigned &ScannedInstCount) {
870   constexpr unsigned MaxInstsToScan = 128;
871 
872   auto Where = VisitedBlocks.find(&BB);
873   if (Where != VisitedBlocks.end())
874     return Where->second;
875 
876   auto Unknown = [this, &BB, &VisitedBlocks]() {
877     return VisitedBlocks[&BB] = unknown();
878   };
879   auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) {
880     return VisitedBlocks[&BB] = SO;
881   };
882 
883   do {
884     Instruction &I = *From;
885 
886     if (I.isDebugOrPseudoInst())
887       continue;
888 
889     if (++ScannedInstCount > MaxInstsToScan)
890       return Unknown();
891 
892     if (!I.mayWriteToMemory())
893       continue;
894 
895     if (auto *SI = dyn_cast<StoreInst>(&I)) {
896       AliasResult AR =
897           Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
898       switch ((AliasResult::Kind)AR) {
899       case AliasResult::NoAlias:
900         continue;
901       case AliasResult::MustAlias:
902         if (SI->getValueOperand()->getType()->isPointerTy())
903           return Known(compute(SI->getValueOperand()));
904         else
905           return Unknown(); // No handling of non-pointer values by `compute`.
906       default:
907         return Unknown();
908       }
909     }
910 
911     if (auto *CB = dyn_cast<CallBase>(&I)) {
912       Function *Callee = CB->getCalledFunction();
913       // Bail out on indirect call.
914       if (!Callee)
915         return Unknown();
916 
917       LibFunc TLIFn;
918       if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
919           !TLI->has(TLIFn))
920         return Unknown();
921 
922       // TODO: There's probably more interesting case to support here.
923       if (TLIFn != LibFunc_posix_memalign)
924         return Unknown();
925 
926       AliasResult AR =
927           Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
928       switch ((AliasResult::Kind)AR) {
929       case AliasResult::NoAlias:
930         continue;
931       case AliasResult::MustAlias:
932         break;
933       default:
934         return Unknown();
935       }
936 
937       // Is the error status of posix_memalign correctly checked? If not it
938       // would be incorrect to assume it succeeds and load doesn't see the
939       // previous value.
940       Optional<bool> Checked = isImpliedByDomCondition(
941           ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
942       if (!Checked || !*Checked)
943         return Unknown();
944 
945       Value *Size = CB->getOperand(2);
946       auto *C = dyn_cast<ConstantInt>(Size);
947       if (!C)
948         return Unknown();
949 
950       return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
951     }
952 
953     return Unknown();
954   } while (From-- != BB.begin());
955 
956   SmallVector<SizeOffsetType> PredecessorSizeOffsets;
957   for (auto *PredBB : predecessors(&BB)) {
958     PredecessorSizeOffsets.push_back(findLoadSizeOffset(
959         Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
960         VisitedBlocks, ScannedInstCount));
961     if (!bothKnown(PredecessorSizeOffsets.back()))
962       return Unknown();
963   }
964 
965   if (PredecessorSizeOffsets.empty())
966     return Unknown();
967 
968   return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1,
969                                PredecessorSizeOffsets.end(),
970                                PredecessorSizeOffsets.front(),
971                                [this](SizeOffsetType LHS, SizeOffsetType RHS) {
972                                  return combineSizeOffset(LHS, RHS);
973                                }));
974 }
975 
976 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
977   if (!Options.AA) {
978     ++ObjectVisitorLoad;
979     return unknown();
980   }
981 
982   SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks;
983   unsigned ScannedInstCount = 0;
984   SizeOffsetType SO =
985       findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
986                          VisitedBlocks, ScannedInstCount);
987   if (!bothKnown(SO))
988     ++ObjectVisitorLoad;
989   return SO;
990 }
991 
992 SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS,
993                                                           SizeOffsetType RHS) {
994   if (!bothKnown(LHS) || !bothKnown(RHS))
995     return unknown();
996 
997   switch (Options.EvalMode) {
998   case ObjectSizeOpts::Mode::Min:
999     return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1000   case ObjectSizeOpts::Mode::Max:
1001     return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1002   case ObjectSizeOpts::Mode::Exact:
1003     return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS
1004                                                                    : unknown();
1005   }
1006   llvm_unreachable("missing an eval mode");
1007 }
1008 
1009 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
1010   auto IncomingValues = PN.incoming_values();
1011   return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
1012                          compute(*IncomingValues.begin()),
1013                          [this](SizeOffsetType LHS, Value *VRHS) {
1014                            return combineSizeOffset(LHS, compute(VRHS));
1015                          });
1016 }
1017 
1018 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
1019   return combineSizeOffset(compute(I.getTrueValue()),
1020                            compute(I.getFalseValue()));
1021 }
1022 
1023 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
1024   return std::make_pair(Zero, Zero);
1025 }
1026 
1027 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
1028   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
1029                     << '\n');
1030   return unknown();
1031 }
1032 
1033 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
1034     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
1035     ObjectSizeOpts EvalOpts)
1036     : DL(DL), TLI(TLI), Context(Context),
1037       Builder(Context, TargetFolder(DL),
1038               IRBuilderCallbackInserter(
1039                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
1040       EvalOpts(EvalOpts) {
1041   // IntTy and Zero must be set for each compute() since the address space may
1042   // be different for later objects.
1043 }
1044 
1045 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
1046   // XXX - Are vectors of pointers possible here?
1047   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
1048   Zero = ConstantInt::get(IntTy, 0);
1049 
1050   SizeOffsetEvalType Result = compute_(V);
1051 
1052   if (!bothKnown(Result)) {
1053     // Erase everything that was computed in this iteration from the cache, so
1054     // that no dangling references are left behind. We could be a bit smarter if
1055     // we kept a dependency graph. It's probably not worth the complexity.
1056     for (const Value *SeenVal : SeenVals) {
1057       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
1058       // non-computable results can be safely cached
1059       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
1060         CacheMap.erase(CacheIt);
1061     }
1062 
1063     // Erase any instructions we inserted as part of the traversal.
1064     for (Instruction *I : InsertedInstructions) {
1065       I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1066       I->eraseFromParent();
1067     }
1068   }
1069 
1070   SeenVals.clear();
1071   InsertedInstructions.clear();
1072   return Result;
1073 }
1074 
1075 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
1076   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
1077   SizeOffsetType Const = Visitor.compute(V);
1078   if (Visitor.bothKnown(Const))
1079     return std::make_pair(ConstantInt::get(Context, Const.first),
1080                           ConstantInt::get(Context, Const.second));
1081 
1082   V = V->stripPointerCasts();
1083 
1084   // Check cache.
1085   CacheMapTy::iterator CacheIt = CacheMap.find(V);
1086   if (CacheIt != CacheMap.end())
1087     return CacheIt->second;
1088 
1089   // Always generate code immediately before the instruction being
1090   // processed, so that the generated code dominates the same BBs.
1091   BuilderTy::InsertPointGuard Guard(Builder);
1092   if (Instruction *I = dyn_cast<Instruction>(V))
1093     Builder.SetInsertPoint(I);
1094 
1095   // Now compute the size and offset.
1096   SizeOffsetEvalType Result;
1097 
1098   // Record the pointers that were handled in this run, so that they can be
1099   // cleaned later if something fails. We also use this set to break cycles that
1100   // can occur in dead code.
1101   if (!SeenVals.insert(V).second) {
1102     Result = unknown();
1103   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1104     Result = visitGEPOperator(*GEP);
1105   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
1106     Result = visit(*I);
1107   } else if (isa<Argument>(V) ||
1108              (isa<ConstantExpr>(V) &&
1109               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
1110              isa<GlobalAlias>(V) ||
1111              isa<GlobalVariable>(V)) {
1112     // Ignore values where we cannot do more than ObjectSizeVisitor.
1113     Result = unknown();
1114   } else {
1115     LLVM_DEBUG(
1116         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
1117                << '\n');
1118     Result = unknown();
1119   }
1120 
1121   // Don't reuse CacheIt since it may be invalid at this point.
1122   CacheMap[V] = Result;
1123   return Result;
1124 }
1125 
1126 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
1127   if (!I.getAllocatedType()->isSized())
1128     return unknown();
1129 
1130   // must be a VLA
1131   assert(I.isArrayAllocation());
1132 
1133   // If needed, adjust the alloca's operand size to match the pointer size.
1134   // Subsequent math operations expect the types to match.
1135   Value *ArraySize = Builder.CreateZExtOrTrunc(
1136       I.getArraySize(), DL.getIntPtrType(I.getContext()));
1137   assert(ArraySize->getType() == Zero->getType() &&
1138          "Expected zero constant to have pointer type");
1139 
1140   Value *Size = ConstantInt::get(ArraySize->getType(),
1141                                  DL.getTypeAllocSize(I.getAllocatedType()));
1142   Size = Builder.CreateMul(Size, ArraySize);
1143   return std::make_pair(Size, Zero);
1144 }
1145 
1146 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
1147   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
1148   if (!FnData)
1149     return unknown();
1150 
1151   // Handle strdup-like functions separately.
1152   if (FnData->AllocTy == StrDupLike) {
1153     // TODO: implement evaluation of strdup/strndup
1154     return unknown();
1155   }
1156 
1157   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
1158   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
1159   if (FnData->SndParam < 0)
1160     return std::make_pair(FirstArg, Zero);
1161 
1162   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
1163   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
1164   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
1165   return std::make_pair(Size, Zero);
1166 }
1167 
1168 SizeOffsetEvalType
1169 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
1170   return unknown();
1171 }
1172 
1173 SizeOffsetEvalType
1174 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1175   return unknown();
1176 }
1177 
1178 SizeOffsetEvalType
1179 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1180   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1181   if (!bothKnown(PtrData))
1182     return unknown();
1183 
1184   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1185   Offset = Builder.CreateAdd(PtrData.second, Offset);
1186   return std::make_pair(PtrData.first, Offset);
1187 }
1188 
1189 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1190   // clueless
1191   return unknown();
1192 }
1193 
1194 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
1195   return unknown();
1196 }
1197 
1198 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1199   // Create 2 PHIs: one for size and another for offset.
1200   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1201   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1202 
1203   // Insert right away in the cache to handle recursive PHIs.
1204   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1205 
1206   // Compute offset/size for each PHI incoming pointer.
1207   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1208     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1209     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1210 
1211     if (!bothKnown(EdgeData)) {
1212       OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1213       OffsetPHI->eraseFromParent();
1214       InsertedInstructions.erase(OffsetPHI);
1215       SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1216       SizePHI->eraseFromParent();
1217       InsertedInstructions.erase(SizePHI);
1218       return unknown();
1219     }
1220     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1221     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1222   }
1223 
1224   Value *Size = SizePHI, *Offset = OffsetPHI;
1225   if (Value *Tmp = SizePHI->hasConstantValue()) {
1226     Size = Tmp;
1227     SizePHI->replaceAllUsesWith(Size);
1228     SizePHI->eraseFromParent();
1229     InsertedInstructions.erase(SizePHI);
1230   }
1231   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1232     Offset = Tmp;
1233     OffsetPHI->replaceAllUsesWith(Offset);
1234     OffsetPHI->eraseFromParent();
1235     InsertedInstructions.erase(OffsetPHI);
1236   }
1237   return std::make_pair(Size, Offset);
1238 }
1239 
1240 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1241   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1242   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1243 
1244   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1245     return unknown();
1246   if (TrueSide == FalseSide)
1247     return TrueSide;
1248 
1249   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1250                                      FalseSide.first);
1251   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1252                                        FalseSide.second);
1253   return std::make_pair(Size, Offset);
1254 }
1255 
1256 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1257   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1258                     << '\n');
1259   return unknown();
1260 }
1261