xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/TargetFolder.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/Utils/Local.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <numeric>
46 #include <optional>
47 #include <type_traits>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "memory-builtins"
53 
54 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions(
55     "object-size-offset-visitor-max-visit-instructions",
56     cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to "
57              "look at"),
58     cl::init(100));
59 
60 enum AllocType : uint8_t {
61   OpNewLike          = 1<<0, // allocates; never returns null
62   MallocLike         = 1<<1, // allocates; may return null
63   StrDupLike         = 1<<2,
64   MallocOrOpNewLike  = MallocLike | OpNewLike,
65   AllocLike          = MallocOrOpNewLike | StrDupLike,
66   AnyAlloc           = AllocLike
67 };
68 
69 enum class MallocFamily {
70   Malloc,
71   CPPNew,             // new(unsigned int)
72   CPPNewAligned,      // new(unsigned int, align_val_t)
73   CPPNewArray,        // new[](unsigned int)
74   CPPNewArrayAligned, // new[](unsigned long, align_val_t)
75   MSVCNew,            // new(unsigned int)
76   MSVCArrayNew,       // new[](unsigned int)
77   VecMalloc,
78   KmpcAllocShared,
79 };
80 
81 StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
82   switch (Family) {
83   case MallocFamily::Malloc:
84     return "malloc";
85   case MallocFamily::CPPNew:
86     return "_Znwm";
87   case MallocFamily::CPPNewAligned:
88     return "_ZnwmSt11align_val_t";
89   case MallocFamily::CPPNewArray:
90     return "_Znam";
91   case MallocFamily::CPPNewArrayAligned:
92     return "_ZnamSt11align_val_t";
93   case MallocFamily::MSVCNew:
94     return "??2@YAPAXI@Z";
95   case MallocFamily::MSVCArrayNew:
96     return "??_U@YAPAXI@Z";
97   case MallocFamily::VecMalloc:
98     return "vec_malloc";
99   case MallocFamily::KmpcAllocShared:
100     return "__kmpc_alloc_shared";
101   }
102   llvm_unreachable("missing an alloc family");
103 }
104 
105 struct AllocFnsTy {
106   AllocType AllocTy;
107   unsigned NumParams;
108   // First and Second size parameters (or -1 if unused)
109   int FstParam, SndParam;
110   // Alignment parameter for aligned_alloc and aligned new
111   int AlignParam;
112   // Name of default allocator function to group malloc/free calls by family
113   MallocFamily Family;
114 };
115 
116 // clang-format off
117 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
118 // know which functions are nounwind, noalias, nocapture parameters, etc.
119 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
120     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int)
121     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int, nothrow)
122     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t)
123     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t, nothrow)
124     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long)
125     {LibFunc_Znwm12__hot_cold_t,                  {OpNewLike,        2, 0,  -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, __hot_cold_t)
126     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow)
127     {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t,      {MallocLike,       3, 0,  -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow, __hot_cold_t)
128     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t)
129     {LibFunc_ZnwmSt11align_val_t12__hot_cold_t,   {OpNewLike,        3, 0,  -1, 1, MallocFamily::CPPNewAligned}},       // new(unsigned long, align_val_t, __hot_cold_t)
130     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t, nothrow)
131     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike,  4, 0,  -1, 1, MallocFamily::CPPNewAligned}},            // new(unsigned long, align_val_t, nothrow, __hot_cold_t)
132     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int)
133     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int, nothrow)
134     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
135     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
136     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long)
137     {LibFunc_Znam12__hot_cold_t,                  {OpNewLike,        2, 0,  -1, -1, MallocFamily::CPPNew}},             // new[](unsigned long, __hot_cold_t)
138     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long, nothrow)
139     {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t,      {MallocLike,       3, 0,  -1, -1, MallocFamily::CPPNew}},             // new[](unsigned long, nothrow, __hot_cold_t)
140     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
141     {LibFunc_ZnamSt11align_val_t12__hot_cold_t,   {OpNewLike,        3, 0,  -1, 1, MallocFamily::CPPNewAligned}},       // new[](unsigned long, align_val_t, __hot_cold_t)
142     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
143     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike,  4, 0,  -1, 1, MallocFamily::CPPNewAligned}},            // new[](unsigned long, align_val_t, nothrow, __hot_cold_t)
144     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int)
145     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int, nothrow)
146     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long)
147     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long, nothrow)
148     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int)
149     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int, nothrow)
150     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long)
151     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long, nothrow)
152     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
153     {LibFunc_dunder_strdup,                     {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
154     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
155     {LibFunc_dunder_strndup,                    {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
156     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1, MallocFamily::KmpcAllocShared}},
157 };
158 // clang-format on
159 
160 static const Function *getCalledFunction(const Value *V,
161                                          bool &IsNoBuiltin) {
162   // Don't care about intrinsics in this case.
163   if (isa<IntrinsicInst>(V))
164     return nullptr;
165 
166   const auto *CB = dyn_cast<CallBase>(V);
167   if (!CB)
168     return nullptr;
169 
170   IsNoBuiltin = CB->isNoBuiltin();
171 
172   if (const Function *Callee = CB->getCalledFunction())
173     return Callee;
174   return nullptr;
175 }
176 
177 /// Returns the allocation data for the given value if it's a call to a known
178 /// allocation function.
179 static std::optional<AllocFnsTy>
180 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
181                              const TargetLibraryInfo *TLI) {
182   // Don't perform a slow TLI lookup, if this function doesn't return a pointer
183   // and thus can't be an allocation function.
184   if (!Callee->getReturnType()->isPointerTy())
185     return std::nullopt;
186 
187   // Make sure that the function is available.
188   LibFunc TLIFn;
189   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
190     return std::nullopt;
191 
192   const auto *Iter = find_if(
193       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
194         return P.first == TLIFn;
195       });
196 
197   if (Iter == std::end(AllocationFnData))
198     return std::nullopt;
199 
200   const AllocFnsTy *FnData = &Iter->second;
201   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
202     return std::nullopt;
203 
204   // Check function prototype.
205   int FstParam = FnData->FstParam;
206   int SndParam = FnData->SndParam;
207   FunctionType *FTy = Callee->getFunctionType();
208 
209   if (FTy->getReturnType()->isPointerTy() &&
210       FTy->getNumParams() == FnData->NumParams &&
211       (FstParam < 0 ||
212        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
213         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
214       (SndParam < 0 ||
215        FTy->getParamType(SndParam)->isIntegerTy(32) ||
216        FTy->getParamType(SndParam)->isIntegerTy(64)))
217     return *FnData;
218   return std::nullopt;
219 }
220 
221 static std::optional<AllocFnsTy>
222 getAllocationData(const Value *V, AllocType AllocTy,
223                   const TargetLibraryInfo *TLI) {
224   bool IsNoBuiltinCall;
225   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
226     if (!IsNoBuiltinCall)
227       return getAllocationDataForFunction(Callee, AllocTy, TLI);
228   return std::nullopt;
229 }
230 
231 static std::optional<AllocFnsTy>
232 getAllocationData(const Value *V, AllocType AllocTy,
233                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
234   bool IsNoBuiltinCall;
235   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
236     if (!IsNoBuiltinCall)
237       return getAllocationDataForFunction(
238           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
239   return std::nullopt;
240 }
241 
242 static std::optional<AllocFnsTy>
243 getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) {
244   bool IsNoBuiltinCall;
245   const Function *Callee =
246       getCalledFunction(V, IsNoBuiltinCall);
247   if (!Callee)
248     return std::nullopt;
249 
250   // Prefer to use existing information over allocsize. This will give us an
251   // accurate AllocTy.
252   if (!IsNoBuiltinCall)
253     if (std::optional<AllocFnsTy> Data =
254             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
255       return Data;
256 
257   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
258   if (Attr == Attribute())
259     return std::nullopt;
260 
261   std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs();
262 
263   AllocFnsTy Result;
264   // Because allocsize only tells us how many bytes are allocated, we're not
265   // really allowed to assume anything, so we use MallocLike.
266   Result.AllocTy = MallocLike;
267   Result.NumParams = Callee->getNumOperands();
268   Result.FstParam = Args.first;
269   Result.SndParam = Args.second.value_or(-1);
270   // Allocsize has no way to specify an alignment argument
271   Result.AlignParam = -1;
272   return Result;
273 }
274 
275 static AllocFnKind getAllocFnKind(const Value *V) {
276   if (const auto *CB = dyn_cast<CallBase>(V)) {
277     Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
278     if (Attr.isValid())
279       return AllocFnKind(Attr.getValueAsInt());
280   }
281   return AllocFnKind::Unknown;
282 }
283 
284 static AllocFnKind getAllocFnKind(const Function *F) {
285   return F->getAttributes().getAllocKind();
286 }
287 
288 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
289   return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
290 }
291 
292 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
293   return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
294 }
295 
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
298 /// like).
299 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
300   return getAllocationData(V, AnyAlloc, TLI).has_value() ||
301          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
302 }
303 bool llvm::isAllocationFn(
304     const Value *V,
305     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
306   return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
307          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
308 }
309 
310 /// Tests if a value is a call or invoke to a library function that
311 /// allocates memory via new.
312 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
313   return getAllocationData(V, OpNewLike, TLI).has_value();
314 }
315 
316 /// Tests if a value is a call or invoke to a library function that
317 /// allocates memory similar to malloc or calloc.
318 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
319   // TODO: Function behavior does not match name.
320   return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
321 }
322 
323 /// Tests if a value is a call or invoke to a library function that
324 /// allocates memory (either malloc, calloc, or strdup like).
325 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
326   return getAllocationData(V, AllocLike, TLI).has_value() ||
327          checkFnAllocKind(V, AllocFnKind::Alloc);
328 }
329 
330 /// Tests if a functions is a call or invoke to a library function that
331 /// reallocates memory (e.g., realloc).
332 bool llvm::isReallocLikeFn(const Function *F) {
333   return checkFnAllocKind(F, AllocFnKind::Realloc);
334 }
335 
336 Value *llvm::getReallocatedOperand(const CallBase *CB) {
337   if (checkFnAllocKind(CB, AllocFnKind::Realloc))
338     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
339   return nullptr;
340 }
341 
342 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
343   // Note: Removability is highly dependent on the source language.  For
344   // example, recent C++ requires direct calls to the global allocation
345   // [basic.stc.dynamic.allocation] to be observable unless part of a new
346   // expression [expr.new paragraph 13].
347 
348   // Historically we've treated the C family allocation routines and operator
349   // new as removable
350   return isAllocLikeFn(CB, TLI);
351 }
352 
353 Value *llvm::getAllocAlignment(const CallBase *V,
354                                const TargetLibraryInfo *TLI) {
355   const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
356   if (FnData && FnData->AlignParam >= 0) {
357     return V->getOperand(FnData->AlignParam);
358   }
359   return V->getArgOperandWithAttribute(Attribute::AllocAlign);
360 }
361 
362 /// When we're compiling N-bit code, and the user uses parameters that are
363 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
364 /// trouble with APInt size issues. This function handles resizing + overflow
365 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
366 /// I's value.
367 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
368   // More bits than we can handle. Checking the bit width isn't necessary, but
369   // it's faster than checking active bits, and should give `false` in the
370   // vast majority of cases.
371   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
372     return false;
373   if (I.getBitWidth() != IntTyBits)
374     I = I.zextOrTrunc(IntTyBits);
375   return true;
376 }
377 
378 std::optional<APInt>
379 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
380                    function_ref<const Value *(const Value *)> Mapper) {
381   // Note: This handles both explicitly listed allocation functions and
382   // allocsize.  The code structure could stand to be cleaned up a bit.
383   std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
384   if (!FnData)
385     return std::nullopt;
386 
387   // Get the index type for this address space, results and intermediate
388   // computations are performed at that width.
389   auto &DL = CB->getModule()->getDataLayout();
390   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
391 
392   // Handle strdup-like functions separately.
393   if (FnData->AllocTy == StrDupLike) {
394     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
395     if (!Size)
396       return std::nullopt;
397 
398     // Strndup limits strlen.
399     if (FnData->FstParam > 0) {
400       const ConstantInt *Arg =
401         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
402       if (!Arg)
403         return std::nullopt;
404 
405       APInt MaxSize = Arg->getValue().zext(IntTyBits);
406       if (Size.ugt(MaxSize))
407         Size = MaxSize + 1;
408     }
409     return Size;
410   }
411 
412   const ConstantInt *Arg =
413     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
414   if (!Arg)
415     return std::nullopt;
416 
417   APInt Size = Arg->getValue();
418   if (!CheckedZextOrTrunc(Size, IntTyBits))
419     return std::nullopt;
420 
421   // Size is determined by just 1 parameter.
422   if (FnData->SndParam < 0)
423     return Size;
424 
425   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
426   if (!Arg)
427     return std::nullopt;
428 
429   APInt NumElems = Arg->getValue();
430   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
431     return std::nullopt;
432 
433   bool Overflow;
434   Size = Size.umul_ov(NumElems, Overflow);
435   if (Overflow)
436     return std::nullopt;
437   return Size;
438 }
439 
440 Constant *llvm::getInitialValueOfAllocation(const Value *V,
441                                             const TargetLibraryInfo *TLI,
442                                             Type *Ty) {
443   auto *Alloc = dyn_cast<CallBase>(V);
444   if (!Alloc)
445     return nullptr;
446 
447   // malloc are uninitialized (undef)
448   if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value())
449     return UndefValue::get(Ty);
450 
451   AllocFnKind AK = getAllocFnKind(Alloc);
452   if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
453     return UndefValue::get(Ty);
454   if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
455     return Constant::getNullValue(Ty);
456 
457   return nullptr;
458 }
459 
460 struct FreeFnsTy {
461   unsigned NumParams;
462   // Name of default allocator function to group malloc/free calls by family
463   MallocFamily Family;
464 };
465 
466 // clang-format off
467 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
468     {LibFunc_ZdlPv,                              {1, MallocFamily::CPPNew}},             // operator delete(void*)
469     {LibFunc_ZdaPv,                              {1, MallocFamily::CPPNewArray}},        // operator delete[](void*)
470     {LibFunc_msvc_delete_ptr32,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
471     {LibFunc_msvc_delete_ptr64,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
472     {LibFunc_msvc_delete_array_ptr32,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
473     {LibFunc_msvc_delete_array_ptr64,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
474     {LibFunc_ZdlPvj,                             {2, MallocFamily::CPPNew}},             // delete(void*, uint)
475     {LibFunc_ZdlPvm,                             {2, MallocFamily::CPPNew}},             // delete(void*, ulong)
476     {LibFunc_ZdlPvRKSt9nothrow_t,                {2, MallocFamily::CPPNew}},             // delete(void*, nothrow)
477     {LibFunc_ZdlPvSt11align_val_t,               {2, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t)
478     {LibFunc_ZdaPvj,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, uint)
479     {LibFunc_ZdaPvm,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, ulong)
480     {LibFunc_ZdaPvRKSt9nothrow_t,                {2, MallocFamily::CPPNewArray}},        // delete[](void*, nothrow)
481     {LibFunc_ZdaPvSt11align_val_t,               {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
482     {LibFunc_msvc_delete_ptr32_int,              {2, MallocFamily::MSVCNew}},            // delete(void*, uint)
483     {LibFunc_msvc_delete_ptr64_longlong,         {2, MallocFamily::MSVCNew}},            // delete(void*, ulonglong)
484     {LibFunc_msvc_delete_ptr32_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
485     {LibFunc_msvc_delete_ptr64_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
486     {LibFunc_msvc_delete_array_ptr32_int,        {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, uint)
487     {LibFunc_msvc_delete_array_ptr64_longlong,   {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, ulonglong)
488     {LibFunc_msvc_delete_array_ptr32_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
489     {LibFunc_msvc_delete_array_ptr64_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
490     {LibFunc___kmpc_free_shared,                 {2, MallocFamily::KmpcAllocShared}},    // OpenMP Offloading RTL free
491     {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t, nothrow)
492     {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
493     {LibFunc_ZdlPvjSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned int, align_val_t)
494     {LibFunc_ZdlPvmSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned long, align_val_t)
495     {LibFunc_ZdaPvjSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
496     {LibFunc_ZdaPvmSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
497 };
498 // clang-format on
499 
500 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
501                                                         const LibFunc TLIFn) {
502   const auto *Iter =
503       find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
504         return P.first == TLIFn;
505       });
506   if (Iter == std::end(FreeFnData))
507     return std::nullopt;
508   return Iter->second;
509 }
510 
511 std::optional<StringRef>
512 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) {
513   bool IsNoBuiltin;
514   const Function *Callee = getCalledFunction(I, IsNoBuiltin);
515   if (Callee == nullptr || IsNoBuiltin)
516     return std::nullopt;
517   LibFunc TLIFn;
518 
519   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
520     // Callee is some known library function.
521     const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
522     if (AllocData)
523       return mangledNameForMallocFamily(AllocData->Family);
524     const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
525     if (FreeData)
526       return mangledNameForMallocFamily(FreeData->Family);
527   }
528   // Callee isn't a known library function, still check attributes.
529   if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
530                               AllocFnKind::Realloc)) {
531     Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
532     if (Attr.isValid())
533       return Attr.getValueAsString();
534   }
535   return std::nullopt;
536 }
537 
538 /// isLibFreeFunction - Returns true if the function is a builtin free()
539 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
540   std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
541   if (!FnData)
542     return checkFnAllocKind(F, AllocFnKind::Free);
543 
544   // Check free prototype.
545   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
546   // attribute will exist.
547   FunctionType *FTy = F->getFunctionType();
548   if (!FTy->getReturnType()->isVoidTy())
549     return false;
550   if (FTy->getNumParams() != FnData->NumParams)
551     return false;
552   if (!FTy->getParamType(0)->isPointerTy())
553     return false;
554 
555   return true;
556 }
557 
558 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
559   bool IsNoBuiltinCall;
560   const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall);
561   if (Callee == nullptr || IsNoBuiltinCall)
562     return nullptr;
563 
564   LibFunc TLIFn;
565   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
566       isLibFreeFunction(Callee, TLIFn)) {
567     // All currently supported free functions free the first argument.
568     return CB->getArgOperand(0);
569   }
570 
571   if (checkFnAllocKind(CB, AllocFnKind::Free))
572     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
573 
574   return nullptr;
575 }
576 
577 //===----------------------------------------------------------------------===//
578 //  Utility functions to compute size of objects.
579 //
580 static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) {
581   APInt Size = Data.Size;
582   APInt Offset = Data.Offset;
583   if (Offset.isNegative() || Size.ult(Offset))
584     return APInt(Size.getBitWidth(), 0);
585   return Size - Offset;
586 }
587 
588 /// Compute the size of the object pointed by Ptr. Returns true and the
589 /// object size in Size if successful, and false otherwise.
590 /// If RoundToAlign is true, then Size is rounded up to the alignment of
591 /// allocas, byval arguments, and global variables.
592 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
593                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
594   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
595   SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr));
596   if (!Data.bothKnown())
597     return false;
598 
599   Size = getSizeWithOverflow(Data).getZExtValue();
600   return true;
601 }
602 
603 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
604                                  const DataLayout &DL,
605                                  const TargetLibraryInfo *TLI,
606                                  bool MustSucceed) {
607   return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
608                              MustSucceed);
609 }
610 
611 Value *llvm::lowerObjectSizeCall(
612     IntrinsicInst *ObjectSize, const DataLayout &DL,
613     const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed,
614     SmallVectorImpl<Instruction *> *InsertedInstructions) {
615   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
616          "ObjectSize must be a call to llvm.objectsize!");
617 
618   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
619   ObjectSizeOpts EvalOptions;
620   EvalOptions.AA = AA;
621 
622   // Unless we have to fold this to something, try to be as accurate as
623   // possible.
624   if (MustSucceed)
625     EvalOptions.EvalMode =
626         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
627   else
628     EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset;
629 
630   EvalOptions.NullIsUnknownSize =
631       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
632 
633   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
634   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
635   if (StaticOnly) {
636     // FIXME: Does it make sense to just return a failure value if the size won't
637     // fit in the output and `!MustSucceed`?
638     uint64_t Size;
639     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
640         isUIntN(ResultType->getBitWidth(), Size))
641       return ConstantInt::get(ResultType, Size);
642   } else {
643     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
644     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
645     SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0));
646 
647     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
648       IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
649           Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) {
650             if (InsertedInstructions)
651               InsertedInstructions->push_back(I);
652           }));
653       Builder.SetInsertPoint(ObjectSize);
654 
655       Value *Size = SizeOffsetPair.Size;
656       Value *Offset = SizeOffsetPair.Offset;
657 
658       // If we've outside the end of the object, then we can always access
659       // exactly 0 bytes.
660       Value *ResultSize = Builder.CreateSub(Size, Offset);
661       Value *UseZero = Builder.CreateICmpULT(Size, Offset);
662       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
663       Value *Ret = Builder.CreateSelect(
664           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
665 
666       // The non-constant size expression cannot evaluate to -1.
667       if (!isa<Constant>(Size) || !isa<Constant>(Offset))
668         Builder.CreateAssumption(
669             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
670 
671       return Ret;
672     }
673   }
674 
675   if (!MustSucceed)
676     return nullptr;
677 
678   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
679 }
680 
681 STATISTIC(ObjectVisitorArgument,
682           "Number of arguments with unsolved size and offset");
683 STATISTIC(ObjectVisitorLoad,
684           "Number of load instructions with unsolved size and offset");
685 
686 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
687   if (Options.RoundToAlign && Alignment)
688     return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
689   return Size;
690 }
691 
692 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
693                                                  const TargetLibraryInfo *TLI,
694                                                  LLVMContext &Context,
695                                                  ObjectSizeOpts Options)
696     : DL(DL), TLI(TLI), Options(Options) {
697   // Pointer size must be rechecked for each object visited since it could have
698   // a different address space.
699 }
700 
701 SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) {
702   InstructionsVisited = 0;
703   return computeImpl(V);
704 }
705 
706 SizeOffsetAPInt ObjectSizeOffsetVisitor::computeImpl(Value *V) {
707   unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
708 
709   // Stripping pointer casts can strip address space casts which can change the
710   // index type size. The invariant is that we use the value type to determine
711   // the index type size and if we stripped address space casts we have to
712   // readjust the APInt as we pass it upwards in order for the APInt to match
713   // the type the caller passed in.
714   APInt Offset(InitialIntTyBits, 0);
715   V = V->stripAndAccumulateConstantOffsets(
716       DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
717 
718   // Later we use the index type size and zero but it will match the type of the
719   // value that is passed to computeImpl.
720   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
721   Zero = APInt::getZero(IntTyBits);
722 
723   SizeOffsetAPInt SOT = computeValue(V);
724 
725   bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
726   if (!IndexTypeSizeChanged && Offset.isZero())
727     return SOT;
728 
729   // We stripped an address space cast that changed the index type size or we
730   // accumulated some constant offset (or both). Readjust the bit width to match
731   // the argument index type size and apply the offset, as required.
732   if (IndexTypeSizeChanged) {
733     if (SOT.knownSize() && !::CheckedZextOrTrunc(SOT.Size, InitialIntTyBits))
734       SOT.Size = APInt();
735     if (SOT.knownOffset() &&
736         !::CheckedZextOrTrunc(SOT.Offset, InitialIntTyBits))
737       SOT.Offset = APInt();
738   }
739   // If the computed offset is "unknown" we cannot add the stripped offset.
740   return {SOT.Size,
741           SOT.Offset.getBitWidth() > 1 ? SOT.Offset + Offset : SOT.Offset};
742 }
743 
744 SizeOffsetAPInt ObjectSizeOffsetVisitor::computeValue(Value *V) {
745   if (Instruction *I = dyn_cast<Instruction>(V)) {
746     // If we have already seen this instruction, bail out. Cycles can happen in
747     // unreachable code after constant propagation.
748     auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown());
749     if (!P.second)
750       return P.first->second;
751     ++InstructionsVisited;
752     if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions)
753       return ObjectSizeOffsetVisitor::unknown();
754     SizeOffsetAPInt Res = visit(*I);
755     // Cache the result for later visits. If we happened to visit this during
756     // the above recursion, we would consider it unknown until now.
757     SeenInsts[I] = Res;
758     return Res;
759   }
760   if (Argument *A = dyn_cast<Argument>(V))
761     return visitArgument(*A);
762   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
763     return visitConstantPointerNull(*P);
764   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
765     return visitGlobalAlias(*GA);
766   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
767     return visitGlobalVariable(*GV);
768   if (UndefValue *UV = dyn_cast<UndefValue>(V))
769     return visitUndefValue(*UV);
770 
771   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
772                     << *V << '\n');
773   return ObjectSizeOffsetVisitor::unknown();
774 }
775 
776 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
777   return ::CheckedZextOrTrunc(I, IntTyBits);
778 }
779 
780 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
781   TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
782   if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
783     return ObjectSizeOffsetVisitor::unknown();
784   APInt Size(IntTyBits, ElemSize.getKnownMinValue());
785   if (!I.isArrayAllocation())
786     return SizeOffsetAPInt(align(Size, I.getAlign()), Zero);
787 
788   Value *ArraySize = I.getArraySize();
789   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
790     APInt NumElems = C->getValue();
791     if (!CheckedZextOrTrunc(NumElems))
792       return ObjectSizeOffsetVisitor::unknown();
793 
794     bool Overflow;
795     Size = Size.umul_ov(NumElems, Overflow);
796     return Overflow ? ObjectSizeOffsetVisitor::unknown()
797                     : SizeOffsetAPInt(align(Size, I.getAlign()), Zero);
798   }
799   return ObjectSizeOffsetVisitor::unknown();
800 }
801 
802 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
803   Type *MemoryTy = A.getPointeeInMemoryValueType();
804   // No interprocedural analysis is done at the moment.
805   if (!MemoryTy|| !MemoryTy->isSized()) {
806     ++ObjectVisitorArgument;
807     return ObjectSizeOffsetVisitor::unknown();
808   }
809 
810   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
811   return SizeOffsetAPInt(align(Size, A.getParamAlign()), Zero);
812 }
813 
814 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
815   if (std::optional<APInt> Size = getAllocSize(&CB, TLI))
816     return SizeOffsetAPInt(*Size, Zero);
817   return ObjectSizeOffsetVisitor::unknown();
818 }
819 
820 SizeOffsetAPInt
821 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) {
822   // If null is unknown, there's nothing we can do. Additionally, non-zero
823   // address spaces can make use of null, so we don't presume to know anything
824   // about that.
825   //
826   // TODO: How should this work with address space casts? We currently just drop
827   // them on the floor, but it's unclear what we should do when a NULL from
828   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
829   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
830     return ObjectSizeOffsetVisitor::unknown();
831   return SizeOffsetAPInt(Zero, Zero);
832 }
833 
834 SizeOffsetAPInt
835 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) {
836   return ObjectSizeOffsetVisitor::unknown();
837 }
838 
839 SizeOffsetAPInt
840 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) {
841   // Easy cases were already folded by previous passes.
842   return ObjectSizeOffsetVisitor::unknown();
843 }
844 
845 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
846   if (GA.isInterposable())
847     return ObjectSizeOffsetVisitor::unknown();
848   return computeImpl(GA.getAliasee());
849 }
850 
851 SizeOffsetAPInt
852 ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) {
853   if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() ||
854       ((!GV.hasInitializer() || GV.isInterposable()) &&
855        Options.EvalMode != ObjectSizeOpts::Mode::Min))
856     return ObjectSizeOffsetVisitor::unknown();
857 
858   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
859   return SizeOffsetAPInt(align(Size, GV.getAlign()), Zero);
860 }
861 
862 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) {
863   // clueless
864   return ObjectSizeOffsetVisitor::unknown();
865 }
866 
867 SizeOffsetAPInt ObjectSizeOffsetVisitor::findLoadSizeOffset(
868     LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
869     SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> &VisitedBlocks,
870     unsigned &ScannedInstCount) {
871   constexpr unsigned MaxInstsToScan = 128;
872 
873   auto Where = VisitedBlocks.find(&BB);
874   if (Where != VisitedBlocks.end())
875     return Where->second;
876 
877   auto Unknown = [&BB, &VisitedBlocks]() {
878     return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown();
879   };
880   auto Known = [&BB, &VisitedBlocks](SizeOffsetAPInt SO) {
881     return VisitedBlocks[&BB] = SO;
882   };
883 
884   do {
885     Instruction &I = *From;
886 
887     if (I.isDebugOrPseudoInst())
888       continue;
889 
890     if (++ScannedInstCount > MaxInstsToScan)
891       return Unknown();
892 
893     if (!I.mayWriteToMemory())
894       continue;
895 
896     if (auto *SI = dyn_cast<StoreInst>(&I)) {
897       AliasResult AR =
898           Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
899       switch ((AliasResult::Kind)AR) {
900       case AliasResult::NoAlias:
901         continue;
902       case AliasResult::MustAlias:
903         if (SI->getValueOperand()->getType()->isPointerTy())
904           return Known(computeImpl(SI->getValueOperand()));
905         else
906           return Unknown(); // No handling of non-pointer values by `compute`.
907       default:
908         return Unknown();
909       }
910     }
911 
912     if (auto *CB = dyn_cast<CallBase>(&I)) {
913       Function *Callee = CB->getCalledFunction();
914       // Bail out on indirect call.
915       if (!Callee)
916         return Unknown();
917 
918       LibFunc TLIFn;
919       if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
920           !TLI->has(TLIFn))
921         return Unknown();
922 
923       // TODO: There's probably more interesting case to support here.
924       if (TLIFn != LibFunc_posix_memalign)
925         return Unknown();
926 
927       AliasResult AR =
928           Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
929       switch ((AliasResult::Kind)AR) {
930       case AliasResult::NoAlias:
931         continue;
932       case AliasResult::MustAlias:
933         break;
934       default:
935         return Unknown();
936       }
937 
938       // Is the error status of posix_memalign correctly checked? If not it
939       // would be incorrect to assume it succeeds and load doesn't see the
940       // previous value.
941       std::optional<bool> Checked = isImpliedByDomCondition(
942           ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
943       if (!Checked || !*Checked)
944         return Unknown();
945 
946       Value *Size = CB->getOperand(2);
947       auto *C = dyn_cast<ConstantInt>(Size);
948       if (!C)
949         return Unknown();
950 
951       return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
952     }
953 
954     return Unknown();
955   } while (From-- != BB.begin());
956 
957   SmallVector<SizeOffsetAPInt> PredecessorSizeOffsets;
958   for (auto *PredBB : predecessors(&BB)) {
959     PredecessorSizeOffsets.push_back(findLoadSizeOffset(
960         Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
961         VisitedBlocks, ScannedInstCount));
962     if (!PredecessorSizeOffsets.back().bothKnown())
963       return Unknown();
964   }
965 
966   if (PredecessorSizeOffsets.empty())
967     return Unknown();
968 
969   return Known(std::accumulate(
970       PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(),
971       PredecessorSizeOffsets.front(),
972       [this](SizeOffsetAPInt LHS, SizeOffsetAPInt RHS) {
973         return combineSizeOffset(LHS, RHS);
974       }));
975 }
976 
977 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
978   if (!Options.AA) {
979     ++ObjectVisitorLoad;
980     return ObjectSizeOffsetVisitor::unknown();
981   }
982 
983   SmallDenseMap<BasicBlock *, SizeOffsetAPInt, 8> VisitedBlocks;
984   unsigned ScannedInstCount = 0;
985   SizeOffsetAPInt SO =
986       findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
987                          VisitedBlocks, ScannedInstCount);
988   if (!SO.bothKnown())
989     ++ObjectVisitorLoad;
990   return SO;
991 }
992 
993 SizeOffsetAPInt
994 ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetAPInt LHS,
995                                            SizeOffsetAPInt RHS) {
996   if (!LHS.bothKnown() || !RHS.bothKnown())
997     return ObjectSizeOffsetVisitor::unknown();
998 
999   switch (Options.EvalMode) {
1000   case ObjectSizeOpts::Mode::Min:
1001     return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1002   case ObjectSizeOpts::Mode::Max:
1003     return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
1004   case ObjectSizeOpts::Mode::ExactSizeFromOffset:
1005     return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS)))
1006                ? LHS
1007                : ObjectSizeOffsetVisitor::unknown();
1008   case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset:
1009     return LHS == RHS ? LHS : ObjectSizeOffsetVisitor::unknown();
1010   }
1011   llvm_unreachable("missing an eval mode");
1012 }
1013 
1014 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
1015   if (PN.getNumIncomingValues() == 0)
1016     return ObjectSizeOffsetVisitor::unknown();
1017   auto IncomingValues = PN.incoming_values();
1018   return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
1019                          computeImpl(*IncomingValues.begin()),
1020                          [this](SizeOffsetAPInt LHS, Value *VRHS) {
1021                            return combineSizeOffset(LHS, computeImpl(VRHS));
1022                          });
1023 }
1024 
1025 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
1026   return combineSizeOffset(computeImpl(I.getTrueValue()),
1027                            computeImpl(I.getFalseValue()));
1028 }
1029 
1030 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) {
1031   return SizeOffsetAPInt(Zero, Zero);
1032 }
1033 
1034 SizeOffsetAPInt ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
1035   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
1036                     << '\n');
1037   return ObjectSizeOffsetVisitor::unknown();
1038 }
1039 
1040 // Just set these right here...
1041 SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT)
1042     : SizeOffsetType(SOT.Size, SOT.Offset) {}
1043 
1044 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
1045     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
1046     ObjectSizeOpts EvalOpts)
1047     : DL(DL), TLI(TLI), Context(Context),
1048       Builder(Context, TargetFolder(DL),
1049               IRBuilderCallbackInserter(
1050                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
1051       EvalOpts(EvalOpts) {
1052   // IntTy and Zero must be set for each compute() since the address space may
1053   // be different for later objects.
1054 }
1055 
1056 SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) {
1057   // XXX - Are vectors of pointers possible here?
1058   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
1059   Zero = ConstantInt::get(IntTy, 0);
1060 
1061   SizeOffsetValue Result = compute_(V);
1062 
1063   if (!Result.bothKnown()) {
1064     // Erase everything that was computed in this iteration from the cache, so
1065     // that no dangling references are left behind. We could be a bit smarter if
1066     // we kept a dependency graph. It's probably not worth the complexity.
1067     for (const Value *SeenVal : SeenVals) {
1068       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
1069       // non-computable results can be safely cached
1070       if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown())
1071         CacheMap.erase(CacheIt);
1072     }
1073 
1074     // Erase any instructions we inserted as part of the traversal.
1075     for (Instruction *I : InsertedInstructions) {
1076       I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1077       I->eraseFromParent();
1078     }
1079   }
1080 
1081   SeenVals.clear();
1082   InsertedInstructions.clear();
1083   return Result;
1084 }
1085 
1086 SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) {
1087   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
1088   SizeOffsetAPInt Const = Visitor.compute(V);
1089   if (Const.bothKnown())
1090     return SizeOffsetValue(ConstantInt::get(Context, Const.Size),
1091                            ConstantInt::get(Context, Const.Offset));
1092 
1093   V = V->stripPointerCasts();
1094 
1095   // Check cache.
1096   CacheMapTy::iterator CacheIt = CacheMap.find(V);
1097   if (CacheIt != CacheMap.end())
1098     return CacheIt->second;
1099 
1100   // Always generate code immediately before the instruction being
1101   // processed, so that the generated code dominates the same BBs.
1102   BuilderTy::InsertPointGuard Guard(Builder);
1103   if (Instruction *I = dyn_cast<Instruction>(V))
1104     Builder.SetInsertPoint(I);
1105 
1106   // Now compute the size and offset.
1107   SizeOffsetValue Result;
1108 
1109   // Record the pointers that were handled in this run, so that they can be
1110   // cleaned later if something fails. We also use this set to break cycles that
1111   // can occur in dead code.
1112   if (!SeenVals.insert(V).second) {
1113     Result = ObjectSizeOffsetEvaluator::unknown();
1114   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1115     Result = visitGEPOperator(*GEP);
1116   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
1117     Result = visit(*I);
1118   } else if (isa<Argument>(V) ||
1119              (isa<ConstantExpr>(V) &&
1120               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
1121              isa<GlobalAlias>(V) ||
1122              isa<GlobalVariable>(V)) {
1123     // Ignore values where we cannot do more than ObjectSizeVisitor.
1124     Result = ObjectSizeOffsetEvaluator::unknown();
1125   } else {
1126     LLVM_DEBUG(
1127         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
1128                << '\n');
1129     Result = ObjectSizeOffsetEvaluator::unknown();
1130   }
1131 
1132   // Don't reuse CacheIt since it may be invalid at this point.
1133   CacheMap[V] = SizeOffsetWeakTrackingVH(Result);
1134   return Result;
1135 }
1136 
1137 SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
1138   if (!I.getAllocatedType()->isSized())
1139     return ObjectSizeOffsetEvaluator::unknown();
1140 
1141   // must be a VLA
1142   assert(I.isArrayAllocation());
1143 
1144   // If needed, adjust the alloca's operand size to match the pointer indexing
1145   // size. Subsequent math operations expect the types to match.
1146   Value *ArraySize = Builder.CreateZExtOrTrunc(
1147       I.getArraySize(),
1148       DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace()));
1149   assert(ArraySize->getType() == Zero->getType() &&
1150          "Expected zero constant to have pointer index type");
1151 
1152   Value *Size = ConstantInt::get(ArraySize->getType(),
1153                                  DL.getTypeAllocSize(I.getAllocatedType()));
1154   Size = Builder.CreateMul(Size, ArraySize);
1155   return SizeOffsetValue(Size, Zero);
1156 }
1157 
1158 SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
1159   std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
1160   if (!FnData)
1161     return ObjectSizeOffsetEvaluator::unknown();
1162 
1163   // Handle strdup-like functions separately.
1164   if (FnData->AllocTy == StrDupLike) {
1165     // TODO: implement evaluation of strdup/strndup
1166     return ObjectSizeOffsetEvaluator::unknown();
1167   }
1168 
1169   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
1170   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
1171   if (FnData->SndParam < 0)
1172     return SizeOffsetValue(FirstArg, Zero);
1173 
1174   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
1175   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
1176   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
1177   return SizeOffsetValue(Size, Zero);
1178 }
1179 
1180 SizeOffsetValue
1181 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) {
1182   return ObjectSizeOffsetEvaluator::unknown();
1183 }
1184 
1185 SizeOffsetValue
1186 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) {
1187   return ObjectSizeOffsetEvaluator::unknown();
1188 }
1189 
1190 SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1191   SizeOffsetValue PtrData = compute_(GEP.getPointerOperand());
1192   if (!PtrData.bothKnown())
1193     return ObjectSizeOffsetEvaluator::unknown();
1194 
1195   Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1196   Offset = Builder.CreateAdd(PtrData.Offset, Offset);
1197   return SizeOffsetValue(PtrData.Size, Offset);
1198 }
1199 
1200 SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) {
1201   // clueless
1202   return ObjectSizeOffsetEvaluator::unknown();
1203 }
1204 
1205 SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
1206   return ObjectSizeOffsetEvaluator::unknown();
1207 }
1208 
1209 SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1210   // Create 2 PHIs: one for size and another for offset.
1211   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1212   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1213 
1214   // Insert right away in the cache to handle recursive PHIs.
1215   CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI);
1216 
1217   // Compute offset/size for each PHI incoming pointer.
1218   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1219     BasicBlock *IncomingBlock = PHI.getIncomingBlock(i);
1220     Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt());
1221     SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i));
1222 
1223     if (!EdgeData.bothKnown()) {
1224       OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1225       OffsetPHI->eraseFromParent();
1226       InsertedInstructions.erase(OffsetPHI);
1227       SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1228       SizePHI->eraseFromParent();
1229       InsertedInstructions.erase(SizePHI);
1230       return ObjectSizeOffsetEvaluator::unknown();
1231     }
1232     SizePHI->addIncoming(EdgeData.Size, IncomingBlock);
1233     OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock);
1234   }
1235 
1236   Value *Size = SizePHI, *Offset = OffsetPHI;
1237   if (Value *Tmp = SizePHI->hasConstantValue()) {
1238     Size = Tmp;
1239     SizePHI->replaceAllUsesWith(Size);
1240     SizePHI->eraseFromParent();
1241     InsertedInstructions.erase(SizePHI);
1242   }
1243   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1244     Offset = Tmp;
1245     OffsetPHI->replaceAllUsesWith(Offset);
1246     OffsetPHI->eraseFromParent();
1247     InsertedInstructions.erase(OffsetPHI);
1248   }
1249   return SizeOffsetValue(Size, Offset);
1250 }
1251 
1252 SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1253   SizeOffsetValue TrueSide = compute_(I.getTrueValue());
1254   SizeOffsetValue FalseSide = compute_(I.getFalseValue());
1255 
1256   if (!TrueSide.bothKnown() || !FalseSide.bothKnown())
1257     return ObjectSizeOffsetEvaluator::unknown();
1258   if (TrueSide == FalseSide)
1259     return TrueSide;
1260 
1261   Value *Size =
1262       Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size);
1263   Value *Offset =
1264       Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset);
1265   return SizeOffsetValue(Size, Offset);
1266 }
1267 
1268 SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1269   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1270                     << '\n');
1271   return ObjectSizeOffsetEvaluator::unknown();
1272 }
1273