xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/TargetFolder.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/Utils/Local.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44 #include <numeric>
45 #include <optional>
46 #include <type_traits>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "memory-builtins"
52 
53 enum AllocType : uint8_t {
54   OpNewLike          = 1<<0, // allocates; never returns null
55   MallocLike         = 1<<1, // allocates; may return null
56   StrDupLike         = 1<<2,
57   MallocOrOpNewLike  = MallocLike | OpNewLike,
58   AllocLike          = MallocOrOpNewLike | StrDupLike,
59   AnyAlloc           = AllocLike
60 };
61 
62 enum class MallocFamily {
63   Malloc,
64   CPPNew,             // new(unsigned int)
65   CPPNewAligned,      // new(unsigned int, align_val_t)
66   CPPNewArray,        // new[](unsigned int)
67   CPPNewArrayAligned, // new[](unsigned long, align_val_t)
68   MSVCNew,            // new(unsigned int)
69   MSVCArrayNew,       // new[](unsigned int)
70   VecMalloc,
71   KmpcAllocShared,
72 };
73 
74 StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
75   switch (Family) {
76   case MallocFamily::Malloc:
77     return "malloc";
78   case MallocFamily::CPPNew:
79     return "_Znwm";
80   case MallocFamily::CPPNewAligned:
81     return "_ZnwmSt11align_val_t";
82   case MallocFamily::CPPNewArray:
83     return "_Znam";
84   case MallocFamily::CPPNewArrayAligned:
85     return "_ZnamSt11align_val_t";
86   case MallocFamily::MSVCNew:
87     return "??2@YAPAXI@Z";
88   case MallocFamily::MSVCArrayNew:
89     return "??_U@YAPAXI@Z";
90   case MallocFamily::VecMalloc:
91     return "vec_malloc";
92   case MallocFamily::KmpcAllocShared:
93     return "__kmpc_alloc_shared";
94   }
95   llvm_unreachable("missing an alloc family");
96 }
97 
98 struct AllocFnsTy {
99   AllocType AllocTy;
100   unsigned NumParams;
101   // First and Second size parameters (or -1 if unused)
102   int FstParam, SndParam;
103   // Alignment parameter for aligned_alloc and aligned new
104   int AlignParam;
105   // Name of default allocator function to group malloc/free calls by family
106   MallocFamily Family;
107 };
108 
109 // clang-format off
110 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
111 // know which functions are nounwind, noalias, nocapture parameters, etc.
112 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
113     {LibFunc_Znwj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int)
114     {LibFunc_ZnwjRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned int, nothrow)
115     {LibFunc_ZnwjSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t)
116     {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned int, align_val_t, nothrow)
117     {LibFunc_Znwm,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long)
118     {LibFunc_ZnwmRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNew}},             // new(unsigned long, nothrow)
119     {LibFunc_ZnwmSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t)
120     {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewAligned}},      // new(unsigned long, align_val_t, nothrow)
121     {LibFunc_Znaj,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int)
122     {LibFunc_ZnajRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned int, nothrow)
123     {LibFunc_ZnajSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
124     {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
125     {LibFunc_Znam,                              {OpNewLike,        1,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long)
126     {LibFunc_ZnamRKSt9nothrow_t,                {MallocLike,       2,  0, -1, -1, MallocFamily::CPPNewArray}},        // new[](unsigned long, nothrow)
127     {LibFunc_ZnamSt11align_val_t,               {OpNewLike,        2,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
128     {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike,       3,  0, -1,  1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
129     {LibFunc_msvc_new_int,                      {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int)
130     {LibFunc_msvc_new_int_nothrow,              {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned int, nothrow)
131     {LibFunc_msvc_new_longlong,                 {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long)
132     {LibFunc_msvc_new_longlong_nothrow,         {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCNew}},            // new(unsigned long long, nothrow)
133     {LibFunc_msvc_new_array_int,                {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int)
134     {LibFunc_msvc_new_array_int_nothrow,        {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned int, nothrow)
135     {LibFunc_msvc_new_array_longlong,           {OpNewLike,        1,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long)
136     {LibFunc_msvc_new_array_longlong_nothrow,   {MallocLike,       2,  0, -1, -1, MallocFamily::MSVCArrayNew}},       // new[](unsigned long long, nothrow)
137     {LibFunc_strdup,                            {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
138     {LibFunc_dunder_strdup,                     {StrDupLike,       1, -1, -1, -1, MallocFamily::Malloc}},
139     {LibFunc_strndup,                           {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
140     {LibFunc_dunder_strndup,                    {StrDupLike,       2,  1, -1, -1, MallocFamily::Malloc}},
141     {LibFunc___kmpc_alloc_shared,               {MallocLike,       1,  0, -1, -1, MallocFamily::KmpcAllocShared}},
142 };
143 // clang-format on
144 
145 static const Function *getCalledFunction(const Value *V,
146                                          bool &IsNoBuiltin) {
147   // Don't care about intrinsics in this case.
148   if (isa<IntrinsicInst>(V))
149     return nullptr;
150 
151   const auto *CB = dyn_cast<CallBase>(V);
152   if (!CB)
153     return nullptr;
154 
155   IsNoBuiltin = CB->isNoBuiltin();
156 
157   if (const Function *Callee = CB->getCalledFunction())
158     return Callee;
159   return nullptr;
160 }
161 
162 /// Returns the allocation data for the given value if it's a call to a known
163 /// allocation function.
164 static std::optional<AllocFnsTy>
165 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
166                              const TargetLibraryInfo *TLI) {
167   // Don't perform a slow TLI lookup, if this function doesn't return a pointer
168   // and thus can't be an allocation function.
169   if (!Callee->getReturnType()->isPointerTy())
170     return std::nullopt;
171 
172   // Make sure that the function is available.
173   LibFunc TLIFn;
174   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
175     return std::nullopt;
176 
177   const auto *Iter = find_if(
178       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
179         return P.first == TLIFn;
180       });
181 
182   if (Iter == std::end(AllocationFnData))
183     return std::nullopt;
184 
185   const AllocFnsTy *FnData = &Iter->second;
186   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
187     return std::nullopt;
188 
189   // Check function prototype.
190   int FstParam = FnData->FstParam;
191   int SndParam = FnData->SndParam;
192   FunctionType *FTy = Callee->getFunctionType();
193 
194   if (FTy->getReturnType()->isPointerTy() &&
195       FTy->getNumParams() == FnData->NumParams &&
196       (FstParam < 0 ||
197        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
198         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
199       (SndParam < 0 ||
200        FTy->getParamType(SndParam)->isIntegerTy(32) ||
201        FTy->getParamType(SndParam)->isIntegerTy(64)))
202     return *FnData;
203   return std::nullopt;
204 }
205 
206 static std::optional<AllocFnsTy>
207 getAllocationData(const Value *V, AllocType AllocTy,
208                   const TargetLibraryInfo *TLI) {
209   bool IsNoBuiltinCall;
210   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
211     if (!IsNoBuiltinCall)
212       return getAllocationDataForFunction(Callee, AllocTy, TLI);
213   return std::nullopt;
214 }
215 
216 static std::optional<AllocFnsTy>
217 getAllocationData(const Value *V, AllocType AllocTy,
218                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
219   bool IsNoBuiltinCall;
220   if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
221     if (!IsNoBuiltinCall)
222       return getAllocationDataForFunction(
223           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
224   return std::nullopt;
225 }
226 
227 static std::optional<AllocFnsTy>
228 getAllocationSize(const Value *V, const TargetLibraryInfo *TLI) {
229   bool IsNoBuiltinCall;
230   const Function *Callee =
231       getCalledFunction(V, IsNoBuiltinCall);
232   if (!Callee)
233     return std::nullopt;
234 
235   // Prefer to use existing information over allocsize. This will give us an
236   // accurate AllocTy.
237   if (!IsNoBuiltinCall)
238     if (std::optional<AllocFnsTy> Data =
239             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
240       return Data;
241 
242   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
243   if (Attr == Attribute())
244     return std::nullopt;
245 
246   std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs();
247 
248   AllocFnsTy Result;
249   // Because allocsize only tells us how many bytes are allocated, we're not
250   // really allowed to assume anything, so we use MallocLike.
251   Result.AllocTy = MallocLike;
252   Result.NumParams = Callee->getNumOperands();
253   Result.FstParam = Args.first;
254   Result.SndParam = Args.second.value_or(-1);
255   // Allocsize has no way to specify an alignment argument
256   Result.AlignParam = -1;
257   return Result;
258 }
259 
260 static AllocFnKind getAllocFnKind(const Value *V) {
261   if (const auto *CB = dyn_cast<CallBase>(V)) {
262     Attribute Attr = CB->getFnAttr(Attribute::AllocKind);
263     if (Attr.isValid())
264       return AllocFnKind(Attr.getValueAsInt());
265   }
266   return AllocFnKind::Unknown;
267 }
268 
269 static AllocFnKind getAllocFnKind(const Function *F) {
270   Attribute Attr = F->getFnAttribute(Attribute::AllocKind);
271   if (Attr.isValid())
272     return AllocFnKind(Attr.getValueAsInt());
273   return AllocFnKind::Unknown;
274 }
275 
276 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) {
277   return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown;
278 }
279 
280 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) {
281   return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown;
282 }
283 
284 /// Tests if a value is a call or invoke to a library function that
285 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
286 /// like).
287 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
288   return getAllocationData(V, AnyAlloc, TLI).has_value() ||
289          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
290 }
291 bool llvm::isAllocationFn(
292     const Value *V,
293     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
294   return getAllocationData(V, AnyAlloc, GetTLI).has_value() ||
295          checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc);
296 }
297 
298 /// Tests if a value is a call or invoke to a library function that
299 /// allocates memory via new.
300 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
301   return getAllocationData(V, OpNewLike, TLI).has_value();
302 }
303 
304 /// Tests if a value is a call or invoke to a library function that
305 /// allocates memory similar to malloc or calloc.
306 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
307   // TODO: Function behavior does not match name.
308   return getAllocationData(V, MallocOrOpNewLike, TLI).has_value();
309 }
310 
311 /// Tests if a value is a call or invoke to a library function that
312 /// allocates memory (either malloc, calloc, or strdup like).
313 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
314   return getAllocationData(V, AllocLike, TLI).has_value() ||
315          checkFnAllocKind(V, AllocFnKind::Alloc);
316 }
317 
318 /// Tests if a functions is a call or invoke to a library function that
319 /// reallocates memory (e.g., realloc).
320 bool llvm::isReallocLikeFn(const Function *F) {
321   return checkFnAllocKind(F, AllocFnKind::Realloc);
322 }
323 
324 Value *llvm::getReallocatedOperand(const CallBase *CB) {
325   if (checkFnAllocKind(CB, AllocFnKind::Realloc))
326     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
327   return nullptr;
328 }
329 
330 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) {
331   // Note: Removability is highly dependent on the source language.  For
332   // example, recent C++ requires direct calls to the global allocation
333   // [basic.stc.dynamic.allocation] to be observable unless part of a new
334   // expression [expr.new paragraph 13].
335 
336   // Historically we've treated the C family allocation routines and operator
337   // new as removable
338   return isAllocLikeFn(CB, TLI);
339 }
340 
341 Value *llvm::getAllocAlignment(const CallBase *V,
342                                const TargetLibraryInfo *TLI) {
343   const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
344   if (FnData && FnData->AlignParam >= 0) {
345     return V->getOperand(FnData->AlignParam);
346   }
347   return V->getArgOperandWithAttribute(Attribute::AllocAlign);
348 }
349 
350 /// When we're compiling N-bit code, and the user uses parameters that are
351 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
352 /// trouble with APInt size issues. This function handles resizing + overflow
353 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
354 /// I's value.
355 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
356   // More bits than we can handle. Checking the bit width isn't necessary, but
357   // it's faster than checking active bits, and should give `false` in the
358   // vast majority of cases.
359   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
360     return false;
361   if (I.getBitWidth() != IntTyBits)
362     I = I.zextOrTrunc(IntTyBits);
363   return true;
364 }
365 
366 std::optional<APInt>
367 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI,
368                    function_ref<const Value *(const Value *)> Mapper) {
369   // Note: This handles both explicitly listed allocation functions and
370   // allocsize.  The code structure could stand to be cleaned up a bit.
371   std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
372   if (!FnData)
373     return std::nullopt;
374 
375   // Get the index type for this address space, results and intermediate
376   // computations are performed at that width.
377   auto &DL = CB->getModule()->getDataLayout();
378   const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
379 
380   // Handle strdup-like functions separately.
381   if (FnData->AllocTy == StrDupLike) {
382     APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
383     if (!Size)
384       return std::nullopt;
385 
386     // Strndup limits strlen.
387     if (FnData->FstParam > 0) {
388       const ConstantInt *Arg =
389         dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
390       if (!Arg)
391         return std::nullopt;
392 
393       APInt MaxSize = Arg->getValue().zext(IntTyBits);
394       if (Size.ugt(MaxSize))
395         Size = MaxSize + 1;
396     }
397     return Size;
398   }
399 
400   const ConstantInt *Arg =
401     dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
402   if (!Arg)
403     return std::nullopt;
404 
405   APInt Size = Arg->getValue();
406   if (!CheckedZextOrTrunc(Size, IntTyBits))
407     return std::nullopt;
408 
409   // Size is determined by just 1 parameter.
410   if (FnData->SndParam < 0)
411     return Size;
412 
413   Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
414   if (!Arg)
415     return std::nullopt;
416 
417   APInt NumElems = Arg->getValue();
418   if (!CheckedZextOrTrunc(NumElems, IntTyBits))
419     return std::nullopt;
420 
421   bool Overflow;
422   Size = Size.umul_ov(NumElems, Overflow);
423   if (Overflow)
424     return std::nullopt;
425   return Size;
426 }
427 
428 Constant *llvm::getInitialValueOfAllocation(const Value *V,
429                                             const TargetLibraryInfo *TLI,
430                                             Type *Ty) {
431   auto *Alloc = dyn_cast<CallBase>(V);
432   if (!Alloc)
433     return nullptr;
434 
435   // malloc are uninitialized (undef)
436   if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value())
437     return UndefValue::get(Ty);
438 
439   AllocFnKind AK = getAllocFnKind(Alloc);
440   if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown)
441     return UndefValue::get(Ty);
442   if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown)
443     return Constant::getNullValue(Ty);
444 
445   return nullptr;
446 }
447 
448 struct FreeFnsTy {
449   unsigned NumParams;
450   // Name of default allocator function to group malloc/free calls by family
451   MallocFamily Family;
452 };
453 
454 // clang-format off
455 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
456     {LibFunc_ZdlPv,                              {1, MallocFamily::CPPNew}},             // operator delete(void*)
457     {LibFunc_ZdaPv,                              {1, MallocFamily::CPPNewArray}},        // operator delete[](void*)
458     {LibFunc_msvc_delete_ptr32,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
459     {LibFunc_msvc_delete_ptr64,                  {1, MallocFamily::MSVCNew}},            // operator delete(void*)
460     {LibFunc_msvc_delete_array_ptr32,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
461     {LibFunc_msvc_delete_array_ptr64,            {1, MallocFamily::MSVCArrayNew}},       // operator delete[](void*)
462     {LibFunc_ZdlPvj,                             {2, MallocFamily::CPPNew}},             // delete(void*, uint)
463     {LibFunc_ZdlPvm,                             {2, MallocFamily::CPPNew}},             // delete(void*, ulong)
464     {LibFunc_ZdlPvRKSt9nothrow_t,                {2, MallocFamily::CPPNew}},             // delete(void*, nothrow)
465     {LibFunc_ZdlPvSt11align_val_t,               {2, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t)
466     {LibFunc_ZdaPvj,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, uint)
467     {LibFunc_ZdaPvm,                             {2, MallocFamily::CPPNewArray}},        // delete[](void*, ulong)
468     {LibFunc_ZdaPvRKSt9nothrow_t,                {2, MallocFamily::CPPNewArray}},        // delete[](void*, nothrow)
469     {LibFunc_ZdaPvSt11align_val_t,               {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
470     {LibFunc_msvc_delete_ptr32_int,              {2, MallocFamily::MSVCNew}},            // delete(void*, uint)
471     {LibFunc_msvc_delete_ptr64_longlong,         {2, MallocFamily::MSVCNew}},            // delete(void*, ulonglong)
472     {LibFunc_msvc_delete_ptr32_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
473     {LibFunc_msvc_delete_ptr64_nothrow,          {2, MallocFamily::MSVCNew}},            // delete(void*, nothrow)
474     {LibFunc_msvc_delete_array_ptr32_int,        {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, uint)
475     {LibFunc_msvc_delete_array_ptr64_longlong,   {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, ulonglong)
476     {LibFunc_msvc_delete_array_ptr32_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
477     {LibFunc_msvc_delete_array_ptr64_nothrow,    {2, MallocFamily::MSVCArrayNew}},       // delete[](void*, nothrow)
478     {LibFunc___kmpc_free_shared,                 {2, MallocFamily::KmpcAllocShared}},    // OpenMP Offloading RTL free
479     {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}},      // delete(void*, align_val_t, nothrow)
480     {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
481     {LibFunc_ZdlPvjSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned int, align_val_t)
482     {LibFunc_ZdlPvmSt11align_val_t,              {3, MallocFamily::CPPNewAligned}},      // delete(void*, unsigned long, align_val_t)
483     {LibFunc_ZdaPvjSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
484     {LibFunc_ZdaPvmSt11align_val_t,              {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
485 };
486 // clang-format on
487 
488 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
489                                                         const LibFunc TLIFn) {
490   const auto *Iter =
491       find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
492         return P.first == TLIFn;
493       });
494   if (Iter == std::end(FreeFnData))
495     return std::nullopt;
496   return Iter->second;
497 }
498 
499 std::optional<StringRef>
500 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) {
501   bool IsNoBuiltin;
502   const Function *Callee = getCalledFunction(I, IsNoBuiltin);
503   if (Callee == nullptr || IsNoBuiltin)
504     return std::nullopt;
505   LibFunc TLIFn;
506 
507   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) {
508     // Callee is some known library function.
509     const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
510     if (AllocData)
511       return mangledNameForMallocFamily(AllocData->Family);
512     const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
513     if (FreeData)
514       return mangledNameForMallocFamily(FreeData->Family);
515   }
516   // Callee isn't a known library function, still check attributes.
517   if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc |
518                               AllocFnKind::Realloc)) {
519     Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family");
520     if (Attr.isValid())
521       return Attr.getValueAsString();
522   }
523   return std::nullopt;
524 }
525 
526 /// isLibFreeFunction - Returns true if the function is a builtin free()
527 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
528   std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
529   if (!FnData)
530     return checkFnAllocKind(F, AllocFnKind::Free);
531 
532   // Check free prototype.
533   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
534   // attribute will exist.
535   FunctionType *FTy = F->getFunctionType();
536   if (!FTy->getReturnType()->isVoidTy())
537     return false;
538   if (FTy->getNumParams() != FnData->NumParams)
539     return false;
540   if (!FTy->getParamType(0)->isPointerTy())
541     return false;
542 
543   return true;
544 }
545 
546 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) {
547   bool IsNoBuiltinCall;
548   const Function *Callee = getCalledFunction(CB, IsNoBuiltinCall);
549   if (Callee == nullptr || IsNoBuiltinCall)
550     return nullptr;
551 
552   LibFunc TLIFn;
553   if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) &&
554       isLibFreeFunction(Callee, TLIFn)) {
555     // All currently supported free functions free the first argument.
556     return CB->getArgOperand(0);
557   }
558 
559   if (checkFnAllocKind(CB, AllocFnKind::Free))
560     return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer);
561 
562   return nullptr;
563 }
564 
565 //===----------------------------------------------------------------------===//
566 //  Utility functions to compute size of objects.
567 //
568 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
569   if (Data.second.isNegative() || Data.first.ult(Data.second))
570     return APInt(Data.first.getBitWidth(), 0);
571   return Data.first - Data.second;
572 }
573 
574 /// Compute the size of the object pointed by Ptr. Returns true and the
575 /// object size in Size if successful, and false otherwise.
576 /// If RoundToAlign is true, then Size is rounded up to the alignment of
577 /// allocas, byval arguments, and global variables.
578 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
579                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
580   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
581   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
582   if (!Visitor.bothKnown(Data))
583     return false;
584 
585   Size = getSizeWithOverflow(Data).getZExtValue();
586   return true;
587 }
588 
589 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
590                                  const DataLayout &DL,
591                                  const TargetLibraryInfo *TLI,
592                                  bool MustSucceed) {
593   return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
594                              MustSucceed);
595 }
596 
597 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
598                                  const DataLayout &DL,
599                                  const TargetLibraryInfo *TLI, AAResults *AA,
600                                  bool MustSucceed) {
601   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
602          "ObjectSize must be a call to llvm.objectsize!");
603 
604   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
605   ObjectSizeOpts EvalOptions;
606   EvalOptions.AA = AA;
607 
608   // Unless we have to fold this to something, try to be as accurate as
609   // possible.
610   if (MustSucceed)
611     EvalOptions.EvalMode =
612         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
613   else
614     EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset;
615 
616   EvalOptions.NullIsUnknownSize =
617       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
618 
619   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
620   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
621   if (StaticOnly) {
622     // FIXME: Does it make sense to just return a failure value if the size won't
623     // fit in the output and `!MustSucceed`?
624     uint64_t Size;
625     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
626         isUIntN(ResultType->getBitWidth(), Size))
627       return ConstantInt::get(ResultType, Size);
628   } else {
629     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
630     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
631     SizeOffsetEvalType SizeOffsetPair =
632         Eval.compute(ObjectSize->getArgOperand(0));
633 
634     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
635       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
636       Builder.SetInsertPoint(ObjectSize);
637 
638       // If we've outside the end of the object, then we can always access
639       // exactly 0 bytes.
640       Value *ResultSize =
641           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
642       Value *UseZero =
643           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
644       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
645       Value *Ret = Builder.CreateSelect(
646           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
647 
648       // The non-constant size expression cannot evaluate to -1.
649       if (!isa<Constant>(SizeOffsetPair.first) ||
650           !isa<Constant>(SizeOffsetPair.second))
651         Builder.CreateAssumption(
652             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
653 
654       return Ret;
655     }
656   }
657 
658   if (!MustSucceed)
659     return nullptr;
660 
661   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
662 }
663 
664 STATISTIC(ObjectVisitorArgument,
665           "Number of arguments with unsolved size and offset");
666 STATISTIC(ObjectVisitorLoad,
667           "Number of load instructions with unsolved size and offset");
668 
669 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
670   if (Options.RoundToAlign && Alignment)
671     return APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment));
672   return Size;
673 }
674 
675 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
676                                                  const TargetLibraryInfo *TLI,
677                                                  LLVMContext &Context,
678                                                  ObjectSizeOpts Options)
679     : DL(DL), TLI(TLI), Options(Options) {
680   // Pointer size must be rechecked for each object visited since it could have
681   // a different address space.
682 }
683 
684 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
685   unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
686 
687   // Stripping pointer casts can strip address space casts which can change the
688   // index type size. The invariant is that we use the value type to determine
689   // the index type size and if we stripped address space casts we have to
690   // readjust the APInt as we pass it upwards in order for the APInt to match
691   // the type the caller passed in.
692   APInt Offset(InitialIntTyBits, 0);
693   V = V->stripAndAccumulateConstantOffsets(
694       DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
695 
696   // Later we use the index type size and zero but it will match the type of the
697   // value that is passed to computeImpl.
698   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
699   Zero = APInt::getZero(IntTyBits);
700 
701   bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
702   if (!IndexTypeSizeChanged && Offset.isZero())
703     return computeImpl(V);
704 
705   // We stripped an address space cast that changed the index type size or we
706   // accumulated some constant offset (or both). Readjust the bit width to match
707   // the argument index type size and apply the offset, as required.
708   SizeOffsetType SOT = computeImpl(V);
709   if (IndexTypeSizeChanged) {
710     if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
711       SOT.first = APInt();
712     if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
713       SOT.second = APInt();
714   }
715   // If the computed offset is "unknown" we cannot add the stripped offset.
716   return {SOT.first,
717           SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
718 }
719 
720 SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
721   if (Instruction *I = dyn_cast<Instruction>(V)) {
722     // If we have already seen this instruction, bail out. Cycles can happen in
723     // unreachable code after constant propagation.
724     if (!SeenInsts.insert(I).second)
725       return unknown();
726 
727     return visit(*I);
728   }
729   if (Argument *A = dyn_cast<Argument>(V))
730     return visitArgument(*A);
731   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
732     return visitConstantPointerNull(*P);
733   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
734     return visitGlobalAlias(*GA);
735   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
736     return visitGlobalVariable(*GV);
737   if (UndefValue *UV = dyn_cast<UndefValue>(V))
738     return visitUndefValue(*UV);
739 
740   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
741                     << *V << '\n');
742   return unknown();
743 }
744 
745 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
746   return ::CheckedZextOrTrunc(I, IntTyBits);
747 }
748 
749 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
750   TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
751   if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
752     return unknown();
753   APInt Size(IntTyBits, ElemSize.getKnownMinValue());
754   if (!I.isArrayAllocation())
755     return std::make_pair(align(Size, I.getAlign()), Zero);
756 
757   Value *ArraySize = I.getArraySize();
758   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
759     APInt NumElems = C->getValue();
760     if (!CheckedZextOrTrunc(NumElems))
761       return unknown();
762 
763     bool Overflow;
764     Size = Size.umul_ov(NumElems, Overflow);
765     return Overflow ? unknown()
766                     : std::make_pair(align(Size, I.getAlign()), Zero);
767   }
768   return unknown();
769 }
770 
771 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
772   Type *MemoryTy = A.getPointeeInMemoryValueType();
773   // No interprocedural analysis is done at the moment.
774   if (!MemoryTy|| !MemoryTy->isSized()) {
775     ++ObjectVisitorArgument;
776     return unknown();
777   }
778 
779   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
780   return std::make_pair(align(Size, A.getParamAlign()), Zero);
781 }
782 
783 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
784   if (std::optional<APInt> Size = getAllocSize(&CB, TLI))
785     return std::make_pair(*Size, Zero);
786   return unknown();
787 }
788 
789 SizeOffsetType
790 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
791   // If null is unknown, there's nothing we can do. Additionally, non-zero
792   // address spaces can make use of null, so we don't presume to know anything
793   // about that.
794   //
795   // TODO: How should this work with address space casts? We currently just drop
796   // them on the floor, but it's unclear what we should do when a NULL from
797   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
798   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
799     return unknown();
800   return std::make_pair(Zero, Zero);
801 }
802 
803 SizeOffsetType
804 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
805   return unknown();
806 }
807 
808 SizeOffsetType
809 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
810   // Easy cases were already folded by previous passes.
811   return unknown();
812 }
813 
814 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
815   if (GA.isInterposable())
816     return unknown();
817   return compute(GA.getAliasee());
818 }
819 
820 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
821   if (!GV.hasDefinitiveInitializer())
822     return unknown();
823 
824   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
825   return std::make_pair(align(Size, GV.getAlign()), Zero);
826 }
827 
828 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
829   // clueless
830   return unknown();
831 }
832 
833 SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset(
834     LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
835     SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks,
836     unsigned &ScannedInstCount) {
837   constexpr unsigned MaxInstsToScan = 128;
838 
839   auto Where = VisitedBlocks.find(&BB);
840   if (Where != VisitedBlocks.end())
841     return Where->second;
842 
843   auto Unknown = [this, &BB, &VisitedBlocks]() {
844     return VisitedBlocks[&BB] = unknown();
845   };
846   auto Known = [&BB, &VisitedBlocks](SizeOffsetType SO) {
847     return VisitedBlocks[&BB] = SO;
848   };
849 
850   do {
851     Instruction &I = *From;
852 
853     if (I.isDebugOrPseudoInst())
854       continue;
855 
856     if (++ScannedInstCount > MaxInstsToScan)
857       return Unknown();
858 
859     if (!I.mayWriteToMemory())
860       continue;
861 
862     if (auto *SI = dyn_cast<StoreInst>(&I)) {
863       AliasResult AR =
864           Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
865       switch ((AliasResult::Kind)AR) {
866       case AliasResult::NoAlias:
867         continue;
868       case AliasResult::MustAlias:
869         if (SI->getValueOperand()->getType()->isPointerTy())
870           return Known(compute(SI->getValueOperand()));
871         else
872           return Unknown(); // No handling of non-pointer values by `compute`.
873       default:
874         return Unknown();
875       }
876     }
877 
878     if (auto *CB = dyn_cast<CallBase>(&I)) {
879       Function *Callee = CB->getCalledFunction();
880       // Bail out on indirect call.
881       if (!Callee)
882         return Unknown();
883 
884       LibFunc TLIFn;
885       if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
886           !TLI->has(TLIFn))
887         return Unknown();
888 
889       // TODO: There's probably more interesting case to support here.
890       if (TLIFn != LibFunc_posix_memalign)
891         return Unknown();
892 
893       AliasResult AR =
894           Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
895       switch ((AliasResult::Kind)AR) {
896       case AliasResult::NoAlias:
897         continue;
898       case AliasResult::MustAlias:
899         break;
900       default:
901         return Unknown();
902       }
903 
904       // Is the error status of posix_memalign correctly checked? If not it
905       // would be incorrect to assume it succeeds and load doesn't see the
906       // previous value.
907       std::optional<bool> Checked = isImpliedByDomCondition(
908           ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
909       if (!Checked || !*Checked)
910         return Unknown();
911 
912       Value *Size = CB->getOperand(2);
913       auto *C = dyn_cast<ConstantInt>(Size);
914       if (!C)
915         return Unknown();
916 
917       return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
918     }
919 
920     return Unknown();
921   } while (From-- != BB.begin());
922 
923   SmallVector<SizeOffsetType> PredecessorSizeOffsets;
924   for (auto *PredBB : predecessors(&BB)) {
925     PredecessorSizeOffsets.push_back(findLoadSizeOffset(
926         Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
927         VisitedBlocks, ScannedInstCount));
928     if (!bothKnown(PredecessorSizeOffsets.back()))
929       return Unknown();
930   }
931 
932   if (PredecessorSizeOffsets.empty())
933     return Unknown();
934 
935   return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1,
936                                PredecessorSizeOffsets.end(),
937                                PredecessorSizeOffsets.front(),
938                                [this](SizeOffsetType LHS, SizeOffsetType RHS) {
939                                  return combineSizeOffset(LHS, RHS);
940                                }));
941 }
942 
943 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
944   if (!Options.AA) {
945     ++ObjectVisitorLoad;
946     return unknown();
947   }
948 
949   SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks;
950   unsigned ScannedInstCount = 0;
951   SizeOffsetType SO =
952       findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
953                          VisitedBlocks, ScannedInstCount);
954   if (!bothKnown(SO))
955     ++ObjectVisitorLoad;
956   return SO;
957 }
958 
959 SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS,
960                                                           SizeOffsetType RHS) {
961   if (!bothKnown(LHS) || !bothKnown(RHS))
962     return unknown();
963 
964   switch (Options.EvalMode) {
965   case ObjectSizeOpts::Mode::Min:
966     return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
967   case ObjectSizeOpts::Mode::Max:
968     return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
969   case ObjectSizeOpts::Mode::ExactSizeFromOffset:
970     return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS
971                                                                    : unknown();
972   case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset:
973     return LHS == RHS && LHS.second.eq(RHS.second) ? LHS : unknown();
974   }
975   llvm_unreachable("missing an eval mode");
976 }
977 
978 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
979   auto IncomingValues = PN.incoming_values();
980   return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
981                          compute(*IncomingValues.begin()),
982                          [this](SizeOffsetType LHS, Value *VRHS) {
983                            return combineSizeOffset(LHS, compute(VRHS));
984                          });
985 }
986 
987 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
988   return combineSizeOffset(compute(I.getTrueValue()),
989                            compute(I.getFalseValue()));
990 }
991 
992 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
993   return std::make_pair(Zero, Zero);
994 }
995 
996 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
997   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
998                     << '\n');
999   return unknown();
1000 }
1001 
1002 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
1003     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
1004     ObjectSizeOpts EvalOpts)
1005     : DL(DL), TLI(TLI), Context(Context),
1006       Builder(Context, TargetFolder(DL),
1007               IRBuilderCallbackInserter(
1008                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
1009       EvalOpts(EvalOpts) {
1010   // IntTy and Zero must be set for each compute() since the address space may
1011   // be different for later objects.
1012 }
1013 
1014 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
1015   // XXX - Are vectors of pointers possible here?
1016   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
1017   Zero = ConstantInt::get(IntTy, 0);
1018 
1019   SizeOffsetEvalType Result = compute_(V);
1020 
1021   if (!bothKnown(Result)) {
1022     // Erase everything that was computed in this iteration from the cache, so
1023     // that no dangling references are left behind. We could be a bit smarter if
1024     // we kept a dependency graph. It's probably not worth the complexity.
1025     for (const Value *SeenVal : SeenVals) {
1026       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
1027       // non-computable results can be safely cached
1028       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
1029         CacheMap.erase(CacheIt);
1030     }
1031 
1032     // Erase any instructions we inserted as part of the traversal.
1033     for (Instruction *I : InsertedInstructions) {
1034       I->replaceAllUsesWith(PoisonValue::get(I->getType()));
1035       I->eraseFromParent();
1036     }
1037   }
1038 
1039   SeenVals.clear();
1040   InsertedInstructions.clear();
1041   return Result;
1042 }
1043 
1044 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
1045   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
1046   SizeOffsetType Const = Visitor.compute(V);
1047   if (Visitor.bothKnown(Const))
1048     return std::make_pair(ConstantInt::get(Context, Const.first),
1049                           ConstantInt::get(Context, Const.second));
1050 
1051   V = V->stripPointerCasts();
1052 
1053   // Check cache.
1054   CacheMapTy::iterator CacheIt = CacheMap.find(V);
1055   if (CacheIt != CacheMap.end())
1056     return CacheIt->second;
1057 
1058   // Always generate code immediately before the instruction being
1059   // processed, so that the generated code dominates the same BBs.
1060   BuilderTy::InsertPointGuard Guard(Builder);
1061   if (Instruction *I = dyn_cast<Instruction>(V))
1062     Builder.SetInsertPoint(I);
1063 
1064   // Now compute the size and offset.
1065   SizeOffsetEvalType Result;
1066 
1067   // Record the pointers that were handled in this run, so that they can be
1068   // cleaned later if something fails. We also use this set to break cycles that
1069   // can occur in dead code.
1070   if (!SeenVals.insert(V).second) {
1071     Result = unknown();
1072   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1073     Result = visitGEPOperator(*GEP);
1074   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
1075     Result = visit(*I);
1076   } else if (isa<Argument>(V) ||
1077              (isa<ConstantExpr>(V) &&
1078               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
1079              isa<GlobalAlias>(V) ||
1080              isa<GlobalVariable>(V)) {
1081     // Ignore values where we cannot do more than ObjectSizeVisitor.
1082     Result = unknown();
1083   } else {
1084     LLVM_DEBUG(
1085         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
1086                << '\n');
1087     Result = unknown();
1088   }
1089 
1090   // Don't reuse CacheIt since it may be invalid at this point.
1091   CacheMap[V] = Result;
1092   return Result;
1093 }
1094 
1095 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
1096   if (!I.getAllocatedType()->isSized())
1097     return unknown();
1098 
1099   // must be a VLA
1100   assert(I.isArrayAllocation());
1101 
1102   // If needed, adjust the alloca's operand size to match the pointer size.
1103   // Subsequent math operations expect the types to match.
1104   Value *ArraySize = Builder.CreateZExtOrTrunc(
1105       I.getArraySize(), DL.getIntPtrType(I.getContext()));
1106   assert(ArraySize->getType() == Zero->getType() &&
1107          "Expected zero constant to have pointer type");
1108 
1109   Value *Size = ConstantInt::get(ArraySize->getType(),
1110                                  DL.getTypeAllocSize(I.getAllocatedType()));
1111   Size = Builder.CreateMul(Size, ArraySize);
1112   return std::make_pair(Size, Zero);
1113 }
1114 
1115 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
1116   std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
1117   if (!FnData)
1118     return unknown();
1119 
1120   // Handle strdup-like functions separately.
1121   if (FnData->AllocTy == StrDupLike) {
1122     // TODO: implement evaluation of strdup/strndup
1123     return unknown();
1124   }
1125 
1126   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
1127   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
1128   if (FnData->SndParam < 0)
1129     return std::make_pair(FirstArg, Zero);
1130 
1131   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
1132   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
1133   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
1134   return std::make_pair(Size, Zero);
1135 }
1136 
1137 SizeOffsetEvalType
1138 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
1139   return unknown();
1140 }
1141 
1142 SizeOffsetEvalType
1143 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1144   return unknown();
1145 }
1146 
1147 SizeOffsetEvalType
1148 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1149   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1150   if (!bothKnown(PtrData))
1151     return unknown();
1152 
1153   Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1154   Offset = Builder.CreateAdd(PtrData.second, Offset);
1155   return std::make_pair(PtrData.first, Offset);
1156 }
1157 
1158 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1159   // clueless
1160   return unknown();
1161 }
1162 
1163 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
1164   return unknown();
1165 }
1166 
1167 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1168   // Create 2 PHIs: one for size and another for offset.
1169   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1170   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1171 
1172   // Insert right away in the cache to handle recursive PHIs.
1173   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1174 
1175   // Compute offset/size for each PHI incoming pointer.
1176   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1177     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1178     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1179 
1180     if (!bothKnown(EdgeData)) {
1181       OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1182       OffsetPHI->eraseFromParent();
1183       InsertedInstructions.erase(OffsetPHI);
1184       SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy));
1185       SizePHI->eraseFromParent();
1186       InsertedInstructions.erase(SizePHI);
1187       return unknown();
1188     }
1189     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1190     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1191   }
1192 
1193   Value *Size = SizePHI, *Offset = OffsetPHI;
1194   if (Value *Tmp = SizePHI->hasConstantValue()) {
1195     Size = Tmp;
1196     SizePHI->replaceAllUsesWith(Size);
1197     SizePHI->eraseFromParent();
1198     InsertedInstructions.erase(SizePHI);
1199   }
1200   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1201     Offset = Tmp;
1202     OffsetPHI->replaceAllUsesWith(Offset);
1203     OffsetPHI->eraseFromParent();
1204     InsertedInstructions.erase(OffsetPHI);
1205   }
1206   return std::make_pair(Size, Offset);
1207 }
1208 
1209 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1210   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1211   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1212 
1213   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1214     return unknown();
1215   if (TrueSide == FalseSide)
1216     return TrueSide;
1217 
1218   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1219                                      FalseSide.first);
1220   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1221                                        FalseSide.second);
1222   return std::make_pair(Size, Offset);
1223 }
1224 
1225 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1226   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1227                     << '\n');
1228   return unknown();
1229 }
1230