xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MemoryBuiltins.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70 
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_vec_malloc,          {MallocLike,  1, 0,  -1}},
76   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
77   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
78   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
79   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
80   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
81                                 {MallocLike,  3, 0,  -1}},
82   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
83   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
84   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
85   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
86                                 {MallocLike,  3, 0,  -1}},
87   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
88   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
89   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
90   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
91                                 {MallocLike,  3, 0,  -1}},
92   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
93   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
94   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
95   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
96                                  {MallocLike,  3, 0,  -1}},
97   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
98   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
99   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
100   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
101   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
102   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
103   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
104   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
105   {LibFunc_aligned_alloc,       {AlignedAllocLike, 2, 1,  -1}},
106   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
107   {LibFunc_vec_calloc,          {CallocLike,  2, 0,   1}},
108   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
109   {LibFunc_vec_realloc,         {ReallocLike, 2, 1,  -1}},
110   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
111   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
112   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}}
113   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
114 };
115 
116 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
117                                          bool &IsNoBuiltin) {
118   // Don't care about intrinsics in this case.
119   if (isa<IntrinsicInst>(V))
120     return nullptr;
121 
122   if (LookThroughBitCast)
123     V = V->stripPointerCasts();
124 
125   const auto *CB = dyn_cast<CallBase>(V);
126   if (!CB)
127     return nullptr;
128 
129   IsNoBuiltin = CB->isNoBuiltin();
130 
131   if (const Function *Callee = CB->getCalledFunction())
132     return Callee;
133   return nullptr;
134 }
135 
136 /// Returns the allocation data for the given value if it's either a call to a
137 /// known allocation function, or a call to a function with the allocsize
138 /// attribute.
139 static Optional<AllocFnsTy>
140 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
141                              const TargetLibraryInfo *TLI) {
142   // Make sure that the function is available.
143   StringRef FnName = Callee->getName();
144   LibFunc TLIFn;
145   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
146     return None;
147 
148   const auto *Iter = find_if(
149       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
150         return P.first == TLIFn;
151       });
152 
153   if (Iter == std::end(AllocationFnData))
154     return None;
155 
156   const AllocFnsTy *FnData = &Iter->second;
157   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
158     return None;
159 
160   // Check function prototype.
161   int FstParam = FnData->FstParam;
162   int SndParam = FnData->SndParam;
163   FunctionType *FTy = Callee->getFunctionType();
164 
165   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
166       FTy->getNumParams() == FnData->NumParams &&
167       (FstParam < 0 ||
168        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
169         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
170       (SndParam < 0 ||
171        FTy->getParamType(SndParam)->isIntegerTy(32) ||
172        FTy->getParamType(SndParam)->isIntegerTy(64)))
173     return *FnData;
174   return None;
175 }
176 
177 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
178                                               const TargetLibraryInfo *TLI,
179                                               bool LookThroughBitCast = false) {
180   bool IsNoBuiltinCall;
181   if (const Function *Callee =
182           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
183     if (!IsNoBuiltinCall)
184       return getAllocationDataForFunction(Callee, AllocTy, TLI);
185   return None;
186 }
187 
188 static Optional<AllocFnsTy>
189 getAllocationData(const Value *V, AllocType AllocTy,
190                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
191                   bool LookThroughBitCast = false) {
192   bool IsNoBuiltinCall;
193   if (const Function *Callee =
194           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
195     if (!IsNoBuiltinCall)
196       return getAllocationDataForFunction(
197           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
198   return None;
199 }
200 
201 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
202                                               const TargetLibraryInfo *TLI) {
203   bool IsNoBuiltinCall;
204   const Function *Callee =
205       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
206   if (!Callee)
207     return None;
208 
209   // Prefer to use existing information over allocsize. This will give us an
210   // accurate AllocTy.
211   if (!IsNoBuiltinCall)
212     if (Optional<AllocFnsTy> Data =
213             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
214       return Data;
215 
216   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
217   if (Attr == Attribute())
218     return None;
219 
220   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
221 
222   AllocFnsTy Result;
223   // Because allocsize only tells us how many bytes are allocated, we're not
224   // really allowed to assume anything, so we use MallocLike.
225   Result.AllocTy = MallocLike;
226   Result.NumParams = Callee->getNumOperands();
227   Result.FstParam = Args.first;
228   Result.SndParam = Args.second.getValueOr(-1);
229   return Result;
230 }
231 
232 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
233   const auto *CB =
234       dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V);
235   return CB && CB->hasRetAttr(Attribute::NoAlias);
236 }
237 
238 /// Tests if a value is a call or invoke to a library function that
239 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
240 /// like).
241 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
242                           bool LookThroughBitCast) {
243   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
244 }
245 bool llvm::isAllocationFn(
246     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
247     bool LookThroughBitCast) {
248   return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
249 }
250 
251 /// Tests if a value is a call or invoke to a function that returns a
252 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
253 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
254                        bool LookThroughBitCast) {
255   // it's safe to consider realloc as noalias since accessing the original
256   // pointer is undefined behavior
257   return isAllocationFn(V, TLI, LookThroughBitCast) ||
258          hasNoAliasAttr(V, LookThroughBitCast);
259 }
260 
261 /// Tests if a value is a call or invoke to a library function that
262 /// allocates uninitialized memory (such as malloc).
263 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
264                           bool LookThroughBitCast) {
265   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
266 }
267 bool llvm::isMallocLikeFn(
268     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
269     bool LookThroughBitCast) {
270   return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
271       .hasValue();
272 }
273 
274 /// Tests if a value is a call or invoke to a library function that
275 /// allocates uninitialized memory with alignment (such as aligned_alloc).
276 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
277                                 bool LookThroughBitCast) {
278   return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast)
279       .hasValue();
280 }
281 bool llvm::isAlignedAllocLikeFn(
282     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
283     bool LookThroughBitCast) {
284   return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast)
285       .hasValue();
286 }
287 
288 /// Tests if a value is a call or invoke to a library function that
289 /// allocates zero-filled memory (such as calloc).
290 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
291                           bool LookThroughBitCast) {
292   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
293 }
294 
295 /// Tests if a value is a call or invoke to a library function that
296 /// allocates memory similar to malloc or calloc.
297 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
298                                   bool LookThroughBitCast) {
299   return getAllocationData(V, MallocOrCallocLike, TLI,
300                            LookThroughBitCast).hasValue();
301 }
302 
303 /// Tests if a value is a call or invoke to a library function that
304 /// allocates memory (either malloc, calloc, or strdup like).
305 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
306                          bool LookThroughBitCast) {
307   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
308 }
309 
310 /// Tests if a value is a call or invoke to a library function that
311 /// reallocates memory (e.g., realloc).
312 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
313                      bool LookThroughBitCast) {
314   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
315 }
316 
317 /// Tests if a functions is a call or invoke to a library function that
318 /// reallocates memory (e.g., realloc).
319 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
320   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
321 }
322 
323 /// Tests if a value is a call or invoke to a library function that
324 /// allocates memory and throws if an allocation failed (e.g., new).
325 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
326                      bool LookThroughBitCast) {
327   return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
328 }
329 
330 /// Tests if a value is a call or invoke to a library function that
331 /// allocates memory (strdup, strndup).
332 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
333                           bool LookThroughBitCast) {
334   return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
335 }
336 
337 /// extractMallocCall - Returns the corresponding CallInst if the instruction
338 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
339 /// ignore InvokeInst here.
340 const CallInst *llvm::extractMallocCall(
341     const Value *I,
342     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
343   return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
344 }
345 
346 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
347                                const TargetLibraryInfo *TLI,
348                                bool LookThroughSExt = false) {
349   if (!CI)
350     return nullptr;
351 
352   // The size of the malloc's result type must be known to determine array size.
353   Type *T = getMallocAllocatedType(CI, TLI);
354   if (!T || !T->isSized())
355     return nullptr;
356 
357   unsigned ElementSize = DL.getTypeAllocSize(T);
358   if (StructType *ST = dyn_cast<StructType>(T))
359     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
360 
361   // If malloc call's arg can be determined to be a multiple of ElementSize,
362   // return the multiple.  Otherwise, return NULL.
363   Value *MallocArg = CI->getArgOperand(0);
364   Value *Multiple = nullptr;
365   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
366     return Multiple;
367 
368   return nullptr;
369 }
370 
371 /// getMallocType - Returns the PointerType resulting from the malloc call.
372 /// The PointerType depends on the number of bitcast uses of the malloc call:
373 ///   0: PointerType is the calls' return type.
374 ///   1: PointerType is the bitcast's result type.
375 ///  >1: Unique PointerType cannot be determined, return NULL.
376 PointerType *llvm::getMallocType(const CallInst *CI,
377                                  const TargetLibraryInfo *TLI) {
378   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
379 
380   PointerType *MallocType = nullptr;
381   unsigned NumOfBitCastUses = 0;
382 
383   // Determine if CallInst has a bitcast use.
384   for (const User *U : CI->users())
385     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
386       MallocType = cast<PointerType>(BCI->getDestTy());
387       NumOfBitCastUses++;
388     }
389 
390   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
391   if (NumOfBitCastUses == 1)
392     return MallocType;
393 
394   // Malloc call was not bitcast, so type is the malloc function's return type.
395   if (NumOfBitCastUses == 0)
396     return cast<PointerType>(CI->getType());
397 
398   // Type could not be determined.
399   return nullptr;
400 }
401 
402 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
403 /// The Type depends on the number of bitcast uses of the malloc call:
404 ///   0: PointerType is the malloc calls' return type.
405 ///   1: PointerType is the bitcast's result type.
406 ///  >1: Unique PointerType cannot be determined, return NULL.
407 Type *llvm::getMallocAllocatedType(const CallInst *CI,
408                                    const TargetLibraryInfo *TLI) {
409   PointerType *PT = getMallocType(CI, TLI);
410   return PT ? PT->getElementType() : nullptr;
411 }
412 
413 /// getMallocArraySize - Returns the array size of a malloc call.  If the
414 /// argument passed to malloc is a multiple of the size of the malloced type,
415 /// then return that multiple.  For non-array mallocs, the multiple is
416 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
417 /// determined.
418 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
419                                 const TargetLibraryInfo *TLI,
420                                 bool LookThroughSExt) {
421   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
422   return computeArraySize(CI, DL, TLI, LookThroughSExt);
423 }
424 
425 /// extractCallocCall - Returns the corresponding CallInst if the instruction
426 /// is a calloc call.
427 const CallInst *llvm::extractCallocCall(const Value *I,
428                                         const TargetLibraryInfo *TLI) {
429   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
430 }
431 
432 /// isLibFreeFunction - Returns true if the function is a builtin free()
433 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
434   unsigned ExpectedNumParams;
435   if (TLIFn == LibFunc_free ||
436       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
437       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
438       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
439       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
440       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
441       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
442     ExpectedNumParams = 1;
443   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
444            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
445            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
446            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
447            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
448            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
449            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
450            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
451            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
452            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
453            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
454            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
455            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
456            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
457            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
458            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
459     ExpectedNumParams = 2;
460   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
461            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
462            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
463            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
464            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
465            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
466     ExpectedNumParams = 3;
467   else
468     return false;
469 
470   // Check free prototype.
471   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
472   // attribute will exist.
473   FunctionType *FTy = F->getFunctionType();
474   if (!FTy->getReturnType()->isVoidTy())
475     return false;
476   if (FTy->getNumParams() != ExpectedNumParams)
477     return false;
478   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
479     return false;
480 
481   return true;
482 }
483 
484 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
485 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
486   bool IsNoBuiltinCall;
487   const Function *Callee =
488       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
489   if (Callee == nullptr || IsNoBuiltinCall)
490     return nullptr;
491 
492   StringRef FnName = Callee->getName();
493   LibFunc TLIFn;
494   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
495     return nullptr;
496 
497   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
498 }
499 
500 
501 //===----------------------------------------------------------------------===//
502 //  Utility functions to compute size of objects.
503 //
504 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
505   if (Data.second.isNegative() || Data.first.ult(Data.second))
506     return APInt(Data.first.getBitWidth(), 0);
507   return Data.first - Data.second;
508 }
509 
510 /// Compute the size of the object pointed by Ptr. Returns true and the
511 /// object size in Size if successful, and false otherwise.
512 /// If RoundToAlign is true, then Size is rounded up to the alignment of
513 /// allocas, byval arguments, and global variables.
514 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
515                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
516   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
517   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
518   if (!Visitor.bothKnown(Data))
519     return false;
520 
521   Size = getSizeWithOverflow(Data).getZExtValue();
522   return true;
523 }
524 
525 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
526                                  const DataLayout &DL,
527                                  const TargetLibraryInfo *TLI,
528                                  bool MustSucceed) {
529   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
530          "ObjectSize must be a call to llvm.objectsize!");
531 
532   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
533   ObjectSizeOpts EvalOptions;
534   // Unless we have to fold this to something, try to be as accurate as
535   // possible.
536   if (MustSucceed)
537     EvalOptions.EvalMode =
538         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
539   else
540     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
541 
542   EvalOptions.NullIsUnknownSize =
543       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
544 
545   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
546   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
547   if (StaticOnly) {
548     // FIXME: Does it make sense to just return a failure value if the size won't
549     // fit in the output and `!MustSucceed`?
550     uint64_t Size;
551     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
552         isUIntN(ResultType->getBitWidth(), Size))
553       return ConstantInt::get(ResultType, Size);
554   } else {
555     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
556     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
557     SizeOffsetEvalType SizeOffsetPair =
558         Eval.compute(ObjectSize->getArgOperand(0));
559 
560     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
561       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
562       Builder.SetInsertPoint(ObjectSize);
563 
564       // If we've outside the end of the object, then we can always access
565       // exactly 0 bytes.
566       Value *ResultSize =
567           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
568       Value *UseZero =
569           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
570       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
571       Value *Ret = Builder.CreateSelect(
572           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
573 
574       // The non-constant size expression cannot evaluate to -1.
575       if (!isa<Constant>(SizeOffsetPair.first) ||
576           !isa<Constant>(SizeOffsetPair.second))
577         Builder.CreateAssumption(
578             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
579 
580       return Ret;
581     }
582   }
583 
584   if (!MustSucceed)
585     return nullptr;
586 
587   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
588 }
589 
590 STATISTIC(ObjectVisitorArgument,
591           "Number of arguments with unsolved size and offset");
592 STATISTIC(ObjectVisitorLoad,
593           "Number of load instructions with unsolved size and offset");
594 
595 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
596   if (Options.RoundToAlign && Alignment)
597     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
598   return Size;
599 }
600 
601 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
602                                                  const TargetLibraryInfo *TLI,
603                                                  LLVMContext &Context,
604                                                  ObjectSizeOpts Options)
605     : DL(DL), TLI(TLI), Options(Options) {
606   // Pointer size must be rechecked for each object visited since it could have
607   // a different address space.
608 }
609 
610 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
611   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
612   Zero = APInt::getNullValue(IntTyBits);
613 
614   V = V->stripPointerCasts();
615   if (Instruction *I = dyn_cast<Instruction>(V)) {
616     // If we have already seen this instruction, bail out. Cycles can happen in
617     // unreachable code after constant propagation.
618     if (!SeenInsts.insert(I).second)
619       return unknown();
620 
621     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
622       return visitGEPOperator(*GEP);
623     return visit(*I);
624   }
625   if (Argument *A = dyn_cast<Argument>(V))
626     return visitArgument(*A);
627   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
628     return visitConstantPointerNull(*P);
629   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
630     return visitGlobalAlias(*GA);
631   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
632     return visitGlobalVariable(*GV);
633   if (UndefValue *UV = dyn_cast<UndefValue>(V))
634     return visitUndefValue(*UV);
635   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
636     if (CE->getOpcode() == Instruction::IntToPtr)
637       return unknown(); // clueless
638     if (CE->getOpcode() == Instruction::GetElementPtr)
639       return visitGEPOperator(cast<GEPOperator>(*CE));
640   }
641 
642   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
643                     << *V << '\n');
644   return unknown();
645 }
646 
647 /// When we're compiling N-bit code, and the user uses parameters that are
648 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
649 /// trouble with APInt size issues. This function handles resizing + overflow
650 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
651 /// I's value.
652 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
653   // More bits than we can handle. Checking the bit width isn't necessary, but
654   // it's faster than checking active bits, and should give `false` in the
655   // vast majority of cases.
656   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
657     return false;
658   if (I.getBitWidth() != IntTyBits)
659     I = I.zextOrTrunc(IntTyBits);
660   return true;
661 }
662 
663 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
664   if (!I.getAllocatedType()->isSized())
665     return unknown();
666 
667   if (isa<ScalableVectorType>(I.getAllocatedType()))
668     return unknown();
669 
670   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
671   if (!I.isArrayAllocation())
672     return std::make_pair(align(Size, I.getAlignment()), Zero);
673 
674   Value *ArraySize = I.getArraySize();
675   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
676     APInt NumElems = C->getValue();
677     if (!CheckedZextOrTrunc(NumElems))
678       return unknown();
679 
680     bool Overflow;
681     Size = Size.umul_ov(NumElems, Overflow);
682     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
683                                                  Zero);
684   }
685   return unknown();
686 }
687 
688 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
689   Type *MemoryTy = A.getPointeeInMemoryValueType();
690   // No interprocedural analysis is done at the moment.
691   if (!MemoryTy|| !MemoryTy->isSized()) {
692     ++ObjectVisitorArgument;
693     return unknown();
694   }
695 
696   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
697   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
698 }
699 
700 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
701   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
702   if (!FnData)
703     return unknown();
704 
705   // Handle strdup-like functions separately.
706   if (FnData->AllocTy == StrDupLike) {
707     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
708     if (!Size)
709       return unknown();
710 
711     // Strndup limits strlen.
712     if (FnData->FstParam > 0) {
713       ConstantInt *Arg =
714           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
715       if (!Arg)
716         return unknown();
717 
718       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
719       if (Size.ugt(MaxSize))
720         Size = MaxSize + 1;
721     }
722     return std::make_pair(Size, Zero);
723   }
724 
725   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
726   if (!Arg)
727     return unknown();
728 
729   APInt Size = Arg->getValue();
730   if (!CheckedZextOrTrunc(Size))
731     return unknown();
732 
733   // Size is determined by just 1 parameter.
734   if (FnData->SndParam < 0)
735     return std::make_pair(Size, Zero);
736 
737   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
738   if (!Arg)
739     return unknown();
740 
741   APInt NumElems = Arg->getValue();
742   if (!CheckedZextOrTrunc(NumElems))
743     return unknown();
744 
745   bool Overflow;
746   Size = Size.umul_ov(NumElems, Overflow);
747   return Overflow ? unknown() : std::make_pair(Size, Zero);
748 
749   // TODO: handle more standard functions (+ wchar cousins):
750   // - strdup / strndup
751   // - strcpy / strncpy
752   // - strcat / strncat
753   // - memcpy / memmove
754   // - strcat / strncat
755   // - memset
756 }
757 
758 SizeOffsetType
759 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
760   // If null is unknown, there's nothing we can do. Additionally, non-zero
761   // address spaces can make use of null, so we don't presume to know anything
762   // about that.
763   //
764   // TODO: How should this work with address space casts? We currently just drop
765   // them on the floor, but it's unclear what we should do when a NULL from
766   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
767   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
768     return unknown();
769   return std::make_pair(Zero, Zero);
770 }
771 
772 SizeOffsetType
773 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
774   return unknown();
775 }
776 
777 SizeOffsetType
778 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
779   // Easy cases were already folded by previous passes.
780   return unknown();
781 }
782 
783 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
784   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
785   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
786   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
787     return unknown();
788 
789   return std::make_pair(PtrData.first, PtrData.second + Offset);
790 }
791 
792 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
793   if (GA.isInterposable())
794     return unknown();
795   return compute(GA.getAliasee());
796 }
797 
798 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
799   if (!GV.hasDefinitiveInitializer())
800     return unknown();
801 
802   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
803   return std::make_pair(align(Size, GV.getAlignment()), Zero);
804 }
805 
806 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
807   // clueless
808   return unknown();
809 }
810 
811 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
812   ++ObjectVisitorLoad;
813   return unknown();
814 }
815 
816 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
817   // too complex to analyze statically.
818   return unknown();
819 }
820 
821 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
822   SizeOffsetType TrueSide  = compute(I.getTrueValue());
823   SizeOffsetType FalseSide = compute(I.getFalseValue());
824   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
825     if (TrueSide == FalseSide) {
826         return TrueSide;
827     }
828 
829     APInt TrueResult = getSizeWithOverflow(TrueSide);
830     APInt FalseResult = getSizeWithOverflow(FalseSide);
831 
832     if (TrueResult == FalseResult) {
833       return TrueSide;
834     }
835     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
836       if (TrueResult.slt(FalseResult))
837         return TrueSide;
838       return FalseSide;
839     }
840     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
841       if (TrueResult.sgt(FalseResult))
842         return TrueSide;
843       return FalseSide;
844     }
845   }
846   return unknown();
847 }
848 
849 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
850   return std::make_pair(Zero, Zero);
851 }
852 
853 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
854   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
855                     << '\n');
856   return unknown();
857 }
858 
859 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
860     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
861     ObjectSizeOpts EvalOpts)
862     : DL(DL), TLI(TLI), Context(Context),
863       Builder(Context, TargetFolder(DL),
864               IRBuilderCallbackInserter(
865                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
866       EvalOpts(EvalOpts) {
867   // IntTy and Zero must be set for each compute() since the address space may
868   // be different for later objects.
869 }
870 
871 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
872   // XXX - Are vectors of pointers possible here?
873   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
874   Zero = ConstantInt::get(IntTy, 0);
875 
876   SizeOffsetEvalType Result = compute_(V);
877 
878   if (!bothKnown(Result)) {
879     // Erase everything that was computed in this iteration from the cache, so
880     // that no dangling references are left behind. We could be a bit smarter if
881     // we kept a dependency graph. It's probably not worth the complexity.
882     for (const Value *SeenVal : SeenVals) {
883       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
884       // non-computable results can be safely cached
885       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
886         CacheMap.erase(CacheIt);
887     }
888 
889     // Erase any instructions we inserted as part of the traversal.
890     for (Instruction *I : InsertedInstructions) {
891       I->replaceAllUsesWith(UndefValue::get(I->getType()));
892       I->eraseFromParent();
893     }
894   }
895 
896   SeenVals.clear();
897   InsertedInstructions.clear();
898   return Result;
899 }
900 
901 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
902   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
903   SizeOffsetType Const = Visitor.compute(V);
904   if (Visitor.bothKnown(Const))
905     return std::make_pair(ConstantInt::get(Context, Const.first),
906                           ConstantInt::get(Context, Const.second));
907 
908   V = V->stripPointerCasts();
909 
910   // Check cache.
911   CacheMapTy::iterator CacheIt = CacheMap.find(V);
912   if (CacheIt != CacheMap.end())
913     return CacheIt->second;
914 
915   // Always generate code immediately before the instruction being
916   // processed, so that the generated code dominates the same BBs.
917   BuilderTy::InsertPointGuard Guard(Builder);
918   if (Instruction *I = dyn_cast<Instruction>(V))
919     Builder.SetInsertPoint(I);
920 
921   // Now compute the size and offset.
922   SizeOffsetEvalType Result;
923 
924   // Record the pointers that were handled in this run, so that they can be
925   // cleaned later if something fails. We also use this set to break cycles that
926   // can occur in dead code.
927   if (!SeenVals.insert(V).second) {
928     Result = unknown();
929   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
930     Result = visitGEPOperator(*GEP);
931   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
932     Result = visit(*I);
933   } else if (isa<Argument>(V) ||
934              (isa<ConstantExpr>(V) &&
935               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
936              isa<GlobalAlias>(V) ||
937              isa<GlobalVariable>(V)) {
938     // Ignore values where we cannot do more than ObjectSizeVisitor.
939     Result = unknown();
940   } else {
941     LLVM_DEBUG(
942         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
943                << '\n');
944     Result = unknown();
945   }
946 
947   // Don't reuse CacheIt since it may be invalid at this point.
948   CacheMap[V] = Result;
949   return Result;
950 }
951 
952 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
953   if (!I.getAllocatedType()->isSized())
954     return unknown();
955 
956   // must be a VLA
957   assert(I.isArrayAllocation());
958   Value *ArraySize = I.getArraySize();
959   Value *Size = ConstantInt::get(ArraySize->getType(),
960                                  DL.getTypeAllocSize(I.getAllocatedType()));
961   Size = Builder.CreateMul(Size, ArraySize);
962   return std::make_pair(Size, Zero);
963 }
964 
965 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
966   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
967   if (!FnData)
968     return unknown();
969 
970   // Handle strdup-like functions separately.
971   if (FnData->AllocTy == StrDupLike) {
972     // TODO
973     return unknown();
974   }
975 
976   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
977   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
978   if (FnData->SndParam < 0)
979     return std::make_pair(FirstArg, Zero);
980 
981   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
982   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
983   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
984   return std::make_pair(Size, Zero);
985 
986   // TODO: handle more standard functions (+ wchar cousins):
987   // - strdup / strndup
988   // - strcpy / strncpy
989   // - strcat / strncat
990   // - memcpy / memmove
991   // - strcat / strncat
992   // - memset
993 }
994 
995 SizeOffsetEvalType
996 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
997   return unknown();
998 }
999 
1000 SizeOffsetEvalType
1001 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1002   return unknown();
1003 }
1004 
1005 SizeOffsetEvalType
1006 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1007   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1008   if (!bothKnown(PtrData))
1009     return unknown();
1010 
1011   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1012   Offset = Builder.CreateAdd(PtrData.second, Offset);
1013   return std::make_pair(PtrData.first, Offset);
1014 }
1015 
1016 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1017   // clueless
1018   return unknown();
1019 }
1020 
1021 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
1022   return unknown();
1023 }
1024 
1025 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1026   // Create 2 PHIs: one for size and another for offset.
1027   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1028   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1029 
1030   // Insert right away in the cache to handle recursive PHIs.
1031   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1032 
1033   // Compute offset/size for each PHI incoming pointer.
1034   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1035     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1036     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1037 
1038     if (!bothKnown(EdgeData)) {
1039       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1040       OffsetPHI->eraseFromParent();
1041       InsertedInstructions.erase(OffsetPHI);
1042       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1043       SizePHI->eraseFromParent();
1044       InsertedInstructions.erase(SizePHI);
1045       return unknown();
1046     }
1047     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1048     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1049   }
1050 
1051   Value *Size = SizePHI, *Offset = OffsetPHI;
1052   if (Value *Tmp = SizePHI->hasConstantValue()) {
1053     Size = Tmp;
1054     SizePHI->replaceAllUsesWith(Size);
1055     SizePHI->eraseFromParent();
1056     InsertedInstructions.erase(SizePHI);
1057   }
1058   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1059     Offset = Tmp;
1060     OffsetPHI->replaceAllUsesWith(Offset);
1061     OffsetPHI->eraseFromParent();
1062     InsertedInstructions.erase(OffsetPHI);
1063   }
1064   return std::make_pair(Size, Offset);
1065 }
1066 
1067 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1068   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1069   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1070 
1071   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1072     return unknown();
1073   if (TrueSide == FalseSide)
1074     return TrueSide;
1075 
1076   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1077                                      FalseSide.first);
1078   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1079                                        FalseSide.second);
1080   return std::make_pair(Size, Offset);
1081 }
1082 
1083 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1084   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1085                     << '\n');
1086   return unknown();
1087 }
1088