1 //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the interface between the inliner and a learned model. 10 // It delegates model evaluation to either the AOT compiled model (the 11 // 'release' mode) or a runtime-loaded model (the 'development' case). 12 // 13 //===----------------------------------------------------------------------===// 14 #include "llvm/Analysis/MLInlineAdvisor.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/Analysis/AssumptionCache.h" 17 #include "llvm/Analysis/CallGraph.h" 18 #include "llvm/Analysis/FunctionPropertiesAnalysis.h" 19 #include "llvm/Analysis/InlineCost.h" 20 #include "llvm/Analysis/InlineModelFeatureMaps.h" 21 #include "llvm/Analysis/InteractiveModelRunner.h" 22 #include "llvm/Analysis/LazyCallGraph.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MLModelRunner.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ReleaseModeModelRunner.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InstIterator.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace llvm; 34 35 static cl::opt<std::string> InteractiveChannelBaseName( 36 "inliner-interactive-channel-base", cl::Hidden, 37 cl::desc( 38 "Base file path for the interactive mode. The incoming filename should " 39 "have the name <inliner-interactive-channel-base>.in, while the " 40 "outgoing name should be <inliner-interactive-channel-base>.out")); 41 static const std::string InclDefaultMsg = 42 (Twine("In interactive mode, also send the default policy decision: ") + 43 DefaultDecisionName + ".") 44 .str(); 45 static cl::opt<bool> 46 InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden, 47 cl::desc(InclDefaultMsg)); 48 49 #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL) 50 // codegen-ed file 51 #include "InlinerSizeModel.h" // NOLINT 52 using CompiledModelType = llvm::InlinerSizeModel; 53 #else 54 using CompiledModelType = NoopSavedModelImpl; 55 #endif 56 57 std::unique_ptr<InlineAdvisor> 58 llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM, 59 std::function<bool(CallBase &)> GetDefaultAdvice) { 60 if (!llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() && 61 InteractiveChannelBaseName.empty()) 62 return nullptr; 63 std::unique_ptr<MLModelRunner> AOTRunner; 64 if (InteractiveChannelBaseName.empty()) 65 AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( 66 M.getContext(), FeatureMap, DecisionName); 67 else { 68 auto Features = FeatureMap; 69 if (InteractiveIncludeDefault) 70 Features.push_back(DefaultDecisionSpec); 71 AOTRunner = std::make_unique<InteractiveModelRunner>( 72 M.getContext(), Features, InlineDecisionSpec, 73 InteractiveChannelBaseName + ".out", 74 InteractiveChannelBaseName + ".in"); 75 } 76 return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner), 77 GetDefaultAdvice); 78 } 79 80 #define DEBUG_TYPE "inline-ml" 81 82 static cl::opt<float> SizeIncreaseThreshold( 83 "ml-advisor-size-increase-threshold", cl::Hidden, 84 cl::desc("Maximum factor by which expected native size may increase before " 85 "blocking any further inlining."), 86 cl::init(2.0)); 87 88 static cl::opt<bool> KeepFPICache( 89 "ml-advisor-keep-fpi-cache", cl::Hidden, 90 cl::desc( 91 "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"), 92 cl::init(false)); 93 94 // clang-format off 95 const std::vector<TensorSpec> llvm::FeatureMap{ 96 #define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE), 97 // InlineCost features - these must come first 98 INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES) 99 100 // Non-cost features 101 INLINE_FEATURE_ITERATOR(POPULATE_NAMES) 102 #undef POPULATE_NAMES 103 }; 104 // clang-format on 105 106 const char *const llvm::DecisionName = "inlining_decision"; 107 const TensorSpec llvm::InlineDecisionSpec = 108 TensorSpec::createSpec<int64_t>(DecisionName, {1}); 109 const char *const llvm::DefaultDecisionName = "inlining_default"; 110 const TensorSpec llvm::DefaultDecisionSpec = 111 TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}); 112 const char *const llvm::RewardName = "delta_size"; 113 114 CallBase *getInlinableCS(Instruction &I) { 115 if (auto *CS = dyn_cast<CallBase>(&I)) 116 if (Function *Callee = CS->getCalledFunction()) { 117 if (!Callee->isDeclaration()) { 118 return CS; 119 } 120 } 121 return nullptr; 122 } 123 124 MLInlineAdvisor::MLInlineAdvisor( 125 Module &M, ModuleAnalysisManager &MAM, 126 std::unique_ptr<MLModelRunner> Runner, 127 std::function<bool(CallBase &)> GetDefaultAdvice) 128 : InlineAdvisor( 129 M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), 130 ModelRunner(std::move(Runner)), GetDefaultAdvice(GetDefaultAdvice), 131 CG(MAM.getResult<LazyCallGraphAnalysis>(M)), 132 InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) { 133 assert(ModelRunner); 134 ModelRunner->switchContext(""); 135 // Extract the 'call site height' feature - the position of a call site 136 // relative to the farthest statically reachable SCC node. We don't mutate 137 // this value while inlining happens. Empirically, this feature proved 138 // critical in behavioral cloning - i.e. training a model to mimic the manual 139 // heuristic's decisions - and, thus, equally important for training for 140 // improvement. 141 CallGraph CGraph(M); 142 for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) { 143 const std::vector<CallGraphNode *> &CGNodes = *I; 144 unsigned Level = 0; 145 for (auto *CGNode : CGNodes) { 146 Function *F = CGNode->getFunction(); 147 if (!F || F->isDeclaration()) 148 continue; 149 for (auto &I : instructions(F)) { 150 if (auto *CS = getInlinableCS(I)) { 151 auto *Called = CS->getCalledFunction(); 152 auto Pos = FunctionLevels.find(&CG.get(*Called)); 153 // In bottom up traversal, an inlinable callee is either in the 154 // same SCC, or to a function in a visited SCC. So not finding its 155 // level means we haven't visited it yet, meaning it's in this SCC. 156 if (Pos == FunctionLevels.end()) 157 continue; 158 Level = std::max(Level, Pos->second + 1); 159 } 160 } 161 } 162 for (auto *CGNode : CGNodes) { 163 Function *F = CGNode->getFunction(); 164 if (F && !F->isDeclaration()) 165 FunctionLevels[&CG.get(*F)] = Level; 166 } 167 } 168 for (auto KVP : FunctionLevels) { 169 AllNodes.insert(KVP.first); 170 EdgeCount += getLocalCalls(KVP.first->getFunction()); 171 } 172 NodeCount = AllNodes.size(); 173 } 174 175 unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const { 176 return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0; 177 } 178 179 void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) { 180 if (!LastSCC || ForceStop) 181 return; 182 FPICache.clear(); 183 // Function passes executed between InlinerPass runs may have changed the 184 // module-wide features. 185 // The cgscc pass manager rules are such that: 186 // - if a pass leads to merging SCCs, then the pipeline is restarted on the 187 // merged SCC 188 // - if a pass leads to splitting the SCC, then we continue with one of the 189 // splits 190 // This means that the NodesInLastSCC is a superset (not strict) of the nodes 191 // that subsequent passes would have processed 192 // - in addition, if new Nodes were created by a pass (e.g. CoroSplit), 193 // they'd be adjacent to Nodes in the last SCC. So we just need to check the 194 // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't 195 // care about the nature of the Edge (call or ref). `FunctionLevels`-wise, we 196 // record them at the same level as the original node (this is a choice, may 197 // need revisiting). 198 NodeCount -= static_cast<int64_t>(NodesInLastSCC.size()); 199 while (!NodesInLastSCC.empty()) { 200 const auto *N = *NodesInLastSCC.begin(); 201 NodesInLastSCC.erase(N); 202 // The Function wrapped by N could have been deleted since we last saw it. 203 if (N->isDead()) { 204 assert(!N->getFunction().isDeclaration()); 205 continue; 206 } 207 ++NodeCount; 208 EdgeCount += getLocalCalls(N->getFunction()); 209 const auto NLevel = FunctionLevels.at(N); 210 for (const auto &E : *(*N)) { 211 const auto *AdjNode = &E.getNode(); 212 assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration()); 213 auto I = AllNodes.insert(AdjNode); 214 if (I.second) { 215 NodesInLastSCC.insert(AdjNode); 216 FunctionLevels[AdjNode] = NLevel; 217 } 218 } 219 } 220 221 EdgeCount -= EdgesOfLastSeenNodes; 222 EdgesOfLastSeenNodes = 0; 223 224 // (Re)use NodesInLastSCC to remember the nodes in the SCC right now, 225 // in case the SCC is split before onPassExit and some nodes are split out 226 assert(NodesInLastSCC.empty()); 227 for (const auto &N : *LastSCC) 228 NodesInLastSCC.insert(&N); 229 } 230 231 void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) { 232 // No need to keep this around - function passes will invalidate it. 233 if (!KeepFPICache) 234 FPICache.clear(); 235 if (!LastSCC || ForceStop) 236 return; 237 // Keep track of the nodes and edges we last saw. Then, in onPassEntry, 238 // we update the node count and edge count from the subset of these nodes that 239 // survived. 240 EdgesOfLastSeenNodes = 0; 241 242 // Check on nodes that were in SCC onPassEntry 243 for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) { 244 if ((*I)->isDead()) 245 NodesInLastSCC.erase(*I++); 246 else 247 EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction()); 248 } 249 250 // Check on nodes that may have got added to SCC 251 for (const auto &N : *LastSCC) { 252 assert(!N.isDead()); 253 auto I = NodesInLastSCC.insert(&N); 254 if (I.second) 255 EdgesOfLastSeenNodes += getLocalCalls(N.getFunction()); 256 } 257 assert(NodeCount >= NodesInLastSCC.size()); 258 assert(EdgeCount >= EdgesOfLastSeenNodes); 259 } 260 261 int64_t MLInlineAdvisor::getLocalCalls(Function &F) { 262 return getCachedFPI(F).DirectCallsToDefinedFunctions; 263 } 264 265 // Update the internal state of the advisor, and force invalidate feature 266 // analysis. Currently, we maintain minimal (and very simple) global state - the 267 // number of functions and the number of static calls. We also keep track of the 268 // total IR size in this module, to stop misbehaving policies at a certain bloat 269 // factor (SizeIncreaseThreshold) 270 void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice, 271 bool CalleeWasDeleted) { 272 assert(!ForceStop); 273 Function *Caller = Advice.getCaller(); 274 Function *Callee = Advice.getCallee(); 275 // The caller features aren't valid anymore. 276 { 277 PreservedAnalyses PA = PreservedAnalyses::all(); 278 PA.abandon<FunctionPropertiesAnalysis>(); 279 PA.abandon<DominatorTreeAnalysis>(); 280 PA.abandon<LoopAnalysis>(); 281 FAM.invalidate(*Caller, PA); 282 } 283 Advice.updateCachedCallerFPI(FAM); 284 int64_t IRSizeAfter = 285 getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize); 286 CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize); 287 if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize) 288 ForceStop = true; 289 290 // We can delta-update module-wide features. We know the inlining only changed 291 // the caller, and maybe the callee (by deleting the latter). 292 // Nodes are simple to update. 293 // For edges, we 'forget' the edges that the caller and callee used to have 294 // before inlining, and add back what they currently have together. 295 int64_t NewCallerAndCalleeEdges = 296 getCachedFPI(*Caller).DirectCallsToDefinedFunctions; 297 298 if (CalleeWasDeleted) 299 --NodeCount; 300 else 301 NewCallerAndCalleeEdges += 302 getCachedFPI(*Callee).DirectCallsToDefinedFunctions; 303 EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges); 304 assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0); 305 } 306 307 int64_t MLInlineAdvisor::getModuleIRSize() const { 308 int64_t Ret = 0; 309 for (auto &F : M) 310 if (!F.isDeclaration()) 311 Ret += getIRSize(F); 312 return Ret; 313 } 314 315 FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const { 316 auto InsertPair = 317 FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo())); 318 if (!InsertPair.second) 319 return InsertPair.first->second; 320 InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F); 321 return InsertPair.first->second; 322 } 323 324 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) { 325 if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB)) 326 return Skip; 327 328 auto &Caller = *CB.getCaller(); 329 auto &Callee = *CB.getCalledFunction(); 330 331 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 332 return FAM.getResult<AssumptionAnalysis>(F); 333 }; 334 auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee); 335 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller); 336 337 auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE); 338 // If this is a "never inline" case, there won't be any changes to internal 339 // state we need to track, so we can just return the base InlineAdvice, which 340 // will do nothing interesting. 341 // Same thing if this is a recursive case. 342 if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never || 343 &Caller == &Callee) 344 return getMandatoryAdvice(CB, false); 345 346 bool Mandatory = 347 MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always; 348 349 // If we need to stop, we won't want to track anymore any state changes, so 350 // we just return the base InlineAdvice, which acts as a noop. 351 if (ForceStop) { 352 ORE.emit([&] { 353 return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB) 354 << "Won't attempt inlining because module size grew too much."; 355 }); 356 return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory); 357 } 358 359 int CostEstimate = 0; 360 if (!Mandatory) { 361 auto IsCallSiteInlinable = 362 llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache); 363 if (!IsCallSiteInlinable) { 364 // We can't inline this for correctness reasons, so return the base 365 // InlineAdvice, as we don't care about tracking any state changes (which 366 // won't happen). 367 return std::make_unique<InlineAdvice>(this, CB, ORE, false); 368 } 369 CostEstimate = *IsCallSiteInlinable; 370 } 371 372 const auto CostFeatures = 373 llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache); 374 if (!CostFeatures) { 375 return std::make_unique<InlineAdvice>(this, CB, ORE, false); 376 } 377 378 if (Mandatory) 379 return getMandatoryAdvice(CB, true); 380 381 auto NrCtantParams = 0; 382 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 383 NrCtantParams += (isa<Constant>(*I)); 384 } 385 386 auto &CallerBefore = getCachedFPI(Caller); 387 auto &CalleeBefore = getCachedFPI(Callee); 388 389 *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) = 390 CalleeBefore.BasicBlockCount; 391 *ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) = 392 getInitialFunctionLevel(Caller); 393 *ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount; 394 *ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) = 395 NrCtantParams; 396 *ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount; 397 *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) = 398 CallerBefore.Uses; 399 *ModelRunner->getTensor<int64_t>( 400 FeatureIndex::caller_conditionally_executed_blocks) = 401 CallerBefore.BlocksReachedFromConditionalInstruction; 402 *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) = 403 CallerBefore.BasicBlockCount; 404 *ModelRunner->getTensor<int64_t>( 405 FeatureIndex::callee_conditionally_executed_blocks) = 406 CalleeBefore.BlocksReachedFromConditionalInstruction; 407 *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) = 408 CalleeBefore.Uses; 409 *ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate; 410 411 // Add the cost features 412 for (size_t I = 0; 413 I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) { 414 *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature( 415 static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I); 416 } 417 // This one would have been set up to be right at the end. 418 if (!InteractiveChannelBaseName.empty() && InteractiveIncludeDefault) 419 *ModelRunner->getTensor<int64_t>(InlineCostFeatureIndex::NumberOfFeatures) = 420 GetDefaultAdvice(CB); 421 return getAdviceFromModel(CB, ORE); 422 } 423 424 std::unique_ptr<MLInlineAdvice> 425 MLInlineAdvisor::getAdviceFromModel(CallBase &CB, 426 OptimizationRemarkEmitter &ORE) { 427 return std::make_unique<MLInlineAdvice>( 428 this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>())); 429 } 430 431 std::unique_ptr<InlineAdvice> 432 MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) { 433 if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller()) 434 .isReachableFromEntry(CB.getParent())) 435 return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false); 436 return nullptr; 437 } 438 439 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, 440 bool Advice) { 441 // Make sure we track inlinings in all cases - mandatory or not. 442 if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB)) 443 return Skip; 444 if (Advice && !ForceStop) 445 return getMandatoryAdviceImpl(CB); 446 447 // If this is a "never inline" case, there won't be any changes to internal 448 // state we need to track, so we can just return the base InlineAdvice, which 449 // will do nothing interesting. 450 // Same if we are forced to stop - we don't track anymore. 451 return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice); 452 } 453 454 std::unique_ptr<MLInlineAdvice> 455 MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 456 return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true); 457 } 458 459 void MLInlineAdvisor::print(raw_ostream &OS) const { 460 OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount 461 << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n"; 462 OS << "[MLInlineAdvisor] FPI:\n"; 463 for (auto I : FPICache) { 464 OS << I.first->getName() << ":\n"; 465 I.second.print(OS); 466 OS << "\n"; 467 } 468 OS << "\n"; 469 OS << "[MLInlineAdvisor] FuncLevels:\n"; 470 for (auto I : FunctionLevels) 471 OS << (I.first->isDead() ? "<deleted>" : I.first->getFunction().getName()) 472 << " : " << I.second << "\n"; 473 474 OS << "\n"; 475 } 476 477 MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB, 478 OptimizationRemarkEmitter &ORE, 479 bool Recommendation) 480 : InlineAdvice(Advisor, CB, ORE, Recommendation), 481 CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)), 482 CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)), 483 CallerAndCalleeEdges(Advisor->isForcedToStop() 484 ? 0 485 : (Advisor->getLocalCalls(*Caller) + 486 Advisor->getLocalCalls(*Callee))), 487 PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) { 488 if (Recommendation) 489 FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB); 490 } 491 492 void MLInlineAdvice::reportContextForRemark( 493 DiagnosticInfoOptimizationBase &OR) { 494 using namespace ore; 495 OR << NV("Callee", Callee->getName()); 496 for (size_t I = 0; I < NumberOfFeatures; ++I) 497 OR << NV(FeatureMap[I].name(), 498 *getAdvisor()->getModelRunner().getTensor<int64_t>(I)); 499 OR << NV("ShouldInline", isInliningRecommended()); 500 } 501 502 void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const { 503 FPU->finish(FAM); 504 } 505 506 void MLInlineAdvice::recordInliningImpl() { 507 ORE.emit([&]() { 508 OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block); 509 reportContextForRemark(R); 510 return R; 511 }); 512 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false); 513 } 514 515 void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() { 516 ORE.emit([&]() { 517 OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc, 518 Block); 519 reportContextForRemark(R); 520 return R; 521 }); 522 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true); 523 } 524 525 void MLInlineAdvice::recordUnsuccessfulInliningImpl( 526 const InlineResult &Result) { 527 getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI; 528 ORE.emit([&]() { 529 OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful", 530 DLoc, Block); 531 reportContextForRemark(R); 532 return R; 533 }); 534 } 535 void MLInlineAdvice::recordUnattemptedInliningImpl() { 536 assert(!FPU); 537 ORE.emit([&]() { 538 OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block); 539 reportContextForRemark(R); 540 return R; 541 }); 542 } 543