xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/MLInlineAdvisor.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface between the inliner and a learned model.
10 // It delegates model evaluation to either the AOT compiled model (the
11 // 'release' mode) or a runtime-loaded model (the 'development' case).
12 //
13 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MLInlineAdvisor.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CallGraph.h"
18 #include "llvm/Analysis/FunctionPropertiesAnalysis.h"
19 #include "llvm/Analysis/InlineCost.h"
20 #include "llvm/Analysis/InlineModelFeatureMaps.h"
21 #include "llvm/Analysis/InteractiveModelRunner.h"
22 #include "llvm/Analysis/LazyCallGraph.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MLModelRunner.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ReleaseModeModelRunner.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/Support/CommandLine.h"
32 
33 using namespace llvm;
34 
35 static cl::opt<std::string> InteractiveChannelBaseName(
36     "inliner-interactive-channel-base", cl::Hidden,
37     cl::desc(
38         "Base file path for the interactive mode. The incoming filename should "
39         "have the name <inliner-interactive-channel-base>.in, while the "
40         "outgoing name should be <inliner-interactive-channel-base>.out"));
41 static const std::string InclDefaultMsg =
42     (Twine("In interactive mode, also send the default policy decision: ") +
43      DefaultDecisionName + ".")
44         .str();
45 static cl::opt<bool>
46     InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden,
47                               cl::desc(InclDefaultMsg));
48 
49 #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
50 // codegen-ed file
51 #include "InlinerSizeModel.h" // NOLINT
52 using CompiledModelType = llvm::InlinerSizeModel;
53 #else
54 using CompiledModelType = NoopSavedModelImpl;
55 #endif
56 
57 std::unique_ptr<InlineAdvisor>
58 llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM,
59                             std::function<bool(CallBase &)> GetDefaultAdvice) {
60   if (!llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() &&
61       InteractiveChannelBaseName.empty())
62     return nullptr;
63   std::unique_ptr<MLModelRunner> AOTRunner;
64   if (InteractiveChannelBaseName.empty())
65     AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
66         M.getContext(), FeatureMap, DecisionName);
67   else {
68     auto Features = FeatureMap;
69     if (InteractiveIncludeDefault)
70       Features.push_back(DefaultDecisionSpec);
71     AOTRunner = std::make_unique<InteractiveModelRunner>(
72         M.getContext(), Features, InlineDecisionSpec,
73         InteractiveChannelBaseName + ".out",
74         InteractiveChannelBaseName + ".in");
75   }
76   return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner),
77                                            GetDefaultAdvice);
78 }
79 
80 #define DEBUG_TYPE "inline-ml"
81 
82 static cl::opt<float> SizeIncreaseThreshold(
83     "ml-advisor-size-increase-threshold", cl::Hidden,
84     cl::desc("Maximum factor by which expected native size may increase before "
85              "blocking any further inlining."),
86     cl::init(2.0));
87 
88 static cl::opt<bool> KeepFPICache(
89     "ml-advisor-keep-fpi-cache", cl::Hidden,
90     cl::desc(
91         "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
92     cl::init(false));
93 
94 // clang-format off
95 const std::vector<TensorSpec> llvm::FeatureMap{
96 #define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE),
97 // InlineCost features - these must come first
98   INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
99 
100 // Non-cost features
101   INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
102 #undef POPULATE_NAMES
103 };
104 // clang-format on
105 
106 const char *const llvm::DecisionName = "inlining_decision";
107 const TensorSpec llvm::InlineDecisionSpec =
108     TensorSpec::createSpec<int64_t>(DecisionName, {1});
109 const char *const llvm::DefaultDecisionName = "inlining_default";
110 const TensorSpec llvm::DefaultDecisionSpec =
111     TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1});
112 const char *const llvm::RewardName = "delta_size";
113 
114 CallBase *getInlinableCS(Instruction &I) {
115   if (auto *CS = dyn_cast<CallBase>(&I))
116     if (Function *Callee = CS->getCalledFunction()) {
117       if (!Callee->isDeclaration()) {
118         return CS;
119       }
120     }
121   return nullptr;
122 }
123 
124 MLInlineAdvisor::MLInlineAdvisor(
125     Module &M, ModuleAnalysisManager &MAM,
126     std::unique_ptr<MLModelRunner> Runner,
127     std::function<bool(CallBase &)> GetDefaultAdvice)
128     : InlineAdvisor(
129           M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
130       ModelRunner(std::move(Runner)), GetDefaultAdvice(GetDefaultAdvice),
131       CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
132       InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
133   assert(ModelRunner);
134   ModelRunner->switchContext("");
135   // Extract the 'call site height' feature - the position of a call site
136   // relative to the farthest statically reachable SCC node. We don't mutate
137   // this value while inlining happens. Empirically, this feature proved
138   // critical in behavioral cloning - i.e. training a model to mimic the manual
139   // heuristic's decisions - and, thus, equally important for training for
140   // improvement.
141   CallGraph CGraph(M);
142   for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
143     const std::vector<CallGraphNode *> &CGNodes = *I;
144     unsigned Level = 0;
145     for (auto *CGNode : CGNodes) {
146       Function *F = CGNode->getFunction();
147       if (!F || F->isDeclaration())
148         continue;
149       for (auto &I : instructions(F)) {
150         if (auto *CS = getInlinableCS(I)) {
151           auto *Called = CS->getCalledFunction();
152           auto Pos = FunctionLevels.find(&CG.get(*Called));
153           // In bottom up traversal, an inlinable callee is either in the
154           // same SCC, or to a function in a visited SCC. So not finding its
155           // level means we haven't visited it yet, meaning it's in this SCC.
156           if (Pos == FunctionLevels.end())
157             continue;
158           Level = std::max(Level, Pos->second + 1);
159         }
160       }
161     }
162     for (auto *CGNode : CGNodes) {
163       Function *F = CGNode->getFunction();
164       if (F && !F->isDeclaration())
165         FunctionLevels[&CG.get(*F)] = Level;
166     }
167   }
168   for (auto KVP : FunctionLevels) {
169     AllNodes.insert(KVP.first);
170     EdgeCount += getLocalCalls(KVP.first->getFunction());
171   }
172   NodeCount = AllNodes.size();
173 }
174 
175 unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
176   return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
177 }
178 
179 void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) {
180   if (!LastSCC || ForceStop)
181     return;
182   FPICache.clear();
183   // Function passes executed between InlinerPass runs may have changed the
184   // module-wide features.
185   // The cgscc pass manager rules are such that:
186   // - if a pass leads to merging SCCs, then the pipeline is restarted on the
187   // merged SCC
188   // - if a pass leads to splitting the SCC, then we continue with one of the
189   // splits
190   // This means that the NodesInLastSCC is a superset (not strict) of the nodes
191   // that subsequent passes would have processed
192   // - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
193   // they'd be adjacent to Nodes in the last SCC. So we just need to check the
194   // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
195   // care about the nature of the Edge (call or ref). `FunctionLevels`-wise, we
196   // record them at the same level as the original node (this is a choice, may
197   // need revisiting).
198   NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
199   while (!NodesInLastSCC.empty()) {
200     const auto *N = *NodesInLastSCC.begin();
201     NodesInLastSCC.erase(N);
202     // The Function wrapped by N could have been deleted since we last saw it.
203     if (N->isDead()) {
204       assert(!N->getFunction().isDeclaration());
205       continue;
206     }
207     ++NodeCount;
208     EdgeCount += getLocalCalls(N->getFunction());
209     const auto NLevel = FunctionLevels.at(N);
210     for (const auto &E : *(*N)) {
211       const auto *AdjNode = &E.getNode();
212       assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
213       auto I = AllNodes.insert(AdjNode);
214       if (I.second) {
215         NodesInLastSCC.insert(AdjNode);
216         FunctionLevels[AdjNode] = NLevel;
217       }
218     }
219   }
220 
221   EdgeCount -= EdgesOfLastSeenNodes;
222   EdgesOfLastSeenNodes = 0;
223 
224   // (Re)use NodesInLastSCC to remember the nodes in the SCC right now,
225   // in case the SCC is split before onPassExit and some nodes are split out
226   assert(NodesInLastSCC.empty());
227   for (const auto &N : *LastSCC)
228     NodesInLastSCC.insert(&N);
229 }
230 
231 void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
232   // No need to keep this around - function passes will invalidate it.
233   if (!KeepFPICache)
234     FPICache.clear();
235   if (!LastSCC || ForceStop)
236     return;
237   // Keep track of the nodes and edges we last saw. Then, in onPassEntry,
238   // we update the node count and edge count from the subset of these nodes that
239   // survived.
240   EdgesOfLastSeenNodes = 0;
241 
242   // Check on nodes that were in SCC onPassEntry
243   for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) {
244     if ((*I)->isDead())
245       NodesInLastSCC.erase(*I++);
246     else
247       EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction());
248   }
249 
250   // Check on nodes that may have got added to SCC
251   for (const auto &N : *LastSCC) {
252     assert(!N.isDead());
253     auto I = NodesInLastSCC.insert(&N);
254     if (I.second)
255       EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
256   }
257   assert(NodeCount >= NodesInLastSCC.size());
258   assert(EdgeCount >= EdgesOfLastSeenNodes);
259 }
260 
261 int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
262   return getCachedFPI(F).DirectCallsToDefinedFunctions;
263 }
264 
265 // Update the internal state of the advisor, and force invalidate feature
266 // analysis. Currently, we maintain minimal (and very simple) global state - the
267 // number of functions and the number of static calls. We also keep track of the
268 // total IR size in this module, to stop misbehaving policies at a certain bloat
269 // factor (SizeIncreaseThreshold)
270 void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
271                                            bool CalleeWasDeleted) {
272   assert(!ForceStop);
273   Function *Caller = Advice.getCaller();
274   Function *Callee = Advice.getCallee();
275   // The caller features aren't valid anymore.
276   {
277     PreservedAnalyses PA = PreservedAnalyses::all();
278     PA.abandon<FunctionPropertiesAnalysis>();
279     PA.abandon<DominatorTreeAnalysis>();
280     PA.abandon<LoopAnalysis>();
281     FAM.invalidate(*Caller, PA);
282   }
283   Advice.updateCachedCallerFPI(FAM);
284   int64_t IRSizeAfter =
285       getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
286   CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
287   if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
288     ForceStop = true;
289 
290   // We can delta-update module-wide features. We know the inlining only changed
291   // the caller, and maybe the callee (by deleting the latter).
292   // Nodes are simple to update.
293   // For edges, we 'forget' the edges that the caller and callee used to have
294   // before inlining, and add back what they currently have together.
295   int64_t NewCallerAndCalleeEdges =
296       getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
297 
298   if (CalleeWasDeleted)
299     --NodeCount;
300   else
301     NewCallerAndCalleeEdges +=
302         getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
303   EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
304   assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
305 }
306 
307 int64_t MLInlineAdvisor::getModuleIRSize() const {
308   int64_t Ret = 0;
309   for (auto &F : M)
310     if (!F.isDeclaration())
311       Ret += getIRSize(F);
312   return Ret;
313 }
314 
315 FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
316   auto InsertPair =
317       FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
318   if (!InsertPair.second)
319     return InsertPair.first->second;
320   InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
321   return InsertPair.first->second;
322 }
323 
324 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
325   if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
326     return Skip;
327 
328   auto &Caller = *CB.getCaller();
329   auto &Callee = *CB.getCalledFunction();
330 
331   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
332     return FAM.getResult<AssumptionAnalysis>(F);
333   };
334   auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
335   auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
336 
337   auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
338   // If this is a "never inline" case, there won't be any changes to internal
339   // state we need to track, so we can just return the base InlineAdvice, which
340   // will do nothing interesting.
341   // Same thing if this is a recursive case.
342   if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
343       &Caller == &Callee)
344     return getMandatoryAdvice(CB, false);
345 
346   bool Mandatory =
347       MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
348 
349   // If we need to stop, we won't want to track anymore any state changes, so
350   // we just return the base InlineAdvice, which acts as a noop.
351   if (ForceStop) {
352     ORE.emit([&] {
353       return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
354              << "Won't attempt inlining because module size grew too much.";
355     });
356     return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
357   }
358 
359   int CostEstimate = 0;
360   if (!Mandatory) {
361     auto IsCallSiteInlinable =
362         llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
363     if (!IsCallSiteInlinable) {
364       // We can't inline this for correctness reasons, so return the base
365       // InlineAdvice, as we don't care about tracking any state changes (which
366       // won't happen).
367       return std::make_unique<InlineAdvice>(this, CB, ORE, false);
368     }
369     CostEstimate = *IsCallSiteInlinable;
370   }
371 
372   const auto CostFeatures =
373       llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
374   if (!CostFeatures) {
375     return std::make_unique<InlineAdvice>(this, CB, ORE, false);
376   }
377 
378   if (Mandatory)
379     return getMandatoryAdvice(CB, true);
380 
381   auto NrCtantParams = 0;
382   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
383     NrCtantParams += (isa<Constant>(*I));
384   }
385 
386   auto &CallerBefore = getCachedFPI(Caller);
387   auto &CalleeBefore = getCachedFPI(Callee);
388 
389   *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) =
390       CalleeBefore.BasicBlockCount;
391   *ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) =
392       getInitialFunctionLevel(Caller);
393   *ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount;
394   *ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) =
395       NrCtantParams;
396   *ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount;
397   *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) =
398       CallerBefore.Uses;
399   *ModelRunner->getTensor<int64_t>(
400       FeatureIndex::caller_conditionally_executed_blocks) =
401       CallerBefore.BlocksReachedFromConditionalInstruction;
402   *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) =
403       CallerBefore.BasicBlockCount;
404   *ModelRunner->getTensor<int64_t>(
405       FeatureIndex::callee_conditionally_executed_blocks) =
406       CalleeBefore.BlocksReachedFromConditionalInstruction;
407   *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) =
408       CalleeBefore.Uses;
409   *ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate;
410 
411   // Add the cost features
412   for (size_t I = 0;
413        I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
414     *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
415         static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
416   }
417   // This one would have been set up to be right at the end.
418   if (!InteractiveChannelBaseName.empty() && InteractiveIncludeDefault)
419     *ModelRunner->getTensor<int64_t>(InlineCostFeatureIndex::NumberOfFeatures) =
420         GetDefaultAdvice(CB);
421   return getAdviceFromModel(CB, ORE);
422 }
423 
424 std::unique_ptr<MLInlineAdvice>
425 MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
426                                     OptimizationRemarkEmitter &ORE) {
427   return std::make_unique<MLInlineAdvice>(
428       this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
429 }
430 
431 std::unique_ptr<InlineAdvice>
432 MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
433   if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
434            .isReachableFromEntry(CB.getParent()))
435     return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
436   return nullptr;
437 }
438 
439 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
440                                                                   bool Advice) {
441   // Make sure we track inlinings in all cases - mandatory or not.
442   if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
443     return Skip;
444   if (Advice && !ForceStop)
445     return getMandatoryAdviceImpl(CB);
446 
447   // If this is a "never inline" case, there won't be any changes to internal
448   // state we need to track, so we can just return the base InlineAdvice, which
449   // will do nothing interesting.
450   // Same if we are forced to stop - we don't track anymore.
451   return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
452 }
453 
454 std::unique_ptr<MLInlineAdvice>
455 MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
456   return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
457 }
458 
459 void MLInlineAdvisor::print(raw_ostream &OS) const {
460   OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
461      << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
462   OS << "[MLInlineAdvisor] FPI:\n";
463   for (auto I : FPICache) {
464     OS << I.first->getName() << ":\n";
465     I.second.print(OS);
466     OS << "\n";
467   }
468   OS << "\n";
469   OS << "[MLInlineAdvisor] FuncLevels:\n";
470   for (auto I : FunctionLevels)
471     OS << (I.first->isDead() ? "<deleted>" : I.first->getFunction().getName())
472        << " : " << I.second << "\n";
473 
474   OS << "\n";
475 }
476 
477 MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
478                                OptimizationRemarkEmitter &ORE,
479                                bool Recommendation)
480     : InlineAdvice(Advisor, CB, ORE, Recommendation),
481       CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
482       CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
483       CallerAndCalleeEdges(Advisor->isForcedToStop()
484                                ? 0
485                                : (Advisor->getLocalCalls(*Caller) +
486                                   Advisor->getLocalCalls(*Callee))),
487       PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
488   if (Recommendation)
489     FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
490 }
491 
492 void MLInlineAdvice::reportContextForRemark(
493     DiagnosticInfoOptimizationBase &OR) {
494   using namespace ore;
495   OR << NV("Callee", Callee->getName());
496   for (size_t I = 0; I < NumberOfFeatures; ++I)
497     OR << NV(FeatureMap[I].name(),
498              *getAdvisor()->getModelRunner().getTensor<int64_t>(I));
499   OR << NV("ShouldInline", isInliningRecommended());
500 }
501 
502 void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
503   FPU->finish(FAM);
504 }
505 
506 void MLInlineAdvice::recordInliningImpl() {
507   ORE.emit([&]() {
508     OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
509     reportContextForRemark(R);
510     return R;
511   });
512   getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
513 }
514 
515 void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
516   ORE.emit([&]() {
517     OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
518                          Block);
519     reportContextForRemark(R);
520     return R;
521   });
522   getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
523 }
524 
525 void MLInlineAdvice::recordUnsuccessfulInliningImpl(
526     const InlineResult &Result) {
527   getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
528   ORE.emit([&]() {
529     OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
530                                DLoc, Block);
531     reportContextForRemark(R);
532     return R;
533   });
534 }
535 void MLInlineAdvice::recordUnattemptedInliningImpl() {
536   assert(!FPU);
537   ORE.emit([&]() {
538     OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
539     reportContextForRemark(R);
540     return R;
541   });
542 }
543