xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopUnrollAnalyzer.cpp (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements UnrolledInstAnalyzer class. It's used for predicting
10 // potential effects that loop unrolling might have, such as enabling constant
11 // propagation and other optimizations.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 
18 using namespace llvm;
19 
20 /// Try to simplify instruction \param I using its SCEV expression.
21 ///
22 /// The idea is that some AddRec expressions become constants, which then
23 /// could trigger folding of other instructions. However, that only happens
24 /// for expressions whose start value is also constant, which isn't always the
25 /// case. In another common and important case the start value is just some
26 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
27 /// it along with the base address instead.
28 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
29   if (!SE.isSCEVable(I->getType()))
30     return false;
31 
32   const SCEV *S = SE.getSCEV(I);
33   if (auto *SC = dyn_cast<SCEVConstant>(S)) {
34     SimplifiedValues[I] = SC->getValue();
35     return true;
36   }
37 
38   auto *AR = dyn_cast<SCEVAddRecExpr>(S);
39   if (!AR || AR->getLoop() != L)
40     return false;
41 
42   const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
43   // Check if the AddRec expression becomes a constant.
44   if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
45     SimplifiedValues[I] = SC->getValue();
46     return true;
47   }
48 
49   // Check if the offset from the base address becomes a constant.
50   auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
51   if (!Base)
52     return false;
53   auto *Offset =
54       dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
55   if (!Offset)
56     return false;
57   SimplifiedAddress Address;
58   Address.Base = Base->getValue();
59   Address.Offset = Offset->getValue();
60   SimplifiedAddresses[I] = Address;
61   return false;
62 }
63 
64 /// Try to simplify binary operator I.
65 ///
66 /// TODO: Probably it's worth to hoist the code for estimating the
67 /// simplifications effects to a separate class, since we have a very similar
68 /// code in InlineCost already.
69 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
70   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
71   if (!isa<Constant>(LHS))
72     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
73       LHS = SimpleLHS;
74   if (!isa<Constant>(RHS))
75     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
76       RHS = SimpleRHS;
77 
78   Value *SimpleV = nullptr;
79   const DataLayout &DL = I.getModule()->getDataLayout();
80   if (auto FI = dyn_cast<FPMathOperator>(&I))
81     SimpleV =
82         SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
83   else
84     SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
85 
86   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
87     SimplifiedValues[&I] = C;
88 
89   if (SimpleV)
90     return true;
91   return Base::visitBinaryOperator(I);
92 }
93 
94 /// Try to fold load I.
95 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
96   Value *AddrOp = I.getPointerOperand();
97 
98   auto AddressIt = SimplifiedAddresses.find(AddrOp);
99   if (AddressIt == SimplifiedAddresses.end())
100     return false;
101   ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
102 
103   auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
104   // We're only interested in loads that can be completely folded to a
105   // constant.
106   if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
107     return false;
108 
109   ConstantDataSequential *CDS =
110       dyn_cast<ConstantDataSequential>(GV->getInitializer());
111   if (!CDS)
112     return false;
113 
114   // We might have a vector load from an array. FIXME: for now we just bail
115   // out in this case, but we should be able to resolve and simplify such
116   // loads.
117   if (CDS->getElementType() != I.getType())
118     return false;
119 
120   unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
121   if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
122     return false;
123   int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
124   if (SimplifiedAddrOpV < 0) {
125     // FIXME: For now we conservatively ignore out of bound accesses, but
126     // we're allowed to perform the optimization in this case.
127     return false;
128   }
129   uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
130   if (Index >= CDS->getNumElements()) {
131     // FIXME: For now we conservatively ignore out of bound accesses, but
132     // we're allowed to perform the optimization in this case.
133     return false;
134   }
135 
136   Constant *CV = CDS->getElementAsConstant(Index);
137   assert(CV && "Constant expected.");
138   SimplifiedValues[&I] = CV;
139 
140   return true;
141 }
142 
143 /// Try to simplify cast instruction.
144 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
145   // Propagate constants through casts.
146   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
147   if (!COp)
148     COp = SimplifiedValues.lookup(I.getOperand(0));
149 
150   // If we know a simplified value for this operand and cast is valid, save the
151   // result to SimplifiedValues.
152   // The cast can be invalid, because SimplifiedValues contains results of SCEV
153   // analysis, which operates on integers (and, e.g., might convert i8* null to
154   // i32 0).
155   if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) {
156     if (Constant *C =
157             ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
158       SimplifiedValues[&I] = C;
159       return true;
160     }
161   }
162 
163   return Base::visitCastInst(I);
164 }
165 
166 /// Try to simplify cmp instruction.
167 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
168   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
169 
170   // First try to handle simplified comparisons.
171   if (!isa<Constant>(LHS))
172     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
173       LHS = SimpleLHS;
174   if (!isa<Constant>(RHS))
175     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
176       RHS = SimpleRHS;
177 
178   if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
179     auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
180     if (SimplifiedLHS != SimplifiedAddresses.end()) {
181       auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
182       if (SimplifiedRHS != SimplifiedAddresses.end()) {
183         SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
184         SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
185         if (LHSAddr.Base == RHSAddr.Base) {
186           LHS = LHSAddr.Offset;
187           RHS = RHSAddr.Offset;
188         }
189       }
190     }
191   }
192 
193   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
194     if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
195       if (CLHS->getType() == CRHS->getType()) {
196         if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
197           SimplifiedValues[&I] = C;
198           return true;
199         }
200       }
201     }
202   }
203 
204   return Base::visitCmpInst(I);
205 }
206 
207 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
208   // Run base visitor first. This way we can gather some useful for later
209   // analysis information.
210   if (Base::visitPHINode(PN))
211     return true;
212 
213   // The loop induction PHI nodes are definitionally free.
214   return PN.getParent() == L->getHeader();
215 }
216