xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopUnrollAnalyzer.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements UnrolledInstAnalyzer class. It's used for predicting
10 // potential effects that loop unrolling might have, such as enabling constant
11 // propagation and other optimizations.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LoopUnrollAnalyzer.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/IR/Operator.h"
20 
21 using namespace llvm;
22 
23 /// Try to simplify instruction \param I using its SCEV expression.
24 ///
25 /// The idea is that some AddRec expressions become constants, which then
26 /// could trigger folding of other instructions. However, that only happens
27 /// for expressions whose start value is also constant, which isn't always the
28 /// case. In another common and important case the start value is just some
29 /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
30 /// it along with the base address instead.
31 bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
32   if (!SE.isSCEVable(I->getType()))
33     return false;
34 
35   const SCEV *S = SE.getSCEV(I);
36   if (auto *SC = dyn_cast<SCEVConstant>(S)) {
37     SimplifiedValues[I] = SC->getValue();
38     return true;
39   }
40 
41   // If we have a loop invariant computation, we only need to compute it once.
42   // Given that, all but the first occurance are free.
43   if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
44     return true;
45 
46   auto *AR = dyn_cast<SCEVAddRecExpr>(S);
47   if (!AR || AR->getLoop() != L)
48     return false;
49 
50   const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
51   // Check if the AddRec expression becomes a constant.
52   if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
53     SimplifiedValues[I] = SC->getValue();
54     return true;
55   }
56 
57   // Check if the offset from the base address becomes a constant.
58   auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
59   if (!Base)
60     return false;
61   auto *Offset =
62       dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
63   if (!Offset)
64     return false;
65   SimplifiedAddress Address;
66   Address.Base = Base->getValue();
67   Address.Offset = Offset->getValue();
68   SimplifiedAddresses[I] = Address;
69   return false;
70 }
71 
72 /// Try to simplify binary operator I.
73 ///
74 /// TODO: Probably it's worth to hoist the code for estimating the
75 /// simplifications effects to a separate class, since we have a very similar
76 /// code in InlineCost already.
77 bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
78   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
79   if (!isa<Constant>(LHS))
80     if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
81       LHS = SimpleLHS;
82   if (!isa<Constant>(RHS))
83     if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
84       RHS = SimpleRHS;
85 
86   Value *SimpleV = nullptr;
87   const DataLayout &DL = I.getModule()->getDataLayout();
88   if (auto FI = dyn_cast<FPMathOperator>(&I))
89     SimpleV =
90         simplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
91   else
92     SimpleV = simplifyBinOp(I.getOpcode(), LHS, RHS, DL);
93 
94   if (SimpleV) {
95     SimplifiedValues[&I] = SimpleV;
96     return true;
97   }
98   return Base::visitBinaryOperator(I);
99 }
100 
101 /// Try to fold load I.
102 bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
103   Value *AddrOp = I.getPointerOperand();
104 
105   auto AddressIt = SimplifiedAddresses.find(AddrOp);
106   if (AddressIt == SimplifiedAddresses.end())
107     return false;
108   ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
109 
110   auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
111   // We're only interested in loads that can be completely folded to a
112   // constant.
113   if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
114     return false;
115 
116   ConstantDataSequential *CDS =
117       dyn_cast<ConstantDataSequential>(GV->getInitializer());
118   if (!CDS)
119     return false;
120 
121   // We might have a vector load from an array. FIXME: for now we just bail
122   // out in this case, but we should be able to resolve and simplify such
123   // loads.
124   if (CDS->getElementType() != I.getType())
125     return false;
126 
127   unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
128   if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
129     return false;
130   int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
131   if (SimplifiedAddrOpV < 0) {
132     // FIXME: For now we conservatively ignore out of bound accesses, but
133     // we're allowed to perform the optimization in this case.
134     return false;
135   }
136   uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
137   if (Index >= CDS->getNumElements()) {
138     // FIXME: For now we conservatively ignore out of bound accesses, but
139     // we're allowed to perform the optimization in this case.
140     return false;
141   }
142 
143   Constant *CV = CDS->getElementAsConstant(Index);
144   assert(CV && "Constant expected.");
145   SimplifiedValues[&I] = CV;
146 
147   return true;
148 }
149 
150 /// Try to simplify cast instruction.
151 bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
152   Value *Op = I.getOperand(0);
153   if (Value *Simplified = SimplifiedValues.lookup(Op))
154     Op = Simplified;
155 
156   // The cast can be invalid, because SimplifiedValues contains results of SCEV
157   // analysis, which operates on integers (and, e.g., might convert i8* null to
158   // i32 0).
159   if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
160     const DataLayout &DL = I.getModule()->getDataLayout();
161     if (Value *V = simplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
162       SimplifiedValues[&I] = V;
163       return true;
164     }
165   }
166 
167   return Base::visitCastInst(I);
168 }
169 
170 /// Try to simplify cmp instruction.
171 bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
172   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
173 
174   // First try to handle simplified comparisons.
175   if (!isa<Constant>(LHS))
176     if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
177       LHS = SimpleLHS;
178   if (!isa<Constant>(RHS))
179     if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
180       RHS = SimpleRHS;
181 
182   if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
183     auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
184     if (SimplifiedLHS != SimplifiedAddresses.end()) {
185       auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
186       if (SimplifiedRHS != SimplifiedAddresses.end()) {
187         SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
188         SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
189         if (LHSAddr.Base == RHSAddr.Base) {
190           LHS = LHSAddr.Offset;
191           RHS = RHSAddr.Offset;
192         }
193       }
194     }
195   }
196 
197   const DataLayout &DL = I.getModule()->getDataLayout();
198   if (Value *V = simplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
199     SimplifiedValues[&I] = V;
200     return true;
201   }
202 
203   return Base::visitCmpInst(I);
204 }
205 
206 bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
207   // Run base visitor first. This way we can gather some useful for later
208   // analysis information.
209   if (Base::visitPHINode(PN))
210     return true;
211 
212   // The loop induction PHI nodes are definitionally free.
213   return PN.getParent() == L->getHeader();
214 }
215 
216 bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
217   return simplifyInstWithSCEV(&I);
218 }
219