xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopInfo.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 using namespace llvm;
43 
44 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
45 template class llvm::LoopBase<BasicBlock, Loop>;
46 template class llvm::LoopInfoBase<BasicBlock, Loop>;
47 
48 // Always verify loopinfo if expensive checking is enabled.
49 #ifdef EXPENSIVE_CHECKS
50 bool llvm::VerifyLoopInfo = true;
51 #else
52 bool llvm::VerifyLoopInfo = false;
53 #endif
54 static cl::opt<bool, true>
55     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
56                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
57 
58 //===----------------------------------------------------------------------===//
59 // Loop implementation
60 //
61 
62 bool Loop::isLoopInvariant(const Value *V) const {
63   if (const Instruction *I = dyn_cast<Instruction>(V))
64     return !contains(I);
65   return true; // All non-instructions are loop invariant
66 }
67 
68 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
69   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
70 }
71 
72 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
73                              MemorySSAUpdater *MSSAU) const {
74   if (Instruction *I = dyn_cast<Instruction>(V))
75     return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
76   return true; // All non-instructions are loop-invariant.
77 }
78 
79 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
80                              Instruction *InsertPt,
81                              MemorySSAUpdater *MSSAU) const {
82   // Test if the value is already loop-invariant.
83   if (isLoopInvariant(I))
84     return true;
85   if (!isSafeToSpeculativelyExecute(I))
86     return false;
87   if (I->mayReadFromMemory())
88     return false;
89   // EH block instructions are immobile.
90   if (I->isEHPad())
91     return false;
92   // Determine the insertion point, unless one was given.
93   if (!InsertPt) {
94     BasicBlock *Preheader = getLoopPreheader();
95     // Without a preheader, hoisting is not feasible.
96     if (!Preheader)
97       return false;
98     InsertPt = Preheader->getTerminator();
99   }
100   // Don't hoist instructions with loop-variant operands.
101   for (Value *Operand : I->operands())
102     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
103       return false;
104 
105   // Hoist.
106   I->moveBefore(InsertPt);
107   if (MSSAU)
108     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
109       MSSAU->moveToPlace(MUD, InsertPt->getParent(),
110                          MemorySSA::BeforeTerminator);
111 
112   // There is possibility of hoisting this instruction above some arbitrary
113   // condition. Any metadata defined on it can be control dependent on this
114   // condition. Conservatively strip it here so that we don't give any wrong
115   // information to the optimizer.
116   I->dropUnknownNonDebugMetadata();
117 
118   Changed = true;
119   return true;
120 }
121 
122 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
123                                   BasicBlock *&Backedge) const {
124   BasicBlock *H = getHeader();
125 
126   Incoming = nullptr;
127   Backedge = nullptr;
128   pred_iterator PI = pred_begin(H);
129   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
130   Backedge = *PI++;
131   if (PI == pred_end(H))
132     return false; // dead loop
133   Incoming = *PI++;
134   if (PI != pred_end(H))
135     return false; // multiple backedges?
136 
137   if (contains(Incoming)) {
138     if (contains(Backedge))
139       return false;
140     std::swap(Incoming, Backedge);
141   } else if (!contains(Backedge))
142     return false;
143 
144   assert(Incoming && Backedge && "expected non-null incoming and backedges");
145   return true;
146 }
147 
148 PHINode *Loop::getCanonicalInductionVariable() const {
149   BasicBlock *H = getHeader();
150 
151   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
152   if (!getIncomingAndBackEdge(Incoming, Backedge))
153     return nullptr;
154 
155   // Loop over all of the PHI nodes, looking for a canonical indvar.
156   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
157     PHINode *PN = cast<PHINode>(I);
158     if (ConstantInt *CI =
159             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
160       if (CI->isZero())
161         if (Instruction *Inc =
162                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
163           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
164             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
165               if (CI->isOne())
166                 return PN;
167   }
168   return nullptr;
169 }
170 
171 /// Get the latch condition instruction.
172 static ICmpInst *getLatchCmpInst(const Loop &L) {
173   if (BasicBlock *Latch = L.getLoopLatch())
174     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
175       if (BI->isConditional())
176         return dyn_cast<ICmpInst>(BI->getCondition());
177 
178   return nullptr;
179 }
180 
181 /// Return the final value of the loop induction variable if found.
182 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
183                                const Instruction &StepInst) {
184   ICmpInst *LatchCmpInst = getLatchCmpInst(L);
185   if (!LatchCmpInst)
186     return nullptr;
187 
188   Value *Op0 = LatchCmpInst->getOperand(0);
189   Value *Op1 = LatchCmpInst->getOperand(1);
190   if (Op0 == &IndVar || Op0 == &StepInst)
191     return Op1;
192 
193   if (Op1 == &IndVar || Op1 == &StepInst)
194     return Op0;
195 
196   return nullptr;
197 }
198 
199 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
200                                                        PHINode &IndVar,
201                                                        ScalarEvolution &SE) {
202   InductionDescriptor IndDesc;
203   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
204     return None;
205 
206   Value *InitialIVValue = IndDesc.getStartValue();
207   Instruction *StepInst = IndDesc.getInductionBinOp();
208   if (!InitialIVValue || !StepInst)
209     return None;
210 
211   const SCEV *Step = IndDesc.getStep();
212   Value *StepInstOp1 = StepInst->getOperand(1);
213   Value *StepInstOp0 = StepInst->getOperand(0);
214   Value *StepValue = nullptr;
215   if (SE.getSCEV(StepInstOp1) == Step)
216     StepValue = StepInstOp1;
217   else if (SE.getSCEV(StepInstOp0) == Step)
218     StepValue = StepInstOp0;
219 
220   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
221   if (!FinalIVValue)
222     return None;
223 
224   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
225                     SE);
226 }
227 
228 using Direction = Loop::LoopBounds::Direction;
229 
230 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
231   BasicBlock *Latch = L.getLoopLatch();
232   assert(Latch && "Expecting valid latch");
233 
234   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
235   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
236 
237   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
238   assert(LatchCmpInst &&
239          "Expecting the latch compare instruction to be a CmpInst");
240 
241   // Need to inverse the predicate when first successor is not the loop
242   // header
243   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
244                                  ? LatchCmpInst->getPredicate()
245                                  : LatchCmpInst->getInversePredicate();
246 
247   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
248     Pred = ICmpInst::getSwappedPredicate(Pred);
249 
250   // Need to flip strictness of the predicate when the latch compare instruction
251   // is not using StepInst
252   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
253       LatchCmpInst->getOperand(1) == &getStepInst())
254     return Pred;
255 
256   // Cannot flip strictness of NE and EQ
257   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
258     return ICmpInst::getFlippedStrictnessPredicate(Pred);
259 
260   Direction D = getDirection();
261   if (D == Direction::Increasing)
262     return ICmpInst::ICMP_SLT;
263 
264   if (D == Direction::Decreasing)
265     return ICmpInst::ICMP_SGT;
266 
267   // If cannot determine the direction, then unable to find the canonical
268   // predicate
269   return ICmpInst::BAD_ICMP_PREDICATE;
270 }
271 
272 Direction Loop::LoopBounds::getDirection() const {
273   if (const SCEVAddRecExpr *StepAddRecExpr =
274           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
275     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
276       if (SE.isKnownPositive(StepRecur))
277         return Direction::Increasing;
278       if (SE.isKnownNegative(StepRecur))
279         return Direction::Decreasing;
280     }
281 
282   return Direction::Unknown;
283 }
284 
285 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
286   if (PHINode *IndVar = getInductionVariable(SE))
287     return LoopBounds::getBounds(*this, *IndVar, SE);
288 
289   return None;
290 }
291 
292 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
293   if (!isLoopSimplifyForm())
294     return nullptr;
295 
296   BasicBlock *Header = getHeader();
297   assert(Header && "Expected a valid loop header");
298   ICmpInst *CmpInst = getLatchCmpInst(*this);
299   if (!CmpInst)
300     return nullptr;
301 
302   Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
303   Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
304 
305   for (PHINode &IndVar : Header->phis()) {
306     InductionDescriptor IndDesc;
307     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
308       continue;
309 
310     Instruction *StepInst = IndDesc.getInductionBinOp();
311 
312     // case 1:
313     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
314     // StepInst = IndVar + step
315     // cmp = StepInst < FinalValue
316     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
317       return &IndVar;
318 
319     // case 2:
320     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
321     // StepInst = IndVar + step
322     // cmp = IndVar < FinalValue
323     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
324       return &IndVar;
325   }
326 
327   return nullptr;
328 }
329 
330 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
331                                   InductionDescriptor &IndDesc) const {
332   if (PHINode *IndVar = getInductionVariable(SE))
333     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
334 
335   return false;
336 }
337 
338 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
339                                         ScalarEvolution &SE) const {
340   // Located in the loop header
341   BasicBlock *Header = getHeader();
342   if (AuxIndVar.getParent() != Header)
343     return false;
344 
345   // No uses outside of the loop
346   for (User *U : AuxIndVar.users())
347     if (const Instruction *I = dyn_cast<Instruction>(U))
348       if (!contains(I))
349         return false;
350 
351   InductionDescriptor IndDesc;
352   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
353     return false;
354 
355   // The step instruction opcode should be add or sub.
356   if (IndDesc.getInductionOpcode() != Instruction::Add &&
357       IndDesc.getInductionOpcode() != Instruction::Sub)
358     return false;
359 
360   // Incremented by a loop invariant step for each loop iteration
361   return SE.isLoopInvariant(IndDesc.getStep(), this);
362 }
363 
364 BranchInst *Loop::getLoopGuardBranch() const {
365   if (!isLoopSimplifyForm())
366     return nullptr;
367 
368   BasicBlock *Preheader = getLoopPreheader();
369   assert(Preheader && getLoopLatch() &&
370          "Expecting a loop with valid preheader and latch");
371 
372   // Loop should be in rotate form.
373   if (!isRotatedForm())
374     return nullptr;
375 
376   // Disallow loops with more than one unique exit block, as we do not verify
377   // that GuardOtherSucc post dominates all exit blocks.
378   BasicBlock *ExitFromLatch = getUniqueExitBlock();
379   if (!ExitFromLatch)
380     return nullptr;
381 
382   BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
383   if (!ExitFromLatchSucc)
384     return nullptr;
385 
386   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
387   if (!GuardBB)
388     return nullptr;
389 
390   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
391 
392   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
393   if (!GuardBI || GuardBI->isUnconditional())
394     return nullptr;
395 
396   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
397                                    ? GuardBI->getSuccessor(1)
398                                    : GuardBI->getSuccessor(0);
399   return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
400 }
401 
402 bool Loop::isCanonical(ScalarEvolution &SE) const {
403   InductionDescriptor IndDesc;
404   if (!getInductionDescriptor(SE, IndDesc))
405     return false;
406 
407   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
408   if (!Init || !Init->isZero())
409     return false;
410 
411   if (IndDesc.getInductionOpcode() != Instruction::Add)
412     return false;
413 
414   ConstantInt *Step = IndDesc.getConstIntStepValue();
415   if (!Step || !Step->isOne())
416     return false;
417 
418   return true;
419 }
420 
421 // Check that 'BB' doesn't have any uses outside of the 'L'
422 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
423                                const DominatorTree &DT) {
424   for (const Instruction &I : BB) {
425     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
426     // optimizations, so for the purposes of considered LCSSA form, we
427     // can ignore them.
428     if (I.getType()->isTokenTy())
429       continue;
430 
431     for (const Use &U : I.uses()) {
432       const Instruction *UI = cast<Instruction>(U.getUser());
433       const BasicBlock *UserBB = UI->getParent();
434       if (const PHINode *P = dyn_cast<PHINode>(UI))
435         UserBB = P->getIncomingBlock(U);
436 
437       // Check the current block, as a fast-path, before checking whether
438       // the use is anywhere in the loop.  Most values are used in the same
439       // block they are defined in.  Also, blocks not reachable from the
440       // entry are special; uses in them don't need to go through PHIs.
441       if (UserBB != &BB && !L.contains(UserBB) &&
442           DT.isReachableFromEntry(UserBB))
443         return false;
444     }
445   }
446   return true;
447 }
448 
449 bool Loop::isLCSSAForm(const DominatorTree &DT) const {
450   // For each block we check that it doesn't have any uses outside of this loop.
451   return all_of(this->blocks(), [&](const BasicBlock *BB) {
452     return isBlockInLCSSAForm(*this, *BB, DT);
453   });
454 }
455 
456 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT,
457                                   const LoopInfo &LI) const {
458   // For each block we check that it doesn't have any uses outside of its
459   // innermost loop. This process will transitively guarantee that the current
460   // loop and all of the nested loops are in LCSSA form.
461   return all_of(this->blocks(), [&](const BasicBlock *BB) {
462     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
463   });
464 }
465 
466 bool Loop::isLoopSimplifyForm() const {
467   // Normal-form loops have a preheader, a single backedge, and all of their
468   // exits have all their predecessors inside the loop.
469   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
470 }
471 
472 // Routines that reform the loop CFG and split edges often fail on indirectbr.
473 bool Loop::isSafeToClone() const {
474   // Return false if any loop blocks contain indirectbrs, or there are any calls
475   // to noduplicate functions.
476   // FIXME: it should be ok to clone CallBrInst's if we correctly update the
477   // operand list to reflect the newly cloned labels.
478   for (BasicBlock *BB : this->blocks()) {
479     if (isa<IndirectBrInst>(BB->getTerminator()) ||
480         isa<CallBrInst>(BB->getTerminator()))
481       return false;
482 
483     for (Instruction &I : *BB)
484       if (auto *CB = dyn_cast<CallBase>(&I))
485         if (CB->cannotDuplicate())
486           return false;
487   }
488   return true;
489 }
490 
491 MDNode *Loop::getLoopID() const {
492   MDNode *LoopID = nullptr;
493 
494   // Go through the latch blocks and check the terminator for the metadata.
495   SmallVector<BasicBlock *, 4> LatchesBlocks;
496   getLoopLatches(LatchesBlocks);
497   for (BasicBlock *BB : LatchesBlocks) {
498     Instruction *TI = BB->getTerminator();
499     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
500 
501     if (!MD)
502       return nullptr;
503 
504     if (!LoopID)
505       LoopID = MD;
506     else if (MD != LoopID)
507       return nullptr;
508   }
509   if (!LoopID || LoopID->getNumOperands() == 0 ||
510       LoopID->getOperand(0) != LoopID)
511     return nullptr;
512   return LoopID;
513 }
514 
515 void Loop::setLoopID(MDNode *LoopID) const {
516   assert((!LoopID || LoopID->getNumOperands() > 0) &&
517          "Loop ID needs at least one operand");
518   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
519          "Loop ID should refer to itself");
520 
521   SmallVector<BasicBlock *, 4> LoopLatches;
522   getLoopLatches(LoopLatches);
523   for (BasicBlock *BB : LoopLatches)
524     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
525 }
526 
527 void Loop::setLoopAlreadyUnrolled() {
528   LLVMContext &Context = getHeader()->getContext();
529 
530   MDNode *DisableUnrollMD =
531       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
532   MDNode *LoopID = getLoopID();
533   MDNode *NewLoopID = makePostTransformationMetadata(
534       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
535   setLoopID(NewLoopID);
536 }
537 
538 bool Loop::isAnnotatedParallel() const {
539   MDNode *DesiredLoopIdMetadata = getLoopID();
540 
541   if (!DesiredLoopIdMetadata)
542     return false;
543 
544   MDNode *ParallelAccesses =
545       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
546   SmallPtrSet<MDNode *, 4>
547       ParallelAccessGroups; // For scalable 'contains' check.
548   if (ParallelAccesses) {
549     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
550       MDNode *AccGroup = cast<MDNode>(MD.get());
551       assert(isValidAsAccessGroup(AccGroup) &&
552              "List item must be an access group");
553       ParallelAccessGroups.insert(AccGroup);
554     }
555   }
556 
557   // The loop branch contains the parallel loop metadata. In order to ensure
558   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
559   // dependencies (thus converted the loop back to a sequential loop), check
560   // that all the memory instructions in the loop belong to an access group that
561   // is parallel to this loop.
562   for (BasicBlock *BB : this->blocks()) {
563     for (Instruction &I : *BB) {
564       if (!I.mayReadOrWriteMemory())
565         continue;
566 
567       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
568         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
569           if (AG->getNumOperands() == 0) {
570             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
571             return ParallelAccessGroups.count(AG);
572           }
573 
574           for (const MDOperand &AccessListItem : AG->operands()) {
575             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
576             assert(isValidAsAccessGroup(AccGroup) &&
577                    "List item must be an access group");
578             if (ParallelAccessGroups.count(AccGroup))
579               return true;
580           }
581           return false;
582         };
583 
584         if (ContainsAccessGroup(AccessGroup))
585           continue;
586       }
587 
588       // The memory instruction can refer to the loop identifier metadata
589       // directly or indirectly through another list metadata (in case of
590       // nested parallel loops). The loop identifier metadata refers to
591       // itself so we can check both cases with the same routine.
592       MDNode *LoopIdMD =
593           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
594 
595       if (!LoopIdMD)
596         return false;
597 
598       bool LoopIdMDFound = false;
599       for (const MDOperand &MDOp : LoopIdMD->operands()) {
600         if (MDOp == DesiredLoopIdMetadata) {
601           LoopIdMDFound = true;
602           break;
603         }
604       }
605 
606       if (!LoopIdMDFound)
607         return false;
608     }
609   }
610   return true;
611 }
612 
613 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
614 
615 Loop::LocRange Loop::getLocRange() const {
616   // If we have a debug location in the loop ID, then use it.
617   if (MDNode *LoopID = getLoopID()) {
618     DebugLoc Start;
619     // We use the first DebugLoc in the header as the start location of the loop
620     // and if there is a second DebugLoc in the header we use it as end location
621     // of the loop.
622     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
623       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
624         if (!Start)
625           Start = DebugLoc(L);
626         else
627           return LocRange(Start, DebugLoc(L));
628       }
629     }
630 
631     if (Start)
632       return LocRange(Start);
633   }
634 
635   // Try the pre-header first.
636   if (BasicBlock *PHeadBB = getLoopPreheader())
637     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
638       return LocRange(DL);
639 
640   // If we have no pre-header or there are no instructions with debug
641   // info in it, try the header.
642   if (BasicBlock *HeadBB = getHeader())
643     return LocRange(HeadBB->getTerminator()->getDebugLoc());
644 
645   return LocRange();
646 }
647 
648 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
649 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
650 
651 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
652   print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
653 }
654 #endif
655 
656 //===----------------------------------------------------------------------===//
657 // UnloopUpdater implementation
658 //
659 
660 namespace {
661 /// Find the new parent loop for all blocks within the "unloop" whose last
662 /// backedges has just been removed.
663 class UnloopUpdater {
664   Loop &Unloop;
665   LoopInfo *LI;
666 
667   LoopBlocksDFS DFS;
668 
669   // Map unloop's immediate subloops to their nearest reachable parents. Nested
670   // loops within these subloops will not change parents. However, an immediate
671   // subloop's new parent will be the nearest loop reachable from either its own
672   // exits *or* any of its nested loop's exits.
673   DenseMap<Loop *, Loop *> SubloopParents;
674 
675   // Flag the presence of an irreducible backedge whose destination is a block
676   // directly contained by the original unloop.
677   bool FoundIB;
678 
679 public:
680   UnloopUpdater(Loop *UL, LoopInfo *LInfo)
681       : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
682 
683   void updateBlockParents();
684 
685   void removeBlocksFromAncestors();
686 
687   void updateSubloopParents();
688 
689 protected:
690   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
691 };
692 } // end anonymous namespace
693 
694 /// Update the parent loop for all blocks that are directly contained within the
695 /// original "unloop".
696 void UnloopUpdater::updateBlockParents() {
697   if (Unloop.getNumBlocks()) {
698     // Perform a post order CFG traversal of all blocks within this loop,
699     // propagating the nearest loop from successors to predecessors.
700     LoopBlocksTraversal Traversal(DFS, LI);
701     for (BasicBlock *POI : Traversal) {
702 
703       Loop *L = LI->getLoopFor(POI);
704       Loop *NL = getNearestLoop(POI, L);
705 
706       if (NL != L) {
707         // For reducible loops, NL is now an ancestor of Unloop.
708         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
709                "uninitialized successor");
710         LI->changeLoopFor(POI, NL);
711       } else {
712         // Or the current block is part of a subloop, in which case its parent
713         // is unchanged.
714         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
715       }
716     }
717   }
718   // Each irreducible loop within the unloop induces a round of iteration using
719   // the DFS result cached by Traversal.
720   bool Changed = FoundIB;
721   for (unsigned NIters = 0; Changed; ++NIters) {
722     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
723 
724     // Iterate over the postorder list of blocks, propagating the nearest loop
725     // from successors to predecessors as before.
726     Changed = false;
727     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
728                                    POE = DFS.endPostorder();
729          POI != POE; ++POI) {
730 
731       Loop *L = LI->getLoopFor(*POI);
732       Loop *NL = getNearestLoop(*POI, L);
733       if (NL != L) {
734         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
735                "uninitialized successor");
736         LI->changeLoopFor(*POI, NL);
737         Changed = true;
738       }
739     }
740   }
741 }
742 
743 /// Remove unloop's blocks from all ancestors below their new parents.
744 void UnloopUpdater::removeBlocksFromAncestors() {
745   // Remove all unloop's blocks (including those in nested subloops) from
746   // ancestors below the new parent loop.
747   for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
748        BI != BE; ++BI) {
749     Loop *OuterParent = LI->getLoopFor(*BI);
750     if (Unloop.contains(OuterParent)) {
751       while (OuterParent->getParentLoop() != &Unloop)
752         OuterParent = OuterParent->getParentLoop();
753       OuterParent = SubloopParents[OuterParent];
754     }
755     // Remove blocks from former Ancestors except Unloop itself which will be
756     // deleted.
757     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
758          OldParent = OldParent->getParentLoop()) {
759       assert(OldParent && "new loop is not an ancestor of the original");
760       OldParent->removeBlockFromLoop(*BI);
761     }
762   }
763 }
764 
765 /// Update the parent loop for all subloops directly nested within unloop.
766 void UnloopUpdater::updateSubloopParents() {
767   while (!Unloop.empty()) {
768     Loop *Subloop = *std::prev(Unloop.end());
769     Unloop.removeChildLoop(std::prev(Unloop.end()));
770 
771     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
772     if (Loop *Parent = SubloopParents[Subloop])
773       Parent->addChildLoop(Subloop);
774     else
775       LI->addTopLevelLoop(Subloop);
776   }
777 }
778 
779 /// Return the nearest parent loop among this block's successors. If a successor
780 /// is a subloop header, consider its parent to be the nearest parent of the
781 /// subloop's exits.
782 ///
783 /// For subloop blocks, simply update SubloopParents and return NULL.
784 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
785 
786   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
787   // is considered uninitialized.
788   Loop *NearLoop = BBLoop;
789 
790   Loop *Subloop = nullptr;
791   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
792     Subloop = NearLoop;
793     // Find the subloop ancestor that is directly contained within Unloop.
794     while (Subloop->getParentLoop() != &Unloop) {
795       Subloop = Subloop->getParentLoop();
796       assert(Subloop && "subloop is not an ancestor of the original loop");
797     }
798     // Get the current nearest parent of the Subloop exits, initially Unloop.
799     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
800   }
801 
802   succ_iterator I = succ_begin(BB), E = succ_end(BB);
803   if (I == E) {
804     assert(!Subloop && "subloop blocks must have a successor");
805     NearLoop = nullptr; // unloop blocks may now exit the function.
806   }
807   for (; I != E; ++I) {
808     if (*I == BB)
809       continue; // self loops are uninteresting
810 
811     Loop *L = LI->getLoopFor(*I);
812     if (L == &Unloop) {
813       // This successor has not been processed. This path must lead to an
814       // irreducible backedge.
815       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
816       FoundIB = true;
817     }
818     if (L != &Unloop && Unloop.contains(L)) {
819       // Successor is in a subloop.
820       if (Subloop)
821         continue; // Branching within subloops. Ignore it.
822 
823       // BB branches from the original into a subloop header.
824       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
825 
826       // Get the current nearest parent of the Subloop's exits.
827       L = SubloopParents[L];
828       // L could be Unloop if the only exit was an irreducible backedge.
829     }
830     if (L == &Unloop) {
831       continue;
832     }
833     // Handle critical edges from Unloop into a sibling loop.
834     if (L && !L->contains(&Unloop)) {
835       L = L->getParentLoop();
836     }
837     // Remember the nearest parent loop among successors or subloop exits.
838     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
839       NearLoop = L;
840   }
841   if (Subloop) {
842     SubloopParents[Subloop] = NearLoop;
843     return BBLoop;
844   }
845   return NearLoop;
846 }
847 
848 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
849 
850 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
851                           FunctionAnalysisManager::Invalidator &) {
852   // Check whether the analysis, all analyses on functions, or the function's
853   // CFG have been preserved.
854   auto PAC = PA.getChecker<LoopAnalysis>();
855   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
856            PAC.preservedSet<CFGAnalyses>());
857 }
858 
859 void LoopInfo::erase(Loop *Unloop) {
860   assert(!Unloop->isInvalid() && "Loop has already been erased!");
861 
862   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
863 
864   // First handle the special case of no parent loop to simplify the algorithm.
865   if (!Unloop->getParentLoop()) {
866     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
867     for (Loop::block_iterator I = Unloop->block_begin(),
868                               E = Unloop->block_end();
869          I != E; ++I) {
870 
871       // Don't reparent blocks in subloops.
872       if (getLoopFor(*I) != Unloop)
873         continue;
874 
875       // Blocks no longer have a parent but are still referenced by Unloop until
876       // the Unloop object is deleted.
877       changeLoopFor(*I, nullptr);
878     }
879 
880     // Remove the loop from the top-level LoopInfo object.
881     for (iterator I = begin();; ++I) {
882       assert(I != end() && "Couldn't find loop");
883       if (*I == Unloop) {
884         removeLoop(I);
885         break;
886       }
887     }
888 
889     // Move all of the subloops to the top-level.
890     while (!Unloop->empty())
891       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
892 
893     return;
894   }
895 
896   // Update the parent loop for all blocks within the loop. Blocks within
897   // subloops will not change parents.
898   UnloopUpdater Updater(Unloop, this);
899   Updater.updateBlockParents();
900 
901   // Remove blocks from former ancestor loops.
902   Updater.removeBlocksFromAncestors();
903 
904   // Add direct subloops as children in their new parent loop.
905   Updater.updateSubloopParents();
906 
907   // Remove unloop from its parent loop.
908   Loop *ParentLoop = Unloop->getParentLoop();
909   for (Loop::iterator I = ParentLoop->begin();; ++I) {
910     assert(I != ParentLoop->end() && "Couldn't find loop");
911     if (*I == Unloop) {
912       ParentLoop->removeChildLoop(I);
913       break;
914     }
915   }
916 }
917 
918 AnalysisKey LoopAnalysis::Key;
919 
920 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
921   // FIXME: Currently we create a LoopInfo from scratch for every function.
922   // This may prove to be too wasteful due to deallocating and re-allocating
923   // memory each time for the underlying map and vector datastructures. At some
924   // point it may prove worthwhile to use a freelist and recycle LoopInfo
925   // objects. I don't want to add that kind of complexity until the scope of
926   // the problem is better understood.
927   LoopInfo LI;
928   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
929   return LI;
930 }
931 
932 PreservedAnalyses LoopPrinterPass::run(Function &F,
933                                        FunctionAnalysisManager &AM) {
934   AM.getResult<LoopAnalysis>(F).print(OS);
935   return PreservedAnalyses::all();
936 }
937 
938 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
939 
940   if (forcePrintModuleIR()) {
941     // handling -print-module-scope
942     OS << Banner << " (loop: ";
943     L.getHeader()->printAsOperand(OS, false);
944     OS << ")\n";
945 
946     // printing whole module
947     OS << *L.getHeader()->getModule();
948     return;
949   }
950 
951   OS << Banner;
952 
953   auto *PreHeader = L.getLoopPreheader();
954   if (PreHeader) {
955     OS << "\n; Preheader:";
956     PreHeader->print(OS);
957     OS << "\n; Loop:";
958   }
959 
960   for (auto *Block : L.blocks())
961     if (Block)
962       Block->print(OS);
963     else
964       OS << "Printing <null> block";
965 
966   SmallVector<BasicBlock *, 8> ExitBlocks;
967   L.getExitBlocks(ExitBlocks);
968   if (!ExitBlocks.empty()) {
969     OS << "\n; Exit blocks";
970     for (auto *Block : ExitBlocks)
971       if (Block)
972         Block->print(OS);
973       else
974         OS << "Printing <null> block";
975   }
976 }
977 
978 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
979   // No loop metadata node, no loop properties.
980   if (!LoopID)
981     return nullptr;
982 
983   // First operand should refer to the metadata node itself, for legacy reasons.
984   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
985   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
986 
987   // Iterate over the metdata node operands and look for MDString metadata.
988   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
989     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
990     if (!MD || MD->getNumOperands() < 1)
991       continue;
992     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
993     if (!S)
994       continue;
995     // Return the operand node if MDString holds expected metadata.
996     if (Name.equals(S->getString()))
997       return MD;
998   }
999 
1000   // Loop property not found.
1001   return nullptr;
1002 }
1003 
1004 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1005   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1006 }
1007 
1008 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1009   return Node->getNumOperands() == 0 && Node->isDistinct();
1010 }
1011 
1012 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1013                                              MDNode *OrigLoopID,
1014                                              ArrayRef<StringRef> RemovePrefixes,
1015                                              ArrayRef<MDNode *> AddAttrs) {
1016   // First remove any existing loop metadata related to this transformation.
1017   SmallVector<Metadata *, 4> MDs;
1018 
1019   // Reserve first location for self reference to the LoopID metadata node.
1020   TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1021   MDs.push_back(TempNode.get());
1022 
1023   // Remove metadata for the transformation that has been applied or that became
1024   // outdated.
1025   if (OrigLoopID) {
1026     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1027       bool IsVectorMetadata = false;
1028       Metadata *Op = OrigLoopID->getOperand(i);
1029       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1030         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1031         if (S)
1032           IsVectorMetadata =
1033               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1034                 return S->getString().startswith(Prefix);
1035               });
1036       }
1037       if (!IsVectorMetadata)
1038         MDs.push_back(Op);
1039     }
1040   }
1041 
1042   // Add metadata to avoid reapplying a transformation, such as
1043   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1044   MDs.append(AddAttrs.begin(), AddAttrs.end());
1045 
1046   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1047   // Replace the temporary node with a self-reference.
1048   NewLoopID->replaceOperandWith(0, NewLoopID);
1049   return NewLoopID;
1050 }
1051 
1052 //===----------------------------------------------------------------------===//
1053 // LoopInfo implementation
1054 //
1055 
1056 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
1057   initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1058 }
1059 
1060 char LoopInfoWrapperPass::ID = 0;
1061 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1062                       true, true)
1063 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1064 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1065                     true, true)
1066 
1067 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1068   releaseMemory();
1069   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1070   return false;
1071 }
1072 
1073 void LoopInfoWrapperPass::verifyAnalysis() const {
1074   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1075   // function each time verifyAnalysis is called is very expensive. The
1076   // -verify-loop-info option can enable this. In order to perform some
1077   // checking by default, LoopPass has been taught to call verifyLoop manually
1078   // during loop pass sequences.
1079   if (VerifyLoopInfo) {
1080     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1081     LI.verify(DT);
1082   }
1083 }
1084 
1085 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1086   AU.setPreservesAll();
1087   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1088 }
1089 
1090 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1091   LI.print(OS);
1092 }
1093 
1094 PreservedAnalyses LoopVerifierPass::run(Function &F,
1095                                         FunctionAnalysisManager &AM) {
1096   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1097   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1098   LI.verify(DT);
1099   return PreservedAnalyses::all();
1100 }
1101 
1102 //===----------------------------------------------------------------------===//
1103 // LoopBlocksDFS implementation
1104 //
1105 
1106 /// Traverse the loop blocks and store the DFS result.
1107 /// Useful for clients that just want the final DFS result and don't need to
1108 /// visit blocks during the initial traversal.
1109 void LoopBlocksDFS::perform(LoopInfo *LI) {
1110   LoopBlocksTraversal Traversal(*this, LI);
1111   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1112                                         POE = Traversal.end();
1113        POI != POE; ++POI)
1114     ;
1115 }
1116