xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopInfo.cpp (revision ac77b2621508c6a50ab01d07fe8d43795d908f05)
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/IVDescriptors.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/LoopNestAnalysis.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PassManager.h"
35 #include "llvm/IR/PrintPasses.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/GenericLoopInfoImpl.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41 
42 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
43 template class llvm::LoopBase<BasicBlock, Loop>;
44 template class llvm::LoopInfoBase<BasicBlock, Loop>;
45 
46 // Always verify loopinfo if expensive checking is enabled.
47 #ifdef EXPENSIVE_CHECKS
48 bool llvm::VerifyLoopInfo = true;
49 #else
50 bool llvm::VerifyLoopInfo = false;
51 #endif
52 static cl::opt<bool, true>
53     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
54                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
55 
56 //===----------------------------------------------------------------------===//
57 // Loop implementation
58 //
59 
60 bool Loop::isLoopInvariant(const Value *V) const {
61   if (const Instruction *I = dyn_cast<Instruction>(V))
62     return !contains(I);
63   return true; // All non-instructions are loop invariant
64 }
65 
66 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
67   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
68 }
69 
70 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
71                              MemorySSAUpdater *MSSAU,
72                              ScalarEvolution *SE) const {
73   if (Instruction *I = dyn_cast<Instruction>(V))
74     return makeLoopInvariant(I, Changed, InsertPt, MSSAU, SE);
75   return true; // All non-instructions are loop-invariant.
76 }
77 
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79                              Instruction *InsertPt, MemorySSAUpdater *MSSAU,
80                              ScalarEvolution *SE) const {
81   // Test if the value is already loop-invariant.
82   if (isLoopInvariant(I))
83     return true;
84   if (!isSafeToSpeculativelyExecute(I))
85     return false;
86   if (I->mayReadFromMemory())
87     return false;
88   // EH block instructions are immobile.
89   if (I->isEHPad())
90     return false;
91   // Determine the insertion point, unless one was given.
92   if (!InsertPt) {
93     BasicBlock *Preheader = getLoopPreheader();
94     // Without a preheader, hoisting is not feasible.
95     if (!Preheader)
96       return false;
97     InsertPt = Preheader->getTerminator();
98   }
99   // Don't hoist instructions with loop-variant operands.
100   for (Value *Operand : I->operands())
101     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU, SE))
102       return false;
103 
104   // Hoist.
105   I->moveBefore(InsertPt);
106   if (MSSAU)
107     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108       MSSAU->moveToPlace(MUD, InsertPt->getParent(),
109                          MemorySSA::BeforeTerminator);
110 
111   // There is possibility of hoisting this instruction above some arbitrary
112   // condition. Any metadata defined on it can be control dependent on this
113   // condition. Conservatively strip it here so that we don't give any wrong
114   // information to the optimizer.
115   I->dropUnknownNonDebugMetadata();
116 
117   if (SE)
118     SE->forgetBlockAndLoopDispositions(I);
119 
120   Changed = true;
121   return true;
122 }
123 
124 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
125                                   BasicBlock *&Backedge) const {
126   BasicBlock *H = getHeader();
127 
128   Incoming = nullptr;
129   Backedge = nullptr;
130   pred_iterator PI = pred_begin(H);
131   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
132   Backedge = *PI++;
133   if (PI == pred_end(H))
134     return false; // dead loop
135   Incoming = *PI++;
136   if (PI != pred_end(H))
137     return false; // multiple backedges?
138 
139   if (contains(Incoming)) {
140     if (contains(Backedge))
141       return false;
142     std::swap(Incoming, Backedge);
143   } else if (!contains(Backedge))
144     return false;
145 
146   assert(Incoming && Backedge && "expected non-null incoming and backedges");
147   return true;
148 }
149 
150 PHINode *Loop::getCanonicalInductionVariable() const {
151   BasicBlock *H = getHeader();
152 
153   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
154   if (!getIncomingAndBackEdge(Incoming, Backedge))
155     return nullptr;
156 
157   // Loop over all of the PHI nodes, looking for a canonical indvar.
158   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
159     PHINode *PN = cast<PHINode>(I);
160     if (ConstantInt *CI =
161             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
162       if (CI->isZero())
163         if (Instruction *Inc =
164                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
165           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
166             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
167               if (CI->isOne())
168                 return PN;
169   }
170   return nullptr;
171 }
172 
173 /// Get the latch condition instruction.
174 ICmpInst *Loop::getLatchCmpInst() const {
175   if (BasicBlock *Latch = getLoopLatch())
176     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
177       if (BI->isConditional())
178         return dyn_cast<ICmpInst>(BI->getCondition());
179 
180   return nullptr;
181 }
182 
183 /// Return the final value of the loop induction variable if found.
184 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
185                                const Instruction &StepInst) {
186   ICmpInst *LatchCmpInst = L.getLatchCmpInst();
187   if (!LatchCmpInst)
188     return nullptr;
189 
190   Value *Op0 = LatchCmpInst->getOperand(0);
191   Value *Op1 = LatchCmpInst->getOperand(1);
192   if (Op0 == &IndVar || Op0 == &StepInst)
193     return Op1;
194 
195   if (Op1 == &IndVar || Op1 == &StepInst)
196     return Op0;
197 
198   return nullptr;
199 }
200 
201 std::optional<Loop::LoopBounds>
202 Loop::LoopBounds::getBounds(const Loop &L, PHINode &IndVar,
203                             ScalarEvolution &SE) {
204   InductionDescriptor IndDesc;
205   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
206     return std::nullopt;
207 
208   Value *InitialIVValue = IndDesc.getStartValue();
209   Instruction *StepInst = IndDesc.getInductionBinOp();
210   if (!InitialIVValue || !StepInst)
211     return std::nullopt;
212 
213   const SCEV *Step = IndDesc.getStep();
214   Value *StepInstOp1 = StepInst->getOperand(1);
215   Value *StepInstOp0 = StepInst->getOperand(0);
216   Value *StepValue = nullptr;
217   if (SE.getSCEV(StepInstOp1) == Step)
218     StepValue = StepInstOp1;
219   else if (SE.getSCEV(StepInstOp0) == Step)
220     StepValue = StepInstOp0;
221 
222   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
223   if (!FinalIVValue)
224     return std::nullopt;
225 
226   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
227                     SE);
228 }
229 
230 using Direction = Loop::LoopBounds::Direction;
231 
232 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
233   BasicBlock *Latch = L.getLoopLatch();
234   assert(Latch && "Expecting valid latch");
235 
236   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
237   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
238 
239   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
240   assert(LatchCmpInst &&
241          "Expecting the latch compare instruction to be a CmpInst");
242 
243   // Need to inverse the predicate when first successor is not the loop
244   // header
245   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
246                                  ? LatchCmpInst->getPredicate()
247                                  : LatchCmpInst->getInversePredicate();
248 
249   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
250     Pred = ICmpInst::getSwappedPredicate(Pred);
251 
252   // Need to flip strictness of the predicate when the latch compare instruction
253   // is not using StepInst
254   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
255       LatchCmpInst->getOperand(1) == &getStepInst())
256     return Pred;
257 
258   // Cannot flip strictness of NE and EQ
259   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
260     return ICmpInst::getFlippedStrictnessPredicate(Pred);
261 
262   Direction D = getDirection();
263   if (D == Direction::Increasing)
264     return ICmpInst::ICMP_SLT;
265 
266   if (D == Direction::Decreasing)
267     return ICmpInst::ICMP_SGT;
268 
269   // If cannot determine the direction, then unable to find the canonical
270   // predicate
271   return ICmpInst::BAD_ICMP_PREDICATE;
272 }
273 
274 Direction Loop::LoopBounds::getDirection() const {
275   if (const SCEVAddRecExpr *StepAddRecExpr =
276           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
277     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
278       if (SE.isKnownPositive(StepRecur))
279         return Direction::Increasing;
280       if (SE.isKnownNegative(StepRecur))
281         return Direction::Decreasing;
282     }
283 
284   return Direction::Unknown;
285 }
286 
287 std::optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
288   if (PHINode *IndVar = getInductionVariable(SE))
289     return LoopBounds::getBounds(*this, *IndVar, SE);
290 
291   return std::nullopt;
292 }
293 
294 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
295   if (!isLoopSimplifyForm())
296     return nullptr;
297 
298   BasicBlock *Header = getHeader();
299   assert(Header && "Expected a valid loop header");
300   ICmpInst *CmpInst = getLatchCmpInst();
301   if (!CmpInst)
302     return nullptr;
303 
304   Value *LatchCmpOp0 = CmpInst->getOperand(0);
305   Value *LatchCmpOp1 = CmpInst->getOperand(1);
306 
307   for (PHINode &IndVar : Header->phis()) {
308     InductionDescriptor IndDesc;
309     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
310       continue;
311 
312     BasicBlock *Latch = getLoopLatch();
313     Value *StepInst = IndVar.getIncomingValueForBlock(Latch);
314 
315     // case 1:
316     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
317     // StepInst = IndVar + step
318     // cmp = StepInst < FinalValue
319     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
320       return &IndVar;
321 
322     // case 2:
323     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
324     // StepInst = IndVar + step
325     // cmp = IndVar < FinalValue
326     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
327       return &IndVar;
328   }
329 
330   return nullptr;
331 }
332 
333 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
334                                   InductionDescriptor &IndDesc) const {
335   if (PHINode *IndVar = getInductionVariable(SE))
336     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
337 
338   return false;
339 }
340 
341 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
342                                         ScalarEvolution &SE) const {
343   // Located in the loop header
344   BasicBlock *Header = getHeader();
345   if (AuxIndVar.getParent() != Header)
346     return false;
347 
348   // No uses outside of the loop
349   for (User *U : AuxIndVar.users())
350     if (const Instruction *I = dyn_cast<Instruction>(U))
351       if (!contains(I))
352         return false;
353 
354   InductionDescriptor IndDesc;
355   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
356     return false;
357 
358   // The step instruction opcode should be add or sub.
359   if (IndDesc.getInductionOpcode() != Instruction::Add &&
360       IndDesc.getInductionOpcode() != Instruction::Sub)
361     return false;
362 
363   // Incremented by a loop invariant step for each loop iteration
364   return SE.isLoopInvariant(IndDesc.getStep(), this);
365 }
366 
367 BranchInst *Loop::getLoopGuardBranch() const {
368   if (!isLoopSimplifyForm())
369     return nullptr;
370 
371   BasicBlock *Preheader = getLoopPreheader();
372   assert(Preheader && getLoopLatch() &&
373          "Expecting a loop with valid preheader and latch");
374 
375   // Loop should be in rotate form.
376   if (!isRotatedForm())
377     return nullptr;
378 
379   // Disallow loops with more than one unique exit block, as we do not verify
380   // that GuardOtherSucc post dominates all exit blocks.
381   BasicBlock *ExitFromLatch = getUniqueExitBlock();
382   if (!ExitFromLatch)
383     return nullptr;
384 
385   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
386   if (!GuardBB)
387     return nullptr;
388 
389   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
390 
391   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
392   if (!GuardBI || GuardBI->isUnconditional())
393     return nullptr;
394 
395   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
396                                    ? GuardBI->getSuccessor(1)
397                                    : GuardBI->getSuccessor(0);
398 
399   // Check if ExitFromLatch (or any BasicBlock which is an empty unique
400   // successor of ExitFromLatch) is equal to GuardOtherSucc. If
401   // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the
402   // loop is GuardBI (return GuardBI), otherwise return nullptr.
403   if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc,
404                                      /*CheckUniquePred=*/true) ==
405       GuardOtherSucc)
406     return GuardBI;
407   else
408     return nullptr;
409 }
410 
411 bool Loop::isCanonical(ScalarEvolution &SE) const {
412   InductionDescriptor IndDesc;
413   if (!getInductionDescriptor(SE, IndDesc))
414     return false;
415 
416   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
417   if (!Init || !Init->isZero())
418     return false;
419 
420   if (IndDesc.getInductionOpcode() != Instruction::Add)
421     return false;
422 
423   ConstantInt *Step = IndDesc.getConstIntStepValue();
424   if (!Step || !Step->isOne())
425     return false;
426 
427   return true;
428 }
429 
430 // Check that 'BB' doesn't have any uses outside of the 'L'
431 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
432                                const DominatorTree &DT, bool IgnoreTokens) {
433   for (const Instruction &I : BB) {
434     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
435     // optimizations, so for the purposes of considered LCSSA form, we
436     // can ignore them.
437     if (IgnoreTokens && I.getType()->isTokenTy())
438       continue;
439 
440     for (const Use &U : I.uses()) {
441       const Instruction *UI = cast<Instruction>(U.getUser());
442       const BasicBlock *UserBB = UI->getParent();
443 
444       // For practical purposes, we consider that the use in a PHI
445       // occurs in the respective predecessor block. For more info,
446       // see the `phi` doc in LangRef and the LCSSA doc.
447       if (const PHINode *P = dyn_cast<PHINode>(UI))
448         UserBB = P->getIncomingBlock(U);
449 
450       // Check the current block, as a fast-path, before checking whether
451       // the use is anywhere in the loop.  Most values are used in the same
452       // block they are defined in.  Also, blocks not reachable from the
453       // entry are special; uses in them don't need to go through PHIs.
454       if (UserBB != &BB && !L.contains(UserBB) &&
455           DT.isReachableFromEntry(UserBB))
456         return false;
457     }
458   }
459   return true;
460 }
461 
462 bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const {
463   // For each block we check that it doesn't have any uses outside of this loop.
464   return all_of(this->blocks(), [&](const BasicBlock *BB) {
465     return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens);
466   });
467 }
468 
469 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
470                                   bool IgnoreTokens) const {
471   // For each block we check that it doesn't have any uses outside of its
472   // innermost loop. This process will transitively guarantee that the current
473   // loop and all of the nested loops are in LCSSA form.
474   return all_of(this->blocks(), [&](const BasicBlock *BB) {
475     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens);
476   });
477 }
478 
479 bool Loop::isLoopSimplifyForm() const {
480   // Normal-form loops have a preheader, a single backedge, and all of their
481   // exits have all their predecessors inside the loop.
482   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
483 }
484 
485 // Routines that reform the loop CFG and split edges often fail on indirectbr.
486 bool Loop::isSafeToClone() const {
487   // Return false if any loop blocks contain indirectbrs, or there are any calls
488   // to noduplicate functions.
489   for (BasicBlock *BB : this->blocks()) {
490     if (isa<IndirectBrInst>(BB->getTerminator()))
491       return false;
492 
493     for (Instruction &I : *BB)
494       if (auto *CB = dyn_cast<CallBase>(&I))
495         if (CB->cannotDuplicate())
496           return false;
497   }
498   return true;
499 }
500 
501 MDNode *Loop::getLoopID() const {
502   MDNode *LoopID = nullptr;
503 
504   // Go through the latch blocks and check the terminator for the metadata.
505   SmallVector<BasicBlock *, 4> LatchesBlocks;
506   getLoopLatches(LatchesBlocks);
507   for (BasicBlock *BB : LatchesBlocks) {
508     Instruction *TI = BB->getTerminator();
509     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
510 
511     if (!MD)
512       return nullptr;
513 
514     if (!LoopID)
515       LoopID = MD;
516     else if (MD != LoopID)
517       return nullptr;
518   }
519   if (!LoopID || LoopID->getNumOperands() == 0 ||
520       LoopID->getOperand(0) != LoopID)
521     return nullptr;
522   return LoopID;
523 }
524 
525 void Loop::setLoopID(MDNode *LoopID) const {
526   assert((!LoopID || LoopID->getNumOperands() > 0) &&
527          "Loop ID needs at least one operand");
528   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
529          "Loop ID should refer to itself");
530 
531   SmallVector<BasicBlock *, 4> LoopLatches;
532   getLoopLatches(LoopLatches);
533   for (BasicBlock *BB : LoopLatches)
534     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
535 }
536 
537 void Loop::setLoopAlreadyUnrolled() {
538   LLVMContext &Context = getHeader()->getContext();
539 
540   MDNode *DisableUnrollMD =
541       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
542   MDNode *LoopID = getLoopID();
543   MDNode *NewLoopID = makePostTransformationMetadata(
544       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
545   setLoopID(NewLoopID);
546 }
547 
548 void Loop::setLoopMustProgress() {
549   LLVMContext &Context = getHeader()->getContext();
550 
551   MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress");
552 
553   if (MustProgress)
554     return;
555 
556   MDNode *MustProgressMD =
557       MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress"));
558   MDNode *LoopID = getLoopID();
559   MDNode *NewLoopID =
560       makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD});
561   setLoopID(NewLoopID);
562 }
563 
564 bool Loop::isAnnotatedParallel() const {
565   MDNode *DesiredLoopIdMetadata = getLoopID();
566 
567   if (!DesiredLoopIdMetadata)
568     return false;
569 
570   MDNode *ParallelAccesses =
571       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
572   SmallPtrSet<MDNode *, 4>
573       ParallelAccessGroups; // For scalable 'contains' check.
574   if (ParallelAccesses) {
575     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) {
576       MDNode *AccGroup = cast<MDNode>(MD.get());
577       assert(isValidAsAccessGroup(AccGroup) &&
578              "List item must be an access group");
579       ParallelAccessGroups.insert(AccGroup);
580     }
581   }
582 
583   // The loop branch contains the parallel loop metadata. In order to ensure
584   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
585   // dependencies (thus converted the loop back to a sequential loop), check
586   // that all the memory instructions in the loop belong to an access group that
587   // is parallel to this loop.
588   for (BasicBlock *BB : this->blocks()) {
589     for (Instruction &I : *BB) {
590       if (!I.mayReadOrWriteMemory())
591         continue;
592 
593       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
594         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
595           if (AG->getNumOperands() == 0) {
596             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
597             return ParallelAccessGroups.count(AG);
598           }
599 
600           for (const MDOperand &AccessListItem : AG->operands()) {
601             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
602             assert(isValidAsAccessGroup(AccGroup) &&
603                    "List item must be an access group");
604             if (ParallelAccessGroups.count(AccGroup))
605               return true;
606           }
607           return false;
608         };
609 
610         if (ContainsAccessGroup(AccessGroup))
611           continue;
612       }
613 
614       // The memory instruction can refer to the loop identifier metadata
615       // directly or indirectly through another list metadata (in case of
616       // nested parallel loops). The loop identifier metadata refers to
617       // itself so we can check both cases with the same routine.
618       MDNode *LoopIdMD =
619           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
620 
621       if (!LoopIdMD)
622         return false;
623 
624       if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata))
625         return false;
626     }
627   }
628   return true;
629 }
630 
631 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
632 
633 Loop::LocRange Loop::getLocRange() const {
634   // If we have a debug location in the loop ID, then use it.
635   if (MDNode *LoopID = getLoopID()) {
636     DebugLoc Start;
637     // We use the first DebugLoc in the header as the start location of the loop
638     // and if there is a second DebugLoc in the header we use it as end location
639     // of the loop.
640     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
641       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
642         if (!Start)
643           Start = DebugLoc(L);
644         else
645           return LocRange(Start, DebugLoc(L));
646       }
647     }
648 
649     if (Start)
650       return LocRange(Start);
651   }
652 
653   // Try the pre-header first.
654   if (BasicBlock *PHeadBB = getLoopPreheader())
655     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
656       return LocRange(DL);
657 
658   // If we have no pre-header or there are no instructions with debug
659   // info in it, try the header.
660   if (BasicBlock *HeadBB = getHeader())
661     return LocRange(HeadBB->getTerminator()->getDebugLoc());
662 
663   return LocRange();
664 }
665 
666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
667 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
668 
669 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
670   print(dbgs(), /*Verbose=*/true);
671 }
672 #endif
673 
674 //===----------------------------------------------------------------------===//
675 // UnloopUpdater implementation
676 //
677 
678 namespace {
679 /// Find the new parent loop for all blocks within the "unloop" whose last
680 /// backedges has just been removed.
681 class UnloopUpdater {
682   Loop &Unloop;
683   LoopInfo *LI;
684 
685   LoopBlocksDFS DFS;
686 
687   // Map unloop's immediate subloops to their nearest reachable parents. Nested
688   // loops within these subloops will not change parents. However, an immediate
689   // subloop's new parent will be the nearest loop reachable from either its own
690   // exits *or* any of its nested loop's exits.
691   DenseMap<Loop *, Loop *> SubloopParents;
692 
693   // Flag the presence of an irreducible backedge whose destination is a block
694   // directly contained by the original unloop.
695   bool FoundIB = false;
696 
697 public:
698   UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {}
699 
700   void updateBlockParents();
701 
702   void removeBlocksFromAncestors();
703 
704   void updateSubloopParents();
705 
706 protected:
707   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
708 };
709 } // end anonymous namespace
710 
711 /// Update the parent loop for all blocks that are directly contained within the
712 /// original "unloop".
713 void UnloopUpdater::updateBlockParents() {
714   if (Unloop.getNumBlocks()) {
715     // Perform a post order CFG traversal of all blocks within this loop,
716     // propagating the nearest loop from successors to predecessors.
717     LoopBlocksTraversal Traversal(DFS, LI);
718     for (BasicBlock *POI : Traversal) {
719 
720       Loop *L = LI->getLoopFor(POI);
721       Loop *NL = getNearestLoop(POI, L);
722 
723       if (NL != L) {
724         // For reducible loops, NL is now an ancestor of Unloop.
725         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
726                "uninitialized successor");
727         LI->changeLoopFor(POI, NL);
728       } else {
729         // Or the current block is part of a subloop, in which case its parent
730         // is unchanged.
731         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
732       }
733     }
734   }
735   // Each irreducible loop within the unloop induces a round of iteration using
736   // the DFS result cached by Traversal.
737   bool Changed = FoundIB;
738   for (unsigned NIters = 0; Changed; ++NIters) {
739     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
740     (void)NIters;
741 
742     // Iterate over the postorder list of blocks, propagating the nearest loop
743     // from successors to predecessors as before.
744     Changed = false;
745     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
746                                    POE = DFS.endPostorder();
747          POI != POE; ++POI) {
748 
749       Loop *L = LI->getLoopFor(*POI);
750       Loop *NL = getNearestLoop(*POI, L);
751       if (NL != L) {
752         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
753                "uninitialized successor");
754         LI->changeLoopFor(*POI, NL);
755         Changed = true;
756       }
757     }
758   }
759 }
760 
761 /// Remove unloop's blocks from all ancestors below their new parents.
762 void UnloopUpdater::removeBlocksFromAncestors() {
763   // Remove all unloop's blocks (including those in nested subloops) from
764   // ancestors below the new parent loop.
765   for (BasicBlock *BB : Unloop.blocks()) {
766     Loop *OuterParent = LI->getLoopFor(BB);
767     if (Unloop.contains(OuterParent)) {
768       while (OuterParent->getParentLoop() != &Unloop)
769         OuterParent = OuterParent->getParentLoop();
770       OuterParent = SubloopParents[OuterParent];
771     }
772     // Remove blocks from former Ancestors except Unloop itself which will be
773     // deleted.
774     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
775          OldParent = OldParent->getParentLoop()) {
776       assert(OldParent && "new loop is not an ancestor of the original");
777       OldParent->removeBlockFromLoop(BB);
778     }
779   }
780 }
781 
782 /// Update the parent loop for all subloops directly nested within unloop.
783 void UnloopUpdater::updateSubloopParents() {
784   while (!Unloop.isInnermost()) {
785     Loop *Subloop = *std::prev(Unloop.end());
786     Unloop.removeChildLoop(std::prev(Unloop.end()));
787 
788     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
789     if (Loop *Parent = SubloopParents[Subloop])
790       Parent->addChildLoop(Subloop);
791     else
792       LI->addTopLevelLoop(Subloop);
793   }
794 }
795 
796 /// Return the nearest parent loop among this block's successors. If a successor
797 /// is a subloop header, consider its parent to be the nearest parent of the
798 /// subloop's exits.
799 ///
800 /// For subloop blocks, simply update SubloopParents and return NULL.
801 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
802 
803   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
804   // is considered uninitialized.
805   Loop *NearLoop = BBLoop;
806 
807   Loop *Subloop = nullptr;
808   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
809     Subloop = NearLoop;
810     // Find the subloop ancestor that is directly contained within Unloop.
811     while (Subloop->getParentLoop() != &Unloop) {
812       Subloop = Subloop->getParentLoop();
813       assert(Subloop && "subloop is not an ancestor of the original loop");
814     }
815     // Get the current nearest parent of the Subloop exits, initially Unloop.
816     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
817   }
818 
819   succ_iterator I = succ_begin(BB), E = succ_end(BB);
820   if (I == E) {
821     assert(!Subloop && "subloop blocks must have a successor");
822     NearLoop = nullptr; // unloop blocks may now exit the function.
823   }
824   for (; I != E; ++I) {
825     if (*I == BB)
826       continue; // self loops are uninteresting
827 
828     Loop *L = LI->getLoopFor(*I);
829     if (L == &Unloop) {
830       // This successor has not been processed. This path must lead to an
831       // irreducible backedge.
832       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
833       FoundIB = true;
834     }
835     if (L != &Unloop && Unloop.contains(L)) {
836       // Successor is in a subloop.
837       if (Subloop)
838         continue; // Branching within subloops. Ignore it.
839 
840       // BB branches from the original into a subloop header.
841       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
842 
843       // Get the current nearest parent of the Subloop's exits.
844       L = SubloopParents[L];
845       // L could be Unloop if the only exit was an irreducible backedge.
846     }
847     if (L == &Unloop) {
848       continue;
849     }
850     // Handle critical edges from Unloop into a sibling loop.
851     if (L && !L->contains(&Unloop)) {
852       L = L->getParentLoop();
853     }
854     // Remember the nearest parent loop among successors or subloop exits.
855     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
856       NearLoop = L;
857   }
858   if (Subloop) {
859     SubloopParents[Subloop] = NearLoop;
860     return BBLoop;
861   }
862   return NearLoop;
863 }
864 
865 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
866 
867 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
868                           FunctionAnalysisManager::Invalidator &) {
869   // Check whether the analysis, all analyses on functions, or the function's
870   // CFG have been preserved.
871   auto PAC = PA.getChecker<LoopAnalysis>();
872   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
873            PAC.preservedSet<CFGAnalyses>());
874 }
875 
876 void LoopInfo::erase(Loop *Unloop) {
877   assert(!Unloop->isInvalid() && "Loop has already been erased!");
878 
879   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
880 
881   // First handle the special case of no parent loop to simplify the algorithm.
882   if (Unloop->isOutermost()) {
883     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
884     for (BasicBlock *BB : Unloop->blocks()) {
885       // Don't reparent blocks in subloops.
886       if (getLoopFor(BB) != Unloop)
887         continue;
888 
889       // Blocks no longer have a parent but are still referenced by Unloop until
890       // the Unloop object is deleted.
891       changeLoopFor(BB, nullptr);
892     }
893 
894     // Remove the loop from the top-level LoopInfo object.
895     for (iterator I = begin();; ++I) {
896       assert(I != end() && "Couldn't find loop");
897       if (*I == Unloop) {
898         removeLoop(I);
899         break;
900       }
901     }
902 
903     // Move all of the subloops to the top-level.
904     while (!Unloop->isInnermost())
905       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
906 
907     return;
908   }
909 
910   // Update the parent loop for all blocks within the loop. Blocks within
911   // subloops will not change parents.
912   UnloopUpdater Updater(Unloop, this);
913   Updater.updateBlockParents();
914 
915   // Remove blocks from former ancestor loops.
916   Updater.removeBlocksFromAncestors();
917 
918   // Add direct subloops as children in their new parent loop.
919   Updater.updateSubloopParents();
920 
921   // Remove unloop from its parent loop.
922   Loop *ParentLoop = Unloop->getParentLoop();
923   for (Loop::iterator I = ParentLoop->begin();; ++I) {
924     assert(I != ParentLoop->end() && "Couldn't find loop");
925     if (*I == Unloop) {
926       ParentLoop->removeChildLoop(I);
927       break;
928     }
929   }
930 }
931 
932 bool LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(
933     const Value *V, const BasicBlock *ExitBB) const {
934   if (V->getType()->isTokenTy())
935     // We can't form PHIs of token type, so the definition of LCSSA excludes
936     // values of that type.
937     return false;
938 
939   const Instruction *I = dyn_cast<Instruction>(V);
940   if (!I)
941     return false;
942   const Loop *L = getLoopFor(I->getParent());
943   if (!L)
944     return false;
945   if (L->contains(ExitBB))
946     // Could be an exit bb of a subloop and contained in defining loop
947     return false;
948 
949   // We found a (new) out-of-loop use location, for a value defined in-loop.
950   // (Note that because of LCSSA, we don't have to account for values defined
951   // in sibling loops.  Such values will have LCSSA phis of their own in the
952   // common parent loop.)
953   return true;
954 }
955 
956 AnalysisKey LoopAnalysis::Key;
957 
958 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
959   // FIXME: Currently we create a LoopInfo from scratch for every function.
960   // This may prove to be too wasteful due to deallocating and re-allocating
961   // memory each time for the underlying map and vector datastructures. At some
962   // point it may prove worthwhile to use a freelist and recycle LoopInfo
963   // objects. I don't want to add that kind of complexity until the scope of
964   // the problem is better understood.
965   LoopInfo LI;
966   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
967   return LI;
968 }
969 
970 PreservedAnalyses LoopPrinterPass::run(Function &F,
971                                        FunctionAnalysisManager &AM) {
972   auto &LI = AM.getResult<LoopAnalysis>(F);
973   OS << "Loop info for function '" << F.getName() << "':\n";
974   LI.print(OS);
975   return PreservedAnalyses::all();
976 }
977 
978 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
979 
980   if (forcePrintModuleIR()) {
981     // handling -print-module-scope
982     OS << Banner << " (loop: ";
983     L.getHeader()->printAsOperand(OS, false);
984     OS << ")\n";
985 
986     // printing whole module
987     OS << *L.getHeader()->getModule();
988     return;
989   }
990 
991   OS << Banner;
992 
993   auto *PreHeader = L.getLoopPreheader();
994   if (PreHeader) {
995     OS << "\n; Preheader:";
996     PreHeader->print(OS);
997     OS << "\n; Loop:";
998   }
999 
1000   for (auto *Block : L.blocks())
1001     if (Block)
1002       Block->print(OS);
1003     else
1004       OS << "Printing <null> block";
1005 
1006   SmallVector<BasicBlock *, 8> ExitBlocks;
1007   L.getExitBlocks(ExitBlocks);
1008   if (!ExitBlocks.empty()) {
1009     OS << "\n; Exit blocks";
1010     for (auto *Block : ExitBlocks)
1011       if (Block)
1012         Block->print(OS);
1013       else
1014         OS << "Printing <null> block";
1015   }
1016 }
1017 
1018 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
1019   // No loop metadata node, no loop properties.
1020   if (!LoopID)
1021     return nullptr;
1022 
1023   // First operand should refer to the metadata node itself, for legacy reasons.
1024   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1025   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1026 
1027   // Iterate over the metdata node operands and look for MDString metadata.
1028   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1029     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1030     if (!MD || MD->getNumOperands() < 1)
1031       continue;
1032     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1033     if (!S)
1034       continue;
1035     // Return the operand node if MDString holds expected metadata.
1036     if (Name.equals(S->getString()))
1037       return MD;
1038   }
1039 
1040   // Loop property not found.
1041   return nullptr;
1042 }
1043 
1044 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1045   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1046 }
1047 
1048 /// Find string metadata for loop
1049 ///
1050 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1051 /// operand or null otherwise.  If the string metadata is not found return
1052 /// Optional's not-a-value.
1053 std::optional<const MDOperand *>
1054 llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) {
1055   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
1056   if (!MD)
1057     return std::nullopt;
1058   switch (MD->getNumOperands()) {
1059   case 1:
1060     return nullptr;
1061   case 2:
1062     return &MD->getOperand(1);
1063   default:
1064     llvm_unreachable("loop metadata has 0 or 1 operand");
1065   }
1066 }
1067 
1068 std::optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop,
1069                                                        StringRef Name) {
1070   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
1071   if (!MD)
1072     return std::nullopt;
1073   switch (MD->getNumOperands()) {
1074   case 1:
1075     // When the value is absent it is interpreted as 'attribute set'.
1076     return true;
1077   case 2:
1078     if (ConstantInt *IntMD =
1079             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
1080       return IntMD->getZExtValue();
1081     return true;
1082   }
1083   llvm_unreachable("unexpected number of options");
1084 }
1085 
1086 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
1087   return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false);
1088 }
1089 
1090 std::optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop,
1091                                                      StringRef Name) {
1092   const MDOperand *AttrMD =
1093       findStringMetadataForLoop(TheLoop, Name).value_or(nullptr);
1094   if (!AttrMD)
1095     return std::nullopt;
1096 
1097   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
1098   if (!IntMD)
1099     return std::nullopt;
1100 
1101   return IntMD->getSExtValue();
1102 }
1103 
1104 int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name,
1105                               int Default) {
1106   return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default);
1107 }
1108 
1109 bool llvm::isFinite(const Loop *L) {
1110   return L->getHeader()->getParent()->willReturn();
1111 }
1112 
1113 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
1114 
1115 bool llvm::hasMustProgress(const Loop *L) {
1116   return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
1117 }
1118 
1119 bool llvm::isMustProgress(const Loop *L) {
1120   return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L);
1121 }
1122 
1123 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1124   return Node->getNumOperands() == 0 && Node->isDistinct();
1125 }
1126 
1127 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1128                                              MDNode *OrigLoopID,
1129                                              ArrayRef<StringRef> RemovePrefixes,
1130                                              ArrayRef<MDNode *> AddAttrs) {
1131   // First remove any existing loop metadata related to this transformation.
1132   SmallVector<Metadata *, 4> MDs;
1133 
1134   // Reserve first location for self reference to the LoopID metadata node.
1135   MDs.push_back(nullptr);
1136 
1137   // Remove metadata for the transformation that has been applied or that became
1138   // outdated.
1139   if (OrigLoopID) {
1140     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1141       bool IsVectorMetadata = false;
1142       Metadata *Op = OrigLoopID->getOperand(i);
1143       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1144         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1145         if (S)
1146           IsVectorMetadata =
1147               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1148                 return S->getString().starts_with(Prefix);
1149               });
1150       }
1151       if (!IsVectorMetadata)
1152         MDs.push_back(Op);
1153     }
1154   }
1155 
1156   // Add metadata to avoid reapplying a transformation, such as
1157   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1158   MDs.append(AddAttrs.begin(), AddAttrs.end());
1159 
1160   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1161   // Replace the temporary node with a self-reference.
1162   NewLoopID->replaceOperandWith(0, NewLoopID);
1163   return NewLoopID;
1164 }
1165 
1166 //===----------------------------------------------------------------------===//
1167 // LoopInfo implementation
1168 //
1169 
1170 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
1171   initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1172 }
1173 
1174 char LoopInfoWrapperPass::ID = 0;
1175 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1176                       true, true)
1177 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1178 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1179                     true, true)
1180 
1181 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1182   releaseMemory();
1183   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1184   return false;
1185 }
1186 
1187 void LoopInfoWrapperPass::verifyAnalysis() const {
1188   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1189   // function each time verifyAnalysis is called is very expensive. The
1190   // -verify-loop-info option can enable this. In order to perform some
1191   // checking by default, LoopPass has been taught to call verifyLoop manually
1192   // during loop pass sequences.
1193   if (VerifyLoopInfo) {
1194     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1195     LI.verify(DT);
1196   }
1197 }
1198 
1199 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1200   AU.setPreservesAll();
1201   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1202 }
1203 
1204 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1205   LI.print(OS);
1206 }
1207 
1208 PreservedAnalyses LoopVerifierPass::run(Function &F,
1209                                         FunctionAnalysisManager &AM) {
1210   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1211   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1212   LI.verify(DT);
1213   return PreservedAnalyses::all();
1214 }
1215 
1216 //===----------------------------------------------------------------------===//
1217 // LoopBlocksDFS implementation
1218 //
1219 
1220 /// Traverse the loop blocks and store the DFS result.
1221 /// Useful for clients that just want the final DFS result and don't need to
1222 /// visit blocks during the initial traversal.
1223 void LoopBlocksDFS::perform(const LoopInfo *LI) {
1224   LoopBlocksTraversal Traversal(*this, LI);
1225   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1226                                         POE = Traversal.end();
1227        POI != POE; ++POI)
1228     ;
1229 }
1230