1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/IVDescriptors.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/IRPrintingPasses.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/PassManager.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 44 template class llvm::LoopBase<BasicBlock, Loop>; 45 template class llvm::LoopInfoBase<BasicBlock, Loop>; 46 47 // Always verify loopinfo if expensive checking is enabled. 48 #ifdef EXPENSIVE_CHECKS 49 bool llvm::VerifyLoopInfo = true; 50 #else 51 bool llvm::VerifyLoopInfo = false; 52 #endif 53 static cl::opt<bool, true> 54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 55 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 56 57 //===----------------------------------------------------------------------===// 58 // Loop implementation 59 // 60 61 bool Loop::isLoopInvariant(const Value *V) const { 62 if (const Instruction *I = dyn_cast<Instruction>(V)) 63 return !contains(I); 64 return true; // All non-instructions are loop invariant 65 } 66 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 72 MemorySSAUpdater *MSSAU) const { 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 75 return true; // All non-instructions are loop-invariant. 76 } 77 78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 79 Instruction *InsertPt, 80 MemorySSAUpdater *MSSAU) const { 81 // Test if the value is already loop-invariant. 82 if (isLoopInvariant(I)) 83 return true; 84 if (!isSafeToSpeculativelyExecute(I)) 85 return false; 86 if (I->mayReadFromMemory()) 87 return false; 88 // EH block instructions are immobile. 89 if (I->isEHPad()) 90 return false; 91 // Determine the insertion point, unless one was given. 92 if (!InsertPt) { 93 BasicBlock *Preheader = getLoopPreheader(); 94 // Without a preheader, hoisting is not feasible. 95 if (!Preheader) 96 return false; 97 InsertPt = Preheader->getTerminator(); 98 } 99 // Don't hoist instructions with loop-variant operands. 100 for (Value *Operand : I->operands()) 101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 102 return false; 103 104 // Hoist. 105 I->moveBefore(InsertPt); 106 if (MSSAU) 107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End); 109 110 // There is possibility of hoisting this instruction above some arbitrary 111 // condition. Any metadata defined on it can be control dependent on this 112 // condition. Conservatively strip it here so that we don't give any wrong 113 // information to the optimizer. 114 I->dropUnknownNonDebugMetadata(); 115 116 Changed = true; 117 return true; 118 } 119 120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 121 BasicBlock *&Backedge) const { 122 BasicBlock *H = getHeader(); 123 124 Incoming = nullptr; 125 Backedge = nullptr; 126 pred_iterator PI = pred_begin(H); 127 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 128 Backedge = *PI++; 129 if (PI == pred_end(H)) 130 return false; // dead loop 131 Incoming = *PI++; 132 if (PI != pred_end(H)) 133 return false; // multiple backedges? 134 135 if (contains(Incoming)) { 136 if (contains(Backedge)) 137 return false; 138 std::swap(Incoming, Backedge); 139 } else if (!contains(Backedge)) 140 return false; 141 142 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 143 return true; 144 } 145 146 PHINode *Loop::getCanonicalInductionVariable() const { 147 BasicBlock *H = getHeader(); 148 149 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 150 if (!getIncomingAndBackEdge(Incoming, Backedge)) 151 return nullptr; 152 153 // Loop over all of the PHI nodes, looking for a canonical indvar. 154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 155 PHINode *PN = cast<PHINode>(I); 156 if (ConstantInt *CI = 157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 158 if (CI->isZero()) 159 if (Instruction *Inc = 160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 163 if (CI->isOne()) 164 return PN; 165 } 166 return nullptr; 167 } 168 169 /// Get the latch condition instruction. 170 static ICmpInst *getLatchCmpInst(const Loop &L) { 171 if (BasicBlock *Latch = L.getLoopLatch()) 172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 173 if (BI->isConditional()) 174 return dyn_cast<ICmpInst>(BI->getCondition()); 175 176 return nullptr; 177 } 178 179 /// Return the final value of the loop induction variable if found. 180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 181 const Instruction &StepInst) { 182 ICmpInst *LatchCmpInst = getLatchCmpInst(L); 183 if (!LatchCmpInst) 184 return nullptr; 185 186 Value *Op0 = LatchCmpInst->getOperand(0); 187 Value *Op1 = LatchCmpInst->getOperand(1); 188 if (Op0 == &IndVar || Op0 == &StepInst) 189 return Op1; 190 191 if (Op1 == &IndVar || Op1 == &StepInst) 192 return Op0; 193 194 return nullptr; 195 } 196 197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 198 PHINode &IndVar, 199 ScalarEvolution &SE) { 200 InductionDescriptor IndDesc; 201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 202 return None; 203 204 Value *InitialIVValue = IndDesc.getStartValue(); 205 Instruction *StepInst = IndDesc.getInductionBinOp(); 206 if (!InitialIVValue || !StepInst) 207 return None; 208 209 const SCEV *Step = IndDesc.getStep(); 210 Value *StepInstOp1 = StepInst->getOperand(1); 211 Value *StepInstOp0 = StepInst->getOperand(0); 212 Value *StepValue = nullptr; 213 if (SE.getSCEV(StepInstOp1) == Step) 214 StepValue = StepInstOp1; 215 else if (SE.getSCEV(StepInstOp0) == Step) 216 StepValue = StepInstOp0; 217 218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 219 if (!FinalIVValue) 220 return None; 221 222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 223 SE); 224 } 225 226 using Direction = Loop::LoopBounds::Direction; 227 228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 229 BasicBlock *Latch = L.getLoopLatch(); 230 assert(Latch && "Expecting valid latch"); 231 232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 233 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 234 235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 236 assert(LatchCmpInst && 237 "Expecting the latch compare instruction to be a CmpInst"); 238 239 // Need to inverse the predicate when first successor is not the loop 240 // header 241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 242 ? LatchCmpInst->getPredicate() 243 : LatchCmpInst->getInversePredicate(); 244 245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 246 Pred = ICmpInst::getSwappedPredicate(Pred); 247 248 // Need to flip strictness of the predicate when the latch compare instruction 249 // is not using StepInst 250 if (LatchCmpInst->getOperand(0) == &getStepInst() || 251 LatchCmpInst->getOperand(1) == &getStepInst()) 252 return Pred; 253 254 // Cannot flip strictness of NE and EQ 255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 256 return ICmpInst::getFlippedStrictnessPredicate(Pred); 257 258 Direction D = getDirection(); 259 if (D == Direction::Increasing) 260 return ICmpInst::ICMP_SLT; 261 262 if (D == Direction::Decreasing) 263 return ICmpInst::ICMP_SGT; 264 265 // If cannot determine the direction, then unable to find the canonical 266 // predicate 267 return ICmpInst::BAD_ICMP_PREDICATE; 268 } 269 270 Direction Loop::LoopBounds::getDirection() const { 271 if (const SCEVAddRecExpr *StepAddRecExpr = 272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 274 if (SE.isKnownPositive(StepRecur)) 275 return Direction::Increasing; 276 if (SE.isKnownNegative(StepRecur)) 277 return Direction::Decreasing; 278 } 279 280 return Direction::Unknown; 281 } 282 283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 284 if (PHINode *IndVar = getInductionVariable(SE)) 285 return LoopBounds::getBounds(*this, *IndVar, SE); 286 287 return None; 288 } 289 290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 291 if (!isLoopSimplifyForm()) 292 return nullptr; 293 294 BasicBlock *Header = getHeader(); 295 assert(Header && "Expected a valid loop header"); 296 ICmpInst *CmpInst = getLatchCmpInst(*this); 297 if (!CmpInst) 298 return nullptr; 299 300 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); 301 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); 302 303 for (PHINode &IndVar : Header->phis()) { 304 InductionDescriptor IndDesc; 305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 306 continue; 307 308 Instruction *StepInst = IndDesc.getInductionBinOp(); 309 310 // case 1: 311 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 312 // StepInst = IndVar + step 313 // cmp = StepInst < FinalValue 314 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 315 return &IndVar; 316 317 // case 2: 318 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 319 // StepInst = IndVar + step 320 // cmp = IndVar < FinalValue 321 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 322 return &IndVar; 323 } 324 325 return nullptr; 326 } 327 328 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 329 InductionDescriptor &IndDesc) const { 330 if (PHINode *IndVar = getInductionVariable(SE)) 331 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 332 333 return false; 334 } 335 336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 337 ScalarEvolution &SE) const { 338 // Located in the loop header 339 BasicBlock *Header = getHeader(); 340 if (AuxIndVar.getParent() != Header) 341 return false; 342 343 // No uses outside of the loop 344 for (User *U : AuxIndVar.users()) 345 if (const Instruction *I = dyn_cast<Instruction>(U)) 346 if (!contains(I)) 347 return false; 348 349 InductionDescriptor IndDesc; 350 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 351 return false; 352 353 // The step instruction opcode should be add or sub. 354 if (IndDesc.getInductionOpcode() != Instruction::Add && 355 IndDesc.getInductionOpcode() != Instruction::Sub) 356 return false; 357 358 // Incremented by a loop invariant step for each loop iteration 359 return SE.isLoopInvariant(IndDesc.getStep(), this); 360 } 361 362 BranchInst *Loop::getLoopGuardBranch() const { 363 if (!isLoopSimplifyForm()) 364 return nullptr; 365 366 BasicBlock *Preheader = getLoopPreheader(); 367 BasicBlock *Latch = getLoopLatch(); 368 assert(Preheader && Latch && 369 "Expecting a loop with valid preheader and latch"); 370 371 // Loop should be in rotate form. 372 if (!isLoopExiting(Latch)) 373 return nullptr; 374 375 // Disallow loops with more than one unique exit block, as we do not verify 376 // that GuardOtherSucc post dominates all exit blocks. 377 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 378 if (!ExitFromLatch) 379 return nullptr; 380 381 BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor(); 382 if (!ExitFromLatchSucc) 383 return nullptr; 384 385 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 386 if (!GuardBB) 387 return nullptr; 388 389 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 390 391 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 392 if (!GuardBI || GuardBI->isUnconditional()) 393 return nullptr; 394 395 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 396 ? GuardBI->getSuccessor(1) 397 : GuardBI->getSuccessor(0); 398 return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr; 399 } 400 401 bool Loop::isCanonical(ScalarEvolution &SE) const { 402 InductionDescriptor IndDesc; 403 if (!getInductionDescriptor(SE, IndDesc)) 404 return false; 405 406 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 407 if (!Init || !Init->isZero()) 408 return false; 409 410 if (IndDesc.getInductionOpcode() != Instruction::Add) 411 return false; 412 413 ConstantInt *Step = IndDesc.getConstIntStepValue(); 414 if (!Step || !Step->isOne()) 415 return false; 416 417 return true; 418 } 419 420 // Check that 'BB' doesn't have any uses outside of the 'L' 421 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 422 DominatorTree &DT) { 423 for (const Instruction &I : BB) { 424 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 425 // optimizations, so for the purposes of considered LCSSA form, we 426 // can ignore them. 427 if (I.getType()->isTokenTy()) 428 continue; 429 430 for (const Use &U : I.uses()) { 431 const Instruction *UI = cast<Instruction>(U.getUser()); 432 const BasicBlock *UserBB = UI->getParent(); 433 if (const PHINode *P = dyn_cast<PHINode>(UI)) 434 UserBB = P->getIncomingBlock(U); 435 436 // Check the current block, as a fast-path, before checking whether 437 // the use is anywhere in the loop. Most values are used in the same 438 // block they are defined in. Also, blocks not reachable from the 439 // entry are special; uses in them don't need to go through PHIs. 440 if (UserBB != &BB && !L.contains(UserBB) && 441 DT.isReachableFromEntry(UserBB)) 442 return false; 443 } 444 } 445 return true; 446 } 447 448 bool Loop::isLCSSAForm(DominatorTree &DT) const { 449 // For each block we check that it doesn't have any uses outside of this loop. 450 return all_of(this->blocks(), [&](const BasicBlock *BB) { 451 return isBlockInLCSSAForm(*this, *BB, DT); 452 }); 453 } 454 455 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const { 456 // For each block we check that it doesn't have any uses outside of its 457 // innermost loop. This process will transitively guarantee that the current 458 // loop and all of the nested loops are in LCSSA form. 459 return all_of(this->blocks(), [&](const BasicBlock *BB) { 460 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 461 }); 462 } 463 464 bool Loop::isLoopSimplifyForm() const { 465 // Normal-form loops have a preheader, a single backedge, and all of their 466 // exits have all their predecessors inside the loop. 467 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 468 } 469 470 // Routines that reform the loop CFG and split edges often fail on indirectbr. 471 bool Loop::isSafeToClone() const { 472 // Return false if any loop blocks contain indirectbrs, or there are any calls 473 // to noduplicate functions. 474 // FIXME: it should be ok to clone CallBrInst's if we correctly update the 475 // operand list to reflect the newly cloned labels. 476 for (BasicBlock *BB : this->blocks()) { 477 if (isa<IndirectBrInst>(BB->getTerminator()) || 478 isa<CallBrInst>(BB->getTerminator())) 479 return false; 480 481 for (Instruction &I : *BB) 482 if (auto CS = CallSite(&I)) 483 if (CS.cannotDuplicate()) 484 return false; 485 } 486 return true; 487 } 488 489 MDNode *Loop::getLoopID() const { 490 MDNode *LoopID = nullptr; 491 492 // Go through the latch blocks and check the terminator for the metadata. 493 SmallVector<BasicBlock *, 4> LatchesBlocks; 494 getLoopLatches(LatchesBlocks); 495 for (BasicBlock *BB : LatchesBlocks) { 496 Instruction *TI = BB->getTerminator(); 497 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 498 499 if (!MD) 500 return nullptr; 501 502 if (!LoopID) 503 LoopID = MD; 504 else if (MD != LoopID) 505 return nullptr; 506 } 507 if (!LoopID || LoopID->getNumOperands() == 0 || 508 LoopID->getOperand(0) != LoopID) 509 return nullptr; 510 return LoopID; 511 } 512 513 void Loop::setLoopID(MDNode *LoopID) const { 514 assert((!LoopID || LoopID->getNumOperands() > 0) && 515 "Loop ID needs at least one operand"); 516 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 517 "Loop ID should refer to itself"); 518 519 SmallVector<BasicBlock *, 4> LoopLatches; 520 getLoopLatches(LoopLatches); 521 for (BasicBlock *BB : LoopLatches) 522 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 523 } 524 525 void Loop::setLoopAlreadyUnrolled() { 526 LLVMContext &Context = getHeader()->getContext(); 527 528 MDNode *DisableUnrollMD = 529 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 530 MDNode *LoopID = getLoopID(); 531 MDNode *NewLoopID = makePostTransformationMetadata( 532 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 533 setLoopID(NewLoopID); 534 } 535 536 bool Loop::isAnnotatedParallel() const { 537 MDNode *DesiredLoopIdMetadata = getLoopID(); 538 539 if (!DesiredLoopIdMetadata) 540 return false; 541 542 MDNode *ParallelAccesses = 543 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 544 SmallPtrSet<MDNode *, 4> 545 ParallelAccessGroups; // For scalable 'contains' check. 546 if (ParallelAccesses) { 547 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) { 548 MDNode *AccGroup = cast<MDNode>(MD.get()); 549 assert(isValidAsAccessGroup(AccGroup) && 550 "List item must be an access group"); 551 ParallelAccessGroups.insert(AccGroup); 552 } 553 } 554 555 // The loop branch contains the parallel loop metadata. In order to ensure 556 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 557 // dependencies (thus converted the loop back to a sequential loop), check 558 // that all the memory instructions in the loop belong to an access group that 559 // is parallel to this loop. 560 for (BasicBlock *BB : this->blocks()) { 561 for (Instruction &I : *BB) { 562 if (!I.mayReadOrWriteMemory()) 563 continue; 564 565 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 566 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 567 if (AG->getNumOperands() == 0) { 568 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 569 return ParallelAccessGroups.count(AG); 570 } 571 572 for (const MDOperand &AccessListItem : AG->operands()) { 573 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 574 assert(isValidAsAccessGroup(AccGroup) && 575 "List item must be an access group"); 576 if (ParallelAccessGroups.count(AccGroup)) 577 return true; 578 } 579 return false; 580 }; 581 582 if (ContainsAccessGroup(AccessGroup)) 583 continue; 584 } 585 586 // The memory instruction can refer to the loop identifier metadata 587 // directly or indirectly through another list metadata (in case of 588 // nested parallel loops). The loop identifier metadata refers to 589 // itself so we can check both cases with the same routine. 590 MDNode *LoopIdMD = 591 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 592 593 if (!LoopIdMD) 594 return false; 595 596 bool LoopIdMDFound = false; 597 for (const MDOperand &MDOp : LoopIdMD->operands()) { 598 if (MDOp == DesiredLoopIdMetadata) { 599 LoopIdMDFound = true; 600 break; 601 } 602 } 603 604 if (!LoopIdMDFound) 605 return false; 606 } 607 } 608 return true; 609 } 610 611 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 612 613 Loop::LocRange Loop::getLocRange() const { 614 // If we have a debug location in the loop ID, then use it. 615 if (MDNode *LoopID = getLoopID()) { 616 DebugLoc Start; 617 // We use the first DebugLoc in the header as the start location of the loop 618 // and if there is a second DebugLoc in the header we use it as end location 619 // of the loop. 620 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 621 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 622 if (!Start) 623 Start = DebugLoc(L); 624 else 625 return LocRange(Start, DebugLoc(L)); 626 } 627 } 628 629 if (Start) 630 return LocRange(Start); 631 } 632 633 // Try the pre-header first. 634 if (BasicBlock *PHeadBB = getLoopPreheader()) 635 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 636 return LocRange(DL); 637 638 // If we have no pre-header or there are no instructions with debug 639 // info in it, try the header. 640 if (BasicBlock *HeadBB = getHeader()) 641 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 642 643 return LocRange(); 644 } 645 646 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 647 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 648 649 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 650 print(dbgs(), /*Depth=*/0, /*Verbose=*/true); 651 } 652 #endif 653 654 //===----------------------------------------------------------------------===// 655 // UnloopUpdater implementation 656 // 657 658 namespace { 659 /// Find the new parent loop for all blocks within the "unloop" whose last 660 /// backedges has just been removed. 661 class UnloopUpdater { 662 Loop &Unloop; 663 LoopInfo *LI; 664 665 LoopBlocksDFS DFS; 666 667 // Map unloop's immediate subloops to their nearest reachable parents. Nested 668 // loops within these subloops will not change parents. However, an immediate 669 // subloop's new parent will be the nearest loop reachable from either its own 670 // exits *or* any of its nested loop's exits. 671 DenseMap<Loop *, Loop *> SubloopParents; 672 673 // Flag the presence of an irreducible backedge whose destination is a block 674 // directly contained by the original unloop. 675 bool FoundIB; 676 677 public: 678 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 679 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 680 681 void updateBlockParents(); 682 683 void removeBlocksFromAncestors(); 684 685 void updateSubloopParents(); 686 687 protected: 688 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 689 }; 690 } // end anonymous namespace 691 692 /// Update the parent loop for all blocks that are directly contained within the 693 /// original "unloop". 694 void UnloopUpdater::updateBlockParents() { 695 if (Unloop.getNumBlocks()) { 696 // Perform a post order CFG traversal of all blocks within this loop, 697 // propagating the nearest loop from successors to predecessors. 698 LoopBlocksTraversal Traversal(DFS, LI); 699 for (BasicBlock *POI : Traversal) { 700 701 Loop *L = LI->getLoopFor(POI); 702 Loop *NL = getNearestLoop(POI, L); 703 704 if (NL != L) { 705 // For reducible loops, NL is now an ancestor of Unloop. 706 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 707 "uninitialized successor"); 708 LI->changeLoopFor(POI, NL); 709 } else { 710 // Or the current block is part of a subloop, in which case its parent 711 // is unchanged. 712 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 713 } 714 } 715 } 716 // Each irreducible loop within the unloop induces a round of iteration using 717 // the DFS result cached by Traversal. 718 bool Changed = FoundIB; 719 for (unsigned NIters = 0; Changed; ++NIters) { 720 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 721 722 // Iterate over the postorder list of blocks, propagating the nearest loop 723 // from successors to predecessors as before. 724 Changed = false; 725 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 726 POE = DFS.endPostorder(); 727 POI != POE; ++POI) { 728 729 Loop *L = LI->getLoopFor(*POI); 730 Loop *NL = getNearestLoop(*POI, L); 731 if (NL != L) { 732 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 733 "uninitialized successor"); 734 LI->changeLoopFor(*POI, NL); 735 Changed = true; 736 } 737 } 738 } 739 } 740 741 /// Remove unloop's blocks from all ancestors below their new parents. 742 void UnloopUpdater::removeBlocksFromAncestors() { 743 // Remove all unloop's blocks (including those in nested subloops) from 744 // ancestors below the new parent loop. 745 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end(); 746 BI != BE; ++BI) { 747 Loop *OuterParent = LI->getLoopFor(*BI); 748 if (Unloop.contains(OuterParent)) { 749 while (OuterParent->getParentLoop() != &Unloop) 750 OuterParent = OuterParent->getParentLoop(); 751 OuterParent = SubloopParents[OuterParent]; 752 } 753 // Remove blocks from former Ancestors except Unloop itself which will be 754 // deleted. 755 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 756 OldParent = OldParent->getParentLoop()) { 757 assert(OldParent && "new loop is not an ancestor of the original"); 758 OldParent->removeBlockFromLoop(*BI); 759 } 760 } 761 } 762 763 /// Update the parent loop for all subloops directly nested within unloop. 764 void UnloopUpdater::updateSubloopParents() { 765 while (!Unloop.empty()) { 766 Loop *Subloop = *std::prev(Unloop.end()); 767 Unloop.removeChildLoop(std::prev(Unloop.end())); 768 769 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 770 if (Loop *Parent = SubloopParents[Subloop]) 771 Parent->addChildLoop(Subloop); 772 else 773 LI->addTopLevelLoop(Subloop); 774 } 775 } 776 777 /// Return the nearest parent loop among this block's successors. If a successor 778 /// is a subloop header, consider its parent to be the nearest parent of the 779 /// subloop's exits. 780 /// 781 /// For subloop blocks, simply update SubloopParents and return NULL. 782 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 783 784 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 785 // is considered uninitialized. 786 Loop *NearLoop = BBLoop; 787 788 Loop *Subloop = nullptr; 789 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 790 Subloop = NearLoop; 791 // Find the subloop ancestor that is directly contained within Unloop. 792 while (Subloop->getParentLoop() != &Unloop) { 793 Subloop = Subloop->getParentLoop(); 794 assert(Subloop && "subloop is not an ancestor of the original loop"); 795 } 796 // Get the current nearest parent of the Subloop exits, initially Unloop. 797 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 798 } 799 800 succ_iterator I = succ_begin(BB), E = succ_end(BB); 801 if (I == E) { 802 assert(!Subloop && "subloop blocks must have a successor"); 803 NearLoop = nullptr; // unloop blocks may now exit the function. 804 } 805 for (; I != E; ++I) { 806 if (*I == BB) 807 continue; // self loops are uninteresting 808 809 Loop *L = LI->getLoopFor(*I); 810 if (L == &Unloop) { 811 // This successor has not been processed. This path must lead to an 812 // irreducible backedge. 813 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 814 FoundIB = true; 815 } 816 if (L != &Unloop && Unloop.contains(L)) { 817 // Successor is in a subloop. 818 if (Subloop) 819 continue; // Branching within subloops. Ignore it. 820 821 // BB branches from the original into a subloop header. 822 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 823 824 // Get the current nearest parent of the Subloop's exits. 825 L = SubloopParents[L]; 826 // L could be Unloop if the only exit was an irreducible backedge. 827 } 828 if (L == &Unloop) { 829 continue; 830 } 831 // Handle critical edges from Unloop into a sibling loop. 832 if (L && !L->contains(&Unloop)) { 833 L = L->getParentLoop(); 834 } 835 // Remember the nearest parent loop among successors or subloop exits. 836 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 837 NearLoop = L; 838 } 839 if (Subloop) { 840 SubloopParents[Subloop] = NearLoop; 841 return BBLoop; 842 } 843 return NearLoop; 844 } 845 846 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 847 848 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 849 FunctionAnalysisManager::Invalidator &) { 850 // Check whether the analysis, all analyses on functions, or the function's 851 // CFG have been preserved. 852 auto PAC = PA.getChecker<LoopAnalysis>(); 853 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 854 PAC.preservedSet<CFGAnalyses>()); 855 } 856 857 void LoopInfo::erase(Loop *Unloop) { 858 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 859 860 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 861 862 // First handle the special case of no parent loop to simplify the algorithm. 863 if (!Unloop->getParentLoop()) { 864 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 865 for (Loop::block_iterator I = Unloop->block_begin(), 866 E = Unloop->block_end(); 867 I != E; ++I) { 868 869 // Don't reparent blocks in subloops. 870 if (getLoopFor(*I) != Unloop) 871 continue; 872 873 // Blocks no longer have a parent but are still referenced by Unloop until 874 // the Unloop object is deleted. 875 changeLoopFor(*I, nullptr); 876 } 877 878 // Remove the loop from the top-level LoopInfo object. 879 for (iterator I = begin();; ++I) { 880 assert(I != end() && "Couldn't find loop"); 881 if (*I == Unloop) { 882 removeLoop(I); 883 break; 884 } 885 } 886 887 // Move all of the subloops to the top-level. 888 while (!Unloop->empty()) 889 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 890 891 return; 892 } 893 894 // Update the parent loop for all blocks within the loop. Blocks within 895 // subloops will not change parents. 896 UnloopUpdater Updater(Unloop, this); 897 Updater.updateBlockParents(); 898 899 // Remove blocks from former ancestor loops. 900 Updater.removeBlocksFromAncestors(); 901 902 // Add direct subloops as children in their new parent loop. 903 Updater.updateSubloopParents(); 904 905 // Remove unloop from its parent loop. 906 Loop *ParentLoop = Unloop->getParentLoop(); 907 for (Loop::iterator I = ParentLoop->begin();; ++I) { 908 assert(I != ParentLoop->end() && "Couldn't find loop"); 909 if (*I == Unloop) { 910 ParentLoop->removeChildLoop(I); 911 break; 912 } 913 } 914 } 915 916 AnalysisKey LoopAnalysis::Key; 917 918 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 919 // FIXME: Currently we create a LoopInfo from scratch for every function. 920 // This may prove to be too wasteful due to deallocating and re-allocating 921 // memory each time for the underlying map and vector datastructures. At some 922 // point it may prove worthwhile to use a freelist and recycle LoopInfo 923 // objects. I don't want to add that kind of complexity until the scope of 924 // the problem is better understood. 925 LoopInfo LI; 926 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 927 return LI; 928 } 929 930 PreservedAnalyses LoopPrinterPass::run(Function &F, 931 FunctionAnalysisManager &AM) { 932 AM.getResult<LoopAnalysis>(F).print(OS); 933 return PreservedAnalyses::all(); 934 } 935 936 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 937 938 if (forcePrintModuleIR()) { 939 // handling -print-module-scope 940 OS << Banner << " (loop: "; 941 L.getHeader()->printAsOperand(OS, false); 942 OS << ")\n"; 943 944 // printing whole module 945 OS << *L.getHeader()->getModule(); 946 return; 947 } 948 949 OS << Banner; 950 951 auto *PreHeader = L.getLoopPreheader(); 952 if (PreHeader) { 953 OS << "\n; Preheader:"; 954 PreHeader->print(OS); 955 OS << "\n; Loop:"; 956 } 957 958 for (auto *Block : L.blocks()) 959 if (Block) 960 Block->print(OS); 961 else 962 OS << "Printing <null> block"; 963 964 SmallVector<BasicBlock *, 8> ExitBlocks; 965 L.getExitBlocks(ExitBlocks); 966 if (!ExitBlocks.empty()) { 967 OS << "\n; Exit blocks"; 968 for (auto *Block : ExitBlocks) 969 if (Block) 970 Block->print(OS); 971 else 972 OS << "Printing <null> block"; 973 } 974 } 975 976 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 977 // No loop metadata node, no loop properties. 978 if (!LoopID) 979 return nullptr; 980 981 // First operand should refer to the metadata node itself, for legacy reasons. 982 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 983 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 984 985 // Iterate over the metdata node operands and look for MDString metadata. 986 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 987 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 988 if (!MD || MD->getNumOperands() < 1) 989 continue; 990 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 991 if (!S) 992 continue; 993 // Return the operand node if MDString holds expected metadata. 994 if (Name.equals(S->getString())) 995 return MD; 996 } 997 998 // Loop property not found. 999 return nullptr; 1000 } 1001 1002 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1003 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1004 } 1005 1006 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1007 return Node->getNumOperands() == 0 && Node->isDistinct(); 1008 } 1009 1010 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1011 MDNode *OrigLoopID, 1012 ArrayRef<StringRef> RemovePrefixes, 1013 ArrayRef<MDNode *> AddAttrs) { 1014 // First remove any existing loop metadata related to this transformation. 1015 SmallVector<Metadata *, 4> MDs; 1016 1017 // Reserve first location for self reference to the LoopID metadata node. 1018 TempMDTuple TempNode = MDNode::getTemporary(Context, None); 1019 MDs.push_back(TempNode.get()); 1020 1021 // Remove metadata for the transformation that has been applied or that became 1022 // outdated. 1023 if (OrigLoopID) { 1024 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1025 bool IsVectorMetadata = false; 1026 Metadata *Op = OrigLoopID->getOperand(i); 1027 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1028 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1029 if (S) 1030 IsVectorMetadata = 1031 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1032 return S->getString().startswith(Prefix); 1033 }); 1034 } 1035 if (!IsVectorMetadata) 1036 MDs.push_back(Op); 1037 } 1038 } 1039 1040 // Add metadata to avoid reapplying a transformation, such as 1041 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1042 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1043 1044 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1045 // Replace the temporary node with a self-reference. 1046 NewLoopID->replaceOperandWith(0, NewLoopID); 1047 return NewLoopID; 1048 } 1049 1050 //===----------------------------------------------------------------------===// 1051 // LoopInfo implementation 1052 // 1053 1054 char LoopInfoWrapperPass::ID = 0; 1055 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1056 true, true) 1057 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1058 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1059 true, true) 1060 1061 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1062 releaseMemory(); 1063 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1064 return false; 1065 } 1066 1067 void LoopInfoWrapperPass::verifyAnalysis() const { 1068 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1069 // function each time verifyAnalysis is called is very expensive. The 1070 // -verify-loop-info option can enable this. In order to perform some 1071 // checking by default, LoopPass has been taught to call verifyLoop manually 1072 // during loop pass sequences. 1073 if (VerifyLoopInfo) { 1074 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1075 LI.verify(DT); 1076 } 1077 } 1078 1079 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1080 AU.setPreservesAll(); 1081 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1082 } 1083 1084 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1085 LI.print(OS); 1086 } 1087 1088 PreservedAnalyses LoopVerifierPass::run(Function &F, 1089 FunctionAnalysisManager &AM) { 1090 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1091 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1092 LI.verify(DT); 1093 return PreservedAnalyses::all(); 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // LoopBlocksDFS implementation 1098 // 1099 1100 /// Traverse the loop blocks and store the DFS result. 1101 /// Useful for clients that just want the final DFS result and don't need to 1102 /// visit blocks during the initial traversal. 1103 void LoopBlocksDFS::perform(LoopInfo *LI) { 1104 LoopBlocksTraversal Traversal(*this, LI); 1105 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1106 POE = Traversal.end(); 1107 POI != POE; ++POI) 1108 ; 1109 } 1110