1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/IVDescriptors.h" 20 #include "llvm/Analysis/LoopIterator.h" 21 #include "llvm/Analysis/LoopNestAnalysis.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugLoc.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/PrintPasses.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/GenericLoopInfoImpl.h" 40 #include "llvm/Support/raw_ostream.h" 41 using namespace llvm; 42 43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 44 template class llvm::LoopBase<BasicBlock, Loop>; 45 template class llvm::LoopInfoBase<BasicBlock, Loop>; 46 47 // Always verify loopinfo if expensive checking is enabled. 48 #ifdef EXPENSIVE_CHECKS 49 bool llvm::VerifyLoopInfo = true; 50 #else 51 bool llvm::VerifyLoopInfo = false; 52 #endif 53 static cl::opt<bool, true> 54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 55 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 56 57 //===----------------------------------------------------------------------===// 58 // Loop implementation 59 // 60 61 bool Loop::isLoopInvariant(const Value *V) const { 62 if (const Instruction *I = dyn_cast<Instruction>(V)) 63 return !contains(I); 64 return true; // All non-instructions are loop invariant 65 } 66 67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 69 } 70 71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 72 MemorySSAUpdater *MSSAU, 73 ScalarEvolution *SE) const { 74 if (Instruction *I = dyn_cast<Instruction>(V)) 75 return makeLoopInvariant(I, Changed, InsertPt, MSSAU, SE); 76 return true; // All non-instructions are loop-invariant. 77 } 78 79 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 80 Instruction *InsertPt, MemorySSAUpdater *MSSAU, 81 ScalarEvolution *SE) const { 82 // Test if the value is already loop-invariant. 83 if (isLoopInvariant(I)) 84 return true; 85 if (!isSafeToSpeculativelyExecute(I)) 86 return false; 87 if (I->mayReadFromMemory()) 88 return false; 89 // EH block instructions are immobile. 90 if (I->isEHPad()) 91 return false; 92 // Determine the insertion point, unless one was given. 93 if (!InsertPt) { 94 BasicBlock *Preheader = getLoopPreheader(); 95 // Without a preheader, hoisting is not feasible. 96 if (!Preheader) 97 return false; 98 InsertPt = Preheader->getTerminator(); 99 } 100 // Don't hoist instructions with loop-variant operands. 101 for (Value *Operand : I->operands()) 102 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU, SE)) 103 return false; 104 105 // Hoist. 106 I->moveBefore(InsertPt); 107 if (MSSAU) 108 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 109 MSSAU->moveToPlace(MUD, InsertPt->getParent(), 110 MemorySSA::BeforeTerminator); 111 112 // There is possibility of hoisting this instruction above some arbitrary 113 // condition. Any metadata defined on it can be control dependent on this 114 // condition. Conservatively strip it here so that we don't give any wrong 115 // information to the optimizer. 116 I->dropUnknownNonDebugMetadata(); 117 118 if (SE) 119 SE->forgetBlockAndLoopDispositions(I); 120 121 Changed = true; 122 return true; 123 } 124 125 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 126 BasicBlock *&Backedge) const { 127 BasicBlock *H = getHeader(); 128 129 Incoming = nullptr; 130 Backedge = nullptr; 131 pred_iterator PI = pred_begin(H); 132 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 133 Backedge = *PI++; 134 if (PI == pred_end(H)) 135 return false; // dead loop 136 Incoming = *PI++; 137 if (PI != pred_end(H)) 138 return false; // multiple backedges? 139 140 if (contains(Incoming)) { 141 if (contains(Backedge)) 142 return false; 143 std::swap(Incoming, Backedge); 144 } else if (!contains(Backedge)) 145 return false; 146 147 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 148 return true; 149 } 150 151 PHINode *Loop::getCanonicalInductionVariable() const { 152 BasicBlock *H = getHeader(); 153 154 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 155 if (!getIncomingAndBackEdge(Incoming, Backedge)) 156 return nullptr; 157 158 // Loop over all of the PHI nodes, looking for a canonical indvar. 159 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 160 PHINode *PN = cast<PHINode>(I); 161 if (ConstantInt *CI = 162 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 163 if (CI->isZero()) 164 if (Instruction *Inc = 165 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 166 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 167 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 168 if (CI->isOne()) 169 return PN; 170 } 171 return nullptr; 172 } 173 174 /// Get the latch condition instruction. 175 ICmpInst *Loop::getLatchCmpInst() const { 176 if (BasicBlock *Latch = getLoopLatch()) 177 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 178 if (BI->isConditional()) 179 return dyn_cast<ICmpInst>(BI->getCondition()); 180 181 return nullptr; 182 } 183 184 /// Return the final value of the loop induction variable if found. 185 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 186 const Instruction &StepInst) { 187 ICmpInst *LatchCmpInst = L.getLatchCmpInst(); 188 if (!LatchCmpInst) 189 return nullptr; 190 191 Value *Op0 = LatchCmpInst->getOperand(0); 192 Value *Op1 = LatchCmpInst->getOperand(1); 193 if (Op0 == &IndVar || Op0 == &StepInst) 194 return Op1; 195 196 if (Op1 == &IndVar || Op1 == &StepInst) 197 return Op0; 198 199 return nullptr; 200 } 201 202 std::optional<Loop::LoopBounds> 203 Loop::LoopBounds::getBounds(const Loop &L, PHINode &IndVar, 204 ScalarEvolution &SE) { 205 InductionDescriptor IndDesc; 206 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 207 return std::nullopt; 208 209 Value *InitialIVValue = IndDesc.getStartValue(); 210 Instruction *StepInst = IndDesc.getInductionBinOp(); 211 if (!InitialIVValue || !StepInst) 212 return std::nullopt; 213 214 const SCEV *Step = IndDesc.getStep(); 215 Value *StepInstOp1 = StepInst->getOperand(1); 216 Value *StepInstOp0 = StepInst->getOperand(0); 217 Value *StepValue = nullptr; 218 if (SE.getSCEV(StepInstOp1) == Step) 219 StepValue = StepInstOp1; 220 else if (SE.getSCEV(StepInstOp0) == Step) 221 StepValue = StepInstOp0; 222 223 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 224 if (!FinalIVValue) 225 return std::nullopt; 226 227 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 228 SE); 229 } 230 231 using Direction = Loop::LoopBounds::Direction; 232 233 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 234 BasicBlock *Latch = L.getLoopLatch(); 235 assert(Latch && "Expecting valid latch"); 236 237 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 238 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 239 240 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 241 assert(LatchCmpInst && 242 "Expecting the latch compare instruction to be a CmpInst"); 243 244 // Need to inverse the predicate when first successor is not the loop 245 // header 246 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 247 ? LatchCmpInst->getPredicate() 248 : LatchCmpInst->getInversePredicate(); 249 250 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 251 Pred = ICmpInst::getSwappedPredicate(Pred); 252 253 // Need to flip strictness of the predicate when the latch compare instruction 254 // is not using StepInst 255 if (LatchCmpInst->getOperand(0) == &getStepInst() || 256 LatchCmpInst->getOperand(1) == &getStepInst()) 257 return Pred; 258 259 // Cannot flip strictness of NE and EQ 260 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 261 return ICmpInst::getFlippedStrictnessPredicate(Pred); 262 263 Direction D = getDirection(); 264 if (D == Direction::Increasing) 265 return ICmpInst::ICMP_SLT; 266 267 if (D == Direction::Decreasing) 268 return ICmpInst::ICMP_SGT; 269 270 // If cannot determine the direction, then unable to find the canonical 271 // predicate 272 return ICmpInst::BAD_ICMP_PREDICATE; 273 } 274 275 Direction Loop::LoopBounds::getDirection() const { 276 if (const SCEVAddRecExpr *StepAddRecExpr = 277 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 278 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 279 if (SE.isKnownPositive(StepRecur)) 280 return Direction::Increasing; 281 if (SE.isKnownNegative(StepRecur)) 282 return Direction::Decreasing; 283 } 284 285 return Direction::Unknown; 286 } 287 288 std::optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 289 if (PHINode *IndVar = getInductionVariable(SE)) 290 return LoopBounds::getBounds(*this, *IndVar, SE); 291 292 return std::nullopt; 293 } 294 295 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 296 if (!isLoopSimplifyForm()) 297 return nullptr; 298 299 BasicBlock *Header = getHeader(); 300 assert(Header && "Expected a valid loop header"); 301 ICmpInst *CmpInst = getLatchCmpInst(); 302 if (!CmpInst) 303 return nullptr; 304 305 Value *LatchCmpOp0 = CmpInst->getOperand(0); 306 Value *LatchCmpOp1 = CmpInst->getOperand(1); 307 308 for (PHINode &IndVar : Header->phis()) { 309 InductionDescriptor IndDesc; 310 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 311 continue; 312 313 BasicBlock *Latch = getLoopLatch(); 314 Value *StepInst = IndVar.getIncomingValueForBlock(Latch); 315 316 // case 1: 317 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 318 // StepInst = IndVar + step 319 // cmp = StepInst < FinalValue 320 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 321 return &IndVar; 322 323 // case 2: 324 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 325 // StepInst = IndVar + step 326 // cmp = IndVar < FinalValue 327 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 328 return &IndVar; 329 } 330 331 return nullptr; 332 } 333 334 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 335 InductionDescriptor &IndDesc) const { 336 if (PHINode *IndVar = getInductionVariable(SE)) 337 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 338 339 return false; 340 } 341 342 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 343 ScalarEvolution &SE) const { 344 // Located in the loop header 345 BasicBlock *Header = getHeader(); 346 if (AuxIndVar.getParent() != Header) 347 return false; 348 349 // No uses outside of the loop 350 for (User *U : AuxIndVar.users()) 351 if (const Instruction *I = dyn_cast<Instruction>(U)) 352 if (!contains(I)) 353 return false; 354 355 InductionDescriptor IndDesc; 356 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 357 return false; 358 359 // The step instruction opcode should be add or sub. 360 if (IndDesc.getInductionOpcode() != Instruction::Add && 361 IndDesc.getInductionOpcode() != Instruction::Sub) 362 return false; 363 364 // Incremented by a loop invariant step for each loop iteration 365 return SE.isLoopInvariant(IndDesc.getStep(), this); 366 } 367 368 BranchInst *Loop::getLoopGuardBranch() const { 369 if (!isLoopSimplifyForm()) 370 return nullptr; 371 372 BasicBlock *Preheader = getLoopPreheader(); 373 assert(Preheader && getLoopLatch() && 374 "Expecting a loop with valid preheader and latch"); 375 376 // Loop should be in rotate form. 377 if (!isRotatedForm()) 378 return nullptr; 379 380 // Disallow loops with more than one unique exit block, as we do not verify 381 // that GuardOtherSucc post dominates all exit blocks. 382 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 383 if (!ExitFromLatch) 384 return nullptr; 385 386 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 387 if (!GuardBB) 388 return nullptr; 389 390 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 391 392 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 393 if (!GuardBI || GuardBI->isUnconditional()) 394 return nullptr; 395 396 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 397 ? GuardBI->getSuccessor(1) 398 : GuardBI->getSuccessor(0); 399 400 // Check if ExitFromLatch (or any BasicBlock which is an empty unique 401 // successor of ExitFromLatch) is equal to GuardOtherSucc. If 402 // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the 403 // loop is GuardBI (return GuardBI), otherwise return nullptr. 404 if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, 405 /*CheckUniquePred=*/true) == 406 GuardOtherSucc) 407 return GuardBI; 408 else 409 return nullptr; 410 } 411 412 bool Loop::isCanonical(ScalarEvolution &SE) const { 413 InductionDescriptor IndDesc; 414 if (!getInductionDescriptor(SE, IndDesc)) 415 return false; 416 417 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 418 if (!Init || !Init->isZero()) 419 return false; 420 421 if (IndDesc.getInductionOpcode() != Instruction::Add) 422 return false; 423 424 ConstantInt *Step = IndDesc.getConstIntStepValue(); 425 if (!Step || !Step->isOne()) 426 return false; 427 428 return true; 429 } 430 431 // Check that 'BB' doesn't have any uses outside of the 'L' 432 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 433 const DominatorTree &DT, bool IgnoreTokens) { 434 for (const Instruction &I : BB) { 435 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 436 // optimizations, so for the purposes of considered LCSSA form, we 437 // can ignore them. 438 if (IgnoreTokens && I.getType()->isTokenTy()) 439 continue; 440 441 for (const Use &U : I.uses()) { 442 const Instruction *UI = cast<Instruction>(U.getUser()); 443 const BasicBlock *UserBB = UI->getParent(); 444 445 // For practical purposes, we consider that the use in a PHI 446 // occurs in the respective predecessor block. For more info, 447 // see the `phi` doc in LangRef and the LCSSA doc. 448 if (const PHINode *P = dyn_cast<PHINode>(UI)) 449 UserBB = P->getIncomingBlock(U); 450 451 // Check the current block, as a fast-path, before checking whether 452 // the use is anywhere in the loop. Most values are used in the same 453 // block they are defined in. Also, blocks not reachable from the 454 // entry are special; uses in them don't need to go through PHIs. 455 if (UserBB != &BB && !L.contains(UserBB) && 456 DT.isReachableFromEntry(UserBB)) 457 return false; 458 } 459 } 460 return true; 461 } 462 463 bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const { 464 // For each block we check that it doesn't have any uses outside of this loop. 465 return all_of(this->blocks(), [&](const BasicBlock *BB) { 466 return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens); 467 }); 468 } 469 470 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, 471 bool IgnoreTokens) const { 472 // For each block we check that it doesn't have any uses outside of its 473 // innermost loop. This process will transitively guarantee that the current 474 // loop and all of the nested loops are in LCSSA form. 475 return all_of(this->blocks(), [&](const BasicBlock *BB) { 476 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens); 477 }); 478 } 479 480 bool Loop::isLoopSimplifyForm() const { 481 // Normal-form loops have a preheader, a single backedge, and all of their 482 // exits have all their predecessors inside the loop. 483 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 484 } 485 486 // Routines that reform the loop CFG and split edges often fail on indirectbr. 487 bool Loop::isSafeToClone() const { 488 // Return false if any loop blocks contain indirectbrs, or there are any calls 489 // to noduplicate functions. 490 for (BasicBlock *BB : this->blocks()) { 491 if (isa<IndirectBrInst>(BB->getTerminator())) 492 return false; 493 494 for (Instruction &I : *BB) 495 if (auto *CB = dyn_cast<CallBase>(&I)) 496 if (CB->cannotDuplicate()) 497 return false; 498 } 499 return true; 500 } 501 502 MDNode *Loop::getLoopID() const { 503 MDNode *LoopID = nullptr; 504 505 // Go through the latch blocks and check the terminator for the metadata. 506 SmallVector<BasicBlock *, 4> LatchesBlocks; 507 getLoopLatches(LatchesBlocks); 508 for (BasicBlock *BB : LatchesBlocks) { 509 Instruction *TI = BB->getTerminator(); 510 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 511 512 if (!MD) 513 return nullptr; 514 515 if (!LoopID) 516 LoopID = MD; 517 else if (MD != LoopID) 518 return nullptr; 519 } 520 if (!LoopID || LoopID->getNumOperands() == 0 || 521 LoopID->getOperand(0) != LoopID) 522 return nullptr; 523 return LoopID; 524 } 525 526 void Loop::setLoopID(MDNode *LoopID) const { 527 assert((!LoopID || LoopID->getNumOperands() > 0) && 528 "Loop ID needs at least one operand"); 529 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 530 "Loop ID should refer to itself"); 531 532 SmallVector<BasicBlock *, 4> LoopLatches; 533 getLoopLatches(LoopLatches); 534 for (BasicBlock *BB : LoopLatches) 535 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 536 } 537 538 void Loop::setLoopAlreadyUnrolled() { 539 LLVMContext &Context = getHeader()->getContext(); 540 541 MDNode *DisableUnrollMD = 542 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 543 MDNode *LoopID = getLoopID(); 544 MDNode *NewLoopID = makePostTransformationMetadata( 545 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 546 setLoopID(NewLoopID); 547 } 548 549 void Loop::setLoopMustProgress() { 550 LLVMContext &Context = getHeader()->getContext(); 551 552 MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); 553 554 if (MustProgress) 555 return; 556 557 MDNode *MustProgressMD = 558 MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); 559 MDNode *LoopID = getLoopID(); 560 MDNode *NewLoopID = 561 makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); 562 setLoopID(NewLoopID); 563 } 564 565 bool Loop::isAnnotatedParallel() const { 566 MDNode *DesiredLoopIdMetadata = getLoopID(); 567 568 if (!DesiredLoopIdMetadata) 569 return false; 570 571 MDNode *ParallelAccesses = 572 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 573 SmallPtrSet<MDNode *, 4> 574 ParallelAccessGroups; // For scalable 'contains' check. 575 if (ParallelAccesses) { 576 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { 577 MDNode *AccGroup = cast<MDNode>(MD.get()); 578 assert(isValidAsAccessGroup(AccGroup) && 579 "List item must be an access group"); 580 ParallelAccessGroups.insert(AccGroup); 581 } 582 } 583 584 // The loop branch contains the parallel loop metadata. In order to ensure 585 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 586 // dependencies (thus converted the loop back to a sequential loop), check 587 // that all the memory instructions in the loop belong to an access group that 588 // is parallel to this loop. 589 for (BasicBlock *BB : this->blocks()) { 590 for (Instruction &I : *BB) { 591 if (!I.mayReadOrWriteMemory()) 592 continue; 593 594 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 595 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 596 if (AG->getNumOperands() == 0) { 597 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 598 return ParallelAccessGroups.count(AG); 599 } 600 601 for (const MDOperand &AccessListItem : AG->operands()) { 602 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 603 assert(isValidAsAccessGroup(AccGroup) && 604 "List item must be an access group"); 605 if (ParallelAccessGroups.count(AccGroup)) 606 return true; 607 } 608 return false; 609 }; 610 611 if (ContainsAccessGroup(AccessGroup)) 612 continue; 613 } 614 615 // The memory instruction can refer to the loop identifier metadata 616 // directly or indirectly through another list metadata (in case of 617 // nested parallel loops). The loop identifier metadata refers to 618 // itself so we can check both cases with the same routine. 619 MDNode *LoopIdMD = 620 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 621 622 if (!LoopIdMD) 623 return false; 624 625 if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) 626 return false; 627 } 628 } 629 return true; 630 } 631 632 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 633 634 Loop::LocRange Loop::getLocRange() const { 635 // If we have a debug location in the loop ID, then use it. 636 if (MDNode *LoopID = getLoopID()) { 637 DebugLoc Start; 638 // We use the first DebugLoc in the header as the start location of the loop 639 // and if there is a second DebugLoc in the header we use it as end location 640 // of the loop. 641 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 642 if (DILocation *L = dyn_cast<DILocation>(MDO)) { 643 if (!Start) 644 Start = DebugLoc(L); 645 else 646 return LocRange(Start, DebugLoc(L)); 647 } 648 } 649 650 if (Start) 651 return LocRange(Start); 652 } 653 654 // Try the pre-header first. 655 if (BasicBlock *PHeadBB = getLoopPreheader()) 656 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 657 return LocRange(DL); 658 659 // If we have no pre-header or there are no instructions with debug 660 // info in it, try the header. 661 if (BasicBlock *HeadBB = getHeader()) 662 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 663 664 return LocRange(); 665 } 666 667 std::string Loop::getLocStr() const { 668 std::string Result; 669 raw_string_ostream OS(Result); 670 if (const DebugLoc LoopDbgLoc = getStartLoc()) 671 LoopDbgLoc.print(OS); 672 else 673 // Just print the module name. 674 OS << getHeader()->getParent()->getParent()->getModuleIdentifier(); 675 return Result; 676 } 677 678 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 679 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 680 681 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 682 print(dbgs(), /*Verbose=*/true); 683 } 684 #endif 685 686 //===----------------------------------------------------------------------===// 687 // UnloopUpdater implementation 688 // 689 690 namespace { 691 /// Find the new parent loop for all blocks within the "unloop" whose last 692 /// backedges has just been removed. 693 class UnloopUpdater { 694 Loop &Unloop; 695 LoopInfo *LI; 696 697 LoopBlocksDFS DFS; 698 699 // Map unloop's immediate subloops to their nearest reachable parents. Nested 700 // loops within these subloops will not change parents. However, an immediate 701 // subloop's new parent will be the nearest loop reachable from either its own 702 // exits *or* any of its nested loop's exits. 703 DenseMap<Loop *, Loop *> SubloopParents; 704 705 // Flag the presence of an irreducible backedge whose destination is a block 706 // directly contained by the original unloop. 707 bool FoundIB = false; 708 709 public: 710 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {} 711 712 void updateBlockParents(); 713 714 void removeBlocksFromAncestors(); 715 716 void updateSubloopParents(); 717 718 protected: 719 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 720 }; 721 } // end anonymous namespace 722 723 /// Update the parent loop for all blocks that are directly contained within the 724 /// original "unloop". 725 void UnloopUpdater::updateBlockParents() { 726 if (Unloop.getNumBlocks()) { 727 // Perform a post order CFG traversal of all blocks within this loop, 728 // propagating the nearest loop from successors to predecessors. 729 LoopBlocksTraversal Traversal(DFS, LI); 730 for (BasicBlock *POI : Traversal) { 731 732 Loop *L = LI->getLoopFor(POI); 733 Loop *NL = getNearestLoop(POI, L); 734 735 if (NL != L) { 736 // For reducible loops, NL is now an ancestor of Unloop. 737 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 738 "uninitialized successor"); 739 LI->changeLoopFor(POI, NL); 740 } else { 741 // Or the current block is part of a subloop, in which case its parent 742 // is unchanged. 743 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 744 } 745 } 746 } 747 // Each irreducible loop within the unloop induces a round of iteration using 748 // the DFS result cached by Traversal. 749 bool Changed = FoundIB; 750 for (unsigned NIters = 0; Changed; ++NIters) { 751 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 752 (void)NIters; 753 754 // Iterate over the postorder list of blocks, propagating the nearest loop 755 // from successors to predecessors as before. 756 Changed = false; 757 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 758 POE = DFS.endPostorder(); 759 POI != POE; ++POI) { 760 761 Loop *L = LI->getLoopFor(*POI); 762 Loop *NL = getNearestLoop(*POI, L); 763 if (NL != L) { 764 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 765 "uninitialized successor"); 766 LI->changeLoopFor(*POI, NL); 767 Changed = true; 768 } 769 } 770 } 771 } 772 773 /// Remove unloop's blocks from all ancestors below their new parents. 774 void UnloopUpdater::removeBlocksFromAncestors() { 775 // Remove all unloop's blocks (including those in nested subloops) from 776 // ancestors below the new parent loop. 777 for (BasicBlock *BB : Unloop.blocks()) { 778 Loop *OuterParent = LI->getLoopFor(BB); 779 if (Unloop.contains(OuterParent)) { 780 while (OuterParent->getParentLoop() != &Unloop) 781 OuterParent = OuterParent->getParentLoop(); 782 OuterParent = SubloopParents[OuterParent]; 783 } 784 // Remove blocks from former Ancestors except Unloop itself which will be 785 // deleted. 786 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 787 OldParent = OldParent->getParentLoop()) { 788 assert(OldParent && "new loop is not an ancestor of the original"); 789 OldParent->removeBlockFromLoop(BB); 790 } 791 } 792 } 793 794 /// Update the parent loop for all subloops directly nested within unloop. 795 void UnloopUpdater::updateSubloopParents() { 796 while (!Unloop.isInnermost()) { 797 Loop *Subloop = *std::prev(Unloop.end()); 798 Unloop.removeChildLoop(std::prev(Unloop.end())); 799 800 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 801 if (Loop *Parent = SubloopParents[Subloop]) 802 Parent->addChildLoop(Subloop); 803 else 804 LI->addTopLevelLoop(Subloop); 805 } 806 } 807 808 /// Return the nearest parent loop among this block's successors. If a successor 809 /// is a subloop header, consider its parent to be the nearest parent of the 810 /// subloop's exits. 811 /// 812 /// For subloop blocks, simply update SubloopParents and return NULL. 813 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 814 815 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 816 // is considered uninitialized. 817 Loop *NearLoop = BBLoop; 818 819 Loop *Subloop = nullptr; 820 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 821 Subloop = NearLoop; 822 // Find the subloop ancestor that is directly contained within Unloop. 823 while (Subloop->getParentLoop() != &Unloop) { 824 Subloop = Subloop->getParentLoop(); 825 assert(Subloop && "subloop is not an ancestor of the original loop"); 826 } 827 // Get the current nearest parent of the Subloop exits, initially Unloop. 828 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 829 } 830 831 if (succ_empty(BB)) { 832 assert(!Subloop && "subloop blocks must have a successor"); 833 NearLoop = nullptr; // unloop blocks may now exit the function. 834 } 835 for (BasicBlock *Succ : successors(BB)) { 836 if (Succ == BB) 837 continue; // self loops are uninteresting 838 839 Loop *L = LI->getLoopFor(Succ); 840 if (L == &Unloop) { 841 // This successor has not been processed. This path must lead to an 842 // irreducible backedge. 843 assert((FoundIB || !DFS.hasPostorder(Succ)) && "should have seen IB"); 844 FoundIB = true; 845 } 846 if (L != &Unloop && Unloop.contains(L)) { 847 // Successor is in a subloop. 848 if (Subloop) 849 continue; // Branching within subloops. Ignore it. 850 851 // BB branches from the original into a subloop header. 852 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 853 854 // Get the current nearest parent of the Subloop's exits. 855 L = SubloopParents[L]; 856 // L could be Unloop if the only exit was an irreducible backedge. 857 } 858 if (L == &Unloop) { 859 continue; 860 } 861 // Handle critical edges from Unloop into a sibling loop. 862 if (L && !L->contains(&Unloop)) { 863 L = L->getParentLoop(); 864 } 865 // Remember the nearest parent loop among successors or subloop exits. 866 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 867 NearLoop = L; 868 } 869 if (Subloop) { 870 SubloopParents[Subloop] = NearLoop; 871 return BBLoop; 872 } 873 return NearLoop; 874 } 875 876 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 877 878 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 879 FunctionAnalysisManager::Invalidator &) { 880 // Check whether the analysis, all analyses on functions, or the function's 881 // CFG have been preserved. 882 auto PAC = PA.getChecker<LoopAnalysis>(); 883 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 884 PAC.preservedSet<CFGAnalyses>()); 885 } 886 887 void LoopInfo::erase(Loop *Unloop) { 888 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 889 890 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 891 892 // First handle the special case of no parent loop to simplify the algorithm. 893 if (Unloop->isOutermost()) { 894 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 895 for (BasicBlock *BB : Unloop->blocks()) { 896 // Don't reparent blocks in subloops. 897 if (getLoopFor(BB) != Unloop) 898 continue; 899 900 // Blocks no longer have a parent but are still referenced by Unloop until 901 // the Unloop object is deleted. 902 changeLoopFor(BB, nullptr); 903 } 904 905 // Remove the loop from the top-level LoopInfo object. 906 for (iterator I = begin();; ++I) { 907 assert(I != end() && "Couldn't find loop"); 908 if (*I == Unloop) { 909 removeLoop(I); 910 break; 911 } 912 } 913 914 // Move all of the subloops to the top-level. 915 while (!Unloop->isInnermost()) 916 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 917 918 return; 919 } 920 921 // Update the parent loop for all blocks within the loop. Blocks within 922 // subloops will not change parents. 923 UnloopUpdater Updater(Unloop, this); 924 Updater.updateBlockParents(); 925 926 // Remove blocks from former ancestor loops. 927 Updater.removeBlocksFromAncestors(); 928 929 // Add direct subloops as children in their new parent loop. 930 Updater.updateSubloopParents(); 931 932 // Remove unloop from its parent loop. 933 Loop *ParentLoop = Unloop->getParentLoop(); 934 for (Loop::iterator I = ParentLoop->begin();; ++I) { 935 assert(I != ParentLoop->end() && "Couldn't find loop"); 936 if (*I == Unloop) { 937 ParentLoop->removeChildLoop(I); 938 break; 939 } 940 } 941 } 942 943 bool LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA( 944 const Value *V, const BasicBlock *ExitBB) const { 945 if (V->getType()->isTokenTy()) 946 // We can't form PHIs of token type, so the definition of LCSSA excludes 947 // values of that type. 948 return false; 949 950 const Instruction *I = dyn_cast<Instruction>(V); 951 if (!I) 952 return false; 953 const Loop *L = getLoopFor(I->getParent()); 954 if (!L) 955 return false; 956 if (L->contains(ExitBB)) 957 // Could be an exit bb of a subloop and contained in defining loop 958 return false; 959 960 // We found a (new) out-of-loop use location, for a value defined in-loop. 961 // (Note that because of LCSSA, we don't have to account for values defined 962 // in sibling loops. Such values will have LCSSA phis of their own in the 963 // common parent loop.) 964 return true; 965 } 966 967 AnalysisKey LoopAnalysis::Key; 968 969 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 970 // FIXME: Currently we create a LoopInfo from scratch for every function. 971 // This may prove to be too wasteful due to deallocating and re-allocating 972 // memory each time for the underlying map and vector datastructures. At some 973 // point it may prove worthwhile to use a freelist and recycle LoopInfo 974 // objects. I don't want to add that kind of complexity until the scope of 975 // the problem is better understood. 976 LoopInfo LI; 977 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 978 return LI; 979 } 980 981 PreservedAnalyses LoopPrinterPass::run(Function &F, 982 FunctionAnalysisManager &AM) { 983 auto &LI = AM.getResult<LoopAnalysis>(F); 984 OS << "Loop info for function '" << F.getName() << "':\n"; 985 LI.print(OS); 986 return PreservedAnalyses::all(); 987 } 988 989 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 990 991 if (forcePrintModuleIR()) { 992 // handling -print-module-scope 993 OS << Banner << " (loop: "; 994 L.getHeader()->printAsOperand(OS, false); 995 OS << ")\n"; 996 997 // printing whole module 998 OS << *L.getHeader()->getModule(); 999 return; 1000 } 1001 1002 OS << Banner; 1003 1004 auto *PreHeader = L.getLoopPreheader(); 1005 if (PreHeader) { 1006 OS << "\n; Preheader:"; 1007 PreHeader->print(OS); 1008 OS << "\n; Loop:"; 1009 } 1010 1011 for (auto *Block : L.blocks()) 1012 if (Block) 1013 Block->print(OS); 1014 else 1015 OS << "Printing <null> block"; 1016 1017 SmallVector<BasicBlock *, 8> ExitBlocks; 1018 L.getExitBlocks(ExitBlocks); 1019 if (!ExitBlocks.empty()) { 1020 OS << "\n; Exit blocks"; 1021 for (auto *Block : ExitBlocks) 1022 if (Block) 1023 Block->print(OS); 1024 else 1025 OS << "Printing <null> block"; 1026 } 1027 } 1028 1029 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 1030 // No loop metadata node, no loop properties. 1031 if (!LoopID) 1032 return nullptr; 1033 1034 // First operand should refer to the metadata node itself, for legacy reasons. 1035 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1036 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1037 1038 // Iterate over the metdata node operands and look for MDString metadata. 1039 for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { 1040 MDNode *MD = dyn_cast<MDNode>(MDO); 1041 if (!MD || MD->getNumOperands() < 1) 1042 continue; 1043 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1044 if (!S) 1045 continue; 1046 // Return the operand node if MDString holds expected metadata. 1047 if (Name == S->getString()) 1048 return MD; 1049 } 1050 1051 // Loop property not found. 1052 return nullptr; 1053 } 1054 1055 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1056 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1057 } 1058 1059 /// Find string metadata for loop 1060 /// 1061 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1062 /// operand or null otherwise. If the string metadata is not found return 1063 /// Optional's not-a-value. 1064 std::optional<const MDOperand *> 1065 llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) { 1066 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1067 if (!MD) 1068 return std::nullopt; 1069 switch (MD->getNumOperands()) { 1070 case 1: 1071 return nullptr; 1072 case 2: 1073 return &MD->getOperand(1); 1074 default: 1075 llvm_unreachable("loop metadata has 0 or 1 operand"); 1076 } 1077 } 1078 1079 std::optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, 1080 StringRef Name) { 1081 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1082 if (!MD) 1083 return std::nullopt; 1084 switch (MD->getNumOperands()) { 1085 case 1: 1086 // When the value is absent it is interpreted as 'attribute set'. 1087 return true; 1088 case 2: 1089 if (ConstantInt *IntMD = 1090 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 1091 return IntMD->getZExtValue(); 1092 return true; 1093 } 1094 llvm_unreachable("unexpected number of options"); 1095 } 1096 1097 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 1098 return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false); 1099 } 1100 1101 std::optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, 1102 StringRef Name) { 1103 const MDOperand *AttrMD = 1104 findStringMetadataForLoop(TheLoop, Name).value_or(nullptr); 1105 if (!AttrMD) 1106 return std::nullopt; 1107 1108 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 1109 if (!IntMD) 1110 return std::nullopt; 1111 1112 return IntMD->getSExtValue(); 1113 } 1114 1115 int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name, 1116 int Default) { 1117 return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default); 1118 } 1119 1120 CallBase *llvm::getLoopConvergenceHeart(const Loop *TheLoop) { 1121 BasicBlock *H = TheLoop->getHeader(); 1122 for (Instruction &II : *H) { 1123 if (auto *CB = dyn_cast<CallBase>(&II)) { 1124 if (!CB->isConvergent()) 1125 continue; 1126 // This is the heart if it uses a token defined outside the loop. The 1127 // verifier has already checked that only the loop intrinsic can use such 1128 // a token. 1129 if (auto *Token = CB->getConvergenceControlToken()) { 1130 auto *TokenDef = cast<Instruction>(Token); 1131 if (!TheLoop->contains(TokenDef->getParent())) 1132 return CB; 1133 } 1134 return nullptr; 1135 } 1136 } 1137 return nullptr; 1138 } 1139 1140 bool llvm::isFinite(const Loop *L) { 1141 return L->getHeader()->getParent()->willReturn(); 1142 } 1143 1144 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 1145 1146 bool llvm::hasMustProgress(const Loop *L) { 1147 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 1148 } 1149 1150 bool llvm::isMustProgress(const Loop *L) { 1151 return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); 1152 } 1153 1154 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1155 return Node->getNumOperands() == 0 && Node->isDistinct(); 1156 } 1157 1158 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1159 MDNode *OrigLoopID, 1160 ArrayRef<StringRef> RemovePrefixes, 1161 ArrayRef<MDNode *> AddAttrs) { 1162 // First remove any existing loop metadata related to this transformation. 1163 SmallVector<Metadata *, 4> MDs; 1164 1165 // Reserve first location for self reference to the LoopID metadata node. 1166 MDs.push_back(nullptr); 1167 1168 // Remove metadata for the transformation that has been applied or that became 1169 // outdated. 1170 if (OrigLoopID) { 1171 for (const MDOperand &MDO : llvm::drop_begin(OrigLoopID->operands())) { 1172 bool IsVectorMetadata = false; 1173 Metadata *Op = MDO; 1174 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1175 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1176 if (S) 1177 IsVectorMetadata = 1178 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1179 return S->getString().starts_with(Prefix); 1180 }); 1181 } 1182 if (!IsVectorMetadata) 1183 MDs.push_back(Op); 1184 } 1185 } 1186 1187 // Add metadata to avoid reapplying a transformation, such as 1188 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1189 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1190 1191 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1192 // Replace the temporary node with a self-reference. 1193 NewLoopID->replaceOperandWith(0, NewLoopID); 1194 return NewLoopID; 1195 } 1196 1197 //===----------------------------------------------------------------------===// 1198 // LoopInfo implementation 1199 // 1200 1201 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { 1202 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1203 } 1204 1205 char LoopInfoWrapperPass::ID = 0; 1206 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1207 true, true) 1208 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1209 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1210 true, true) 1211 1212 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1213 releaseMemory(); 1214 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1215 return false; 1216 } 1217 1218 void LoopInfoWrapperPass::verifyAnalysis() const { 1219 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1220 // function each time verifyAnalysis is called is very expensive. The 1221 // -verify-loop-info option can enable this. In order to perform some 1222 // checking by default, LoopPass has been taught to call verifyLoop manually 1223 // during loop pass sequences. 1224 if (VerifyLoopInfo) { 1225 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1226 LI.verify(DT); 1227 } 1228 } 1229 1230 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1231 AU.setPreservesAll(); 1232 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1233 } 1234 1235 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1236 LI.print(OS); 1237 } 1238 1239 PreservedAnalyses LoopVerifierPass::run(Function &F, 1240 FunctionAnalysisManager &AM) { 1241 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1242 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1243 LI.verify(DT); 1244 return PreservedAnalyses::all(); 1245 } 1246 1247 //===----------------------------------------------------------------------===// 1248 // LoopBlocksDFS implementation 1249 // 1250 1251 /// Traverse the loop blocks and store the DFS result. 1252 /// Useful for clients that just want the final DFS result and don't need to 1253 /// visit blocks during the initial traversal. 1254 void LoopBlocksDFS::perform(const LoopInfo *LI) { 1255 LoopBlocksTraversal Traversal(*this, LI); 1256 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1257 POE = Traversal.end(); 1258 POI != POE; ++POI) 1259 ; 1260 } 1261