1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/IVDescriptors.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/PrintPasses.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/raw_ostream.h" 40 using namespace llvm; 41 42 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 43 template class llvm::LoopBase<BasicBlock, Loop>; 44 template class llvm::LoopInfoBase<BasicBlock, Loop>; 45 46 // Always verify loopinfo if expensive checking is enabled. 47 #ifdef EXPENSIVE_CHECKS 48 bool llvm::VerifyLoopInfo = true; 49 #else 50 bool llvm::VerifyLoopInfo = false; 51 #endif 52 static cl::opt<bool, true> 53 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 54 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 55 56 //===----------------------------------------------------------------------===// 57 // Loop implementation 58 // 59 60 bool Loop::isLoopInvariant(const Value *V) const { 61 if (const Instruction *I = dyn_cast<Instruction>(V)) 62 return !contains(I); 63 return true; // All non-instructions are loop invariant 64 } 65 66 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 67 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 68 } 69 70 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 71 MemorySSAUpdater *MSSAU, 72 ScalarEvolution *SE) const { 73 if (Instruction *I = dyn_cast<Instruction>(V)) 74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU, SE); 75 return true; // All non-instructions are loop-invariant. 76 } 77 78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 79 Instruction *InsertPt, MemorySSAUpdater *MSSAU, 80 ScalarEvolution *SE) const { 81 // Test if the value is already loop-invariant. 82 if (isLoopInvariant(I)) 83 return true; 84 if (!isSafeToSpeculativelyExecute(I)) 85 return false; 86 if (I->mayReadFromMemory()) 87 return false; 88 // EH block instructions are immobile. 89 if (I->isEHPad()) 90 return false; 91 // Determine the insertion point, unless one was given. 92 if (!InsertPt) { 93 BasicBlock *Preheader = getLoopPreheader(); 94 // Without a preheader, hoisting is not feasible. 95 if (!Preheader) 96 return false; 97 InsertPt = Preheader->getTerminator(); 98 } 99 // Don't hoist instructions with loop-variant operands. 100 for (Value *Operand : I->operands()) 101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU, SE)) 102 return false; 103 104 // Hoist. 105 I->moveBefore(InsertPt); 106 if (MSSAU) 107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), 109 MemorySSA::BeforeTerminator); 110 111 // There is possibility of hoisting this instruction above some arbitrary 112 // condition. Any metadata defined on it can be control dependent on this 113 // condition. Conservatively strip it here so that we don't give any wrong 114 // information to the optimizer. 115 I->dropUnknownNonDebugMetadata(); 116 117 if (SE) 118 SE->forgetBlockAndLoopDispositions(I); 119 120 Changed = true; 121 return true; 122 } 123 124 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 125 BasicBlock *&Backedge) const { 126 BasicBlock *H = getHeader(); 127 128 Incoming = nullptr; 129 Backedge = nullptr; 130 pred_iterator PI = pred_begin(H); 131 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 132 Backedge = *PI++; 133 if (PI == pred_end(H)) 134 return false; // dead loop 135 Incoming = *PI++; 136 if (PI != pred_end(H)) 137 return false; // multiple backedges? 138 139 if (contains(Incoming)) { 140 if (contains(Backedge)) 141 return false; 142 std::swap(Incoming, Backedge); 143 } else if (!contains(Backedge)) 144 return false; 145 146 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 147 return true; 148 } 149 150 PHINode *Loop::getCanonicalInductionVariable() const { 151 BasicBlock *H = getHeader(); 152 153 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 154 if (!getIncomingAndBackEdge(Incoming, Backedge)) 155 return nullptr; 156 157 // Loop over all of the PHI nodes, looking for a canonical indvar. 158 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 159 PHINode *PN = cast<PHINode>(I); 160 if (ConstantInt *CI = 161 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 162 if (CI->isZero()) 163 if (Instruction *Inc = 164 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 165 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 166 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 167 if (CI->isOne()) 168 return PN; 169 } 170 return nullptr; 171 } 172 173 /// Get the latch condition instruction. 174 ICmpInst *Loop::getLatchCmpInst() const { 175 if (BasicBlock *Latch = getLoopLatch()) 176 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 177 if (BI->isConditional()) 178 return dyn_cast<ICmpInst>(BI->getCondition()); 179 180 return nullptr; 181 } 182 183 /// Return the final value of the loop induction variable if found. 184 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 185 const Instruction &StepInst) { 186 ICmpInst *LatchCmpInst = L.getLatchCmpInst(); 187 if (!LatchCmpInst) 188 return nullptr; 189 190 Value *Op0 = LatchCmpInst->getOperand(0); 191 Value *Op1 = LatchCmpInst->getOperand(1); 192 if (Op0 == &IndVar || Op0 == &StepInst) 193 return Op1; 194 195 if (Op1 == &IndVar || Op1 == &StepInst) 196 return Op0; 197 198 return nullptr; 199 } 200 201 std::optional<Loop::LoopBounds> 202 Loop::LoopBounds::getBounds(const Loop &L, PHINode &IndVar, 203 ScalarEvolution &SE) { 204 InductionDescriptor IndDesc; 205 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 206 return std::nullopt; 207 208 Value *InitialIVValue = IndDesc.getStartValue(); 209 Instruction *StepInst = IndDesc.getInductionBinOp(); 210 if (!InitialIVValue || !StepInst) 211 return std::nullopt; 212 213 const SCEV *Step = IndDesc.getStep(); 214 Value *StepInstOp1 = StepInst->getOperand(1); 215 Value *StepInstOp0 = StepInst->getOperand(0); 216 Value *StepValue = nullptr; 217 if (SE.getSCEV(StepInstOp1) == Step) 218 StepValue = StepInstOp1; 219 else if (SE.getSCEV(StepInstOp0) == Step) 220 StepValue = StepInstOp0; 221 222 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 223 if (!FinalIVValue) 224 return std::nullopt; 225 226 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 227 SE); 228 } 229 230 using Direction = Loop::LoopBounds::Direction; 231 232 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 233 BasicBlock *Latch = L.getLoopLatch(); 234 assert(Latch && "Expecting valid latch"); 235 236 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 237 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 238 239 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 240 assert(LatchCmpInst && 241 "Expecting the latch compare instruction to be a CmpInst"); 242 243 // Need to inverse the predicate when first successor is not the loop 244 // header 245 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 246 ? LatchCmpInst->getPredicate() 247 : LatchCmpInst->getInversePredicate(); 248 249 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 250 Pred = ICmpInst::getSwappedPredicate(Pred); 251 252 // Need to flip strictness of the predicate when the latch compare instruction 253 // is not using StepInst 254 if (LatchCmpInst->getOperand(0) == &getStepInst() || 255 LatchCmpInst->getOperand(1) == &getStepInst()) 256 return Pred; 257 258 // Cannot flip strictness of NE and EQ 259 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 260 return ICmpInst::getFlippedStrictnessPredicate(Pred); 261 262 Direction D = getDirection(); 263 if (D == Direction::Increasing) 264 return ICmpInst::ICMP_SLT; 265 266 if (D == Direction::Decreasing) 267 return ICmpInst::ICMP_SGT; 268 269 // If cannot determine the direction, then unable to find the canonical 270 // predicate 271 return ICmpInst::BAD_ICMP_PREDICATE; 272 } 273 274 Direction Loop::LoopBounds::getDirection() const { 275 if (const SCEVAddRecExpr *StepAddRecExpr = 276 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 277 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 278 if (SE.isKnownPositive(StepRecur)) 279 return Direction::Increasing; 280 if (SE.isKnownNegative(StepRecur)) 281 return Direction::Decreasing; 282 } 283 284 return Direction::Unknown; 285 } 286 287 std::optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 288 if (PHINode *IndVar = getInductionVariable(SE)) 289 return LoopBounds::getBounds(*this, *IndVar, SE); 290 291 return std::nullopt; 292 } 293 294 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 295 if (!isLoopSimplifyForm()) 296 return nullptr; 297 298 BasicBlock *Header = getHeader(); 299 assert(Header && "Expected a valid loop header"); 300 ICmpInst *CmpInst = getLatchCmpInst(); 301 if (!CmpInst) 302 return nullptr; 303 304 Value *LatchCmpOp0 = CmpInst->getOperand(0); 305 Value *LatchCmpOp1 = CmpInst->getOperand(1); 306 307 for (PHINode &IndVar : Header->phis()) { 308 InductionDescriptor IndDesc; 309 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 310 continue; 311 312 BasicBlock *Latch = getLoopLatch(); 313 Value *StepInst = IndVar.getIncomingValueForBlock(Latch); 314 315 // case 1: 316 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 317 // StepInst = IndVar + step 318 // cmp = StepInst < FinalValue 319 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 320 return &IndVar; 321 322 // case 2: 323 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 324 // StepInst = IndVar + step 325 // cmp = IndVar < FinalValue 326 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 327 return &IndVar; 328 } 329 330 return nullptr; 331 } 332 333 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 334 InductionDescriptor &IndDesc) const { 335 if (PHINode *IndVar = getInductionVariable(SE)) 336 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 337 338 return false; 339 } 340 341 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 342 ScalarEvolution &SE) const { 343 // Located in the loop header 344 BasicBlock *Header = getHeader(); 345 if (AuxIndVar.getParent() != Header) 346 return false; 347 348 // No uses outside of the loop 349 for (User *U : AuxIndVar.users()) 350 if (const Instruction *I = dyn_cast<Instruction>(U)) 351 if (!contains(I)) 352 return false; 353 354 InductionDescriptor IndDesc; 355 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 356 return false; 357 358 // The step instruction opcode should be add or sub. 359 if (IndDesc.getInductionOpcode() != Instruction::Add && 360 IndDesc.getInductionOpcode() != Instruction::Sub) 361 return false; 362 363 // Incremented by a loop invariant step for each loop iteration 364 return SE.isLoopInvariant(IndDesc.getStep(), this); 365 } 366 367 BranchInst *Loop::getLoopGuardBranch() const { 368 if (!isLoopSimplifyForm()) 369 return nullptr; 370 371 BasicBlock *Preheader = getLoopPreheader(); 372 assert(Preheader && getLoopLatch() && 373 "Expecting a loop with valid preheader and latch"); 374 375 // Loop should be in rotate form. 376 if (!isRotatedForm()) 377 return nullptr; 378 379 // Disallow loops with more than one unique exit block, as we do not verify 380 // that GuardOtherSucc post dominates all exit blocks. 381 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 382 if (!ExitFromLatch) 383 return nullptr; 384 385 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 386 if (!GuardBB) 387 return nullptr; 388 389 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 390 391 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 392 if (!GuardBI || GuardBI->isUnconditional()) 393 return nullptr; 394 395 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 396 ? GuardBI->getSuccessor(1) 397 : GuardBI->getSuccessor(0); 398 399 // Check if ExitFromLatch (or any BasicBlock which is an empty unique 400 // successor of ExitFromLatch) is equal to GuardOtherSucc. If 401 // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the 402 // loop is GuardBI (return GuardBI), otherwise return nullptr. 403 if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, 404 /*CheckUniquePred=*/true) == 405 GuardOtherSucc) 406 return GuardBI; 407 else 408 return nullptr; 409 } 410 411 bool Loop::isCanonical(ScalarEvolution &SE) const { 412 InductionDescriptor IndDesc; 413 if (!getInductionDescriptor(SE, IndDesc)) 414 return false; 415 416 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 417 if (!Init || !Init->isZero()) 418 return false; 419 420 if (IndDesc.getInductionOpcode() != Instruction::Add) 421 return false; 422 423 ConstantInt *Step = IndDesc.getConstIntStepValue(); 424 if (!Step || !Step->isOne()) 425 return false; 426 427 return true; 428 } 429 430 // Check that 'BB' doesn't have any uses outside of the 'L' 431 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 432 const DominatorTree &DT, bool IgnoreTokens) { 433 for (const Instruction &I : BB) { 434 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 435 // optimizations, so for the purposes of considered LCSSA form, we 436 // can ignore them. 437 if (IgnoreTokens && I.getType()->isTokenTy()) 438 continue; 439 440 for (const Use &U : I.uses()) { 441 const Instruction *UI = cast<Instruction>(U.getUser()); 442 const BasicBlock *UserBB = UI->getParent(); 443 444 // For practical purposes, we consider that the use in a PHI 445 // occurs in the respective predecessor block. For more info, 446 // see the `phi` doc in LangRef and the LCSSA doc. 447 if (const PHINode *P = dyn_cast<PHINode>(UI)) 448 UserBB = P->getIncomingBlock(U); 449 450 // Check the current block, as a fast-path, before checking whether 451 // the use is anywhere in the loop. Most values are used in the same 452 // block they are defined in. Also, blocks not reachable from the 453 // entry are special; uses in them don't need to go through PHIs. 454 if (UserBB != &BB && !L.contains(UserBB) && 455 DT.isReachableFromEntry(UserBB)) 456 return false; 457 } 458 } 459 return true; 460 } 461 462 bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const { 463 // For each block we check that it doesn't have any uses outside of this loop. 464 return all_of(this->blocks(), [&](const BasicBlock *BB) { 465 return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens); 466 }); 467 } 468 469 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, 470 bool IgnoreTokens) const { 471 // For each block we check that it doesn't have any uses outside of its 472 // innermost loop. This process will transitively guarantee that the current 473 // loop and all of the nested loops are in LCSSA form. 474 return all_of(this->blocks(), [&](const BasicBlock *BB) { 475 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens); 476 }); 477 } 478 479 bool Loop::isLoopSimplifyForm() const { 480 // Normal-form loops have a preheader, a single backedge, and all of their 481 // exits have all their predecessors inside the loop. 482 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 483 } 484 485 // Routines that reform the loop CFG and split edges often fail on indirectbr. 486 bool Loop::isSafeToClone() const { 487 // Return false if any loop blocks contain indirectbrs, or there are any calls 488 // to noduplicate functions. 489 for (BasicBlock *BB : this->blocks()) { 490 if (isa<IndirectBrInst>(BB->getTerminator())) 491 return false; 492 493 for (Instruction &I : *BB) 494 if (auto *CB = dyn_cast<CallBase>(&I)) 495 if (CB->cannotDuplicate()) 496 return false; 497 } 498 return true; 499 } 500 501 MDNode *Loop::getLoopID() const { 502 MDNode *LoopID = nullptr; 503 504 // Go through the latch blocks and check the terminator for the metadata. 505 SmallVector<BasicBlock *, 4> LatchesBlocks; 506 getLoopLatches(LatchesBlocks); 507 for (BasicBlock *BB : LatchesBlocks) { 508 Instruction *TI = BB->getTerminator(); 509 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 510 511 if (!MD) 512 return nullptr; 513 514 if (!LoopID) 515 LoopID = MD; 516 else if (MD != LoopID) 517 return nullptr; 518 } 519 if (!LoopID || LoopID->getNumOperands() == 0 || 520 LoopID->getOperand(0) != LoopID) 521 return nullptr; 522 return LoopID; 523 } 524 525 void Loop::setLoopID(MDNode *LoopID) const { 526 assert((!LoopID || LoopID->getNumOperands() > 0) && 527 "Loop ID needs at least one operand"); 528 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 529 "Loop ID should refer to itself"); 530 531 SmallVector<BasicBlock *, 4> LoopLatches; 532 getLoopLatches(LoopLatches); 533 for (BasicBlock *BB : LoopLatches) 534 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 535 } 536 537 void Loop::setLoopAlreadyUnrolled() { 538 LLVMContext &Context = getHeader()->getContext(); 539 540 MDNode *DisableUnrollMD = 541 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 542 MDNode *LoopID = getLoopID(); 543 MDNode *NewLoopID = makePostTransformationMetadata( 544 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 545 setLoopID(NewLoopID); 546 } 547 548 void Loop::setLoopMustProgress() { 549 LLVMContext &Context = getHeader()->getContext(); 550 551 MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); 552 553 if (MustProgress) 554 return; 555 556 MDNode *MustProgressMD = 557 MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); 558 MDNode *LoopID = getLoopID(); 559 MDNode *NewLoopID = 560 makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); 561 setLoopID(NewLoopID); 562 } 563 564 bool Loop::isAnnotatedParallel() const { 565 MDNode *DesiredLoopIdMetadata = getLoopID(); 566 567 if (!DesiredLoopIdMetadata) 568 return false; 569 570 MDNode *ParallelAccesses = 571 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 572 SmallPtrSet<MDNode *, 4> 573 ParallelAccessGroups; // For scalable 'contains' check. 574 if (ParallelAccesses) { 575 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { 576 MDNode *AccGroup = cast<MDNode>(MD.get()); 577 assert(isValidAsAccessGroup(AccGroup) && 578 "List item must be an access group"); 579 ParallelAccessGroups.insert(AccGroup); 580 } 581 } 582 583 // The loop branch contains the parallel loop metadata. In order to ensure 584 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 585 // dependencies (thus converted the loop back to a sequential loop), check 586 // that all the memory instructions in the loop belong to an access group that 587 // is parallel to this loop. 588 for (BasicBlock *BB : this->blocks()) { 589 for (Instruction &I : *BB) { 590 if (!I.mayReadOrWriteMemory()) 591 continue; 592 593 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 594 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 595 if (AG->getNumOperands() == 0) { 596 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 597 return ParallelAccessGroups.count(AG); 598 } 599 600 for (const MDOperand &AccessListItem : AG->operands()) { 601 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 602 assert(isValidAsAccessGroup(AccGroup) && 603 "List item must be an access group"); 604 if (ParallelAccessGroups.count(AccGroup)) 605 return true; 606 } 607 return false; 608 }; 609 610 if (ContainsAccessGroup(AccessGroup)) 611 continue; 612 } 613 614 // The memory instruction can refer to the loop identifier metadata 615 // directly or indirectly through another list metadata (in case of 616 // nested parallel loops). The loop identifier metadata refers to 617 // itself so we can check both cases with the same routine. 618 MDNode *LoopIdMD = 619 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 620 621 if (!LoopIdMD) 622 return false; 623 624 if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) 625 return false; 626 } 627 } 628 return true; 629 } 630 631 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 632 633 Loop::LocRange Loop::getLocRange() const { 634 // If we have a debug location in the loop ID, then use it. 635 if (MDNode *LoopID = getLoopID()) { 636 DebugLoc Start; 637 // We use the first DebugLoc in the header as the start location of the loop 638 // and if there is a second DebugLoc in the header we use it as end location 639 // of the loop. 640 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 641 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 642 if (!Start) 643 Start = DebugLoc(L); 644 else 645 return LocRange(Start, DebugLoc(L)); 646 } 647 } 648 649 if (Start) 650 return LocRange(Start); 651 } 652 653 // Try the pre-header first. 654 if (BasicBlock *PHeadBB = getLoopPreheader()) 655 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 656 return LocRange(DL); 657 658 // If we have no pre-header or there are no instructions with debug 659 // info in it, try the header. 660 if (BasicBlock *HeadBB = getHeader()) 661 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 662 663 return LocRange(); 664 } 665 666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 667 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 668 669 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 670 print(dbgs(), /*Verbose=*/true); 671 } 672 #endif 673 674 //===----------------------------------------------------------------------===// 675 // UnloopUpdater implementation 676 // 677 678 namespace { 679 /// Find the new parent loop for all blocks within the "unloop" whose last 680 /// backedges has just been removed. 681 class UnloopUpdater { 682 Loop &Unloop; 683 LoopInfo *LI; 684 685 LoopBlocksDFS DFS; 686 687 // Map unloop's immediate subloops to their nearest reachable parents. Nested 688 // loops within these subloops will not change parents. However, an immediate 689 // subloop's new parent will be the nearest loop reachable from either its own 690 // exits *or* any of its nested loop's exits. 691 DenseMap<Loop *, Loop *> SubloopParents; 692 693 // Flag the presence of an irreducible backedge whose destination is a block 694 // directly contained by the original unloop. 695 bool FoundIB = false; 696 697 public: 698 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {} 699 700 void updateBlockParents(); 701 702 void removeBlocksFromAncestors(); 703 704 void updateSubloopParents(); 705 706 protected: 707 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 708 }; 709 } // end anonymous namespace 710 711 /// Update the parent loop for all blocks that are directly contained within the 712 /// original "unloop". 713 void UnloopUpdater::updateBlockParents() { 714 if (Unloop.getNumBlocks()) { 715 // Perform a post order CFG traversal of all blocks within this loop, 716 // propagating the nearest loop from successors to predecessors. 717 LoopBlocksTraversal Traversal(DFS, LI); 718 for (BasicBlock *POI : Traversal) { 719 720 Loop *L = LI->getLoopFor(POI); 721 Loop *NL = getNearestLoop(POI, L); 722 723 if (NL != L) { 724 // For reducible loops, NL is now an ancestor of Unloop. 725 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 726 "uninitialized successor"); 727 LI->changeLoopFor(POI, NL); 728 } else { 729 // Or the current block is part of a subloop, in which case its parent 730 // is unchanged. 731 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 732 } 733 } 734 } 735 // Each irreducible loop within the unloop induces a round of iteration using 736 // the DFS result cached by Traversal. 737 bool Changed = FoundIB; 738 for (unsigned NIters = 0; Changed; ++NIters) { 739 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 740 (void) NIters; 741 742 // Iterate over the postorder list of blocks, propagating the nearest loop 743 // from successors to predecessors as before. 744 Changed = false; 745 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 746 POE = DFS.endPostorder(); 747 POI != POE; ++POI) { 748 749 Loop *L = LI->getLoopFor(*POI); 750 Loop *NL = getNearestLoop(*POI, L); 751 if (NL != L) { 752 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 753 "uninitialized successor"); 754 LI->changeLoopFor(*POI, NL); 755 Changed = true; 756 } 757 } 758 } 759 } 760 761 /// Remove unloop's blocks from all ancestors below their new parents. 762 void UnloopUpdater::removeBlocksFromAncestors() { 763 // Remove all unloop's blocks (including those in nested subloops) from 764 // ancestors below the new parent loop. 765 for (BasicBlock *BB : Unloop.blocks()) { 766 Loop *OuterParent = LI->getLoopFor(BB); 767 if (Unloop.contains(OuterParent)) { 768 while (OuterParent->getParentLoop() != &Unloop) 769 OuterParent = OuterParent->getParentLoop(); 770 OuterParent = SubloopParents[OuterParent]; 771 } 772 // Remove blocks from former Ancestors except Unloop itself which will be 773 // deleted. 774 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 775 OldParent = OldParent->getParentLoop()) { 776 assert(OldParent && "new loop is not an ancestor of the original"); 777 OldParent->removeBlockFromLoop(BB); 778 } 779 } 780 } 781 782 /// Update the parent loop for all subloops directly nested within unloop. 783 void UnloopUpdater::updateSubloopParents() { 784 while (!Unloop.isInnermost()) { 785 Loop *Subloop = *std::prev(Unloop.end()); 786 Unloop.removeChildLoop(std::prev(Unloop.end())); 787 788 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 789 if (Loop *Parent = SubloopParents[Subloop]) 790 Parent->addChildLoop(Subloop); 791 else 792 LI->addTopLevelLoop(Subloop); 793 } 794 } 795 796 /// Return the nearest parent loop among this block's successors. If a successor 797 /// is a subloop header, consider its parent to be the nearest parent of the 798 /// subloop's exits. 799 /// 800 /// For subloop blocks, simply update SubloopParents and return NULL. 801 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 802 803 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 804 // is considered uninitialized. 805 Loop *NearLoop = BBLoop; 806 807 Loop *Subloop = nullptr; 808 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 809 Subloop = NearLoop; 810 // Find the subloop ancestor that is directly contained within Unloop. 811 while (Subloop->getParentLoop() != &Unloop) { 812 Subloop = Subloop->getParentLoop(); 813 assert(Subloop && "subloop is not an ancestor of the original loop"); 814 } 815 // Get the current nearest parent of the Subloop exits, initially Unloop. 816 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 817 } 818 819 succ_iterator I = succ_begin(BB), E = succ_end(BB); 820 if (I == E) { 821 assert(!Subloop && "subloop blocks must have a successor"); 822 NearLoop = nullptr; // unloop blocks may now exit the function. 823 } 824 for (; I != E; ++I) { 825 if (*I == BB) 826 continue; // self loops are uninteresting 827 828 Loop *L = LI->getLoopFor(*I); 829 if (L == &Unloop) { 830 // This successor has not been processed. This path must lead to an 831 // irreducible backedge. 832 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 833 FoundIB = true; 834 } 835 if (L != &Unloop && Unloop.contains(L)) { 836 // Successor is in a subloop. 837 if (Subloop) 838 continue; // Branching within subloops. Ignore it. 839 840 // BB branches from the original into a subloop header. 841 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 842 843 // Get the current nearest parent of the Subloop's exits. 844 L = SubloopParents[L]; 845 // L could be Unloop if the only exit was an irreducible backedge. 846 } 847 if (L == &Unloop) { 848 continue; 849 } 850 // Handle critical edges from Unloop into a sibling loop. 851 if (L && !L->contains(&Unloop)) { 852 L = L->getParentLoop(); 853 } 854 // Remember the nearest parent loop among successors or subloop exits. 855 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 856 NearLoop = L; 857 } 858 if (Subloop) { 859 SubloopParents[Subloop] = NearLoop; 860 return BBLoop; 861 } 862 return NearLoop; 863 } 864 865 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 866 867 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 868 FunctionAnalysisManager::Invalidator &) { 869 // Check whether the analysis, all analyses on functions, or the function's 870 // CFG have been preserved. 871 auto PAC = PA.getChecker<LoopAnalysis>(); 872 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 873 PAC.preservedSet<CFGAnalyses>()); 874 } 875 876 void LoopInfo::erase(Loop *Unloop) { 877 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 878 879 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 880 881 // First handle the special case of no parent loop to simplify the algorithm. 882 if (Unloop->isOutermost()) { 883 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 884 for (BasicBlock *BB : Unloop->blocks()) { 885 // Don't reparent blocks in subloops. 886 if (getLoopFor(BB) != Unloop) 887 continue; 888 889 // Blocks no longer have a parent but are still referenced by Unloop until 890 // the Unloop object is deleted. 891 changeLoopFor(BB, nullptr); 892 } 893 894 // Remove the loop from the top-level LoopInfo object. 895 for (iterator I = begin();; ++I) { 896 assert(I != end() && "Couldn't find loop"); 897 if (*I == Unloop) { 898 removeLoop(I); 899 break; 900 } 901 } 902 903 // Move all of the subloops to the top-level. 904 while (!Unloop->isInnermost()) 905 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 906 907 return; 908 } 909 910 // Update the parent loop for all blocks within the loop. Blocks within 911 // subloops will not change parents. 912 UnloopUpdater Updater(Unloop, this); 913 Updater.updateBlockParents(); 914 915 // Remove blocks from former ancestor loops. 916 Updater.removeBlocksFromAncestors(); 917 918 // Add direct subloops as children in their new parent loop. 919 Updater.updateSubloopParents(); 920 921 // Remove unloop from its parent loop. 922 Loop *ParentLoop = Unloop->getParentLoop(); 923 for (Loop::iterator I = ParentLoop->begin();; ++I) { 924 assert(I != ParentLoop->end() && "Couldn't find loop"); 925 if (*I == Unloop) { 926 ParentLoop->removeChildLoop(I); 927 break; 928 } 929 } 930 } 931 932 bool 933 LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, 934 const BasicBlock *ExitBB) const { 935 if (V->getType()->isTokenTy()) 936 // We can't form PHIs of token type, so the definition of LCSSA excludes 937 // values of that type. 938 return false; 939 940 const Instruction *I = dyn_cast<Instruction>(V); 941 if (!I) 942 return false; 943 const Loop *L = getLoopFor(I->getParent()); 944 if (!L) 945 return false; 946 if (L->contains(ExitBB)) 947 // Could be an exit bb of a subloop and contained in defining loop 948 return false; 949 950 // We found a (new) out-of-loop use location, for a value defined in-loop. 951 // (Note that because of LCSSA, we don't have to account for values defined 952 // in sibling loops. Such values will have LCSSA phis of their own in the 953 // common parent loop.) 954 return true; 955 } 956 957 AnalysisKey LoopAnalysis::Key; 958 959 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 960 // FIXME: Currently we create a LoopInfo from scratch for every function. 961 // This may prove to be too wasteful due to deallocating and re-allocating 962 // memory each time for the underlying map and vector datastructures. At some 963 // point it may prove worthwhile to use a freelist and recycle LoopInfo 964 // objects. I don't want to add that kind of complexity until the scope of 965 // the problem is better understood. 966 LoopInfo LI; 967 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 968 return LI; 969 } 970 971 PreservedAnalyses LoopPrinterPass::run(Function &F, 972 FunctionAnalysisManager &AM) { 973 AM.getResult<LoopAnalysis>(F).print(OS); 974 return PreservedAnalyses::all(); 975 } 976 977 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 978 979 if (forcePrintModuleIR()) { 980 // handling -print-module-scope 981 OS << Banner << " (loop: "; 982 L.getHeader()->printAsOperand(OS, false); 983 OS << ")\n"; 984 985 // printing whole module 986 OS << *L.getHeader()->getModule(); 987 return; 988 } 989 990 OS << Banner; 991 992 auto *PreHeader = L.getLoopPreheader(); 993 if (PreHeader) { 994 OS << "\n; Preheader:"; 995 PreHeader->print(OS); 996 OS << "\n; Loop:"; 997 } 998 999 for (auto *Block : L.blocks()) 1000 if (Block) 1001 Block->print(OS); 1002 else 1003 OS << "Printing <null> block"; 1004 1005 SmallVector<BasicBlock *, 8> ExitBlocks; 1006 L.getExitBlocks(ExitBlocks); 1007 if (!ExitBlocks.empty()) { 1008 OS << "\n; Exit blocks"; 1009 for (auto *Block : ExitBlocks) 1010 if (Block) 1011 Block->print(OS); 1012 else 1013 OS << "Printing <null> block"; 1014 } 1015 } 1016 1017 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 1018 // No loop metadata node, no loop properties. 1019 if (!LoopID) 1020 return nullptr; 1021 1022 // First operand should refer to the metadata node itself, for legacy reasons. 1023 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1024 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1025 1026 // Iterate over the metdata node operands and look for MDString metadata. 1027 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1028 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1029 if (!MD || MD->getNumOperands() < 1) 1030 continue; 1031 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1032 if (!S) 1033 continue; 1034 // Return the operand node if MDString holds expected metadata. 1035 if (Name.equals(S->getString())) 1036 return MD; 1037 } 1038 1039 // Loop property not found. 1040 return nullptr; 1041 } 1042 1043 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1044 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1045 } 1046 1047 /// Find string metadata for loop 1048 /// 1049 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1050 /// operand or null otherwise. If the string metadata is not found return 1051 /// Optional's not-a-value. 1052 std::optional<const MDOperand *> 1053 llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) { 1054 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1055 if (!MD) 1056 return std::nullopt; 1057 switch (MD->getNumOperands()) { 1058 case 1: 1059 return nullptr; 1060 case 2: 1061 return &MD->getOperand(1); 1062 default: 1063 llvm_unreachable("loop metadata has 0 or 1 operand"); 1064 } 1065 } 1066 1067 std::optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, 1068 StringRef Name) { 1069 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1070 if (!MD) 1071 return std::nullopt; 1072 switch (MD->getNumOperands()) { 1073 case 1: 1074 // When the value is absent it is interpreted as 'attribute set'. 1075 return true; 1076 case 2: 1077 if (ConstantInt *IntMD = 1078 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 1079 return IntMD->getZExtValue(); 1080 return true; 1081 } 1082 llvm_unreachable("unexpected number of options"); 1083 } 1084 1085 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 1086 return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false); 1087 } 1088 1089 std::optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, 1090 StringRef Name) { 1091 const MDOperand *AttrMD = 1092 findStringMetadataForLoop(TheLoop, Name).value_or(nullptr); 1093 if (!AttrMD) 1094 return std::nullopt; 1095 1096 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 1097 if (!IntMD) 1098 return std::nullopt; 1099 1100 return IntMD->getSExtValue(); 1101 } 1102 1103 int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name, 1104 int Default) { 1105 return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default); 1106 } 1107 1108 bool llvm::isFinite(const Loop *L) { 1109 return L->getHeader()->getParent()->willReturn(); 1110 } 1111 1112 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 1113 1114 bool llvm::hasMustProgress(const Loop *L) { 1115 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 1116 } 1117 1118 bool llvm::isMustProgress(const Loop *L) { 1119 return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); 1120 } 1121 1122 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1123 return Node->getNumOperands() == 0 && Node->isDistinct(); 1124 } 1125 1126 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1127 MDNode *OrigLoopID, 1128 ArrayRef<StringRef> RemovePrefixes, 1129 ArrayRef<MDNode *> AddAttrs) { 1130 // First remove any existing loop metadata related to this transformation. 1131 SmallVector<Metadata *, 4> MDs; 1132 1133 // Reserve first location for self reference to the LoopID metadata node. 1134 MDs.push_back(nullptr); 1135 1136 // Remove metadata for the transformation that has been applied or that became 1137 // outdated. 1138 if (OrigLoopID) { 1139 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1140 bool IsVectorMetadata = false; 1141 Metadata *Op = OrigLoopID->getOperand(i); 1142 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1143 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1144 if (S) 1145 IsVectorMetadata = 1146 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1147 return S->getString().startswith(Prefix); 1148 }); 1149 } 1150 if (!IsVectorMetadata) 1151 MDs.push_back(Op); 1152 } 1153 } 1154 1155 // Add metadata to avoid reapplying a transformation, such as 1156 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1157 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1158 1159 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1160 // Replace the temporary node with a self-reference. 1161 NewLoopID->replaceOperandWith(0, NewLoopID); 1162 return NewLoopID; 1163 } 1164 1165 //===----------------------------------------------------------------------===// 1166 // LoopInfo implementation 1167 // 1168 1169 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { 1170 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1171 } 1172 1173 char LoopInfoWrapperPass::ID = 0; 1174 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1175 true, true) 1176 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1177 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1178 true, true) 1179 1180 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1181 releaseMemory(); 1182 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1183 return false; 1184 } 1185 1186 void LoopInfoWrapperPass::verifyAnalysis() const { 1187 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1188 // function each time verifyAnalysis is called is very expensive. The 1189 // -verify-loop-info option can enable this. In order to perform some 1190 // checking by default, LoopPass has been taught to call verifyLoop manually 1191 // during loop pass sequences. 1192 if (VerifyLoopInfo) { 1193 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1194 LI.verify(DT); 1195 } 1196 } 1197 1198 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1199 AU.setPreservesAll(); 1200 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1201 } 1202 1203 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1204 LI.print(OS); 1205 } 1206 1207 PreservedAnalyses LoopVerifierPass::run(Function &F, 1208 FunctionAnalysisManager &AM) { 1209 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1210 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1211 LI.verify(DT); 1212 return PreservedAnalyses::all(); 1213 } 1214 1215 //===----------------------------------------------------------------------===// 1216 // LoopBlocksDFS implementation 1217 // 1218 1219 /// Traverse the loop blocks and store the DFS result. 1220 /// Useful for clients that just want the final DFS result and don't need to 1221 /// visit blocks during the initial traversal. 1222 void LoopBlocksDFS::perform(LoopInfo *LI) { 1223 LoopBlocksTraversal Traversal(*this, LI); 1224 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1225 POE = Traversal.end(); 1226 POI != POE; ++POI) 1227 ; 1228 } 1229