xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopInfo.cpp (revision 2ff63af9b88c7413b7d71715b5532625752a248e)
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/IVDescriptors.h"
20 #include "llvm/Analysis/LoopInfoImpl.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/PrintPasses.h"
37 #include "llvm/InitializePasses.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41 
42 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
43 template class llvm::LoopBase<BasicBlock, Loop>;
44 template class llvm::LoopInfoBase<BasicBlock, Loop>;
45 
46 // Always verify loopinfo if expensive checking is enabled.
47 #ifdef EXPENSIVE_CHECKS
48 bool llvm::VerifyLoopInfo = true;
49 #else
50 bool llvm::VerifyLoopInfo = false;
51 #endif
52 static cl::opt<bool, true>
53     VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
54                     cl::Hidden, cl::desc("Verify loop info (time consuming)"));
55 
56 //===----------------------------------------------------------------------===//
57 // Loop implementation
58 //
59 
60 bool Loop::isLoopInvariant(const Value *V) const {
61   if (const Instruction *I = dyn_cast<Instruction>(V))
62     return !contains(I);
63   return true; // All non-instructions are loop invariant
64 }
65 
66 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
67   return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
68 }
69 
70 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
71                              MemorySSAUpdater *MSSAU,
72                              ScalarEvolution *SE) const {
73   if (Instruction *I = dyn_cast<Instruction>(V))
74     return makeLoopInvariant(I, Changed, InsertPt, MSSAU, SE);
75   return true; // All non-instructions are loop-invariant.
76 }
77 
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79                              Instruction *InsertPt, MemorySSAUpdater *MSSAU,
80                              ScalarEvolution *SE) const {
81   // Test if the value is already loop-invariant.
82   if (isLoopInvariant(I))
83     return true;
84   if (!isSafeToSpeculativelyExecute(I))
85     return false;
86   if (I->mayReadFromMemory())
87     return false;
88   // EH block instructions are immobile.
89   if (I->isEHPad())
90     return false;
91   // Determine the insertion point, unless one was given.
92   if (!InsertPt) {
93     BasicBlock *Preheader = getLoopPreheader();
94     // Without a preheader, hoisting is not feasible.
95     if (!Preheader)
96       return false;
97     InsertPt = Preheader->getTerminator();
98   }
99   // Don't hoist instructions with loop-variant operands.
100   for (Value *Operand : I->operands())
101     if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU, SE))
102       return false;
103 
104   // Hoist.
105   I->moveBefore(InsertPt);
106   if (MSSAU)
107     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108       MSSAU->moveToPlace(MUD, InsertPt->getParent(),
109                          MemorySSA::BeforeTerminator);
110 
111   // There is possibility of hoisting this instruction above some arbitrary
112   // condition. Any metadata defined on it can be control dependent on this
113   // condition. Conservatively strip it here so that we don't give any wrong
114   // information to the optimizer.
115   I->dropUnknownNonDebugMetadata();
116 
117   if (SE)
118     SE->forgetBlockAndLoopDispositions(I);
119 
120   Changed = true;
121   return true;
122 }
123 
124 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
125                                   BasicBlock *&Backedge) const {
126   BasicBlock *H = getHeader();
127 
128   Incoming = nullptr;
129   Backedge = nullptr;
130   pred_iterator PI = pred_begin(H);
131   assert(PI != pred_end(H) && "Loop must have at least one backedge!");
132   Backedge = *PI++;
133   if (PI == pred_end(H))
134     return false; // dead loop
135   Incoming = *PI++;
136   if (PI != pred_end(H))
137     return false; // multiple backedges?
138 
139   if (contains(Incoming)) {
140     if (contains(Backedge))
141       return false;
142     std::swap(Incoming, Backedge);
143   } else if (!contains(Backedge))
144     return false;
145 
146   assert(Incoming && Backedge && "expected non-null incoming and backedges");
147   return true;
148 }
149 
150 PHINode *Loop::getCanonicalInductionVariable() const {
151   BasicBlock *H = getHeader();
152 
153   BasicBlock *Incoming = nullptr, *Backedge = nullptr;
154   if (!getIncomingAndBackEdge(Incoming, Backedge))
155     return nullptr;
156 
157   // Loop over all of the PHI nodes, looking for a canonical indvar.
158   for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
159     PHINode *PN = cast<PHINode>(I);
160     if (ConstantInt *CI =
161             dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
162       if (CI->isZero())
163         if (Instruction *Inc =
164                 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
165           if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
166             if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
167               if (CI->isOne())
168                 return PN;
169   }
170   return nullptr;
171 }
172 
173 /// Get the latch condition instruction.
174 ICmpInst *Loop::getLatchCmpInst() const {
175   if (BasicBlock *Latch = getLoopLatch())
176     if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
177       if (BI->isConditional())
178         return dyn_cast<ICmpInst>(BI->getCondition());
179 
180   return nullptr;
181 }
182 
183 /// Return the final value of the loop induction variable if found.
184 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
185                                const Instruction &StepInst) {
186   ICmpInst *LatchCmpInst = L.getLatchCmpInst();
187   if (!LatchCmpInst)
188     return nullptr;
189 
190   Value *Op0 = LatchCmpInst->getOperand(0);
191   Value *Op1 = LatchCmpInst->getOperand(1);
192   if (Op0 == &IndVar || Op0 == &StepInst)
193     return Op1;
194 
195   if (Op1 == &IndVar || Op1 == &StepInst)
196     return Op0;
197 
198   return nullptr;
199 }
200 
201 std::optional<Loop::LoopBounds>
202 Loop::LoopBounds::getBounds(const Loop &L, PHINode &IndVar,
203                             ScalarEvolution &SE) {
204   InductionDescriptor IndDesc;
205   if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
206     return std::nullopt;
207 
208   Value *InitialIVValue = IndDesc.getStartValue();
209   Instruction *StepInst = IndDesc.getInductionBinOp();
210   if (!InitialIVValue || !StepInst)
211     return std::nullopt;
212 
213   const SCEV *Step = IndDesc.getStep();
214   Value *StepInstOp1 = StepInst->getOperand(1);
215   Value *StepInstOp0 = StepInst->getOperand(0);
216   Value *StepValue = nullptr;
217   if (SE.getSCEV(StepInstOp1) == Step)
218     StepValue = StepInstOp1;
219   else if (SE.getSCEV(StepInstOp0) == Step)
220     StepValue = StepInstOp0;
221 
222   Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
223   if (!FinalIVValue)
224     return std::nullopt;
225 
226   return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
227                     SE);
228 }
229 
230 using Direction = Loop::LoopBounds::Direction;
231 
232 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
233   BasicBlock *Latch = L.getLoopLatch();
234   assert(Latch && "Expecting valid latch");
235 
236   BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
237   assert(BI && BI->isConditional() && "Expecting conditional latch branch");
238 
239   ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
240   assert(LatchCmpInst &&
241          "Expecting the latch compare instruction to be a CmpInst");
242 
243   // Need to inverse the predicate when first successor is not the loop
244   // header
245   ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
246                                  ? LatchCmpInst->getPredicate()
247                                  : LatchCmpInst->getInversePredicate();
248 
249   if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
250     Pred = ICmpInst::getSwappedPredicate(Pred);
251 
252   // Need to flip strictness of the predicate when the latch compare instruction
253   // is not using StepInst
254   if (LatchCmpInst->getOperand(0) == &getStepInst() ||
255       LatchCmpInst->getOperand(1) == &getStepInst())
256     return Pred;
257 
258   // Cannot flip strictness of NE and EQ
259   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
260     return ICmpInst::getFlippedStrictnessPredicate(Pred);
261 
262   Direction D = getDirection();
263   if (D == Direction::Increasing)
264     return ICmpInst::ICMP_SLT;
265 
266   if (D == Direction::Decreasing)
267     return ICmpInst::ICMP_SGT;
268 
269   // If cannot determine the direction, then unable to find the canonical
270   // predicate
271   return ICmpInst::BAD_ICMP_PREDICATE;
272 }
273 
274 Direction Loop::LoopBounds::getDirection() const {
275   if (const SCEVAddRecExpr *StepAddRecExpr =
276           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
277     if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
278       if (SE.isKnownPositive(StepRecur))
279         return Direction::Increasing;
280       if (SE.isKnownNegative(StepRecur))
281         return Direction::Decreasing;
282     }
283 
284   return Direction::Unknown;
285 }
286 
287 std::optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
288   if (PHINode *IndVar = getInductionVariable(SE))
289     return LoopBounds::getBounds(*this, *IndVar, SE);
290 
291   return std::nullopt;
292 }
293 
294 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
295   if (!isLoopSimplifyForm())
296     return nullptr;
297 
298   BasicBlock *Header = getHeader();
299   assert(Header && "Expected a valid loop header");
300   ICmpInst *CmpInst = getLatchCmpInst();
301   if (!CmpInst)
302     return nullptr;
303 
304   Value *LatchCmpOp0 = CmpInst->getOperand(0);
305   Value *LatchCmpOp1 = CmpInst->getOperand(1);
306 
307   for (PHINode &IndVar : Header->phis()) {
308     InductionDescriptor IndDesc;
309     if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
310       continue;
311 
312     BasicBlock *Latch = getLoopLatch();
313     Value *StepInst = IndVar.getIncomingValueForBlock(Latch);
314 
315     // case 1:
316     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
317     // StepInst = IndVar + step
318     // cmp = StepInst < FinalValue
319     if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
320       return &IndVar;
321 
322     // case 2:
323     // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
324     // StepInst = IndVar + step
325     // cmp = IndVar < FinalValue
326     if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
327       return &IndVar;
328   }
329 
330   return nullptr;
331 }
332 
333 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
334                                   InductionDescriptor &IndDesc) const {
335   if (PHINode *IndVar = getInductionVariable(SE))
336     return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
337 
338   return false;
339 }
340 
341 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
342                                         ScalarEvolution &SE) const {
343   // Located in the loop header
344   BasicBlock *Header = getHeader();
345   if (AuxIndVar.getParent() != Header)
346     return false;
347 
348   // No uses outside of the loop
349   for (User *U : AuxIndVar.users())
350     if (const Instruction *I = dyn_cast<Instruction>(U))
351       if (!contains(I))
352         return false;
353 
354   InductionDescriptor IndDesc;
355   if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
356     return false;
357 
358   // The step instruction opcode should be add or sub.
359   if (IndDesc.getInductionOpcode() != Instruction::Add &&
360       IndDesc.getInductionOpcode() != Instruction::Sub)
361     return false;
362 
363   // Incremented by a loop invariant step for each loop iteration
364   return SE.isLoopInvariant(IndDesc.getStep(), this);
365 }
366 
367 BranchInst *Loop::getLoopGuardBranch() const {
368   if (!isLoopSimplifyForm())
369     return nullptr;
370 
371   BasicBlock *Preheader = getLoopPreheader();
372   assert(Preheader && getLoopLatch() &&
373          "Expecting a loop with valid preheader and latch");
374 
375   // Loop should be in rotate form.
376   if (!isRotatedForm())
377     return nullptr;
378 
379   // Disallow loops with more than one unique exit block, as we do not verify
380   // that GuardOtherSucc post dominates all exit blocks.
381   BasicBlock *ExitFromLatch = getUniqueExitBlock();
382   if (!ExitFromLatch)
383     return nullptr;
384 
385   BasicBlock *GuardBB = Preheader->getUniquePredecessor();
386   if (!GuardBB)
387     return nullptr;
388 
389   assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
390 
391   BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
392   if (!GuardBI || GuardBI->isUnconditional())
393     return nullptr;
394 
395   BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
396                                    ? GuardBI->getSuccessor(1)
397                                    : GuardBI->getSuccessor(0);
398 
399   // Check if ExitFromLatch (or any BasicBlock which is an empty unique
400   // successor of ExitFromLatch) is equal to GuardOtherSucc. If
401   // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the
402   // loop is GuardBI (return GuardBI), otherwise return nullptr.
403   if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc,
404                                      /*CheckUniquePred=*/true) ==
405       GuardOtherSucc)
406     return GuardBI;
407   else
408     return nullptr;
409 }
410 
411 bool Loop::isCanonical(ScalarEvolution &SE) const {
412   InductionDescriptor IndDesc;
413   if (!getInductionDescriptor(SE, IndDesc))
414     return false;
415 
416   ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
417   if (!Init || !Init->isZero())
418     return false;
419 
420   if (IndDesc.getInductionOpcode() != Instruction::Add)
421     return false;
422 
423   ConstantInt *Step = IndDesc.getConstIntStepValue();
424   if (!Step || !Step->isOne())
425     return false;
426 
427   return true;
428 }
429 
430 // Check that 'BB' doesn't have any uses outside of the 'L'
431 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
432                                const DominatorTree &DT, bool IgnoreTokens) {
433   for (const Instruction &I : BB) {
434     // Tokens can't be used in PHI nodes and live-out tokens prevent loop
435     // optimizations, so for the purposes of considered LCSSA form, we
436     // can ignore them.
437     if (IgnoreTokens && I.getType()->isTokenTy())
438       continue;
439 
440     for (const Use &U : I.uses()) {
441       const Instruction *UI = cast<Instruction>(U.getUser());
442       const BasicBlock *UserBB = UI->getParent();
443 
444       // For practical purposes, we consider that the use in a PHI
445       // occurs in the respective predecessor block. For more info,
446       // see the `phi` doc in LangRef and the LCSSA doc.
447       if (const PHINode *P = dyn_cast<PHINode>(UI))
448         UserBB = P->getIncomingBlock(U);
449 
450       // Check the current block, as a fast-path, before checking whether
451       // the use is anywhere in the loop.  Most values are used in the same
452       // block they are defined in.  Also, blocks not reachable from the
453       // entry are special; uses in them don't need to go through PHIs.
454       if (UserBB != &BB && !L.contains(UserBB) &&
455           DT.isReachableFromEntry(UserBB))
456         return false;
457     }
458   }
459   return true;
460 }
461 
462 bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const {
463   // For each block we check that it doesn't have any uses outside of this loop.
464   return all_of(this->blocks(), [&](const BasicBlock *BB) {
465     return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens);
466   });
467 }
468 
469 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI,
470                                   bool IgnoreTokens) const {
471   // For each block we check that it doesn't have any uses outside of its
472   // innermost loop. This process will transitively guarantee that the current
473   // loop and all of the nested loops are in LCSSA form.
474   return all_of(this->blocks(), [&](const BasicBlock *BB) {
475     return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens);
476   });
477 }
478 
479 bool Loop::isLoopSimplifyForm() const {
480   // Normal-form loops have a preheader, a single backedge, and all of their
481   // exits have all their predecessors inside the loop.
482   return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
483 }
484 
485 // Routines that reform the loop CFG and split edges often fail on indirectbr.
486 bool Loop::isSafeToClone() const {
487   // Return false if any loop blocks contain indirectbrs, or there are any calls
488   // to noduplicate functions.
489   for (BasicBlock *BB : this->blocks()) {
490     if (isa<IndirectBrInst>(BB->getTerminator()))
491       return false;
492 
493     for (Instruction &I : *BB)
494       if (auto *CB = dyn_cast<CallBase>(&I))
495         if (CB->cannotDuplicate())
496           return false;
497   }
498   return true;
499 }
500 
501 MDNode *Loop::getLoopID() const {
502   MDNode *LoopID = nullptr;
503 
504   // Go through the latch blocks and check the terminator for the metadata.
505   SmallVector<BasicBlock *, 4> LatchesBlocks;
506   getLoopLatches(LatchesBlocks);
507   for (BasicBlock *BB : LatchesBlocks) {
508     Instruction *TI = BB->getTerminator();
509     MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
510 
511     if (!MD)
512       return nullptr;
513 
514     if (!LoopID)
515       LoopID = MD;
516     else if (MD != LoopID)
517       return nullptr;
518   }
519   if (!LoopID || LoopID->getNumOperands() == 0 ||
520       LoopID->getOperand(0) != LoopID)
521     return nullptr;
522   return LoopID;
523 }
524 
525 void Loop::setLoopID(MDNode *LoopID) const {
526   assert((!LoopID || LoopID->getNumOperands() > 0) &&
527          "Loop ID needs at least one operand");
528   assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
529          "Loop ID should refer to itself");
530 
531   SmallVector<BasicBlock *, 4> LoopLatches;
532   getLoopLatches(LoopLatches);
533   for (BasicBlock *BB : LoopLatches)
534     BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
535 }
536 
537 void Loop::setLoopAlreadyUnrolled() {
538   LLVMContext &Context = getHeader()->getContext();
539 
540   MDNode *DisableUnrollMD =
541       MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
542   MDNode *LoopID = getLoopID();
543   MDNode *NewLoopID = makePostTransformationMetadata(
544       Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
545   setLoopID(NewLoopID);
546 }
547 
548 void Loop::setLoopMustProgress() {
549   LLVMContext &Context = getHeader()->getContext();
550 
551   MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress");
552 
553   if (MustProgress)
554     return;
555 
556   MDNode *MustProgressMD =
557       MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress"));
558   MDNode *LoopID = getLoopID();
559   MDNode *NewLoopID =
560       makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD});
561   setLoopID(NewLoopID);
562 }
563 
564 bool Loop::isAnnotatedParallel() const {
565   MDNode *DesiredLoopIdMetadata = getLoopID();
566 
567   if (!DesiredLoopIdMetadata)
568     return false;
569 
570   MDNode *ParallelAccesses =
571       findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
572   SmallPtrSet<MDNode *, 4>
573       ParallelAccessGroups; // For scalable 'contains' check.
574   if (ParallelAccesses) {
575     for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) {
576       MDNode *AccGroup = cast<MDNode>(MD.get());
577       assert(isValidAsAccessGroup(AccGroup) &&
578              "List item must be an access group");
579       ParallelAccessGroups.insert(AccGroup);
580     }
581   }
582 
583   // The loop branch contains the parallel loop metadata. In order to ensure
584   // that any parallel-loop-unaware optimization pass hasn't added loop-carried
585   // dependencies (thus converted the loop back to a sequential loop), check
586   // that all the memory instructions in the loop belong to an access group that
587   // is parallel to this loop.
588   for (BasicBlock *BB : this->blocks()) {
589     for (Instruction &I : *BB) {
590       if (!I.mayReadOrWriteMemory())
591         continue;
592 
593       if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
594         auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
595           if (AG->getNumOperands() == 0) {
596             assert(isValidAsAccessGroup(AG) && "Item must be an access group");
597             return ParallelAccessGroups.count(AG);
598           }
599 
600           for (const MDOperand &AccessListItem : AG->operands()) {
601             MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
602             assert(isValidAsAccessGroup(AccGroup) &&
603                    "List item must be an access group");
604             if (ParallelAccessGroups.count(AccGroup))
605               return true;
606           }
607           return false;
608         };
609 
610         if (ContainsAccessGroup(AccessGroup))
611           continue;
612       }
613 
614       // The memory instruction can refer to the loop identifier metadata
615       // directly or indirectly through another list metadata (in case of
616       // nested parallel loops). The loop identifier metadata refers to
617       // itself so we can check both cases with the same routine.
618       MDNode *LoopIdMD =
619           I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
620 
621       if (!LoopIdMD)
622         return false;
623 
624       if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata))
625         return false;
626     }
627   }
628   return true;
629 }
630 
631 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
632 
633 Loop::LocRange Loop::getLocRange() const {
634   // If we have a debug location in the loop ID, then use it.
635   if (MDNode *LoopID = getLoopID()) {
636     DebugLoc Start;
637     // We use the first DebugLoc in the header as the start location of the loop
638     // and if there is a second DebugLoc in the header we use it as end location
639     // of the loop.
640     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
641       if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
642         if (!Start)
643           Start = DebugLoc(L);
644         else
645           return LocRange(Start, DebugLoc(L));
646       }
647     }
648 
649     if (Start)
650       return LocRange(Start);
651   }
652 
653   // Try the pre-header first.
654   if (BasicBlock *PHeadBB = getLoopPreheader())
655     if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
656       return LocRange(DL);
657 
658   // If we have no pre-header or there are no instructions with debug
659   // info in it, try the header.
660   if (BasicBlock *HeadBB = getHeader())
661     return LocRange(HeadBB->getTerminator()->getDebugLoc());
662 
663   return LocRange();
664 }
665 
666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
667 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
668 
669 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
670   print(dbgs(), /*Verbose=*/true);
671 }
672 #endif
673 
674 //===----------------------------------------------------------------------===//
675 // UnloopUpdater implementation
676 //
677 
678 namespace {
679 /// Find the new parent loop for all blocks within the "unloop" whose last
680 /// backedges has just been removed.
681 class UnloopUpdater {
682   Loop &Unloop;
683   LoopInfo *LI;
684 
685   LoopBlocksDFS DFS;
686 
687   // Map unloop's immediate subloops to their nearest reachable parents. Nested
688   // loops within these subloops will not change parents. However, an immediate
689   // subloop's new parent will be the nearest loop reachable from either its own
690   // exits *or* any of its nested loop's exits.
691   DenseMap<Loop *, Loop *> SubloopParents;
692 
693   // Flag the presence of an irreducible backedge whose destination is a block
694   // directly contained by the original unloop.
695   bool FoundIB = false;
696 
697 public:
698   UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {}
699 
700   void updateBlockParents();
701 
702   void removeBlocksFromAncestors();
703 
704   void updateSubloopParents();
705 
706 protected:
707   Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
708 };
709 } // end anonymous namespace
710 
711 /// Update the parent loop for all blocks that are directly contained within the
712 /// original "unloop".
713 void UnloopUpdater::updateBlockParents() {
714   if (Unloop.getNumBlocks()) {
715     // Perform a post order CFG traversal of all blocks within this loop,
716     // propagating the nearest loop from successors to predecessors.
717     LoopBlocksTraversal Traversal(DFS, LI);
718     for (BasicBlock *POI : Traversal) {
719 
720       Loop *L = LI->getLoopFor(POI);
721       Loop *NL = getNearestLoop(POI, L);
722 
723       if (NL != L) {
724         // For reducible loops, NL is now an ancestor of Unloop.
725         assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
726                "uninitialized successor");
727         LI->changeLoopFor(POI, NL);
728       } else {
729         // Or the current block is part of a subloop, in which case its parent
730         // is unchanged.
731         assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
732       }
733     }
734   }
735   // Each irreducible loop within the unloop induces a round of iteration using
736   // the DFS result cached by Traversal.
737   bool Changed = FoundIB;
738   for (unsigned NIters = 0; Changed; ++NIters) {
739     assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
740     (void) NIters;
741 
742     // Iterate over the postorder list of blocks, propagating the nearest loop
743     // from successors to predecessors as before.
744     Changed = false;
745     for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
746                                    POE = DFS.endPostorder();
747          POI != POE; ++POI) {
748 
749       Loop *L = LI->getLoopFor(*POI);
750       Loop *NL = getNearestLoop(*POI, L);
751       if (NL != L) {
752         assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
753                "uninitialized successor");
754         LI->changeLoopFor(*POI, NL);
755         Changed = true;
756       }
757     }
758   }
759 }
760 
761 /// Remove unloop's blocks from all ancestors below their new parents.
762 void UnloopUpdater::removeBlocksFromAncestors() {
763   // Remove all unloop's blocks (including those in nested subloops) from
764   // ancestors below the new parent loop.
765   for (BasicBlock *BB : Unloop.blocks()) {
766     Loop *OuterParent = LI->getLoopFor(BB);
767     if (Unloop.contains(OuterParent)) {
768       while (OuterParent->getParentLoop() != &Unloop)
769         OuterParent = OuterParent->getParentLoop();
770       OuterParent = SubloopParents[OuterParent];
771     }
772     // Remove blocks from former Ancestors except Unloop itself which will be
773     // deleted.
774     for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
775          OldParent = OldParent->getParentLoop()) {
776       assert(OldParent && "new loop is not an ancestor of the original");
777       OldParent->removeBlockFromLoop(BB);
778     }
779   }
780 }
781 
782 /// Update the parent loop for all subloops directly nested within unloop.
783 void UnloopUpdater::updateSubloopParents() {
784   while (!Unloop.isInnermost()) {
785     Loop *Subloop = *std::prev(Unloop.end());
786     Unloop.removeChildLoop(std::prev(Unloop.end()));
787 
788     assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
789     if (Loop *Parent = SubloopParents[Subloop])
790       Parent->addChildLoop(Subloop);
791     else
792       LI->addTopLevelLoop(Subloop);
793   }
794 }
795 
796 /// Return the nearest parent loop among this block's successors. If a successor
797 /// is a subloop header, consider its parent to be the nearest parent of the
798 /// subloop's exits.
799 ///
800 /// For subloop blocks, simply update SubloopParents and return NULL.
801 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
802 
803   // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
804   // is considered uninitialized.
805   Loop *NearLoop = BBLoop;
806 
807   Loop *Subloop = nullptr;
808   if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
809     Subloop = NearLoop;
810     // Find the subloop ancestor that is directly contained within Unloop.
811     while (Subloop->getParentLoop() != &Unloop) {
812       Subloop = Subloop->getParentLoop();
813       assert(Subloop && "subloop is not an ancestor of the original loop");
814     }
815     // Get the current nearest parent of the Subloop exits, initially Unloop.
816     NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
817   }
818 
819   succ_iterator I = succ_begin(BB), E = succ_end(BB);
820   if (I == E) {
821     assert(!Subloop && "subloop blocks must have a successor");
822     NearLoop = nullptr; // unloop blocks may now exit the function.
823   }
824   for (; I != E; ++I) {
825     if (*I == BB)
826       continue; // self loops are uninteresting
827 
828     Loop *L = LI->getLoopFor(*I);
829     if (L == &Unloop) {
830       // This successor has not been processed. This path must lead to an
831       // irreducible backedge.
832       assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
833       FoundIB = true;
834     }
835     if (L != &Unloop && Unloop.contains(L)) {
836       // Successor is in a subloop.
837       if (Subloop)
838         continue; // Branching within subloops. Ignore it.
839 
840       // BB branches from the original into a subloop header.
841       assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
842 
843       // Get the current nearest parent of the Subloop's exits.
844       L = SubloopParents[L];
845       // L could be Unloop if the only exit was an irreducible backedge.
846     }
847     if (L == &Unloop) {
848       continue;
849     }
850     // Handle critical edges from Unloop into a sibling loop.
851     if (L && !L->contains(&Unloop)) {
852       L = L->getParentLoop();
853     }
854     // Remember the nearest parent loop among successors or subloop exits.
855     if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
856       NearLoop = L;
857   }
858   if (Subloop) {
859     SubloopParents[Subloop] = NearLoop;
860     return BBLoop;
861   }
862   return NearLoop;
863 }
864 
865 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
866 
867 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
868                           FunctionAnalysisManager::Invalidator &) {
869   // Check whether the analysis, all analyses on functions, or the function's
870   // CFG have been preserved.
871   auto PAC = PA.getChecker<LoopAnalysis>();
872   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
873            PAC.preservedSet<CFGAnalyses>());
874 }
875 
876 void LoopInfo::erase(Loop *Unloop) {
877   assert(!Unloop->isInvalid() && "Loop has already been erased!");
878 
879   auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
880 
881   // First handle the special case of no parent loop to simplify the algorithm.
882   if (Unloop->isOutermost()) {
883     // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
884     for (BasicBlock *BB : Unloop->blocks()) {
885       // Don't reparent blocks in subloops.
886       if (getLoopFor(BB) != Unloop)
887         continue;
888 
889       // Blocks no longer have a parent but are still referenced by Unloop until
890       // the Unloop object is deleted.
891       changeLoopFor(BB, nullptr);
892     }
893 
894     // Remove the loop from the top-level LoopInfo object.
895     for (iterator I = begin();; ++I) {
896       assert(I != end() && "Couldn't find loop");
897       if (*I == Unloop) {
898         removeLoop(I);
899         break;
900       }
901     }
902 
903     // Move all of the subloops to the top-level.
904     while (!Unloop->isInnermost())
905       addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
906 
907     return;
908   }
909 
910   // Update the parent loop for all blocks within the loop. Blocks within
911   // subloops will not change parents.
912   UnloopUpdater Updater(Unloop, this);
913   Updater.updateBlockParents();
914 
915   // Remove blocks from former ancestor loops.
916   Updater.removeBlocksFromAncestors();
917 
918   // Add direct subloops as children in their new parent loop.
919   Updater.updateSubloopParents();
920 
921   // Remove unloop from its parent loop.
922   Loop *ParentLoop = Unloop->getParentLoop();
923   for (Loop::iterator I = ParentLoop->begin();; ++I) {
924     assert(I != ParentLoop->end() && "Couldn't find loop");
925     if (*I == Unloop) {
926       ParentLoop->removeChildLoop(I);
927       break;
928     }
929   }
930 }
931 
932 bool
933 LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
934                                             const BasicBlock *ExitBB) const {
935   if (V->getType()->isTokenTy())
936     // We can't form PHIs of token type, so the definition of LCSSA excludes
937     // values of that type.
938     return false;
939 
940   const Instruction *I = dyn_cast<Instruction>(V);
941   if (!I)
942     return false;
943   const Loop *L = getLoopFor(I->getParent());
944   if (!L)
945     return false;
946   if (L->contains(ExitBB))
947     // Could be an exit bb of a subloop and contained in defining loop
948     return false;
949 
950   // We found a (new) out-of-loop use location, for a value defined in-loop.
951   // (Note that because of LCSSA, we don't have to account for values defined
952   // in sibling loops.  Such values will have LCSSA phis of their own in the
953   // common parent loop.)
954   return true;
955 }
956 
957 AnalysisKey LoopAnalysis::Key;
958 
959 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
960   // FIXME: Currently we create a LoopInfo from scratch for every function.
961   // This may prove to be too wasteful due to deallocating and re-allocating
962   // memory each time for the underlying map and vector datastructures. At some
963   // point it may prove worthwhile to use a freelist and recycle LoopInfo
964   // objects. I don't want to add that kind of complexity until the scope of
965   // the problem is better understood.
966   LoopInfo LI;
967   LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
968   return LI;
969 }
970 
971 PreservedAnalyses LoopPrinterPass::run(Function &F,
972                                        FunctionAnalysisManager &AM) {
973   AM.getResult<LoopAnalysis>(F).print(OS);
974   return PreservedAnalyses::all();
975 }
976 
977 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
978 
979   if (forcePrintModuleIR()) {
980     // handling -print-module-scope
981     OS << Banner << " (loop: ";
982     L.getHeader()->printAsOperand(OS, false);
983     OS << ")\n";
984 
985     // printing whole module
986     OS << *L.getHeader()->getModule();
987     return;
988   }
989 
990   OS << Banner;
991 
992   auto *PreHeader = L.getLoopPreheader();
993   if (PreHeader) {
994     OS << "\n; Preheader:";
995     PreHeader->print(OS);
996     OS << "\n; Loop:";
997   }
998 
999   for (auto *Block : L.blocks())
1000     if (Block)
1001       Block->print(OS);
1002     else
1003       OS << "Printing <null> block";
1004 
1005   SmallVector<BasicBlock *, 8> ExitBlocks;
1006   L.getExitBlocks(ExitBlocks);
1007   if (!ExitBlocks.empty()) {
1008     OS << "\n; Exit blocks";
1009     for (auto *Block : ExitBlocks)
1010       if (Block)
1011         Block->print(OS);
1012       else
1013         OS << "Printing <null> block";
1014   }
1015 }
1016 
1017 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
1018   // No loop metadata node, no loop properties.
1019   if (!LoopID)
1020     return nullptr;
1021 
1022   // First operand should refer to the metadata node itself, for legacy reasons.
1023   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1024   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1025 
1026   // Iterate over the metdata node operands and look for MDString metadata.
1027   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1028     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1029     if (!MD || MD->getNumOperands() < 1)
1030       continue;
1031     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1032     if (!S)
1033       continue;
1034     // Return the operand node if MDString holds expected metadata.
1035     if (Name.equals(S->getString()))
1036       return MD;
1037   }
1038 
1039   // Loop property not found.
1040   return nullptr;
1041 }
1042 
1043 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
1044   return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1045 }
1046 
1047 /// Find string metadata for loop
1048 ///
1049 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1050 /// operand or null otherwise.  If the string metadata is not found return
1051 /// Optional's not-a-value.
1052 std::optional<const MDOperand *>
1053 llvm::findStringMetadataForLoop(const Loop *TheLoop, StringRef Name) {
1054   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
1055   if (!MD)
1056     return std::nullopt;
1057   switch (MD->getNumOperands()) {
1058   case 1:
1059     return nullptr;
1060   case 2:
1061     return &MD->getOperand(1);
1062   default:
1063     llvm_unreachable("loop metadata has 0 or 1 operand");
1064   }
1065 }
1066 
1067 std::optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop,
1068                                                        StringRef Name) {
1069   MDNode *MD = findOptionMDForLoop(TheLoop, Name);
1070   if (!MD)
1071     return std::nullopt;
1072   switch (MD->getNumOperands()) {
1073   case 1:
1074     // When the value is absent it is interpreted as 'attribute set'.
1075     return true;
1076   case 2:
1077     if (ConstantInt *IntMD =
1078             mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
1079       return IntMD->getZExtValue();
1080     return true;
1081   }
1082   llvm_unreachable("unexpected number of options");
1083 }
1084 
1085 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
1086   return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false);
1087 }
1088 
1089 std::optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop,
1090                                                      StringRef Name) {
1091   const MDOperand *AttrMD =
1092       findStringMetadataForLoop(TheLoop, Name).value_or(nullptr);
1093   if (!AttrMD)
1094     return std::nullopt;
1095 
1096   ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
1097   if (!IntMD)
1098     return std::nullopt;
1099 
1100   return IntMD->getSExtValue();
1101 }
1102 
1103 int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name,
1104                               int Default) {
1105   return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default);
1106 }
1107 
1108 bool llvm::isFinite(const Loop *L) {
1109   return L->getHeader()->getParent()->willReturn();
1110 }
1111 
1112 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress";
1113 
1114 bool llvm::hasMustProgress(const Loop *L) {
1115   return getBooleanLoopAttribute(L, LLVMLoopMustProgress);
1116 }
1117 
1118 bool llvm::isMustProgress(const Loop *L) {
1119   return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L);
1120 }
1121 
1122 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1123   return Node->getNumOperands() == 0 && Node->isDistinct();
1124 }
1125 
1126 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1127                                              MDNode *OrigLoopID,
1128                                              ArrayRef<StringRef> RemovePrefixes,
1129                                              ArrayRef<MDNode *> AddAttrs) {
1130   // First remove any existing loop metadata related to this transformation.
1131   SmallVector<Metadata *, 4> MDs;
1132 
1133   // Reserve first location for self reference to the LoopID metadata node.
1134   MDs.push_back(nullptr);
1135 
1136   // Remove metadata for the transformation that has been applied or that became
1137   // outdated.
1138   if (OrigLoopID) {
1139     for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1140       bool IsVectorMetadata = false;
1141       Metadata *Op = OrigLoopID->getOperand(i);
1142       if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1143         const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1144         if (S)
1145           IsVectorMetadata =
1146               llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1147                 return S->getString().startswith(Prefix);
1148               });
1149       }
1150       if (!IsVectorMetadata)
1151         MDs.push_back(Op);
1152     }
1153   }
1154 
1155   // Add metadata to avoid reapplying a transformation, such as
1156   // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1157   MDs.append(AddAttrs.begin(), AddAttrs.end());
1158 
1159   MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1160   // Replace the temporary node with a self-reference.
1161   NewLoopID->replaceOperandWith(0, NewLoopID);
1162   return NewLoopID;
1163 }
1164 
1165 //===----------------------------------------------------------------------===//
1166 // LoopInfo implementation
1167 //
1168 
1169 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) {
1170   initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1171 }
1172 
1173 char LoopInfoWrapperPass::ID = 0;
1174 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1175                       true, true)
1176 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1177 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1178                     true, true)
1179 
1180 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1181   releaseMemory();
1182   LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1183   return false;
1184 }
1185 
1186 void LoopInfoWrapperPass::verifyAnalysis() const {
1187   // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1188   // function each time verifyAnalysis is called is very expensive. The
1189   // -verify-loop-info option can enable this. In order to perform some
1190   // checking by default, LoopPass has been taught to call verifyLoop manually
1191   // during loop pass sequences.
1192   if (VerifyLoopInfo) {
1193     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1194     LI.verify(DT);
1195   }
1196 }
1197 
1198 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1199   AU.setPreservesAll();
1200   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1201 }
1202 
1203 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1204   LI.print(OS);
1205 }
1206 
1207 PreservedAnalyses LoopVerifierPass::run(Function &F,
1208                                         FunctionAnalysisManager &AM) {
1209   LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1210   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1211   LI.verify(DT);
1212   return PreservedAnalyses::all();
1213 }
1214 
1215 //===----------------------------------------------------------------------===//
1216 // LoopBlocksDFS implementation
1217 //
1218 
1219 /// Traverse the loop blocks and store the DFS result.
1220 /// Useful for clients that just want the final DFS result and don't need to
1221 /// visit blocks during the initial traversal.
1222 void LoopBlocksDFS::perform(LoopInfo *LI) {
1223   LoopBlocksTraversal Traversal(*this, LI);
1224   for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1225                                         POE = Traversal.end();
1226        POI != POE; ++POI)
1227     ;
1228 }
1229