1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/ScopeExit.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/Analysis/IVDescriptors.h" 21 #include "llvm/Analysis/LoopInfoImpl.h" 22 #include "llvm/Analysis/LoopIterator.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/MemorySSA.h" 25 #include "llvm/Analysis/MemorySSAUpdater.h" 26 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Config/llvm-config.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/IRPrintingPasses.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/IR/PrintPasses.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 using namespace llvm; 45 46 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 47 template class llvm::LoopBase<BasicBlock, Loop>; 48 template class llvm::LoopInfoBase<BasicBlock, Loop>; 49 50 // Always verify loopinfo if expensive checking is enabled. 51 #ifdef EXPENSIVE_CHECKS 52 bool llvm::VerifyLoopInfo = true; 53 #else 54 bool llvm::VerifyLoopInfo = false; 55 #endif 56 static cl::opt<bool, true> 57 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 58 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 59 60 //===----------------------------------------------------------------------===// 61 // Loop implementation 62 // 63 64 bool Loop::isLoopInvariant(const Value *V) const { 65 if (const Instruction *I = dyn_cast<Instruction>(V)) 66 return !contains(I); 67 return true; // All non-instructions are loop invariant 68 } 69 70 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 71 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 72 } 73 74 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 75 MemorySSAUpdater *MSSAU) const { 76 if (Instruction *I = dyn_cast<Instruction>(V)) 77 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 78 return true; // All non-instructions are loop-invariant. 79 } 80 81 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 82 Instruction *InsertPt, 83 MemorySSAUpdater *MSSAU) const { 84 // Test if the value is already loop-invariant. 85 if (isLoopInvariant(I)) 86 return true; 87 if (!isSafeToSpeculativelyExecute(I)) 88 return false; 89 if (I->mayReadFromMemory()) 90 return false; 91 // EH block instructions are immobile. 92 if (I->isEHPad()) 93 return false; 94 // Determine the insertion point, unless one was given. 95 if (!InsertPt) { 96 BasicBlock *Preheader = getLoopPreheader(); 97 // Without a preheader, hoisting is not feasible. 98 if (!Preheader) 99 return false; 100 InsertPt = Preheader->getTerminator(); 101 } 102 // Don't hoist instructions with loop-variant operands. 103 for (Value *Operand : I->operands()) 104 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 105 return false; 106 107 // Hoist. 108 I->moveBefore(InsertPt); 109 if (MSSAU) 110 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 111 MSSAU->moveToPlace(MUD, InsertPt->getParent(), 112 MemorySSA::BeforeTerminator); 113 114 // There is possibility of hoisting this instruction above some arbitrary 115 // condition. Any metadata defined on it can be control dependent on this 116 // condition. Conservatively strip it here so that we don't give any wrong 117 // information to the optimizer. 118 I->dropUnknownNonDebugMetadata(); 119 120 Changed = true; 121 return true; 122 } 123 124 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 125 BasicBlock *&Backedge) const { 126 BasicBlock *H = getHeader(); 127 128 Incoming = nullptr; 129 Backedge = nullptr; 130 pred_iterator PI = pred_begin(H); 131 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 132 Backedge = *PI++; 133 if (PI == pred_end(H)) 134 return false; // dead loop 135 Incoming = *PI++; 136 if (PI != pred_end(H)) 137 return false; // multiple backedges? 138 139 if (contains(Incoming)) { 140 if (contains(Backedge)) 141 return false; 142 std::swap(Incoming, Backedge); 143 } else if (!contains(Backedge)) 144 return false; 145 146 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 147 return true; 148 } 149 150 PHINode *Loop::getCanonicalInductionVariable() const { 151 BasicBlock *H = getHeader(); 152 153 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 154 if (!getIncomingAndBackEdge(Incoming, Backedge)) 155 return nullptr; 156 157 // Loop over all of the PHI nodes, looking for a canonical indvar. 158 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 159 PHINode *PN = cast<PHINode>(I); 160 if (ConstantInt *CI = 161 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 162 if (CI->isZero()) 163 if (Instruction *Inc = 164 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 165 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 166 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 167 if (CI->isOne()) 168 return PN; 169 } 170 return nullptr; 171 } 172 173 /// Get the latch condition instruction. 174 ICmpInst *Loop::getLatchCmpInst() const { 175 if (BasicBlock *Latch = getLoopLatch()) 176 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 177 if (BI->isConditional()) 178 return dyn_cast<ICmpInst>(BI->getCondition()); 179 180 return nullptr; 181 } 182 183 /// Return the final value of the loop induction variable if found. 184 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 185 const Instruction &StepInst) { 186 ICmpInst *LatchCmpInst = L.getLatchCmpInst(); 187 if (!LatchCmpInst) 188 return nullptr; 189 190 Value *Op0 = LatchCmpInst->getOperand(0); 191 Value *Op1 = LatchCmpInst->getOperand(1); 192 if (Op0 == &IndVar || Op0 == &StepInst) 193 return Op1; 194 195 if (Op1 == &IndVar || Op1 == &StepInst) 196 return Op0; 197 198 return nullptr; 199 } 200 201 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 202 PHINode &IndVar, 203 ScalarEvolution &SE) { 204 InductionDescriptor IndDesc; 205 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 206 return None; 207 208 Value *InitialIVValue = IndDesc.getStartValue(); 209 Instruction *StepInst = IndDesc.getInductionBinOp(); 210 if (!InitialIVValue || !StepInst) 211 return None; 212 213 const SCEV *Step = IndDesc.getStep(); 214 Value *StepInstOp1 = StepInst->getOperand(1); 215 Value *StepInstOp0 = StepInst->getOperand(0); 216 Value *StepValue = nullptr; 217 if (SE.getSCEV(StepInstOp1) == Step) 218 StepValue = StepInstOp1; 219 else if (SE.getSCEV(StepInstOp0) == Step) 220 StepValue = StepInstOp0; 221 222 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 223 if (!FinalIVValue) 224 return None; 225 226 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 227 SE); 228 } 229 230 using Direction = Loop::LoopBounds::Direction; 231 232 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 233 BasicBlock *Latch = L.getLoopLatch(); 234 assert(Latch && "Expecting valid latch"); 235 236 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 237 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 238 239 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 240 assert(LatchCmpInst && 241 "Expecting the latch compare instruction to be a CmpInst"); 242 243 // Need to inverse the predicate when first successor is not the loop 244 // header 245 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 246 ? LatchCmpInst->getPredicate() 247 : LatchCmpInst->getInversePredicate(); 248 249 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 250 Pred = ICmpInst::getSwappedPredicate(Pred); 251 252 // Need to flip strictness of the predicate when the latch compare instruction 253 // is not using StepInst 254 if (LatchCmpInst->getOperand(0) == &getStepInst() || 255 LatchCmpInst->getOperand(1) == &getStepInst()) 256 return Pred; 257 258 // Cannot flip strictness of NE and EQ 259 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 260 return ICmpInst::getFlippedStrictnessPredicate(Pred); 261 262 Direction D = getDirection(); 263 if (D == Direction::Increasing) 264 return ICmpInst::ICMP_SLT; 265 266 if (D == Direction::Decreasing) 267 return ICmpInst::ICMP_SGT; 268 269 // If cannot determine the direction, then unable to find the canonical 270 // predicate 271 return ICmpInst::BAD_ICMP_PREDICATE; 272 } 273 274 Direction Loop::LoopBounds::getDirection() const { 275 if (const SCEVAddRecExpr *StepAddRecExpr = 276 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 277 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 278 if (SE.isKnownPositive(StepRecur)) 279 return Direction::Increasing; 280 if (SE.isKnownNegative(StepRecur)) 281 return Direction::Decreasing; 282 } 283 284 return Direction::Unknown; 285 } 286 287 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 288 if (PHINode *IndVar = getInductionVariable(SE)) 289 return LoopBounds::getBounds(*this, *IndVar, SE); 290 291 return None; 292 } 293 294 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 295 if (!isLoopSimplifyForm()) 296 return nullptr; 297 298 BasicBlock *Header = getHeader(); 299 assert(Header && "Expected a valid loop header"); 300 ICmpInst *CmpInst = getLatchCmpInst(); 301 if (!CmpInst) 302 return nullptr; 303 304 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0)); 305 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1)); 306 307 for (PHINode &IndVar : Header->phis()) { 308 InductionDescriptor IndDesc; 309 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 310 continue; 311 312 Instruction *StepInst = IndDesc.getInductionBinOp(); 313 314 // case 1: 315 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 316 // StepInst = IndVar + step 317 // cmp = StepInst < FinalValue 318 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 319 return &IndVar; 320 321 // case 2: 322 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 323 // StepInst = IndVar + step 324 // cmp = IndVar < FinalValue 325 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 326 return &IndVar; 327 } 328 329 return nullptr; 330 } 331 332 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 333 InductionDescriptor &IndDesc) const { 334 if (PHINode *IndVar = getInductionVariable(SE)) 335 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 336 337 return false; 338 } 339 340 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 341 ScalarEvolution &SE) const { 342 // Located in the loop header 343 BasicBlock *Header = getHeader(); 344 if (AuxIndVar.getParent() != Header) 345 return false; 346 347 // No uses outside of the loop 348 for (User *U : AuxIndVar.users()) 349 if (const Instruction *I = dyn_cast<Instruction>(U)) 350 if (!contains(I)) 351 return false; 352 353 InductionDescriptor IndDesc; 354 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 355 return false; 356 357 // The step instruction opcode should be add or sub. 358 if (IndDesc.getInductionOpcode() != Instruction::Add && 359 IndDesc.getInductionOpcode() != Instruction::Sub) 360 return false; 361 362 // Incremented by a loop invariant step for each loop iteration 363 return SE.isLoopInvariant(IndDesc.getStep(), this); 364 } 365 366 BranchInst *Loop::getLoopGuardBranch() const { 367 if (!isLoopSimplifyForm()) 368 return nullptr; 369 370 BasicBlock *Preheader = getLoopPreheader(); 371 assert(Preheader && getLoopLatch() && 372 "Expecting a loop with valid preheader and latch"); 373 374 // Loop should be in rotate form. 375 if (!isRotatedForm()) 376 return nullptr; 377 378 // Disallow loops with more than one unique exit block, as we do not verify 379 // that GuardOtherSucc post dominates all exit blocks. 380 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 381 if (!ExitFromLatch) 382 return nullptr; 383 384 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 385 if (!GuardBB) 386 return nullptr; 387 388 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 389 390 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 391 if (!GuardBI || GuardBI->isUnconditional()) 392 return nullptr; 393 394 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 395 ? GuardBI->getSuccessor(1) 396 : GuardBI->getSuccessor(0); 397 398 // Check if ExitFromLatch (or any BasicBlock which is an empty unique 399 // successor of ExitFromLatch) is equal to GuardOtherSucc. If 400 // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the 401 // loop is GuardBI (return GuardBI), otherwise return nullptr. 402 if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, 403 /*CheckUniquePred=*/true) == 404 GuardOtherSucc) 405 return GuardBI; 406 else 407 return nullptr; 408 } 409 410 bool Loop::isCanonical(ScalarEvolution &SE) const { 411 InductionDescriptor IndDesc; 412 if (!getInductionDescriptor(SE, IndDesc)) 413 return false; 414 415 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 416 if (!Init || !Init->isZero()) 417 return false; 418 419 if (IndDesc.getInductionOpcode() != Instruction::Add) 420 return false; 421 422 ConstantInt *Step = IndDesc.getConstIntStepValue(); 423 if (!Step || !Step->isOne()) 424 return false; 425 426 return true; 427 } 428 429 // Check that 'BB' doesn't have any uses outside of the 'L' 430 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 431 const DominatorTree &DT) { 432 for (const Instruction &I : BB) { 433 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 434 // optimizations, so for the purposes of considered LCSSA form, we 435 // can ignore them. 436 if (I.getType()->isTokenTy()) 437 continue; 438 439 for (const Use &U : I.uses()) { 440 const Instruction *UI = cast<Instruction>(U.getUser()); 441 const BasicBlock *UserBB = UI->getParent(); 442 443 // For practical purposes, we consider that the use in a PHI 444 // occurs in the respective predecessor block. For more info, 445 // see the `phi` doc in LangRef and the LCSSA doc. 446 if (const PHINode *P = dyn_cast<PHINode>(UI)) 447 UserBB = P->getIncomingBlock(U); 448 449 // Check the current block, as a fast-path, before checking whether 450 // the use is anywhere in the loop. Most values are used in the same 451 // block they are defined in. Also, blocks not reachable from the 452 // entry are special; uses in them don't need to go through PHIs. 453 if (UserBB != &BB && !L.contains(UserBB) && 454 DT.isReachableFromEntry(UserBB)) 455 return false; 456 } 457 } 458 return true; 459 } 460 461 bool Loop::isLCSSAForm(const DominatorTree &DT) const { 462 // For each block we check that it doesn't have any uses outside of this loop. 463 return all_of(this->blocks(), [&](const BasicBlock *BB) { 464 return isBlockInLCSSAForm(*this, *BB, DT); 465 }); 466 } 467 468 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, 469 const LoopInfo &LI) const { 470 // For each block we check that it doesn't have any uses outside of its 471 // innermost loop. This process will transitively guarantee that the current 472 // loop and all of the nested loops are in LCSSA form. 473 return all_of(this->blocks(), [&](const BasicBlock *BB) { 474 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT); 475 }); 476 } 477 478 bool Loop::isLoopSimplifyForm() const { 479 // Normal-form loops have a preheader, a single backedge, and all of their 480 // exits have all their predecessors inside the loop. 481 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 482 } 483 484 // Routines that reform the loop CFG and split edges often fail on indirectbr. 485 bool Loop::isSafeToClone() const { 486 // Return false if any loop blocks contain indirectbrs, or there are any calls 487 // to noduplicate functions. 488 // FIXME: it should be ok to clone CallBrInst's if we correctly update the 489 // operand list to reflect the newly cloned labels. 490 for (BasicBlock *BB : this->blocks()) { 491 if (isa<IndirectBrInst>(BB->getTerminator()) || 492 isa<CallBrInst>(BB->getTerminator())) 493 return false; 494 495 for (Instruction &I : *BB) 496 if (auto *CB = dyn_cast<CallBase>(&I)) 497 if (CB->cannotDuplicate()) 498 return false; 499 } 500 return true; 501 } 502 503 MDNode *Loop::getLoopID() const { 504 MDNode *LoopID = nullptr; 505 506 // Go through the latch blocks and check the terminator for the metadata. 507 SmallVector<BasicBlock *, 4> LatchesBlocks; 508 getLoopLatches(LatchesBlocks); 509 for (BasicBlock *BB : LatchesBlocks) { 510 Instruction *TI = BB->getTerminator(); 511 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 512 513 if (!MD) 514 return nullptr; 515 516 if (!LoopID) 517 LoopID = MD; 518 else if (MD != LoopID) 519 return nullptr; 520 } 521 if (!LoopID || LoopID->getNumOperands() == 0 || 522 LoopID->getOperand(0) != LoopID) 523 return nullptr; 524 return LoopID; 525 } 526 527 void Loop::setLoopID(MDNode *LoopID) const { 528 assert((!LoopID || LoopID->getNumOperands() > 0) && 529 "Loop ID needs at least one operand"); 530 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 531 "Loop ID should refer to itself"); 532 533 SmallVector<BasicBlock *, 4> LoopLatches; 534 getLoopLatches(LoopLatches); 535 for (BasicBlock *BB : LoopLatches) 536 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 537 } 538 539 void Loop::setLoopAlreadyUnrolled() { 540 LLVMContext &Context = getHeader()->getContext(); 541 542 MDNode *DisableUnrollMD = 543 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 544 MDNode *LoopID = getLoopID(); 545 MDNode *NewLoopID = makePostTransformationMetadata( 546 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 547 setLoopID(NewLoopID); 548 } 549 550 void Loop::setLoopMustProgress() { 551 LLVMContext &Context = getHeader()->getContext(); 552 553 MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); 554 555 if (MustProgress) 556 return; 557 558 MDNode *MustProgressMD = 559 MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); 560 MDNode *LoopID = getLoopID(); 561 MDNode *NewLoopID = 562 makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); 563 setLoopID(NewLoopID); 564 } 565 566 bool Loop::isAnnotatedParallel() const { 567 MDNode *DesiredLoopIdMetadata = getLoopID(); 568 569 if (!DesiredLoopIdMetadata) 570 return false; 571 572 MDNode *ParallelAccesses = 573 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 574 SmallPtrSet<MDNode *, 4> 575 ParallelAccessGroups; // For scalable 'contains' check. 576 if (ParallelAccesses) { 577 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { 578 MDNode *AccGroup = cast<MDNode>(MD.get()); 579 assert(isValidAsAccessGroup(AccGroup) && 580 "List item must be an access group"); 581 ParallelAccessGroups.insert(AccGroup); 582 } 583 } 584 585 // The loop branch contains the parallel loop metadata. In order to ensure 586 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 587 // dependencies (thus converted the loop back to a sequential loop), check 588 // that all the memory instructions in the loop belong to an access group that 589 // is parallel to this loop. 590 for (BasicBlock *BB : this->blocks()) { 591 for (Instruction &I : *BB) { 592 if (!I.mayReadOrWriteMemory()) 593 continue; 594 595 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 596 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 597 if (AG->getNumOperands() == 0) { 598 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 599 return ParallelAccessGroups.count(AG); 600 } 601 602 for (const MDOperand &AccessListItem : AG->operands()) { 603 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 604 assert(isValidAsAccessGroup(AccGroup) && 605 "List item must be an access group"); 606 if (ParallelAccessGroups.count(AccGroup)) 607 return true; 608 } 609 return false; 610 }; 611 612 if (ContainsAccessGroup(AccessGroup)) 613 continue; 614 } 615 616 // The memory instruction can refer to the loop identifier metadata 617 // directly or indirectly through another list metadata (in case of 618 // nested parallel loops). The loop identifier metadata refers to 619 // itself so we can check both cases with the same routine. 620 MDNode *LoopIdMD = 621 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 622 623 if (!LoopIdMD) 624 return false; 625 626 if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) 627 return false; 628 } 629 } 630 return true; 631 } 632 633 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 634 635 Loop::LocRange Loop::getLocRange() const { 636 // If we have a debug location in the loop ID, then use it. 637 if (MDNode *LoopID = getLoopID()) { 638 DebugLoc Start; 639 // We use the first DebugLoc in the header as the start location of the loop 640 // and if there is a second DebugLoc in the header we use it as end location 641 // of the loop. 642 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 643 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 644 if (!Start) 645 Start = DebugLoc(L); 646 else 647 return LocRange(Start, DebugLoc(L)); 648 } 649 } 650 651 if (Start) 652 return LocRange(Start); 653 } 654 655 // Try the pre-header first. 656 if (BasicBlock *PHeadBB = getLoopPreheader()) 657 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 658 return LocRange(DL); 659 660 // If we have no pre-header or there are no instructions with debug 661 // info in it, try the header. 662 if (BasicBlock *HeadBB = getHeader()) 663 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 664 665 return LocRange(); 666 } 667 668 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 669 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 670 671 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 672 print(dbgs(), /*Verbose=*/true); 673 } 674 #endif 675 676 //===----------------------------------------------------------------------===// 677 // UnloopUpdater implementation 678 // 679 680 namespace { 681 /// Find the new parent loop for all blocks within the "unloop" whose last 682 /// backedges has just been removed. 683 class UnloopUpdater { 684 Loop &Unloop; 685 LoopInfo *LI; 686 687 LoopBlocksDFS DFS; 688 689 // Map unloop's immediate subloops to their nearest reachable parents. Nested 690 // loops within these subloops will not change parents. However, an immediate 691 // subloop's new parent will be the nearest loop reachable from either its own 692 // exits *or* any of its nested loop's exits. 693 DenseMap<Loop *, Loop *> SubloopParents; 694 695 // Flag the presence of an irreducible backedge whose destination is a block 696 // directly contained by the original unloop. 697 bool FoundIB; 698 699 public: 700 UnloopUpdater(Loop *UL, LoopInfo *LInfo) 701 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {} 702 703 void updateBlockParents(); 704 705 void removeBlocksFromAncestors(); 706 707 void updateSubloopParents(); 708 709 protected: 710 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 711 }; 712 } // end anonymous namespace 713 714 /// Update the parent loop for all blocks that are directly contained within the 715 /// original "unloop". 716 void UnloopUpdater::updateBlockParents() { 717 if (Unloop.getNumBlocks()) { 718 // Perform a post order CFG traversal of all blocks within this loop, 719 // propagating the nearest loop from successors to predecessors. 720 LoopBlocksTraversal Traversal(DFS, LI); 721 for (BasicBlock *POI : Traversal) { 722 723 Loop *L = LI->getLoopFor(POI); 724 Loop *NL = getNearestLoop(POI, L); 725 726 if (NL != L) { 727 // For reducible loops, NL is now an ancestor of Unloop. 728 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 729 "uninitialized successor"); 730 LI->changeLoopFor(POI, NL); 731 } else { 732 // Or the current block is part of a subloop, in which case its parent 733 // is unchanged. 734 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 735 } 736 } 737 } 738 // Each irreducible loop within the unloop induces a round of iteration using 739 // the DFS result cached by Traversal. 740 bool Changed = FoundIB; 741 for (unsigned NIters = 0; Changed; ++NIters) { 742 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 743 744 // Iterate over the postorder list of blocks, propagating the nearest loop 745 // from successors to predecessors as before. 746 Changed = false; 747 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 748 POE = DFS.endPostorder(); 749 POI != POE; ++POI) { 750 751 Loop *L = LI->getLoopFor(*POI); 752 Loop *NL = getNearestLoop(*POI, L); 753 if (NL != L) { 754 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 755 "uninitialized successor"); 756 LI->changeLoopFor(*POI, NL); 757 Changed = true; 758 } 759 } 760 } 761 } 762 763 /// Remove unloop's blocks from all ancestors below their new parents. 764 void UnloopUpdater::removeBlocksFromAncestors() { 765 // Remove all unloop's blocks (including those in nested subloops) from 766 // ancestors below the new parent loop. 767 for (BasicBlock *BB : Unloop.blocks()) { 768 Loop *OuterParent = LI->getLoopFor(BB); 769 if (Unloop.contains(OuterParent)) { 770 while (OuterParent->getParentLoop() != &Unloop) 771 OuterParent = OuterParent->getParentLoop(); 772 OuterParent = SubloopParents[OuterParent]; 773 } 774 // Remove blocks from former Ancestors except Unloop itself which will be 775 // deleted. 776 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 777 OldParent = OldParent->getParentLoop()) { 778 assert(OldParent && "new loop is not an ancestor of the original"); 779 OldParent->removeBlockFromLoop(BB); 780 } 781 } 782 } 783 784 /// Update the parent loop for all subloops directly nested within unloop. 785 void UnloopUpdater::updateSubloopParents() { 786 while (!Unloop.isInnermost()) { 787 Loop *Subloop = *std::prev(Unloop.end()); 788 Unloop.removeChildLoop(std::prev(Unloop.end())); 789 790 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 791 if (Loop *Parent = SubloopParents[Subloop]) 792 Parent->addChildLoop(Subloop); 793 else 794 LI->addTopLevelLoop(Subloop); 795 } 796 } 797 798 /// Return the nearest parent loop among this block's successors. If a successor 799 /// is a subloop header, consider its parent to be the nearest parent of the 800 /// subloop's exits. 801 /// 802 /// For subloop blocks, simply update SubloopParents and return NULL. 803 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 804 805 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 806 // is considered uninitialized. 807 Loop *NearLoop = BBLoop; 808 809 Loop *Subloop = nullptr; 810 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 811 Subloop = NearLoop; 812 // Find the subloop ancestor that is directly contained within Unloop. 813 while (Subloop->getParentLoop() != &Unloop) { 814 Subloop = Subloop->getParentLoop(); 815 assert(Subloop && "subloop is not an ancestor of the original loop"); 816 } 817 // Get the current nearest parent of the Subloop exits, initially Unloop. 818 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 819 } 820 821 succ_iterator I = succ_begin(BB), E = succ_end(BB); 822 if (I == E) { 823 assert(!Subloop && "subloop blocks must have a successor"); 824 NearLoop = nullptr; // unloop blocks may now exit the function. 825 } 826 for (; I != E; ++I) { 827 if (*I == BB) 828 continue; // self loops are uninteresting 829 830 Loop *L = LI->getLoopFor(*I); 831 if (L == &Unloop) { 832 // This successor has not been processed. This path must lead to an 833 // irreducible backedge. 834 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 835 FoundIB = true; 836 } 837 if (L != &Unloop && Unloop.contains(L)) { 838 // Successor is in a subloop. 839 if (Subloop) 840 continue; // Branching within subloops. Ignore it. 841 842 // BB branches from the original into a subloop header. 843 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 844 845 // Get the current nearest parent of the Subloop's exits. 846 L = SubloopParents[L]; 847 // L could be Unloop if the only exit was an irreducible backedge. 848 } 849 if (L == &Unloop) { 850 continue; 851 } 852 // Handle critical edges from Unloop into a sibling loop. 853 if (L && !L->contains(&Unloop)) { 854 L = L->getParentLoop(); 855 } 856 // Remember the nearest parent loop among successors or subloop exits. 857 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 858 NearLoop = L; 859 } 860 if (Subloop) { 861 SubloopParents[Subloop] = NearLoop; 862 return BBLoop; 863 } 864 return NearLoop; 865 } 866 867 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 868 869 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 870 FunctionAnalysisManager::Invalidator &) { 871 // Check whether the analysis, all analyses on functions, or the function's 872 // CFG have been preserved. 873 auto PAC = PA.getChecker<LoopAnalysis>(); 874 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 875 PAC.preservedSet<CFGAnalyses>()); 876 } 877 878 void LoopInfo::erase(Loop *Unloop) { 879 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 880 881 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 882 883 // First handle the special case of no parent loop to simplify the algorithm. 884 if (Unloop->isOutermost()) { 885 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 886 for (BasicBlock *BB : Unloop->blocks()) { 887 // Don't reparent blocks in subloops. 888 if (getLoopFor(BB) != Unloop) 889 continue; 890 891 // Blocks no longer have a parent but are still referenced by Unloop until 892 // the Unloop object is deleted. 893 changeLoopFor(BB, nullptr); 894 } 895 896 // Remove the loop from the top-level LoopInfo object. 897 for (iterator I = begin();; ++I) { 898 assert(I != end() && "Couldn't find loop"); 899 if (*I == Unloop) { 900 removeLoop(I); 901 break; 902 } 903 } 904 905 // Move all of the subloops to the top-level. 906 while (!Unloop->isInnermost()) 907 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 908 909 return; 910 } 911 912 // Update the parent loop for all blocks within the loop. Blocks within 913 // subloops will not change parents. 914 UnloopUpdater Updater(Unloop, this); 915 Updater.updateBlockParents(); 916 917 // Remove blocks from former ancestor loops. 918 Updater.removeBlocksFromAncestors(); 919 920 // Add direct subloops as children in their new parent loop. 921 Updater.updateSubloopParents(); 922 923 // Remove unloop from its parent loop. 924 Loop *ParentLoop = Unloop->getParentLoop(); 925 for (Loop::iterator I = ParentLoop->begin();; ++I) { 926 assert(I != ParentLoop->end() && "Couldn't find loop"); 927 if (*I == Unloop) { 928 ParentLoop->removeChildLoop(I); 929 break; 930 } 931 } 932 } 933 934 bool 935 LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, 936 const BasicBlock *ExitBB) const { 937 if (V->getType()->isTokenTy()) 938 // We can't form PHIs of token type, so the definition of LCSSA excludes 939 // values of that type. 940 return false; 941 942 const Instruction *I = dyn_cast<Instruction>(V); 943 if (!I) 944 return false; 945 const Loop *L = getLoopFor(I->getParent()); 946 if (!L) 947 return false; 948 if (L->contains(ExitBB)) 949 // Could be an exit bb of a subloop and contained in defining loop 950 return false; 951 952 // We found a (new) out-of-loop use location, for a value defined in-loop. 953 // (Note that because of LCSSA, we don't have to account for values defined 954 // in sibling loops. Such values will have LCSSA phis of their own in the 955 // common parent loop.) 956 return true; 957 } 958 959 AnalysisKey LoopAnalysis::Key; 960 961 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 962 // FIXME: Currently we create a LoopInfo from scratch for every function. 963 // This may prove to be too wasteful due to deallocating and re-allocating 964 // memory each time for the underlying map and vector datastructures. At some 965 // point it may prove worthwhile to use a freelist and recycle LoopInfo 966 // objects. I don't want to add that kind of complexity until the scope of 967 // the problem is better understood. 968 LoopInfo LI; 969 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 970 return LI; 971 } 972 973 PreservedAnalyses LoopPrinterPass::run(Function &F, 974 FunctionAnalysisManager &AM) { 975 AM.getResult<LoopAnalysis>(F).print(OS); 976 return PreservedAnalyses::all(); 977 } 978 979 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 980 981 if (forcePrintModuleIR()) { 982 // handling -print-module-scope 983 OS << Banner << " (loop: "; 984 L.getHeader()->printAsOperand(OS, false); 985 OS << ")\n"; 986 987 // printing whole module 988 OS << *L.getHeader()->getModule(); 989 return; 990 } 991 992 OS << Banner; 993 994 auto *PreHeader = L.getLoopPreheader(); 995 if (PreHeader) { 996 OS << "\n; Preheader:"; 997 PreHeader->print(OS); 998 OS << "\n; Loop:"; 999 } 1000 1001 for (auto *Block : L.blocks()) 1002 if (Block) 1003 Block->print(OS); 1004 else 1005 OS << "Printing <null> block"; 1006 1007 SmallVector<BasicBlock *, 8> ExitBlocks; 1008 L.getExitBlocks(ExitBlocks); 1009 if (!ExitBlocks.empty()) { 1010 OS << "\n; Exit blocks"; 1011 for (auto *Block : ExitBlocks) 1012 if (Block) 1013 Block->print(OS); 1014 else 1015 OS << "Printing <null> block"; 1016 } 1017 } 1018 1019 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 1020 // No loop metadata node, no loop properties. 1021 if (!LoopID) 1022 return nullptr; 1023 1024 // First operand should refer to the metadata node itself, for legacy reasons. 1025 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1026 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1027 1028 // Iterate over the metdata node operands and look for MDString metadata. 1029 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1030 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1031 if (!MD || MD->getNumOperands() < 1) 1032 continue; 1033 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1034 if (!S) 1035 continue; 1036 // Return the operand node if MDString holds expected metadata. 1037 if (Name.equals(S->getString())) 1038 return MD; 1039 } 1040 1041 // Loop property not found. 1042 return nullptr; 1043 } 1044 1045 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1046 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1047 } 1048 1049 /// Find string metadata for loop 1050 /// 1051 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1052 /// operand or null otherwise. If the string metadata is not found return 1053 /// Optional's not-a-value. 1054 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 1055 StringRef Name) { 1056 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1057 if (!MD) 1058 return None; 1059 switch (MD->getNumOperands()) { 1060 case 1: 1061 return nullptr; 1062 case 2: 1063 return &MD->getOperand(1); 1064 default: 1065 llvm_unreachable("loop metadata has 0 or 1 operand"); 1066 } 1067 } 1068 1069 Optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, 1070 StringRef Name) { 1071 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1072 if (!MD) 1073 return None; 1074 switch (MD->getNumOperands()) { 1075 case 1: 1076 // When the value is absent it is interpreted as 'attribute set'. 1077 return true; 1078 case 2: 1079 if (ConstantInt *IntMD = 1080 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 1081 return IntMD->getZExtValue(); 1082 return true; 1083 } 1084 llvm_unreachable("unexpected number of options"); 1085 } 1086 1087 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 1088 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); 1089 } 1090 1091 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, 1092 StringRef Name) { 1093 const MDOperand *AttrMD = 1094 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); 1095 if (!AttrMD) 1096 return None; 1097 1098 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 1099 if (!IntMD) 1100 return None; 1101 1102 return IntMD->getSExtValue(); 1103 } 1104 1105 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 1106 1107 bool llvm::hasMustProgress(const Loop *L) { 1108 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 1109 } 1110 1111 bool llvm::isMustProgress(const Loop *L) { 1112 return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); 1113 } 1114 1115 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1116 return Node->getNumOperands() == 0 && Node->isDistinct(); 1117 } 1118 1119 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1120 MDNode *OrigLoopID, 1121 ArrayRef<StringRef> RemovePrefixes, 1122 ArrayRef<MDNode *> AddAttrs) { 1123 // First remove any existing loop metadata related to this transformation. 1124 SmallVector<Metadata *, 4> MDs; 1125 1126 // Reserve first location for self reference to the LoopID metadata node. 1127 MDs.push_back(nullptr); 1128 1129 // Remove metadata for the transformation that has been applied or that became 1130 // outdated. 1131 if (OrigLoopID) { 1132 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1133 bool IsVectorMetadata = false; 1134 Metadata *Op = OrigLoopID->getOperand(i); 1135 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1136 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1137 if (S) 1138 IsVectorMetadata = 1139 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1140 return S->getString().startswith(Prefix); 1141 }); 1142 } 1143 if (!IsVectorMetadata) 1144 MDs.push_back(Op); 1145 } 1146 } 1147 1148 // Add metadata to avoid reapplying a transformation, such as 1149 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1150 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1151 1152 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1153 // Replace the temporary node with a self-reference. 1154 NewLoopID->replaceOperandWith(0, NewLoopID); 1155 return NewLoopID; 1156 } 1157 1158 //===----------------------------------------------------------------------===// 1159 // LoopInfo implementation 1160 // 1161 1162 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { 1163 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1164 } 1165 1166 char LoopInfoWrapperPass::ID = 0; 1167 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1168 true, true) 1169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1170 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1171 true, true) 1172 1173 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1174 releaseMemory(); 1175 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1176 return false; 1177 } 1178 1179 void LoopInfoWrapperPass::verifyAnalysis() const { 1180 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1181 // function each time verifyAnalysis is called is very expensive. The 1182 // -verify-loop-info option can enable this. In order to perform some 1183 // checking by default, LoopPass has been taught to call verifyLoop manually 1184 // during loop pass sequences. 1185 if (VerifyLoopInfo) { 1186 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1187 LI.verify(DT); 1188 } 1189 } 1190 1191 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1192 AU.setPreservesAll(); 1193 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1194 } 1195 1196 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1197 LI.print(OS); 1198 } 1199 1200 PreservedAnalyses LoopVerifierPass::run(Function &F, 1201 FunctionAnalysisManager &AM) { 1202 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1203 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1204 LI.verify(DT); 1205 return PreservedAnalyses::all(); 1206 } 1207 1208 //===----------------------------------------------------------------------===// 1209 // LoopBlocksDFS implementation 1210 // 1211 1212 /// Traverse the loop blocks and store the DFS result. 1213 /// Useful for clients that just want the final DFS result and don't need to 1214 /// visit blocks during the initial traversal. 1215 void LoopBlocksDFS::perform(LoopInfo *LI) { 1216 LoopBlocksTraversal Traversal(*this, LI); 1217 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1218 POE = Traversal.end(); 1219 POI != POE; ++POI) 1220 ; 1221 } 1222