1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "loop-cache-cost" 39 40 static cl::opt<unsigned> DefaultTripCount( 41 "default-trip-count", cl::init(100), cl::Hidden, 42 cl::desc("Use this to specify the default trip count of a loop")); 43 44 // In this analysis two array references are considered to exhibit temporal 45 // reuse if they access either the same memory location, or a memory location 46 // with distance smaller than a configurable threshold. 47 static cl::opt<unsigned> TemporalReuseThreshold( 48 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 49 cl::desc("Use this to specify the max. distance between array elements " 50 "accessed in a loop so that the elements are classified to have " 51 "temporal reuse")); 52 53 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 54 /// nullptr if any loops in the loop vector supplied has more than one sibling. 55 /// The loop vector is expected to contain loops collected in breadth-first 56 /// order. 57 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 58 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 59 60 Loop *LastLoop = Loops.back(); 61 Loop *ParentLoop = LastLoop->getParentLoop(); 62 63 if (ParentLoop == nullptr) { 64 assert(Loops.size() == 1 && "Expecting a single loop"); 65 return LastLoop; 66 } 67 68 return (llvm::is_sorted(Loops, 69 [](const Loop *L1, const Loop *L2) { 70 return L1->getLoopDepth() < L2->getLoopDepth(); 71 })) 72 ? LastLoop 73 : nullptr; 74 } 75 76 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 77 const Loop &L, ScalarEvolution &SE) { 78 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 79 if (!AR || !AR->isAffine()) 80 return false; 81 82 assert(AR->getLoop() && "AR should have a loop"); 83 84 // Check that start and increment are not add recurrences. 85 const SCEV *Start = AR->getStart(); 86 const SCEV *Step = AR->getStepRecurrence(SE); 87 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 88 return false; 89 90 // Check that start and increment are both invariant in the loop. 91 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 92 return false; 93 94 const SCEV *StepRec = AR->getStepRecurrence(SE); 95 if (StepRec && SE.isKnownNegative(StepRec)) 96 StepRec = SE.getNegativeSCEV(StepRec); 97 98 return StepRec == &ElemSize; 99 } 100 101 /// Compute the trip count for the given loop \p L. Return the SCEV expression 102 /// for the trip count or nullptr if it cannot be computed. 103 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 104 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 105 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 106 !isa<SCEVConstant>(BackedgeTakenCount)) 107 return nullptr; 108 109 return SE.getAddExpr(BackedgeTakenCount, 110 SE.getOne(BackedgeTakenCount->getType())); 111 } 112 113 //===----------------------------------------------------------------------===// 114 // IndexedReference implementation 115 // 116 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 117 if (!R.IsValid) { 118 OS << R.StoreOrLoadInst; 119 OS << ", IsValid=false."; 120 return OS; 121 } 122 123 OS << *R.BasePointer; 124 for (const SCEV *Subscript : R.Subscripts) 125 OS << "[" << *Subscript << "]"; 126 127 OS << ", Sizes: "; 128 for (const SCEV *Size : R.Sizes) 129 OS << "[" << *Size << "]"; 130 131 return OS; 132 } 133 134 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 135 const LoopInfo &LI, ScalarEvolution &SE) 136 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 137 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 138 "Expecting a load or store instruction"); 139 140 IsValid = delinearize(LI); 141 if (IsValid) 142 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 143 << "\n"); 144 } 145 146 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 147 unsigned CLS, 148 AliasAnalysis &AA) const { 149 assert(IsValid && "Expecting a valid reference"); 150 151 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 152 LLVM_DEBUG(dbgs().indent(2) 153 << "No spacial reuse: different base pointers\n"); 154 return false; 155 } 156 157 unsigned NumSubscripts = getNumSubscripts(); 158 if (NumSubscripts != Other.getNumSubscripts()) { 159 LLVM_DEBUG(dbgs().indent(2) 160 << "No spacial reuse: different number of subscripts\n"); 161 return false; 162 } 163 164 // all subscripts must be equal, except the leftmost one (the last one). 165 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 166 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 167 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 168 << "\n\t" << *getSubscript(SubNum) << "\n\t" 169 << *Other.getSubscript(SubNum) << "\n"); 170 return false; 171 } 172 } 173 174 // the difference between the last subscripts must be less than the cache line 175 // size. 176 const SCEV *LastSubscript = getLastSubscript(); 177 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 178 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 179 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 180 181 if (Diff == nullptr) { 182 LLVM_DEBUG(dbgs().indent(2) 183 << "No spacial reuse, difference between subscript:\n\t" 184 << *LastSubscript << "\n\t" << OtherLastSubscript 185 << "\nis not constant.\n"); 186 return None; 187 } 188 189 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 190 191 LLVM_DEBUG({ 192 if (InSameCacheLine) 193 dbgs().indent(2) << "Found spacial reuse.\n"; 194 else 195 dbgs().indent(2) << "No spacial reuse.\n"; 196 }); 197 198 return InSameCacheLine; 199 } 200 201 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 202 unsigned MaxDistance, 203 const Loop &L, 204 DependenceInfo &DI, 205 AliasAnalysis &AA) const { 206 assert(IsValid && "Expecting a valid reference"); 207 208 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 209 LLVM_DEBUG(dbgs().indent(2) 210 << "No temporal reuse: different base pointer\n"); 211 return false; 212 } 213 214 std::unique_ptr<Dependence> D = 215 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 216 217 if (D == nullptr) { 218 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 219 return false; 220 } 221 222 if (D->isLoopIndependent()) { 223 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 224 return true; 225 } 226 227 // Check the dependence distance at every loop level. There is temporal reuse 228 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 229 // it is zero at every other loop level. 230 int LoopDepth = L.getLoopDepth(); 231 int Levels = D->getLevels(); 232 for (int Level = 1; Level <= Levels; ++Level) { 233 const SCEV *Distance = D->getDistance(Level); 234 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 235 236 if (SCEVConst == nullptr) { 237 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 238 return None; 239 } 240 241 const ConstantInt &CI = *SCEVConst->getValue(); 242 if (Level != LoopDepth && !CI.isZero()) { 243 LLVM_DEBUG(dbgs().indent(2) 244 << "No temporal reuse: distance is not zero at depth=" << Level 245 << "\n"); 246 return false; 247 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 248 LLVM_DEBUG( 249 dbgs().indent(2) 250 << "No temporal reuse: distance is greater than MaxDistance at depth=" 251 << Level << "\n"); 252 return false; 253 } 254 } 255 256 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 257 return true; 258 } 259 260 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 261 unsigned CLS) const { 262 assert(IsValid && "Expecting a valid reference"); 263 LLVM_DEBUG({ 264 dbgs().indent(2) << "Computing cache cost for:\n"; 265 dbgs().indent(4) << *this << "\n"; 266 }); 267 268 // If the indexed reference is loop invariant the cost is one. 269 if (isLoopInvariant(L)) { 270 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 271 return 1; 272 } 273 274 const SCEV *TripCount = computeTripCount(L, SE); 275 if (!TripCount) { 276 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 277 << " could not be computed, using DefaultTripCount\n"); 278 const SCEV *ElemSize = Sizes.back(); 279 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 280 } 281 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 282 283 // If the indexed reference is 'consecutive' the cost is 284 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 285 const SCEV *RefCost = TripCount; 286 287 if (isConsecutive(L, CLS)) { 288 const SCEV *Coeff = getLastCoefficient(); 289 const SCEV *ElemSize = Sizes.back(); 290 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 291 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 292 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 293 if (SE.isKnownNegative(Stride)) 294 Stride = SE.getNegativeSCEV(Stride); 295 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 296 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 297 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 298 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 299 300 LLVM_DEBUG(dbgs().indent(4) 301 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 302 << *RefCost << "\n"); 303 } else 304 LLVM_DEBUG(dbgs().indent(4) 305 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 306 << "\n"); 307 308 // Attempt to fold RefCost into a constant. 309 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 310 return ConstantCost->getValue()->getSExtValue(); 311 312 LLVM_DEBUG(dbgs().indent(4) 313 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 314 "(invalid value).\n"); 315 316 return CacheCost::InvalidCost; 317 } 318 319 bool IndexedReference::delinearize(const LoopInfo &LI) { 320 assert(Subscripts.empty() && "Subscripts should be empty"); 321 assert(Sizes.empty() && "Sizes should be empty"); 322 assert(!IsValid && "Should be called once from the constructor"); 323 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 324 325 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 326 const BasicBlock *BB = StoreOrLoadInst.getParent(); 327 328 if (Loop *L = LI.getLoopFor(BB)) { 329 const SCEV *AccessFn = 330 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 331 332 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 333 if (BasePointer == nullptr) { 334 LLVM_DEBUG( 335 dbgs().indent(2) 336 << "ERROR: failed to delinearize, can't identify base pointer\n"); 337 return false; 338 } 339 340 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 341 342 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 343 << "', AccessFn: " << *AccessFn << "\n"); 344 345 SE.delinearize(AccessFn, Subscripts, Sizes, 346 SE.getElementSize(&StoreOrLoadInst)); 347 348 if (Subscripts.empty() || Sizes.empty() || 349 Subscripts.size() != Sizes.size()) { 350 // Attempt to determine whether we have a single dimensional array access. 351 // before giving up. 352 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 353 LLVM_DEBUG(dbgs().indent(2) 354 << "ERROR: failed to delinearize reference\n"); 355 Subscripts.clear(); 356 Sizes.clear(); 357 return false; 358 } 359 360 // The array may be accessed in reverse, for example: 361 // for (i = N; i > 0; i--) 362 // A[i] = 0; 363 // In this case, reconstruct the access function using the absolute value 364 // of the step recurrence. 365 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 366 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 367 368 if (StepRec && SE.isKnownNegative(StepRec)) 369 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 370 SE.getNegativeSCEV(StepRec), 371 AccessFnAR->getLoop(), 372 AccessFnAR->getNoWrapFlags()); 373 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 374 Subscripts.push_back(Div); 375 Sizes.push_back(ElemSize); 376 } 377 378 return all_of(Subscripts, [&](const SCEV *Subscript) { 379 return isSimpleAddRecurrence(*Subscript, *L); 380 }); 381 } 382 383 return false; 384 } 385 386 bool IndexedReference::isLoopInvariant(const Loop &L) const { 387 Value *Addr = getPointerOperand(&StoreOrLoadInst); 388 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 389 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 390 391 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 392 return true; 393 394 // The indexed reference is loop invariant if none of the coefficients use 395 // the loop induction variable. 396 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 397 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 398 }); 399 400 return allCoeffForLoopAreZero; 401 } 402 403 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 404 // The indexed reference is 'consecutive' if the only coefficient that uses 405 // the loop induction variable is the last one... 406 const SCEV *LastSubscript = Subscripts.back(); 407 for (const SCEV *Subscript : Subscripts) { 408 if (Subscript == LastSubscript) 409 continue; 410 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 411 return false; 412 } 413 414 // ...and the access stride is less than the cache line size. 415 const SCEV *Coeff = getLastCoefficient(); 416 const SCEV *ElemSize = Sizes.back(); 417 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 418 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 419 420 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 421 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 422 } 423 424 const SCEV *IndexedReference::getLastCoefficient() const { 425 const SCEV *LastSubscript = getLastSubscript(); 426 assert(isa<SCEVAddRecExpr>(LastSubscript) && 427 "Expecting a SCEV add recurrence expression"); 428 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); 429 return AR->getStepRecurrence(SE); 430 } 431 432 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 433 const Loop &L) const { 434 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 435 return (AR != nullptr) ? AR->getLoop() != &L 436 : SE.isLoopInvariant(&Subscript, &L); 437 } 438 439 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 440 const Loop &L) const { 441 if (!isa<SCEVAddRecExpr>(Subscript)) 442 return false; 443 444 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 445 assert(AR->getLoop() && "AR should have a loop"); 446 447 if (!AR->isAffine()) 448 return false; 449 450 const SCEV *Start = AR->getStart(); 451 const SCEV *Step = AR->getStepRecurrence(SE); 452 453 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 454 return false; 455 456 return true; 457 } 458 459 bool IndexedReference::isAliased(const IndexedReference &Other, 460 AliasAnalysis &AA) const { 461 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 462 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 463 return AA.isMustAlias(Loc1, Loc2); 464 } 465 466 //===----------------------------------------------------------------------===// 467 // CacheCost implementation 468 // 469 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 470 for (const auto &LC : CC.LoopCosts) { 471 const Loop *L = LC.first; 472 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 473 } 474 return OS; 475 } 476 477 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 478 ScalarEvolution &SE, TargetTransformInfo &TTI, 479 AliasAnalysis &AA, DependenceInfo &DI, 480 Optional<unsigned> TRT) 481 : Loops(Loops), TripCounts(), LoopCosts(), 482 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 483 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 484 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 485 486 for (const Loop *L : Loops) { 487 unsigned TripCount = SE.getSmallConstantTripCount(L); 488 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 489 TripCounts.push_back({L, TripCount}); 490 } 491 492 calculateCacheFootprint(); 493 } 494 495 std::unique_ptr<CacheCost> 496 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 497 DependenceInfo &DI, Optional<unsigned> TRT) { 498 if (Root.getParentLoop()) { 499 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 500 return nullptr; 501 } 502 503 LoopVectorTy Loops; 504 for (Loop *L : breadth_first(&Root)) 505 Loops.push_back(L); 506 507 if (!getInnerMostLoop(Loops)) { 508 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 509 "than one innermost loop\n"); 510 return nullptr; 511 } 512 513 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 514 } 515 516 void CacheCost::calculateCacheFootprint() { 517 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 518 ReferenceGroupsTy RefGroups; 519 if (!populateReferenceGroups(RefGroups)) 520 return; 521 522 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 523 for (const Loop *L : Loops) { 524 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), 525 [L](const LoopCacheCostTy &LCC) { 526 return LCC.first == L; 527 }) == LoopCosts.end()) && 528 "Should not add duplicate element"); 529 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 530 LoopCosts.push_back(std::make_pair(L, LoopCost)); 531 } 532 533 sortLoopCosts(); 534 RefGroups.clear(); 535 } 536 537 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 538 assert(RefGroups.empty() && "Reference groups should be empty"); 539 540 unsigned CLS = TTI.getCacheLineSize(); 541 Loop *InnerMostLoop = getInnerMostLoop(Loops); 542 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 543 544 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 545 for (Instruction &I : *BB) { 546 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 547 continue; 548 549 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 550 if (!R->isValid()) 551 continue; 552 553 bool Added = false; 554 for (ReferenceGroupTy &RefGroup : RefGroups) { 555 const IndexedReference &Representative = *RefGroup.front().get(); 556 LLVM_DEBUG({ 557 dbgs() << "References:\n"; 558 dbgs().indent(2) << *R << "\n"; 559 dbgs().indent(2) << Representative << "\n"; 560 }); 561 562 563 // FIXME: Both positive and negative access functions will be placed 564 // into the same reference group, resulting in a bi-directional array 565 // access such as: 566 // for (i = N; i > 0; i--) 567 // A[i] = A[N - i]; 568 // having the same cost calculation as a single dimention access pattern 569 // for (i = 0; i < N; i++) 570 // A[i] = A[i]; 571 // when in actuality, depending on the array size, the first example 572 // should have a cost closer to 2x the second due to the two cache 573 // access per iteration from opposite ends of the array 574 Optional<bool> HasTemporalReuse = 575 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 576 Optional<bool> HasSpacialReuse = 577 R->hasSpacialReuse(Representative, CLS, AA); 578 579 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 580 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 581 RefGroup.push_back(std::move(R)); 582 Added = true; 583 break; 584 } 585 } 586 587 if (!Added) { 588 ReferenceGroupTy RG; 589 RG.push_back(std::move(R)); 590 RefGroups.push_back(std::move(RG)); 591 } 592 } 593 } 594 595 if (RefGroups.empty()) 596 return false; 597 598 LLVM_DEBUG({ 599 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 600 int n = 1; 601 for (const ReferenceGroupTy &RG : RefGroups) { 602 dbgs().indent(2) << "RefGroup " << n << ":\n"; 603 for (const auto &IR : RG) 604 dbgs().indent(4) << *IR << "\n"; 605 n++; 606 } 607 dbgs() << "\n"; 608 }); 609 610 return true; 611 } 612 613 CacheCostTy 614 CacheCost::computeLoopCacheCost(const Loop &L, 615 const ReferenceGroupsTy &RefGroups) const { 616 if (!L.isLoopSimplifyForm()) 617 return InvalidCost; 618 619 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 620 << "' as innermost loop.\n"); 621 622 // Compute the product of the trip counts of each other loop in the nest. 623 CacheCostTy TripCountsProduct = 1; 624 for (const auto &TC : TripCounts) { 625 if (TC.first == &L) 626 continue; 627 TripCountsProduct *= TC.second; 628 } 629 630 CacheCostTy LoopCost = 0; 631 for (const ReferenceGroupTy &RG : RefGroups) { 632 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 633 LoopCost += RefGroupCost * TripCountsProduct; 634 } 635 636 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 637 << "' has cost=" << LoopCost << "\n"); 638 639 return LoopCost; 640 } 641 642 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 643 const Loop &L) const { 644 assert(!RG.empty() && "Reference group should have at least one member."); 645 646 const IndexedReference *Representative = RG.front().get(); 647 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 648 } 649 650 //===----------------------------------------------------------------------===// 651 // LoopCachePrinterPass implementation 652 // 653 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 654 LoopStandardAnalysisResults &AR, 655 LPMUpdater &U) { 656 Function *F = L.getHeader()->getParent(); 657 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 658 659 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 660 OS << *CC; 661 662 return PreservedAnalyses::all(); 663 } 664