xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp (revision a521f2116473fbd8c09db395518f060a27d02334)
1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //
9 //===----------------------------------------------------------------------===//
10 ///
11 /// \file
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
14 ///
15 ///       Compiler Optimizations for Improving Data Locality
16 ///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 ///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18 ///
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 ///    1. Partition memory references that exhibit temporal or spacial reuse
22 ///       into reference groups.
23 ///    2. For each loop L in the a loop nest LN:
24 ///       a. Compute the cost of the reference group
25 ///       b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "loop-cache-cost"
39 
40 static cl::opt<unsigned> DefaultTripCount(
41     "default-trip-count", cl::init(100), cl::Hidden,
42     cl::desc("Use this to specify the default trip count of a loop"));
43 
44 // In this analysis two array references are considered to exhibit temporal
45 // reuse if they access either the same memory location, or a memory location
46 // with distance smaller than a configurable threshold.
47 static cl::opt<unsigned> TemporalReuseThreshold(
48     "temporal-reuse-threshold", cl::init(2), cl::Hidden,
49     cl::desc("Use this to specify the max. distance between array elements "
50              "accessed in a loop so that the elements are classified to have "
51              "temporal reuse"));
52 
53 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
54 /// nullptr if any loops in the loop vector supplied has more than one sibling.
55 /// The loop vector is expected to contain loops collected in breadth-first
56 /// order.
57 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
58   assert(!Loops.empty() && "Expecting a non-empy loop vector");
59 
60   Loop *LastLoop = Loops.back();
61   Loop *ParentLoop = LastLoop->getParentLoop();
62 
63   if (ParentLoop == nullptr) {
64     assert(Loops.size() == 1 && "Expecting a single loop");
65     return LastLoop;
66   }
67 
68   return (llvm::is_sorted(Loops,
69                           [](const Loop *L1, const Loop *L2) {
70                             return L1->getLoopDepth() < L2->getLoopDepth();
71                           }))
72              ? LastLoop
73              : nullptr;
74 }
75 
76 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
77                                   const Loop &L, ScalarEvolution &SE) {
78   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
79   if (!AR || !AR->isAffine())
80     return false;
81 
82   assert(AR->getLoop() && "AR should have a loop");
83 
84   // Check that start and increment are not add recurrences.
85   const SCEV *Start = AR->getStart();
86   const SCEV *Step = AR->getStepRecurrence(SE);
87   if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
88     return false;
89 
90   // Check that start and increment are both invariant in the loop.
91   if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
92     return false;
93 
94   const SCEV *StepRec = AR->getStepRecurrence(SE);
95   if (StepRec && SE.isKnownNegative(StepRec))
96     StepRec = SE.getNegativeSCEV(StepRec);
97 
98   return StepRec == &ElemSize;
99 }
100 
101 /// Compute the trip count for the given loop \p L. Return the SCEV expression
102 /// for the trip count or nullptr if it cannot be computed.
103 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
104   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
105   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
106       !isa<SCEVConstant>(BackedgeTakenCount))
107     return nullptr;
108 
109   return SE.getAddExpr(BackedgeTakenCount,
110                        SE.getOne(BackedgeTakenCount->getType()));
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // IndexedReference implementation
115 //
116 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
117   if (!R.IsValid) {
118     OS << R.StoreOrLoadInst;
119     OS << ", IsValid=false.";
120     return OS;
121   }
122 
123   OS << *R.BasePointer;
124   for (const SCEV *Subscript : R.Subscripts)
125     OS << "[" << *Subscript << "]";
126 
127   OS << ", Sizes: ";
128   for (const SCEV *Size : R.Sizes)
129     OS << "[" << *Size << "]";
130 
131   return OS;
132 }
133 
134 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
135                                    const LoopInfo &LI, ScalarEvolution &SE)
136     : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
137   assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
138          "Expecting a load or store instruction");
139 
140   IsValid = delinearize(LI);
141   if (IsValid)
142     LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
143                                 << "\n");
144 }
145 
146 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
147                                                  unsigned CLS,
148                                                  AliasAnalysis &AA) const {
149   assert(IsValid && "Expecting a valid reference");
150 
151   if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
152     LLVM_DEBUG(dbgs().indent(2)
153                << "No spacial reuse: different base pointers\n");
154     return false;
155   }
156 
157   unsigned NumSubscripts = getNumSubscripts();
158   if (NumSubscripts != Other.getNumSubscripts()) {
159     LLVM_DEBUG(dbgs().indent(2)
160                << "No spacial reuse: different number of subscripts\n");
161     return false;
162   }
163 
164   // all subscripts must be equal, except the leftmost one (the last one).
165   for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
166     if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
167       LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
168                                   << "\n\t" << *getSubscript(SubNum) << "\n\t"
169                                   << *Other.getSubscript(SubNum) << "\n");
170       return false;
171     }
172   }
173 
174   // the difference between the last subscripts must be less than the cache line
175   // size.
176   const SCEV *LastSubscript = getLastSubscript();
177   const SCEV *OtherLastSubscript = Other.getLastSubscript();
178   const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
179       SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
180 
181   if (Diff == nullptr) {
182     LLVM_DEBUG(dbgs().indent(2)
183                << "No spacial reuse, difference between subscript:\n\t"
184                << *LastSubscript << "\n\t" << OtherLastSubscript
185                << "\nis not constant.\n");
186     return None;
187   }
188 
189   bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
190 
191   LLVM_DEBUG({
192     if (InSameCacheLine)
193       dbgs().indent(2) << "Found spacial reuse.\n";
194     else
195       dbgs().indent(2) << "No spacial reuse.\n";
196   });
197 
198   return InSameCacheLine;
199 }
200 
201 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
202                                                   unsigned MaxDistance,
203                                                   const Loop &L,
204                                                   DependenceInfo &DI,
205                                                   AliasAnalysis &AA) const {
206   assert(IsValid && "Expecting a valid reference");
207 
208   if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
209     LLVM_DEBUG(dbgs().indent(2)
210                << "No temporal reuse: different base pointer\n");
211     return false;
212   }
213 
214   std::unique_ptr<Dependence> D =
215       DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
216 
217   if (D == nullptr) {
218     LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
219     return false;
220   }
221 
222   if (D->isLoopIndependent()) {
223     LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
224     return true;
225   }
226 
227   // Check the dependence distance at every loop level. There is temporal reuse
228   // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
229   // it is zero at every other loop level.
230   int LoopDepth = L.getLoopDepth();
231   int Levels = D->getLevels();
232   for (int Level = 1; Level <= Levels; ++Level) {
233     const SCEV *Distance = D->getDistance(Level);
234     const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
235 
236     if (SCEVConst == nullptr) {
237       LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
238       return None;
239     }
240 
241     const ConstantInt &CI = *SCEVConst->getValue();
242     if (Level != LoopDepth && !CI.isZero()) {
243       LLVM_DEBUG(dbgs().indent(2)
244                  << "No temporal reuse: distance is not zero at depth=" << Level
245                  << "\n");
246       return false;
247     } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
248       LLVM_DEBUG(
249           dbgs().indent(2)
250           << "No temporal reuse: distance is greater than MaxDistance at depth="
251           << Level << "\n");
252       return false;
253     }
254   }
255 
256   LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
257   return true;
258 }
259 
260 CacheCostTy IndexedReference::computeRefCost(const Loop &L,
261                                              unsigned CLS) const {
262   assert(IsValid && "Expecting a valid reference");
263   LLVM_DEBUG({
264     dbgs().indent(2) << "Computing cache cost for:\n";
265     dbgs().indent(4) << *this << "\n";
266   });
267 
268   // If the indexed reference is loop invariant the cost is one.
269   if (isLoopInvariant(L)) {
270     LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
271     return 1;
272   }
273 
274   const SCEV *TripCount = computeTripCount(L, SE);
275   if (!TripCount) {
276     LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
277                       << " could not be computed, using DefaultTripCount\n");
278     const SCEV *ElemSize = Sizes.back();
279     TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
280   }
281   LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
282 
283   // If the indexed reference is 'consecutive' the cost is
284   // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
285   const SCEV *RefCost = TripCount;
286 
287   if (isConsecutive(L, CLS)) {
288     const SCEV *Coeff = getLastCoefficient();
289     const SCEV *ElemSize = Sizes.back();
290     const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
291     const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
292     Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
293     if (SE.isKnownNegative(Stride))
294       Stride = SE.getNegativeSCEV(Stride);
295     Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
296     TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
297     const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
298     RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
299 
300     LLVM_DEBUG(dbgs().indent(4)
301                << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
302                << *RefCost << "\n");
303   } else
304     LLVM_DEBUG(dbgs().indent(4)
305                << "Access is not consecutive: RefCost=TripCount=" << *RefCost
306                << "\n");
307 
308   // Attempt to fold RefCost into a constant.
309   if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
310     return ConstantCost->getValue()->getSExtValue();
311 
312   LLVM_DEBUG(dbgs().indent(4)
313              << "RefCost is not a constant! Setting to RefCost=InvalidCost "
314                 "(invalid value).\n");
315 
316   return CacheCost::InvalidCost;
317 }
318 
319 bool IndexedReference::delinearize(const LoopInfo &LI) {
320   assert(Subscripts.empty() && "Subscripts should be empty");
321   assert(Sizes.empty() && "Sizes should be empty");
322   assert(!IsValid && "Should be called once from the constructor");
323   LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
324 
325   const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
326   const BasicBlock *BB = StoreOrLoadInst.getParent();
327 
328   if (Loop *L = LI.getLoopFor(BB)) {
329     const SCEV *AccessFn =
330         SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
331 
332     BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
333     if (BasePointer == nullptr) {
334       LLVM_DEBUG(
335           dbgs().indent(2)
336           << "ERROR: failed to delinearize, can't identify base pointer\n");
337       return false;
338     }
339 
340     AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
341 
342     LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
343                                 << "', AccessFn: " << *AccessFn << "\n");
344 
345     SE.delinearize(AccessFn, Subscripts, Sizes,
346                    SE.getElementSize(&StoreOrLoadInst));
347 
348     if (Subscripts.empty() || Sizes.empty() ||
349         Subscripts.size() != Sizes.size()) {
350       // Attempt to determine whether we have a single dimensional array access.
351       // before giving up.
352       if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
353         LLVM_DEBUG(dbgs().indent(2)
354                    << "ERROR: failed to delinearize reference\n");
355         Subscripts.clear();
356         Sizes.clear();
357         return false;
358       }
359 
360       // The array may be accessed in reverse, for example:
361       //   for (i = N; i > 0; i--)
362       //     A[i] = 0;
363       // In this case, reconstruct the access function using the absolute value
364       // of the step recurrence.
365       const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
366       const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
367 
368       if (StepRec && SE.isKnownNegative(StepRec))
369         AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
370                                     SE.getNegativeSCEV(StepRec),
371                                     AccessFnAR->getLoop(),
372                                     AccessFnAR->getNoWrapFlags());
373       const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
374       Subscripts.push_back(Div);
375       Sizes.push_back(ElemSize);
376     }
377 
378     return all_of(Subscripts, [&](const SCEV *Subscript) {
379       return isSimpleAddRecurrence(*Subscript, *L);
380     });
381   }
382 
383   return false;
384 }
385 
386 bool IndexedReference::isLoopInvariant(const Loop &L) const {
387   Value *Addr = getPointerOperand(&StoreOrLoadInst);
388   assert(Addr != nullptr && "Expecting either a load or a store instruction");
389   assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
390 
391   if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
392     return true;
393 
394   // The indexed reference is loop invariant if none of the coefficients use
395   // the loop induction variable.
396   bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
397     return isCoeffForLoopZeroOrInvariant(*Subscript, L);
398   });
399 
400   return allCoeffForLoopAreZero;
401 }
402 
403 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
404   // The indexed reference is 'consecutive' if the only coefficient that uses
405   // the loop induction variable is the last one...
406   const SCEV *LastSubscript = Subscripts.back();
407   for (const SCEV *Subscript : Subscripts) {
408     if (Subscript == LastSubscript)
409       continue;
410     if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
411       return false;
412   }
413 
414   // ...and the access stride is less than the cache line size.
415   const SCEV *Coeff = getLastCoefficient();
416   const SCEV *ElemSize = Sizes.back();
417   const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
418   const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
419 
420   Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
421   return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
422 }
423 
424 const SCEV *IndexedReference::getLastCoefficient() const {
425   const SCEV *LastSubscript = getLastSubscript();
426   assert(isa<SCEVAddRecExpr>(LastSubscript) &&
427          "Expecting a SCEV add recurrence expression");
428   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
429   return AR->getStepRecurrence(SE);
430 }
431 
432 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
433                                                      const Loop &L) const {
434   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
435   return (AR != nullptr) ? AR->getLoop() != &L
436                          : SE.isLoopInvariant(&Subscript, &L);
437 }
438 
439 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
440                                              const Loop &L) const {
441   if (!isa<SCEVAddRecExpr>(Subscript))
442     return false;
443 
444   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
445   assert(AR->getLoop() && "AR should have a loop");
446 
447   if (!AR->isAffine())
448     return false;
449 
450   const SCEV *Start = AR->getStart();
451   const SCEV *Step = AR->getStepRecurrence(SE);
452 
453   if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
454     return false;
455 
456   return true;
457 }
458 
459 bool IndexedReference::isAliased(const IndexedReference &Other,
460                                  AliasAnalysis &AA) const {
461   const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
462   const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
463   return AA.isMustAlias(Loc1, Loc2);
464 }
465 
466 //===----------------------------------------------------------------------===//
467 // CacheCost implementation
468 //
469 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
470   for (const auto &LC : CC.LoopCosts) {
471     const Loop *L = LC.first;
472     OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
473   }
474   return OS;
475 }
476 
477 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
478                      ScalarEvolution &SE, TargetTransformInfo &TTI,
479                      AliasAnalysis &AA, DependenceInfo &DI,
480                      Optional<unsigned> TRT)
481     : Loops(Loops), TripCounts(), LoopCosts(),
482       TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
483       LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
484   assert(!Loops.empty() && "Expecting a non-empty loop vector.");
485 
486   for (const Loop *L : Loops) {
487     unsigned TripCount = SE.getSmallConstantTripCount(L);
488     TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
489     TripCounts.push_back({L, TripCount});
490   }
491 
492   calculateCacheFootprint();
493 }
494 
495 std::unique_ptr<CacheCost>
496 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
497                         DependenceInfo &DI, Optional<unsigned> TRT) {
498   if (Root.getParentLoop()) {
499     LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
500     return nullptr;
501   }
502 
503   LoopVectorTy Loops;
504   for (Loop *L : breadth_first(&Root))
505     Loops.push_back(L);
506 
507   if (!getInnerMostLoop(Loops)) {
508     LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
509                          "than one innermost loop\n");
510     return nullptr;
511   }
512 
513   return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
514 }
515 
516 void CacheCost::calculateCacheFootprint() {
517   LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
518   ReferenceGroupsTy RefGroups;
519   if (!populateReferenceGroups(RefGroups))
520     return;
521 
522   LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
523   for (const Loop *L : Loops) {
524     assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
525                          [L](const LoopCacheCostTy &LCC) {
526                            return LCC.first == L;
527                          }) == LoopCosts.end()) &&
528            "Should not add duplicate element");
529     CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
530     LoopCosts.push_back(std::make_pair(L, LoopCost));
531   }
532 
533   sortLoopCosts();
534   RefGroups.clear();
535 }
536 
537 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
538   assert(RefGroups.empty() && "Reference groups should be empty");
539 
540   unsigned CLS = TTI.getCacheLineSize();
541   Loop *InnerMostLoop = getInnerMostLoop(Loops);
542   assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
543 
544   for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
545     for (Instruction &I : *BB) {
546       if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
547         continue;
548 
549       std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
550       if (!R->isValid())
551         continue;
552 
553       bool Added = false;
554       for (ReferenceGroupTy &RefGroup : RefGroups) {
555         const IndexedReference &Representative = *RefGroup.front().get();
556         LLVM_DEBUG({
557           dbgs() << "References:\n";
558           dbgs().indent(2) << *R << "\n";
559           dbgs().indent(2) << Representative << "\n";
560         });
561 
562 
563        // FIXME: Both positive and negative access functions will be placed
564        // into the same reference group, resulting in a bi-directional array
565        // access such as:
566        //   for (i = N; i > 0; i--)
567        //     A[i] = A[N - i];
568        // having the same cost calculation as a single dimention access pattern
569        //   for (i = 0; i < N; i++)
570        //     A[i] = A[i];
571        // when in actuality, depending on the array size, the first example
572        // should have a cost closer to 2x the second due to the two cache
573        // access per iteration from opposite ends of the array
574         Optional<bool> HasTemporalReuse =
575             R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
576         Optional<bool> HasSpacialReuse =
577             R->hasSpacialReuse(Representative, CLS, AA);
578 
579         if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
580             (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
581           RefGroup.push_back(std::move(R));
582           Added = true;
583           break;
584         }
585       }
586 
587       if (!Added) {
588         ReferenceGroupTy RG;
589         RG.push_back(std::move(R));
590         RefGroups.push_back(std::move(RG));
591       }
592     }
593   }
594 
595   if (RefGroups.empty())
596     return false;
597 
598   LLVM_DEBUG({
599     dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
600     int n = 1;
601     for (const ReferenceGroupTy &RG : RefGroups) {
602       dbgs().indent(2) << "RefGroup " << n << ":\n";
603       for (const auto &IR : RG)
604         dbgs().indent(4) << *IR << "\n";
605       n++;
606     }
607     dbgs() << "\n";
608   });
609 
610   return true;
611 }
612 
613 CacheCostTy
614 CacheCost::computeLoopCacheCost(const Loop &L,
615                                 const ReferenceGroupsTy &RefGroups) const {
616   if (!L.isLoopSimplifyForm())
617     return InvalidCost;
618 
619   LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
620                     << "' as innermost loop.\n");
621 
622   // Compute the product of the trip counts of each other loop in the nest.
623   CacheCostTy TripCountsProduct = 1;
624   for (const auto &TC : TripCounts) {
625     if (TC.first == &L)
626       continue;
627     TripCountsProduct *= TC.second;
628   }
629 
630   CacheCostTy LoopCost = 0;
631   for (const ReferenceGroupTy &RG : RefGroups) {
632     CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
633     LoopCost += RefGroupCost * TripCountsProduct;
634   }
635 
636   LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
637                               << "' has cost=" << LoopCost << "\n");
638 
639   return LoopCost;
640 }
641 
642 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
643                                                 const Loop &L) const {
644   assert(!RG.empty() && "Reference group should have at least one member.");
645 
646   const IndexedReference *Representative = RG.front().get();
647   return Representative->computeRefCost(L, TTI.getCacheLineSize());
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // LoopCachePrinterPass implementation
652 //
653 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
654                                             LoopStandardAnalysisResults &AR,
655                                             LPMUpdater &U) {
656   Function *F = L.getHeader()->getParent();
657   DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
658 
659   if (auto CC = CacheCost::getCacheCost(L, AR, DI))
660     OS << *CC;
661 
662   return PreservedAnalyses::all();
663 }
664