1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DependenceAnalysis.h" 34 #include "llvm/Analysis/LoopInfo.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-cache-cost" 43 44 static cl::opt<unsigned> DefaultTripCount( 45 "default-trip-count", cl::init(100), cl::Hidden, 46 cl::desc("Use this to specify the default trip count of a loop")); 47 48 // In this analysis two array references are considered to exhibit temporal 49 // reuse if they access either the same memory location, or a memory location 50 // with distance smaller than a configurable threshold. 51 static cl::opt<unsigned> TemporalReuseThreshold( 52 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 53 cl::desc("Use this to specify the max. distance between array elements " 54 "accessed in a loop so that the elements are classified to have " 55 "temporal reuse")); 56 57 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 58 /// nullptr if any loops in the loop vector supplied has more than one sibling. 59 /// The loop vector is expected to contain loops collected in breadth-first 60 /// order. 61 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 62 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 63 64 Loop *LastLoop = Loops.back(); 65 Loop *ParentLoop = LastLoop->getParentLoop(); 66 67 if (ParentLoop == nullptr) { 68 assert(Loops.size() == 1 && "Expecting a single loop"); 69 return LastLoop; 70 } 71 72 return (llvm::is_sorted(Loops, 73 [](const Loop *L1, const Loop *L2) { 74 return L1->getLoopDepth() < L2->getLoopDepth(); 75 })) 76 ? LastLoop 77 : nullptr; 78 } 79 80 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 81 const Loop &L, ScalarEvolution &SE) { 82 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 83 if (!AR || !AR->isAffine()) 84 return false; 85 86 assert(AR->getLoop() && "AR should have a loop"); 87 88 // Check that start and increment are not add recurrences. 89 const SCEV *Start = AR->getStart(); 90 const SCEV *Step = AR->getStepRecurrence(SE); 91 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 92 return false; 93 94 // Check that start and increment are both invariant in the loop. 95 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 96 return false; 97 98 const SCEV *StepRec = AR->getStepRecurrence(SE); 99 if (StepRec && SE.isKnownNegative(StepRec)) 100 StepRec = SE.getNegativeSCEV(StepRec); 101 102 return StepRec == &ElemSize; 103 } 104 105 /// Compute the trip count for the given loop \p L. Return the SCEV expression 106 /// for the trip count or nullptr if it cannot be computed. 107 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 108 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 109 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 110 !isa<SCEVConstant>(BackedgeTakenCount)) 111 return nullptr; 112 return SE.getTripCountFromExitCount(BackedgeTakenCount); 113 } 114 115 //===----------------------------------------------------------------------===// 116 // IndexedReference implementation 117 // 118 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 119 if (!R.IsValid) { 120 OS << R.StoreOrLoadInst; 121 OS << ", IsValid=false."; 122 return OS; 123 } 124 125 OS << *R.BasePointer; 126 for (const SCEV *Subscript : R.Subscripts) 127 OS << "[" << *Subscript << "]"; 128 129 OS << ", Sizes: "; 130 for (const SCEV *Size : R.Sizes) 131 OS << "[" << *Size << "]"; 132 133 return OS; 134 } 135 136 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 137 const LoopInfo &LI, ScalarEvolution &SE) 138 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 139 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 140 "Expecting a load or store instruction"); 141 142 IsValid = delinearize(LI); 143 if (IsValid) 144 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 145 << "\n"); 146 } 147 148 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 149 unsigned CLS, 150 AAResults &AA) const { 151 assert(IsValid && "Expecting a valid reference"); 152 153 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 154 LLVM_DEBUG(dbgs().indent(2) 155 << "No spacial reuse: different base pointers\n"); 156 return false; 157 } 158 159 unsigned NumSubscripts = getNumSubscripts(); 160 if (NumSubscripts != Other.getNumSubscripts()) { 161 LLVM_DEBUG(dbgs().indent(2) 162 << "No spacial reuse: different number of subscripts\n"); 163 return false; 164 } 165 166 // all subscripts must be equal, except the leftmost one (the last one). 167 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 168 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 169 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 170 << "\n\t" << *getSubscript(SubNum) << "\n\t" 171 << *Other.getSubscript(SubNum) << "\n"); 172 return false; 173 } 174 } 175 176 // the difference between the last subscripts must be less than the cache line 177 // size. 178 const SCEV *LastSubscript = getLastSubscript(); 179 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 180 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 181 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 182 183 if (Diff == nullptr) { 184 LLVM_DEBUG(dbgs().indent(2) 185 << "No spacial reuse, difference between subscript:\n\t" 186 << *LastSubscript << "\n\t" << OtherLastSubscript 187 << "\nis not constant.\n"); 188 return None; 189 } 190 191 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 192 193 LLVM_DEBUG({ 194 if (InSameCacheLine) 195 dbgs().indent(2) << "Found spacial reuse.\n"; 196 else 197 dbgs().indent(2) << "No spacial reuse.\n"; 198 }); 199 200 return InSameCacheLine; 201 } 202 203 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 204 unsigned MaxDistance, 205 const Loop &L, 206 DependenceInfo &DI, 207 AAResults &AA) const { 208 assert(IsValid && "Expecting a valid reference"); 209 210 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 211 LLVM_DEBUG(dbgs().indent(2) 212 << "No temporal reuse: different base pointer\n"); 213 return false; 214 } 215 216 std::unique_ptr<Dependence> D = 217 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 218 219 if (D == nullptr) { 220 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 221 return false; 222 } 223 224 if (D->isLoopIndependent()) { 225 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 226 return true; 227 } 228 229 // Check the dependence distance at every loop level. There is temporal reuse 230 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 231 // it is zero at every other loop level. 232 int LoopDepth = L.getLoopDepth(); 233 int Levels = D->getLevels(); 234 for (int Level = 1; Level <= Levels; ++Level) { 235 const SCEV *Distance = D->getDistance(Level); 236 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 237 238 if (SCEVConst == nullptr) { 239 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 240 return None; 241 } 242 243 const ConstantInt &CI = *SCEVConst->getValue(); 244 if (Level != LoopDepth && !CI.isZero()) { 245 LLVM_DEBUG(dbgs().indent(2) 246 << "No temporal reuse: distance is not zero at depth=" << Level 247 << "\n"); 248 return false; 249 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 250 LLVM_DEBUG( 251 dbgs().indent(2) 252 << "No temporal reuse: distance is greater than MaxDistance at depth=" 253 << Level << "\n"); 254 return false; 255 } 256 } 257 258 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 259 return true; 260 } 261 262 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 263 unsigned CLS) const { 264 assert(IsValid && "Expecting a valid reference"); 265 LLVM_DEBUG({ 266 dbgs().indent(2) << "Computing cache cost for:\n"; 267 dbgs().indent(4) << *this << "\n"; 268 }); 269 270 // If the indexed reference is loop invariant the cost is one. 271 if (isLoopInvariant(L)) { 272 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 273 return 1; 274 } 275 276 const SCEV *TripCount = computeTripCount(L, SE); 277 if (!TripCount) { 278 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 279 << " could not be computed, using DefaultTripCount\n"); 280 const SCEV *ElemSize = Sizes.back(); 281 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 282 } 283 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 284 285 // If the indexed reference is 'consecutive' the cost is 286 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 287 const SCEV *RefCost = TripCount; 288 289 if (isConsecutive(L, CLS)) { 290 const SCEV *Coeff = getLastCoefficient(); 291 const SCEV *ElemSize = Sizes.back(); 292 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 293 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 294 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 295 if (SE.isKnownNegative(Stride)) 296 Stride = SE.getNegativeSCEV(Stride); 297 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 298 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 299 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 300 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 301 302 LLVM_DEBUG(dbgs().indent(4) 303 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 304 << *RefCost << "\n"); 305 } else 306 LLVM_DEBUG(dbgs().indent(4) 307 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 308 << "\n"); 309 310 // Attempt to fold RefCost into a constant. 311 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 312 return ConstantCost->getValue()->getSExtValue(); 313 314 LLVM_DEBUG(dbgs().indent(4) 315 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 316 "(invalid value).\n"); 317 318 return CacheCost::InvalidCost; 319 } 320 321 bool IndexedReference::delinearize(const LoopInfo &LI) { 322 assert(Subscripts.empty() && "Subscripts should be empty"); 323 assert(Sizes.empty() && "Sizes should be empty"); 324 assert(!IsValid && "Should be called once from the constructor"); 325 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 326 327 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 328 const BasicBlock *BB = StoreOrLoadInst.getParent(); 329 330 if (Loop *L = LI.getLoopFor(BB)) { 331 const SCEV *AccessFn = 332 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 333 334 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 335 if (BasePointer == nullptr) { 336 LLVM_DEBUG( 337 dbgs().indent(2) 338 << "ERROR: failed to delinearize, can't identify base pointer\n"); 339 return false; 340 } 341 342 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 343 344 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 345 << "', AccessFn: " << *AccessFn << "\n"); 346 347 SE.delinearize(AccessFn, Subscripts, Sizes, 348 SE.getElementSize(&StoreOrLoadInst)); 349 350 if (Subscripts.empty() || Sizes.empty() || 351 Subscripts.size() != Sizes.size()) { 352 // Attempt to determine whether we have a single dimensional array access. 353 // before giving up. 354 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 355 LLVM_DEBUG(dbgs().indent(2) 356 << "ERROR: failed to delinearize reference\n"); 357 Subscripts.clear(); 358 Sizes.clear(); 359 return false; 360 } 361 362 // The array may be accessed in reverse, for example: 363 // for (i = N; i > 0; i--) 364 // A[i] = 0; 365 // In this case, reconstruct the access function using the absolute value 366 // of the step recurrence. 367 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 368 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 369 370 if (StepRec && SE.isKnownNegative(StepRec)) 371 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 372 SE.getNegativeSCEV(StepRec), 373 AccessFnAR->getLoop(), 374 AccessFnAR->getNoWrapFlags()); 375 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 376 Subscripts.push_back(Div); 377 Sizes.push_back(ElemSize); 378 } 379 380 return all_of(Subscripts, [&](const SCEV *Subscript) { 381 return isSimpleAddRecurrence(*Subscript, *L); 382 }); 383 } 384 385 return false; 386 } 387 388 bool IndexedReference::isLoopInvariant(const Loop &L) const { 389 Value *Addr = getPointerOperand(&StoreOrLoadInst); 390 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 391 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 392 393 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 394 return true; 395 396 // The indexed reference is loop invariant if none of the coefficients use 397 // the loop induction variable. 398 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 399 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 400 }); 401 402 return allCoeffForLoopAreZero; 403 } 404 405 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 406 // The indexed reference is 'consecutive' if the only coefficient that uses 407 // the loop induction variable is the last one... 408 const SCEV *LastSubscript = Subscripts.back(); 409 for (const SCEV *Subscript : Subscripts) { 410 if (Subscript == LastSubscript) 411 continue; 412 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 413 return false; 414 } 415 416 // ...and the access stride is less than the cache line size. 417 const SCEV *Coeff = getLastCoefficient(); 418 const SCEV *ElemSize = Sizes.back(); 419 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 420 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 421 422 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 423 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 424 } 425 426 const SCEV *IndexedReference::getLastCoefficient() const { 427 const SCEV *LastSubscript = getLastSubscript(); 428 assert(isa<SCEVAddRecExpr>(LastSubscript) && 429 "Expecting a SCEV add recurrence expression"); 430 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); 431 return AR->getStepRecurrence(SE); 432 } 433 434 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 435 const Loop &L) const { 436 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 437 return (AR != nullptr) ? AR->getLoop() != &L 438 : SE.isLoopInvariant(&Subscript, &L); 439 } 440 441 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 442 const Loop &L) const { 443 if (!isa<SCEVAddRecExpr>(Subscript)) 444 return false; 445 446 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 447 assert(AR->getLoop() && "AR should have a loop"); 448 449 if (!AR->isAffine()) 450 return false; 451 452 const SCEV *Start = AR->getStart(); 453 const SCEV *Step = AR->getStepRecurrence(SE); 454 455 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 456 return false; 457 458 return true; 459 } 460 461 bool IndexedReference::isAliased(const IndexedReference &Other, 462 AAResults &AA) const { 463 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 464 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 465 return AA.isMustAlias(Loc1, Loc2); 466 } 467 468 //===----------------------------------------------------------------------===// 469 // CacheCost implementation 470 // 471 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 472 for (const auto &LC : CC.LoopCosts) { 473 const Loop *L = LC.first; 474 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 475 } 476 return OS; 477 } 478 479 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 480 ScalarEvolution &SE, TargetTransformInfo &TTI, 481 AAResults &AA, DependenceInfo &DI, 482 Optional<unsigned> TRT) 483 : Loops(Loops), TripCounts(), LoopCosts(), 484 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 485 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 486 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 487 488 for (const Loop *L : Loops) { 489 unsigned TripCount = SE.getSmallConstantTripCount(L); 490 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 491 TripCounts.push_back({L, TripCount}); 492 } 493 494 calculateCacheFootprint(); 495 } 496 497 std::unique_ptr<CacheCost> 498 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 499 DependenceInfo &DI, Optional<unsigned> TRT) { 500 if (!Root.isOutermost()) { 501 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 502 return nullptr; 503 } 504 505 LoopVectorTy Loops; 506 append_range(Loops, breadth_first(&Root)); 507 508 if (!getInnerMostLoop(Loops)) { 509 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 510 "than one innermost loop\n"); 511 return nullptr; 512 } 513 514 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 515 } 516 517 void CacheCost::calculateCacheFootprint() { 518 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 519 ReferenceGroupsTy RefGroups; 520 if (!populateReferenceGroups(RefGroups)) 521 return; 522 523 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 524 for (const Loop *L : Loops) { 525 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), 526 [L](const LoopCacheCostTy &LCC) { 527 return LCC.first == L; 528 }) == LoopCosts.end()) && 529 "Should not add duplicate element"); 530 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 531 LoopCosts.push_back(std::make_pair(L, LoopCost)); 532 } 533 534 sortLoopCosts(); 535 RefGroups.clear(); 536 } 537 538 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 539 assert(RefGroups.empty() && "Reference groups should be empty"); 540 541 unsigned CLS = TTI.getCacheLineSize(); 542 Loop *InnerMostLoop = getInnerMostLoop(Loops); 543 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 544 545 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 546 for (Instruction &I : *BB) { 547 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 548 continue; 549 550 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 551 if (!R->isValid()) 552 continue; 553 554 bool Added = false; 555 for (ReferenceGroupTy &RefGroup : RefGroups) { 556 const IndexedReference &Representative = *RefGroup.front().get(); 557 LLVM_DEBUG({ 558 dbgs() << "References:\n"; 559 dbgs().indent(2) << *R << "\n"; 560 dbgs().indent(2) << Representative << "\n"; 561 }); 562 563 564 // FIXME: Both positive and negative access functions will be placed 565 // into the same reference group, resulting in a bi-directional array 566 // access such as: 567 // for (i = N; i > 0; i--) 568 // A[i] = A[N - i]; 569 // having the same cost calculation as a single dimention access pattern 570 // for (i = 0; i < N; i++) 571 // A[i] = A[i]; 572 // when in actuality, depending on the array size, the first example 573 // should have a cost closer to 2x the second due to the two cache 574 // access per iteration from opposite ends of the array 575 Optional<bool> HasTemporalReuse = 576 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 577 Optional<bool> HasSpacialReuse = 578 R->hasSpacialReuse(Representative, CLS, AA); 579 580 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 581 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 582 RefGroup.push_back(std::move(R)); 583 Added = true; 584 break; 585 } 586 } 587 588 if (!Added) { 589 ReferenceGroupTy RG; 590 RG.push_back(std::move(R)); 591 RefGroups.push_back(std::move(RG)); 592 } 593 } 594 } 595 596 if (RefGroups.empty()) 597 return false; 598 599 LLVM_DEBUG({ 600 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 601 int n = 1; 602 for (const ReferenceGroupTy &RG : RefGroups) { 603 dbgs().indent(2) << "RefGroup " << n << ":\n"; 604 for (const auto &IR : RG) 605 dbgs().indent(4) << *IR << "\n"; 606 n++; 607 } 608 dbgs() << "\n"; 609 }); 610 611 return true; 612 } 613 614 CacheCostTy 615 CacheCost::computeLoopCacheCost(const Loop &L, 616 const ReferenceGroupsTy &RefGroups) const { 617 if (!L.isLoopSimplifyForm()) 618 return InvalidCost; 619 620 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 621 << "' as innermost loop.\n"); 622 623 // Compute the product of the trip counts of each other loop in the nest. 624 CacheCostTy TripCountsProduct = 1; 625 for (const auto &TC : TripCounts) { 626 if (TC.first == &L) 627 continue; 628 TripCountsProduct *= TC.second; 629 } 630 631 CacheCostTy LoopCost = 0; 632 for (const ReferenceGroupTy &RG : RefGroups) { 633 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 634 LoopCost += RefGroupCost * TripCountsProduct; 635 } 636 637 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 638 << "' has cost=" << LoopCost << "\n"); 639 640 return LoopCost; 641 } 642 643 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 644 const Loop &L) const { 645 assert(!RG.empty() && "Reference group should have at least one member."); 646 647 const IndexedReference *Representative = RG.front().get(); 648 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 649 } 650 651 //===----------------------------------------------------------------------===// 652 // LoopCachePrinterPass implementation 653 // 654 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 655 LoopStandardAnalysisResults &AR, 656 LPMUpdater &U) { 657 Function *F = L.getHeader()->getParent(); 658 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 659 660 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 661 OS << *CC; 662 663 return PreservedAnalyses::all(); 664 } 665