1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/Delinearization.h" 34 #include "llvm/Analysis/DependenceAnalysis.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "loop-cache-cost" 44 45 static cl::opt<unsigned> DefaultTripCount( 46 "default-trip-count", cl::init(100), cl::Hidden, 47 cl::desc("Use this to specify the default trip count of a loop")); 48 49 // In this analysis two array references are considered to exhibit temporal 50 // reuse if they access either the same memory location, or a memory location 51 // with distance smaller than a configurable threshold. 52 static cl::opt<unsigned> TemporalReuseThreshold( 53 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 54 cl::desc("Use this to specify the max. distance between array elements " 55 "accessed in a loop so that the elements are classified to have " 56 "temporal reuse")); 57 58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 59 /// nullptr if any loops in the loop vector supplied has more than one sibling. 60 /// The loop vector is expected to contain loops collected in breadth-first 61 /// order. 62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 63 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 64 65 Loop *LastLoop = Loops.back(); 66 Loop *ParentLoop = LastLoop->getParentLoop(); 67 68 if (ParentLoop == nullptr) { 69 assert(Loops.size() == 1 && "Expecting a single loop"); 70 return LastLoop; 71 } 72 73 return (llvm::is_sorted(Loops, 74 [](const Loop *L1, const Loop *L2) { 75 return L1->getLoopDepth() < L2->getLoopDepth(); 76 })) 77 ? LastLoop 78 : nullptr; 79 } 80 81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 82 const Loop &L, ScalarEvolution &SE) { 83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 84 if (!AR || !AR->isAffine()) 85 return false; 86 87 assert(AR->getLoop() && "AR should have a loop"); 88 89 // Check that start and increment are not add recurrences. 90 const SCEV *Start = AR->getStart(); 91 const SCEV *Step = AR->getStepRecurrence(SE); 92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 93 return false; 94 95 // Check that start and increment are both invariant in the loop. 96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 97 return false; 98 99 const SCEV *StepRec = AR->getStepRecurrence(SE); 100 if (StepRec && SE.isKnownNegative(StepRec)) 101 StepRec = SE.getNegativeSCEV(StepRec); 102 103 return StepRec == &ElemSize; 104 } 105 106 /// Compute the trip count for the given loop \p L. Return the SCEV expression 107 /// for the trip count or nullptr if it cannot be computed. 108 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 109 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 110 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 111 !isa<SCEVConstant>(BackedgeTakenCount)) 112 return nullptr; 113 return SE.getTripCountFromExitCount(BackedgeTakenCount); 114 } 115 116 //===----------------------------------------------------------------------===// 117 // IndexedReference implementation 118 // 119 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 120 if (!R.IsValid) { 121 OS << R.StoreOrLoadInst; 122 OS << ", IsValid=false."; 123 return OS; 124 } 125 126 OS << *R.BasePointer; 127 for (const SCEV *Subscript : R.Subscripts) 128 OS << "[" << *Subscript << "]"; 129 130 OS << ", Sizes: "; 131 for (const SCEV *Size : R.Sizes) 132 OS << "[" << *Size << "]"; 133 134 return OS; 135 } 136 137 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 138 const LoopInfo &LI, ScalarEvolution &SE) 139 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 140 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 141 "Expecting a load or store instruction"); 142 143 IsValid = delinearize(LI); 144 if (IsValid) 145 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 146 << "\n"); 147 } 148 149 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 150 unsigned CLS, 151 AAResults &AA) const { 152 assert(IsValid && "Expecting a valid reference"); 153 154 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 155 LLVM_DEBUG(dbgs().indent(2) 156 << "No spacial reuse: different base pointers\n"); 157 return false; 158 } 159 160 unsigned NumSubscripts = getNumSubscripts(); 161 if (NumSubscripts != Other.getNumSubscripts()) { 162 LLVM_DEBUG(dbgs().indent(2) 163 << "No spacial reuse: different number of subscripts\n"); 164 return false; 165 } 166 167 // all subscripts must be equal, except the leftmost one (the last one). 168 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 169 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 170 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 171 << "\n\t" << *getSubscript(SubNum) << "\n\t" 172 << *Other.getSubscript(SubNum) << "\n"); 173 return false; 174 } 175 } 176 177 // the difference between the last subscripts must be less than the cache line 178 // size. 179 const SCEV *LastSubscript = getLastSubscript(); 180 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 181 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 182 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 183 184 if (Diff == nullptr) { 185 LLVM_DEBUG(dbgs().indent(2) 186 << "No spacial reuse, difference between subscript:\n\t" 187 << *LastSubscript << "\n\t" << OtherLastSubscript 188 << "\nis not constant.\n"); 189 return None; 190 } 191 192 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 193 194 LLVM_DEBUG({ 195 if (InSameCacheLine) 196 dbgs().indent(2) << "Found spacial reuse.\n"; 197 else 198 dbgs().indent(2) << "No spacial reuse.\n"; 199 }); 200 201 return InSameCacheLine; 202 } 203 204 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 205 unsigned MaxDistance, 206 const Loop &L, 207 DependenceInfo &DI, 208 AAResults &AA) const { 209 assert(IsValid && "Expecting a valid reference"); 210 211 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 212 LLVM_DEBUG(dbgs().indent(2) 213 << "No temporal reuse: different base pointer\n"); 214 return false; 215 } 216 217 std::unique_ptr<Dependence> D = 218 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 219 220 if (D == nullptr) { 221 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 222 return false; 223 } 224 225 if (D->isLoopIndependent()) { 226 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 227 return true; 228 } 229 230 // Check the dependence distance at every loop level. There is temporal reuse 231 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 232 // it is zero at every other loop level. 233 int LoopDepth = L.getLoopDepth(); 234 int Levels = D->getLevels(); 235 for (int Level = 1; Level <= Levels; ++Level) { 236 const SCEV *Distance = D->getDistance(Level); 237 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 238 239 if (SCEVConst == nullptr) { 240 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 241 return None; 242 } 243 244 const ConstantInt &CI = *SCEVConst->getValue(); 245 if (Level != LoopDepth && !CI.isZero()) { 246 LLVM_DEBUG(dbgs().indent(2) 247 << "No temporal reuse: distance is not zero at depth=" << Level 248 << "\n"); 249 return false; 250 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 251 LLVM_DEBUG( 252 dbgs().indent(2) 253 << "No temporal reuse: distance is greater than MaxDistance at depth=" 254 << Level << "\n"); 255 return false; 256 } 257 } 258 259 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 260 return true; 261 } 262 263 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 264 unsigned CLS) const { 265 assert(IsValid && "Expecting a valid reference"); 266 LLVM_DEBUG({ 267 dbgs().indent(2) << "Computing cache cost for:\n"; 268 dbgs().indent(4) << *this << "\n"; 269 }); 270 271 // If the indexed reference is loop invariant the cost is one. 272 if (isLoopInvariant(L)) { 273 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 274 return 1; 275 } 276 277 const SCEV *TripCount = computeTripCount(L, SE); 278 if (!TripCount) { 279 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 280 << " could not be computed, using DefaultTripCount\n"); 281 const SCEV *ElemSize = Sizes.back(); 282 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 283 } 284 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 285 286 // If the indexed reference is 'consecutive' the cost is 287 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 288 const SCEV *RefCost = TripCount; 289 290 if (isConsecutive(L, CLS)) { 291 const SCEV *Coeff = getLastCoefficient(); 292 const SCEV *ElemSize = Sizes.back(); 293 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 294 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 295 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS); 296 if (SE.isKnownNegative(Stride)) 297 Stride = SE.getNegativeSCEV(Stride); 298 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 299 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 300 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 301 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 302 303 LLVM_DEBUG(dbgs().indent(4) 304 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 305 << *RefCost << "\n"); 306 } else 307 LLVM_DEBUG(dbgs().indent(4) 308 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 309 << "\n"); 310 311 // Attempt to fold RefCost into a constant. 312 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 313 return ConstantCost->getValue()->getSExtValue(); 314 315 LLVM_DEBUG(dbgs().indent(4) 316 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 317 "(invalid value).\n"); 318 319 return CacheCost::InvalidCost; 320 } 321 322 bool IndexedReference::delinearize(const LoopInfo &LI) { 323 assert(Subscripts.empty() && "Subscripts should be empty"); 324 assert(Sizes.empty() && "Sizes should be empty"); 325 assert(!IsValid && "Should be called once from the constructor"); 326 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 327 328 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 329 const BasicBlock *BB = StoreOrLoadInst.getParent(); 330 331 if (Loop *L = LI.getLoopFor(BB)) { 332 const SCEV *AccessFn = 333 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 334 335 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 336 if (BasePointer == nullptr) { 337 LLVM_DEBUG( 338 dbgs().indent(2) 339 << "ERROR: failed to delinearize, can't identify base pointer\n"); 340 return false; 341 } 342 343 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 344 345 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 346 << "', AccessFn: " << *AccessFn << "\n"); 347 348 llvm::delinearize(SE, AccessFn, Subscripts, Sizes, 349 SE.getElementSize(&StoreOrLoadInst)); 350 351 if (Subscripts.empty() || Sizes.empty() || 352 Subscripts.size() != Sizes.size()) { 353 // Attempt to determine whether we have a single dimensional array access. 354 // before giving up. 355 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 356 LLVM_DEBUG(dbgs().indent(2) 357 << "ERROR: failed to delinearize reference\n"); 358 Subscripts.clear(); 359 Sizes.clear(); 360 return false; 361 } 362 363 // The array may be accessed in reverse, for example: 364 // for (i = N; i > 0; i--) 365 // A[i] = 0; 366 // In this case, reconstruct the access function using the absolute value 367 // of the step recurrence. 368 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 369 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 370 371 if (StepRec && SE.isKnownNegative(StepRec)) 372 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 373 SE.getNegativeSCEV(StepRec), 374 AccessFnAR->getLoop(), 375 AccessFnAR->getNoWrapFlags()); 376 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 377 Subscripts.push_back(Div); 378 Sizes.push_back(ElemSize); 379 } 380 381 return all_of(Subscripts, [&](const SCEV *Subscript) { 382 return isSimpleAddRecurrence(*Subscript, *L); 383 }); 384 } 385 386 return false; 387 } 388 389 bool IndexedReference::isLoopInvariant(const Loop &L) const { 390 Value *Addr = getPointerOperand(&StoreOrLoadInst); 391 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 392 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 393 394 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 395 return true; 396 397 // The indexed reference is loop invariant if none of the coefficients use 398 // the loop induction variable. 399 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 400 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 401 }); 402 403 return allCoeffForLoopAreZero; 404 } 405 406 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 407 // The indexed reference is 'consecutive' if the only coefficient that uses 408 // the loop induction variable is the last one... 409 const SCEV *LastSubscript = Subscripts.back(); 410 for (const SCEV *Subscript : Subscripts) { 411 if (Subscript == LastSubscript) 412 continue; 413 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 414 return false; 415 } 416 417 // ...and the access stride is less than the cache line size. 418 const SCEV *Coeff = getLastCoefficient(); 419 const SCEV *ElemSize = Sizes.back(); 420 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 421 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 422 423 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 424 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 425 } 426 427 const SCEV *IndexedReference::getLastCoefficient() const { 428 const SCEV *LastSubscript = getLastSubscript(); 429 auto *AR = cast<SCEVAddRecExpr>(LastSubscript); 430 return AR->getStepRecurrence(SE); 431 } 432 433 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 434 const Loop &L) const { 435 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 436 return (AR != nullptr) ? AR->getLoop() != &L 437 : SE.isLoopInvariant(&Subscript, &L); 438 } 439 440 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 441 const Loop &L) const { 442 if (!isa<SCEVAddRecExpr>(Subscript)) 443 return false; 444 445 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 446 assert(AR->getLoop() && "AR should have a loop"); 447 448 if (!AR->isAffine()) 449 return false; 450 451 const SCEV *Start = AR->getStart(); 452 const SCEV *Step = AR->getStepRecurrence(SE); 453 454 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 455 return false; 456 457 return true; 458 } 459 460 bool IndexedReference::isAliased(const IndexedReference &Other, 461 AAResults &AA) const { 462 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 463 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 464 return AA.isMustAlias(Loc1, Loc2); 465 } 466 467 //===----------------------------------------------------------------------===// 468 // CacheCost implementation 469 // 470 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 471 for (const auto &LC : CC.LoopCosts) { 472 const Loop *L = LC.first; 473 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 474 } 475 return OS; 476 } 477 478 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 479 ScalarEvolution &SE, TargetTransformInfo &TTI, 480 AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT) 481 : Loops(Loops), 482 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 483 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 484 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 485 486 for (const Loop *L : Loops) { 487 unsigned TripCount = SE.getSmallConstantTripCount(L); 488 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 489 TripCounts.push_back({L, TripCount}); 490 } 491 492 calculateCacheFootprint(); 493 } 494 495 std::unique_ptr<CacheCost> 496 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 497 DependenceInfo &DI, Optional<unsigned> TRT) { 498 if (!Root.isOutermost()) { 499 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 500 return nullptr; 501 } 502 503 LoopVectorTy Loops; 504 append_range(Loops, breadth_first(&Root)); 505 506 if (!getInnerMostLoop(Loops)) { 507 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 508 "than one innermost loop\n"); 509 return nullptr; 510 } 511 512 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 513 } 514 515 void CacheCost::calculateCacheFootprint() { 516 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 517 ReferenceGroupsTy RefGroups; 518 if (!populateReferenceGroups(RefGroups)) 519 return; 520 521 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 522 for (const Loop *L : Loops) { 523 assert(llvm::none_of( 524 LoopCosts, 525 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) && 526 "Should not add duplicate element"); 527 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 528 LoopCosts.push_back(std::make_pair(L, LoopCost)); 529 } 530 531 sortLoopCosts(); 532 RefGroups.clear(); 533 } 534 535 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 536 assert(RefGroups.empty() && "Reference groups should be empty"); 537 538 unsigned CLS = TTI.getCacheLineSize(); 539 Loop *InnerMostLoop = getInnerMostLoop(Loops); 540 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 541 542 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 543 for (Instruction &I : *BB) { 544 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 545 continue; 546 547 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 548 if (!R->isValid()) 549 continue; 550 551 bool Added = false; 552 for (ReferenceGroupTy &RefGroup : RefGroups) { 553 const IndexedReference &Representative = *RefGroup.front().get(); 554 LLVM_DEBUG({ 555 dbgs() << "References:\n"; 556 dbgs().indent(2) << *R << "\n"; 557 dbgs().indent(2) << Representative << "\n"; 558 }); 559 560 561 // FIXME: Both positive and negative access functions will be placed 562 // into the same reference group, resulting in a bi-directional array 563 // access such as: 564 // for (i = N; i > 0; i--) 565 // A[i] = A[N - i]; 566 // having the same cost calculation as a single dimention access pattern 567 // for (i = 0; i < N; i++) 568 // A[i] = A[i]; 569 // when in actuality, depending on the array size, the first example 570 // should have a cost closer to 2x the second due to the two cache 571 // access per iteration from opposite ends of the array 572 Optional<bool> HasTemporalReuse = 573 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 574 Optional<bool> HasSpacialReuse = 575 R->hasSpacialReuse(Representative, CLS, AA); 576 577 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 578 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 579 RefGroup.push_back(std::move(R)); 580 Added = true; 581 break; 582 } 583 } 584 585 if (!Added) { 586 ReferenceGroupTy RG; 587 RG.push_back(std::move(R)); 588 RefGroups.push_back(std::move(RG)); 589 } 590 } 591 } 592 593 if (RefGroups.empty()) 594 return false; 595 596 LLVM_DEBUG({ 597 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 598 int n = 1; 599 for (const ReferenceGroupTy &RG : RefGroups) { 600 dbgs().indent(2) << "RefGroup " << n << ":\n"; 601 for (const auto &IR : RG) 602 dbgs().indent(4) << *IR << "\n"; 603 n++; 604 } 605 dbgs() << "\n"; 606 }); 607 608 return true; 609 } 610 611 CacheCostTy 612 CacheCost::computeLoopCacheCost(const Loop &L, 613 const ReferenceGroupsTy &RefGroups) const { 614 if (!L.isLoopSimplifyForm()) 615 return InvalidCost; 616 617 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 618 << "' as innermost loop.\n"); 619 620 // Compute the product of the trip counts of each other loop in the nest. 621 CacheCostTy TripCountsProduct = 1; 622 for (const auto &TC : TripCounts) { 623 if (TC.first == &L) 624 continue; 625 TripCountsProduct *= TC.second; 626 } 627 628 CacheCostTy LoopCost = 0; 629 for (const ReferenceGroupTy &RG : RefGroups) { 630 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 631 LoopCost += RefGroupCost * TripCountsProduct; 632 } 633 634 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 635 << "' has cost=" << LoopCost << "\n"); 636 637 return LoopCost; 638 } 639 640 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 641 const Loop &L) const { 642 assert(!RG.empty() && "Reference group should have at least one member."); 643 644 const IndexedReference *Representative = RG.front().get(); 645 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 646 } 647 648 //===----------------------------------------------------------------------===// 649 // LoopCachePrinterPass implementation 650 // 651 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 652 LoopStandardAnalysisResults &AR, 653 LPMUpdater &U) { 654 Function *F = L.getHeader()->getParent(); 655 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 656 657 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 658 OS << *CC; 659 660 return PreservedAnalyses::all(); 661 } 662