1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 6 // See https://llvm.org/LICENSE.txt for license information. 7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 8 // 9 //===----------------------------------------------------------------------===// 10 /// 11 /// \file 12 /// This file defines the implementation for the loop cache analysis. 13 /// The implementation is largely based on the following paper: 14 /// 15 /// Compiler Optimizations for Improving Data Locality 16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng 17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf 18 /// 19 /// The general approach taken to estimate the number of cache lines used by the 20 /// memory references in an inner loop is: 21 /// 1. Partition memory references that exhibit temporal or spacial reuse 22 /// into reference groups. 23 /// 2. For each loop L in the a loop nest LN: 24 /// a. Compute the cost of the reference group 25 /// b. Compute the loop cost by summing up the reference groups costs 26 //===----------------------------------------------------------------------===// 27 28 #include "llvm/Analysis/LoopCacheAnalysis.h" 29 #include "llvm/ADT/BreadthFirstIterator.h" 30 #include "llvm/ADT/Sequence.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/DependenceAnalysis.h" 34 #include "llvm/Analysis/LoopInfo.h" 35 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "loop-cache-cost" 43 44 static cl::opt<unsigned> DefaultTripCount( 45 "default-trip-count", cl::init(100), cl::Hidden, 46 cl::desc("Use this to specify the default trip count of a loop")); 47 48 // In this analysis two array references are considered to exhibit temporal 49 // reuse if they access either the same memory location, or a memory location 50 // with distance smaller than a configurable threshold. 51 static cl::opt<unsigned> TemporalReuseThreshold( 52 "temporal-reuse-threshold", cl::init(2), cl::Hidden, 53 cl::desc("Use this to specify the max. distance between array elements " 54 "accessed in a loop so that the elements are classified to have " 55 "temporal reuse")); 56 57 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a 58 /// nullptr if any loops in the loop vector supplied has more than one sibling. 59 /// The loop vector is expected to contain loops collected in breadth-first 60 /// order. 61 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { 62 assert(!Loops.empty() && "Expecting a non-empy loop vector"); 63 64 Loop *LastLoop = Loops.back(); 65 Loop *ParentLoop = LastLoop->getParentLoop(); 66 67 if (ParentLoop == nullptr) { 68 assert(Loops.size() == 1 && "Expecting a single loop"); 69 return LastLoop; 70 } 71 72 return (llvm::is_sorted(Loops, 73 [](const Loop *L1, const Loop *L2) { 74 return L1->getLoopDepth() < L2->getLoopDepth(); 75 })) 76 ? LastLoop 77 : nullptr; 78 } 79 80 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, 81 const Loop &L, ScalarEvolution &SE) { 82 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); 83 if (!AR || !AR->isAffine()) 84 return false; 85 86 assert(AR->getLoop() && "AR should have a loop"); 87 88 // Check that start and increment are not add recurrences. 89 const SCEV *Start = AR->getStart(); 90 const SCEV *Step = AR->getStepRecurrence(SE); 91 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) 92 return false; 93 94 // Check that start and increment are both invariant in the loop. 95 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 96 return false; 97 98 const SCEV *StepRec = AR->getStepRecurrence(SE); 99 if (StepRec && SE.isKnownNegative(StepRec)) 100 StepRec = SE.getNegativeSCEV(StepRec); 101 102 return StepRec == &ElemSize; 103 } 104 105 /// Compute the trip count for the given loop \p L. Return the SCEV expression 106 /// for the trip count or nullptr if it cannot be computed. 107 static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { 108 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); 109 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 110 !isa<SCEVConstant>(BackedgeTakenCount)) 111 return nullptr; 112 113 return SE.getAddExpr(BackedgeTakenCount, 114 SE.getOne(BackedgeTakenCount->getType())); 115 } 116 117 //===----------------------------------------------------------------------===// 118 // IndexedReference implementation 119 // 120 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { 121 if (!R.IsValid) { 122 OS << R.StoreOrLoadInst; 123 OS << ", IsValid=false."; 124 return OS; 125 } 126 127 OS << *R.BasePointer; 128 for (const SCEV *Subscript : R.Subscripts) 129 OS << "[" << *Subscript << "]"; 130 131 OS << ", Sizes: "; 132 for (const SCEV *Size : R.Sizes) 133 OS << "[" << *Size << "]"; 134 135 return OS; 136 } 137 138 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, 139 const LoopInfo &LI, ScalarEvolution &SE) 140 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { 141 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && 142 "Expecting a load or store instruction"); 143 144 IsValid = delinearize(LI); 145 if (IsValid) 146 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this 147 << "\n"); 148 } 149 150 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, 151 unsigned CLS, 152 AAResults &AA) const { 153 assert(IsValid && "Expecting a valid reference"); 154 155 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 156 LLVM_DEBUG(dbgs().indent(2) 157 << "No spacial reuse: different base pointers\n"); 158 return false; 159 } 160 161 unsigned NumSubscripts = getNumSubscripts(); 162 if (NumSubscripts != Other.getNumSubscripts()) { 163 LLVM_DEBUG(dbgs().indent(2) 164 << "No spacial reuse: different number of subscripts\n"); 165 return false; 166 } 167 168 // all subscripts must be equal, except the leftmost one (the last one). 169 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { 170 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { 171 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " 172 << "\n\t" << *getSubscript(SubNum) << "\n\t" 173 << *Other.getSubscript(SubNum) << "\n"); 174 return false; 175 } 176 } 177 178 // the difference between the last subscripts must be less than the cache line 179 // size. 180 const SCEV *LastSubscript = getLastSubscript(); 181 const SCEV *OtherLastSubscript = Other.getLastSubscript(); 182 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 183 SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); 184 185 if (Diff == nullptr) { 186 LLVM_DEBUG(dbgs().indent(2) 187 << "No spacial reuse, difference between subscript:\n\t" 188 << *LastSubscript << "\n\t" << OtherLastSubscript 189 << "\nis not constant.\n"); 190 return None; 191 } 192 193 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); 194 195 LLVM_DEBUG({ 196 if (InSameCacheLine) 197 dbgs().indent(2) << "Found spacial reuse.\n"; 198 else 199 dbgs().indent(2) << "No spacial reuse.\n"; 200 }); 201 202 return InSameCacheLine; 203 } 204 205 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, 206 unsigned MaxDistance, 207 const Loop &L, 208 DependenceInfo &DI, 209 AAResults &AA) const { 210 assert(IsValid && "Expecting a valid reference"); 211 212 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { 213 LLVM_DEBUG(dbgs().indent(2) 214 << "No temporal reuse: different base pointer\n"); 215 return false; 216 } 217 218 std::unique_ptr<Dependence> D = 219 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); 220 221 if (D == nullptr) { 222 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); 223 return false; 224 } 225 226 if (D->isLoopIndependent()) { 227 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 228 return true; 229 } 230 231 // Check the dependence distance at every loop level. There is temporal reuse 232 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and 233 // it is zero at every other loop level. 234 int LoopDepth = L.getLoopDepth(); 235 int Levels = D->getLevels(); 236 for (int Level = 1; Level <= Levels; ++Level) { 237 const SCEV *Distance = D->getDistance(Level); 238 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); 239 240 if (SCEVConst == nullptr) { 241 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); 242 return None; 243 } 244 245 const ConstantInt &CI = *SCEVConst->getValue(); 246 if (Level != LoopDepth && !CI.isZero()) { 247 LLVM_DEBUG(dbgs().indent(2) 248 << "No temporal reuse: distance is not zero at depth=" << Level 249 << "\n"); 250 return false; 251 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { 252 LLVM_DEBUG( 253 dbgs().indent(2) 254 << "No temporal reuse: distance is greater than MaxDistance at depth=" 255 << Level << "\n"); 256 return false; 257 } 258 } 259 260 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); 261 return true; 262 } 263 264 CacheCostTy IndexedReference::computeRefCost(const Loop &L, 265 unsigned CLS) const { 266 assert(IsValid && "Expecting a valid reference"); 267 LLVM_DEBUG({ 268 dbgs().indent(2) << "Computing cache cost for:\n"; 269 dbgs().indent(4) << *this << "\n"; 270 }); 271 272 // If the indexed reference is loop invariant the cost is one. 273 if (isLoopInvariant(L)) { 274 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); 275 return 1; 276 } 277 278 const SCEV *TripCount = computeTripCount(L, SE); 279 if (!TripCount) { 280 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() 281 << " could not be computed, using DefaultTripCount\n"); 282 const SCEV *ElemSize = Sizes.back(); 283 TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); 284 } 285 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); 286 287 // If the indexed reference is 'consecutive' the cost is 288 // (TripCount*Stride)/CLS, otherwise the cost is TripCount. 289 const SCEV *RefCost = TripCount; 290 291 if (isConsecutive(L, CLS)) { 292 const SCEV *Coeff = getLastCoefficient(); 293 const SCEV *ElemSize = Sizes.back(); 294 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 295 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 296 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); 297 if (SE.isKnownNegative(Stride)) 298 Stride = SE.getNegativeSCEV(Stride); 299 Stride = SE.getNoopOrAnyExtend(Stride, WiderType); 300 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); 301 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); 302 RefCost = SE.getUDivExpr(Numerator, CacheLineSize); 303 304 LLVM_DEBUG(dbgs().indent(4) 305 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" 306 << *RefCost << "\n"); 307 } else 308 LLVM_DEBUG(dbgs().indent(4) 309 << "Access is not consecutive: RefCost=TripCount=" << *RefCost 310 << "\n"); 311 312 // Attempt to fold RefCost into a constant. 313 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) 314 return ConstantCost->getValue()->getSExtValue(); 315 316 LLVM_DEBUG(dbgs().indent(4) 317 << "RefCost is not a constant! Setting to RefCost=InvalidCost " 318 "(invalid value).\n"); 319 320 return CacheCost::InvalidCost; 321 } 322 323 bool IndexedReference::delinearize(const LoopInfo &LI) { 324 assert(Subscripts.empty() && "Subscripts should be empty"); 325 assert(Sizes.empty() && "Sizes should be empty"); 326 assert(!IsValid && "Should be called once from the constructor"); 327 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); 328 329 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); 330 const BasicBlock *BB = StoreOrLoadInst.getParent(); 331 332 if (Loop *L = LI.getLoopFor(BB)) { 333 const SCEV *AccessFn = 334 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); 335 336 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); 337 if (BasePointer == nullptr) { 338 LLVM_DEBUG( 339 dbgs().indent(2) 340 << "ERROR: failed to delinearize, can't identify base pointer\n"); 341 return false; 342 } 343 344 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); 345 346 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() 347 << "', AccessFn: " << *AccessFn << "\n"); 348 349 SE.delinearize(AccessFn, Subscripts, Sizes, 350 SE.getElementSize(&StoreOrLoadInst)); 351 352 if (Subscripts.empty() || Sizes.empty() || 353 Subscripts.size() != Sizes.size()) { 354 // Attempt to determine whether we have a single dimensional array access. 355 // before giving up. 356 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { 357 LLVM_DEBUG(dbgs().indent(2) 358 << "ERROR: failed to delinearize reference\n"); 359 Subscripts.clear(); 360 Sizes.clear(); 361 return false; 362 } 363 364 // The array may be accessed in reverse, for example: 365 // for (i = N; i > 0; i--) 366 // A[i] = 0; 367 // In this case, reconstruct the access function using the absolute value 368 // of the step recurrence. 369 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); 370 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; 371 372 if (StepRec && SE.isKnownNegative(StepRec)) 373 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), 374 SE.getNegativeSCEV(StepRec), 375 AccessFnAR->getLoop(), 376 AccessFnAR->getNoWrapFlags()); 377 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); 378 Subscripts.push_back(Div); 379 Sizes.push_back(ElemSize); 380 } 381 382 return all_of(Subscripts, [&](const SCEV *Subscript) { 383 return isSimpleAddRecurrence(*Subscript, *L); 384 }); 385 } 386 387 return false; 388 } 389 390 bool IndexedReference::isLoopInvariant(const Loop &L) const { 391 Value *Addr = getPointerOperand(&StoreOrLoadInst); 392 assert(Addr != nullptr && "Expecting either a load or a store instruction"); 393 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); 394 395 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) 396 return true; 397 398 // The indexed reference is loop invariant if none of the coefficients use 399 // the loop induction variable. 400 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { 401 return isCoeffForLoopZeroOrInvariant(*Subscript, L); 402 }); 403 404 return allCoeffForLoopAreZero; 405 } 406 407 bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { 408 // The indexed reference is 'consecutive' if the only coefficient that uses 409 // the loop induction variable is the last one... 410 const SCEV *LastSubscript = Subscripts.back(); 411 for (const SCEV *Subscript : Subscripts) { 412 if (Subscript == LastSubscript) 413 continue; 414 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) 415 return false; 416 } 417 418 // ...and the access stride is less than the cache line size. 419 const SCEV *Coeff = getLastCoefficient(); 420 const SCEV *ElemSize = Sizes.back(); 421 const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); 422 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); 423 424 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; 425 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); 426 } 427 428 const SCEV *IndexedReference::getLastCoefficient() const { 429 const SCEV *LastSubscript = getLastSubscript(); 430 assert(isa<SCEVAddRecExpr>(LastSubscript) && 431 "Expecting a SCEV add recurrence expression"); 432 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); 433 return AR->getStepRecurrence(SE); 434 } 435 436 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, 437 const Loop &L) const { 438 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); 439 return (AR != nullptr) ? AR->getLoop() != &L 440 : SE.isLoopInvariant(&Subscript, &L); 441 } 442 443 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, 444 const Loop &L) const { 445 if (!isa<SCEVAddRecExpr>(Subscript)) 446 return false; 447 448 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); 449 assert(AR->getLoop() && "AR should have a loop"); 450 451 if (!AR->isAffine()) 452 return false; 453 454 const SCEV *Start = AR->getStart(); 455 const SCEV *Step = AR->getStepRecurrence(SE); 456 457 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) 458 return false; 459 460 return true; 461 } 462 463 bool IndexedReference::isAliased(const IndexedReference &Other, 464 AAResults &AA) const { 465 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); 466 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); 467 return AA.isMustAlias(Loc1, Loc2); 468 } 469 470 //===----------------------------------------------------------------------===// 471 // CacheCost implementation 472 // 473 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { 474 for (const auto &LC : CC.LoopCosts) { 475 const Loop *L = LC.first; 476 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; 477 } 478 return OS; 479 } 480 481 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, 482 ScalarEvolution &SE, TargetTransformInfo &TTI, 483 AAResults &AA, DependenceInfo &DI, 484 Optional<unsigned> TRT) 485 : Loops(Loops), TripCounts(), LoopCosts(), 486 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), 487 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { 488 assert(!Loops.empty() && "Expecting a non-empty loop vector."); 489 490 for (const Loop *L : Loops) { 491 unsigned TripCount = SE.getSmallConstantTripCount(L); 492 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; 493 TripCounts.push_back({L, TripCount}); 494 } 495 496 calculateCacheFootprint(); 497 } 498 499 std::unique_ptr<CacheCost> 500 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, 501 DependenceInfo &DI, Optional<unsigned> TRT) { 502 if (!Root.isOutermost()) { 503 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); 504 return nullptr; 505 } 506 507 LoopVectorTy Loops; 508 append_range(Loops, breadth_first(&Root)); 509 510 if (!getInnerMostLoop(Loops)) { 511 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " 512 "than one innermost loop\n"); 513 return nullptr; 514 } 515 516 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); 517 } 518 519 void CacheCost::calculateCacheFootprint() { 520 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); 521 ReferenceGroupsTy RefGroups; 522 if (!populateReferenceGroups(RefGroups)) 523 return; 524 525 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); 526 for (const Loop *L : Loops) { 527 assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), 528 [L](const LoopCacheCostTy &LCC) { 529 return LCC.first == L; 530 }) == LoopCosts.end()) && 531 "Should not add duplicate element"); 532 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); 533 LoopCosts.push_back(std::make_pair(L, LoopCost)); 534 } 535 536 sortLoopCosts(); 537 RefGroups.clear(); 538 } 539 540 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { 541 assert(RefGroups.empty() && "Reference groups should be empty"); 542 543 unsigned CLS = TTI.getCacheLineSize(); 544 Loop *InnerMostLoop = getInnerMostLoop(Loops); 545 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); 546 547 for (BasicBlock *BB : InnerMostLoop->getBlocks()) { 548 for (Instruction &I : *BB) { 549 if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) 550 continue; 551 552 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); 553 if (!R->isValid()) 554 continue; 555 556 bool Added = false; 557 for (ReferenceGroupTy &RefGroup : RefGroups) { 558 const IndexedReference &Representative = *RefGroup.front().get(); 559 LLVM_DEBUG({ 560 dbgs() << "References:\n"; 561 dbgs().indent(2) << *R << "\n"; 562 dbgs().indent(2) << Representative << "\n"; 563 }); 564 565 566 // FIXME: Both positive and negative access functions will be placed 567 // into the same reference group, resulting in a bi-directional array 568 // access such as: 569 // for (i = N; i > 0; i--) 570 // A[i] = A[N - i]; 571 // having the same cost calculation as a single dimention access pattern 572 // for (i = 0; i < N; i++) 573 // A[i] = A[i]; 574 // when in actuality, depending on the array size, the first example 575 // should have a cost closer to 2x the second due to the two cache 576 // access per iteration from opposite ends of the array 577 Optional<bool> HasTemporalReuse = 578 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); 579 Optional<bool> HasSpacialReuse = 580 R->hasSpacialReuse(Representative, CLS, AA); 581 582 if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || 583 (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { 584 RefGroup.push_back(std::move(R)); 585 Added = true; 586 break; 587 } 588 } 589 590 if (!Added) { 591 ReferenceGroupTy RG; 592 RG.push_back(std::move(R)); 593 RefGroups.push_back(std::move(RG)); 594 } 595 } 596 } 597 598 if (RefGroups.empty()) 599 return false; 600 601 LLVM_DEBUG({ 602 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; 603 int n = 1; 604 for (const ReferenceGroupTy &RG : RefGroups) { 605 dbgs().indent(2) << "RefGroup " << n << ":\n"; 606 for (const auto &IR : RG) 607 dbgs().indent(4) << *IR << "\n"; 608 n++; 609 } 610 dbgs() << "\n"; 611 }); 612 613 return true; 614 } 615 616 CacheCostTy 617 CacheCost::computeLoopCacheCost(const Loop &L, 618 const ReferenceGroupsTy &RefGroups) const { 619 if (!L.isLoopSimplifyForm()) 620 return InvalidCost; 621 622 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() 623 << "' as innermost loop.\n"); 624 625 // Compute the product of the trip counts of each other loop in the nest. 626 CacheCostTy TripCountsProduct = 1; 627 for (const auto &TC : TripCounts) { 628 if (TC.first == &L) 629 continue; 630 TripCountsProduct *= TC.second; 631 } 632 633 CacheCostTy LoopCost = 0; 634 for (const ReferenceGroupTy &RG : RefGroups) { 635 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); 636 LoopCost += RefGroupCost * TripCountsProduct; 637 } 638 639 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() 640 << "' has cost=" << LoopCost << "\n"); 641 642 return LoopCost; 643 } 644 645 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, 646 const Loop &L) const { 647 assert(!RG.empty() && "Reference group should have at least one member."); 648 649 const IndexedReference *Representative = RG.front().get(); 650 return Representative->computeRefCost(L, TTI.getCacheLineSize()); 651 } 652 653 //===----------------------------------------------------------------------===// 654 // LoopCachePrinterPass implementation 655 // 656 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, 657 LoopStandardAnalysisResults &AR, 658 LPMUpdater &U) { 659 Function *F = L.getHeader()->getParent(); 660 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); 661 662 if (auto CC = CacheCost::getCacheCost(L, AR, DI)) 663 OS << *CC; 664 665 return PreservedAnalyses::all(); 666 } 667