1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <cstdlib> 65 #include <iterator> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr, Value *OrigPtr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = 152 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 153 if (SI != PtrToStride.end()) { 154 Value *StrideVal = SI->second; 155 156 // Strip casts. 157 StrideVal = stripIntegerCast(StrideVal); 158 159 ScalarEvolution *SE = PSE.getSE(); 160 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 161 const auto *CT = 162 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 163 164 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 165 auto *Expr = PSE.getSCEV(Ptr); 166 167 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 168 << " by: " << *Expr << "\n"); 169 return Expr; 170 } 171 172 // Otherwise, just return the SCEV of the original pointer. 173 return OrigSCEV; 174 } 175 176 /// Calculate Start and End points of memory access. 177 /// Let's assume A is the first access and B is a memory access on N-th loop 178 /// iteration. Then B is calculated as: 179 /// B = A + Step*N . 180 /// Step value may be positive or negative. 181 /// N is a calculated back-edge taken count: 182 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 183 /// Start and End points are calculated in the following way: 184 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 185 /// where SizeOfElt is the size of single memory access in bytes. 186 /// 187 /// There is no conflict when the intervals are disjoint: 188 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 189 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 190 unsigned DepSetId, unsigned ASId, 191 const ValueToValueMap &Strides, 192 PredicatedScalarEvolution &PSE) { 193 // Get the stride replaced scev. 194 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 195 ScalarEvolution *SE = PSE.getSE(); 196 197 const SCEV *ScStart; 198 const SCEV *ScEnd; 199 200 if (SE->isLoopInvariant(Sc, Lp)) 201 ScStart = ScEnd = Sc; 202 else { 203 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 204 assert(AR && "Invalid addrec expression"); 205 const SCEV *Ex = PSE.getBackedgeTakenCount(); 206 207 ScStart = AR->getStart(); 208 ScEnd = AR->evaluateAtIteration(Ex, *SE); 209 const SCEV *Step = AR->getStepRecurrence(*SE); 210 211 // For expressions with negative step, the upper bound is ScStart and the 212 // lower bound is ScEnd. 213 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 214 if (CStep->getValue()->isNegative()) 215 std::swap(ScStart, ScEnd); 216 } else { 217 // Fallback case: the step is not constant, but we can still 218 // get the upper and lower bounds of the interval by using min/max 219 // expressions. 220 ScStart = SE->getUMinExpr(ScStart, ScEnd); 221 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 222 } 223 // Add the size of the pointed element to ScEnd. 224 unsigned EltSize = 225 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 226 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 227 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 228 } 229 230 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 231 } 232 233 SmallVector<RuntimePointerChecking::PointerCheck, 4> 234 RuntimePointerChecking::generateChecks() const { 235 SmallVector<PointerCheck, 4> Checks; 236 237 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 238 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 239 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 240 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 241 242 if (needsChecking(CGI, CGJ)) 243 Checks.push_back(std::make_pair(&CGI, &CGJ)); 244 } 245 } 246 return Checks; 247 } 248 249 void RuntimePointerChecking::generateChecks( 250 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 251 assert(Checks.empty() && "Checks is not empty"); 252 groupChecks(DepCands, UseDependencies); 253 Checks = generateChecks(); 254 } 255 256 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 257 const CheckingPtrGroup &N) const { 258 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 259 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 260 if (needsChecking(M.Members[I], N.Members[J])) 261 return true; 262 return false; 263 } 264 265 /// Compare \p I and \p J and return the minimum. 266 /// Return nullptr in case we couldn't find an answer. 267 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 268 ScalarEvolution *SE) { 269 const SCEV *Diff = SE->getMinusSCEV(J, I); 270 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 271 272 if (!C) 273 return nullptr; 274 if (C->getValue()->isNegative()) 275 return J; 276 return I; 277 } 278 279 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 280 const SCEV *Start = RtCheck.Pointers[Index].Start; 281 const SCEV *End = RtCheck.Pointers[Index].End; 282 283 // Compare the starts and ends with the known minimum and maximum 284 // of this set. We need to know how we compare against the min/max 285 // of the set in order to be able to emit memchecks. 286 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 287 if (!Min0) 288 return false; 289 290 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 291 if (!Min1) 292 return false; 293 294 // Update the low bound expression if we've found a new min value. 295 if (Min0 == Start) 296 Low = Start; 297 298 // Update the high bound expression if we've found a new max value. 299 if (Min1 != End) 300 High = End; 301 302 Members.push_back(Index); 303 return true; 304 } 305 306 void RuntimePointerChecking::groupChecks( 307 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 308 // We build the groups from dependency candidates equivalence classes 309 // because: 310 // - We know that pointers in the same equivalence class share 311 // the same underlying object and therefore there is a chance 312 // that we can compare pointers 313 // - We wouldn't be able to merge two pointers for which we need 314 // to emit a memcheck. The classes in DepCands are already 315 // conveniently built such that no two pointers in the same 316 // class need checking against each other. 317 318 // We use the following (greedy) algorithm to construct the groups 319 // For every pointer in the equivalence class: 320 // For each existing group: 321 // - if the difference between this pointer and the min/max bounds 322 // of the group is a constant, then make the pointer part of the 323 // group and update the min/max bounds of that group as required. 324 325 CheckingGroups.clear(); 326 327 // If we need to check two pointers to the same underlying object 328 // with a non-constant difference, we shouldn't perform any pointer 329 // grouping with those pointers. This is because we can easily get 330 // into cases where the resulting check would return false, even when 331 // the accesses are safe. 332 // 333 // The following example shows this: 334 // for (i = 0; i < 1000; ++i) 335 // a[5000 + i * m] = a[i] + a[i + 9000] 336 // 337 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 338 // (0, 10000) which is always false. However, if m is 1, there is no 339 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 340 // us to perform an accurate check in this case. 341 // 342 // The above case requires that we have an UnknownDependence between 343 // accesses to the same underlying object. This cannot happen unless 344 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 345 // is also false. In this case we will use the fallback path and create 346 // separate checking groups for all pointers. 347 348 // If we don't have the dependency partitions, construct a new 349 // checking pointer group for each pointer. This is also required 350 // for correctness, because in this case we can have checking between 351 // pointers to the same underlying object. 352 if (!UseDependencies) { 353 for (unsigned I = 0; I < Pointers.size(); ++I) 354 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 355 return; 356 } 357 358 unsigned TotalComparisons = 0; 359 360 DenseMap<Value *, unsigned> PositionMap; 361 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 362 PositionMap[Pointers[Index].PointerValue] = Index; 363 364 // We need to keep track of what pointers we've already seen so we 365 // don't process them twice. 366 SmallSet<unsigned, 2> Seen; 367 368 // Go through all equivalence classes, get the "pointer check groups" 369 // and add them to the overall solution. We use the order in which accesses 370 // appear in 'Pointers' to enforce determinism. 371 for (unsigned I = 0; I < Pointers.size(); ++I) { 372 // We've seen this pointer before, and therefore already processed 373 // its equivalence class. 374 if (Seen.count(I)) 375 continue; 376 377 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 378 Pointers[I].IsWritePtr); 379 380 SmallVector<CheckingPtrGroup, 2> Groups; 381 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 382 383 // Because DepCands is constructed by visiting accesses in the order in 384 // which they appear in alias sets (which is deterministic) and the 385 // iteration order within an equivalence class member is only dependent on 386 // the order in which unions and insertions are performed on the 387 // equivalence class, the iteration order is deterministic. 388 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 389 MI != ME; ++MI) { 390 unsigned Pointer = PositionMap[MI->getPointer()]; 391 bool Merged = false; 392 // Mark this pointer as seen. 393 Seen.insert(Pointer); 394 395 // Go through all the existing sets and see if we can find one 396 // which can include this pointer. 397 for (CheckingPtrGroup &Group : Groups) { 398 // Don't perform more than a certain amount of comparisons. 399 // This should limit the cost of grouping the pointers to something 400 // reasonable. If we do end up hitting this threshold, the algorithm 401 // will create separate groups for all remaining pointers. 402 if (TotalComparisons > MemoryCheckMergeThreshold) 403 break; 404 405 TotalComparisons++; 406 407 if (Group.addPointer(Pointer)) { 408 Merged = true; 409 break; 410 } 411 } 412 413 if (!Merged) 414 // We couldn't add this pointer to any existing set or the threshold 415 // for the number of comparisons has been reached. Create a new group 416 // to hold the current pointer. 417 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 418 } 419 420 // We've computed the grouped checks for this partition. 421 // Save the results and continue with the next one. 422 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 423 } 424 } 425 426 bool RuntimePointerChecking::arePointersInSamePartition( 427 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 428 unsigned PtrIdx2) { 429 return (PtrToPartition[PtrIdx1] != -1 && 430 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 431 } 432 433 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 434 const PointerInfo &PointerI = Pointers[I]; 435 const PointerInfo &PointerJ = Pointers[J]; 436 437 // No need to check if two readonly pointers intersect. 438 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 439 return false; 440 441 // Only need to check pointers between two different dependency sets. 442 if (PointerI.DependencySetId == PointerJ.DependencySetId) 443 return false; 444 445 // Only need to check pointers in the same alias set. 446 if (PointerI.AliasSetId != PointerJ.AliasSetId) 447 return false; 448 449 return true; 450 } 451 452 void RuntimePointerChecking::printChecks( 453 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 454 unsigned Depth) const { 455 unsigned N = 0; 456 for (const auto &Check : Checks) { 457 const auto &First = Check.first->Members, &Second = Check.second->Members; 458 459 OS.indent(Depth) << "Check " << N++ << ":\n"; 460 461 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 462 for (unsigned K = 0; K < First.size(); ++K) 463 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 464 465 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 466 for (unsigned K = 0; K < Second.size(); ++K) 467 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 468 } 469 } 470 471 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 472 473 OS.indent(Depth) << "Run-time memory checks:\n"; 474 printChecks(OS, Checks, Depth); 475 476 OS.indent(Depth) << "Grouped accesses:\n"; 477 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 478 const auto &CG = CheckingGroups[I]; 479 480 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 481 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 482 << ")\n"; 483 for (unsigned J = 0; J < CG.Members.size(); ++J) { 484 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 485 << "\n"; 486 } 487 } 488 } 489 490 namespace { 491 492 /// Analyses memory accesses in a loop. 493 /// 494 /// Checks whether run time pointer checks are needed and builds sets for data 495 /// dependence checking. 496 class AccessAnalysis { 497 public: 498 /// Read or write access location. 499 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 500 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 501 502 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 503 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 504 PredicatedScalarEvolution &PSE) 505 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 506 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 507 508 /// Register a load and whether it is only read from. 509 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 510 Value *Ptr = const_cast<Value*>(Loc.Ptr); 511 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 512 Accesses.insert(MemAccessInfo(Ptr, false)); 513 if (IsReadOnly) 514 ReadOnlyPtr.insert(Ptr); 515 } 516 517 /// Register a store. 518 void addStore(MemoryLocation &Loc) { 519 Value *Ptr = const_cast<Value*>(Loc.Ptr); 520 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 521 Accesses.insert(MemAccessInfo(Ptr, true)); 522 } 523 524 /// Check if we can emit a run-time no-alias check for \p Access. 525 /// 526 /// Returns true if we can emit a run-time no alias check for \p Access. 527 /// If we can check this access, this also adds it to a dependence set and 528 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 529 /// we will attempt to use additional run-time checks in order to get 530 /// the bounds of the pointer. 531 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 532 MemAccessInfo Access, 533 const ValueToValueMap &Strides, 534 DenseMap<Value *, unsigned> &DepSetId, 535 Loop *TheLoop, unsigned &RunningDepId, 536 unsigned ASId, bool ShouldCheckStride, 537 bool Assume); 538 539 /// Check whether we can check the pointers at runtime for 540 /// non-intersection. 541 /// 542 /// Returns true if we need no check or if we do and we can generate them 543 /// (i.e. the pointers have computable bounds). 544 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 545 Loop *TheLoop, const ValueToValueMap &Strides, 546 bool ShouldCheckWrap = false); 547 548 /// Goes over all memory accesses, checks whether a RT check is needed 549 /// and builds sets of dependent accesses. 550 void buildDependenceSets() { 551 processMemAccesses(); 552 } 553 554 /// Initial processing of memory accesses determined that we need to 555 /// perform dependency checking. 556 /// 557 /// Note that this can later be cleared if we retry memcheck analysis without 558 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 559 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 560 561 /// We decided that no dependence analysis would be used. Reset the state. 562 void resetDepChecks(MemoryDepChecker &DepChecker) { 563 CheckDeps.clear(); 564 DepChecker.clearDependences(); 565 } 566 567 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 568 569 private: 570 typedef SetVector<MemAccessInfo> PtrAccessSet; 571 572 /// Go over all memory access and check whether runtime pointer checks 573 /// are needed and build sets of dependency check candidates. 574 void processMemAccesses(); 575 576 /// Set of all accesses. 577 PtrAccessSet Accesses; 578 579 const DataLayout &DL; 580 581 /// The loop being checked. 582 const Loop *TheLoop; 583 584 /// List of accesses that need a further dependence check. 585 MemAccessInfoList CheckDeps; 586 587 /// Set of pointers that are read only. 588 SmallPtrSet<Value*, 16> ReadOnlyPtr; 589 590 /// An alias set tracker to partition the access set by underlying object and 591 //intrinsic property (such as TBAA metadata). 592 AliasSetTracker AST; 593 594 LoopInfo *LI; 595 596 /// Sets of potentially dependent accesses - members of one set share an 597 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 598 /// dependence check. 599 MemoryDepChecker::DepCandidates &DepCands; 600 601 /// Initial processing of memory accesses determined that we may need 602 /// to add memchecks. Perform the analysis to determine the necessary checks. 603 /// 604 /// Note that, this is different from isDependencyCheckNeeded. When we retry 605 /// memcheck analysis without dependency checking 606 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 607 /// cleared while this remains set if we have potentially dependent accesses. 608 bool IsRTCheckAnalysisNeeded; 609 610 /// The SCEV predicate containing all the SCEV-related assumptions. 611 PredicatedScalarEvolution &PSE; 612 }; 613 614 } // end anonymous namespace 615 616 /// Check whether a pointer can participate in a runtime bounds check. 617 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 618 /// by adding run-time checks (overflow checks) if necessary. 619 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 620 const ValueToValueMap &Strides, Value *Ptr, 621 Loop *L, bool Assume) { 622 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 623 624 // The bounds for loop-invariant pointer is trivial. 625 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 626 return true; 627 628 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 629 630 if (!AR && Assume) 631 AR = PSE.getAsAddRec(Ptr); 632 633 if (!AR) 634 return false; 635 636 return AR->isAffine(); 637 } 638 639 /// Check whether a pointer address cannot wrap. 640 static bool isNoWrap(PredicatedScalarEvolution &PSE, 641 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 642 const SCEV *PtrScev = PSE.getSCEV(Ptr); 643 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 644 return true; 645 646 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 647 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 648 return true; 649 650 return false; 651 } 652 653 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 654 MemAccessInfo Access, 655 const ValueToValueMap &StridesMap, 656 DenseMap<Value *, unsigned> &DepSetId, 657 Loop *TheLoop, unsigned &RunningDepId, 658 unsigned ASId, bool ShouldCheckWrap, 659 bool Assume) { 660 Value *Ptr = Access.getPointer(); 661 662 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 663 return false; 664 665 // When we run after a failing dependency check we have to make sure 666 // we don't have wrapping pointers. 667 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 668 auto *Expr = PSE.getSCEV(Ptr); 669 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 670 return false; 671 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 672 } 673 674 // The id of the dependence set. 675 unsigned DepId; 676 677 if (isDependencyCheckNeeded()) { 678 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 679 unsigned &LeaderId = DepSetId[Leader]; 680 if (!LeaderId) 681 LeaderId = RunningDepId++; 682 DepId = LeaderId; 683 } else 684 // Each access has its own dependence set. 685 DepId = RunningDepId++; 686 687 bool IsWrite = Access.getInt(); 688 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 689 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 690 691 return true; 692 } 693 694 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 695 ScalarEvolution *SE, Loop *TheLoop, 696 const ValueToValueMap &StridesMap, 697 bool ShouldCheckWrap) { 698 // Find pointers with computable bounds. We are going to use this information 699 // to place a runtime bound check. 700 bool CanDoRT = true; 701 702 bool NeedRTCheck = false; 703 if (!IsRTCheckAnalysisNeeded) return true; 704 705 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 706 707 // We assign a consecutive id to access from different alias sets. 708 // Accesses between different groups doesn't need to be checked. 709 unsigned ASId = 1; 710 for (auto &AS : AST) { 711 int NumReadPtrChecks = 0; 712 int NumWritePtrChecks = 0; 713 bool CanDoAliasSetRT = true; 714 715 // We assign consecutive id to access from different dependence sets. 716 // Accesses within the same set don't need a runtime check. 717 unsigned RunningDepId = 1; 718 DenseMap<Value *, unsigned> DepSetId; 719 720 SmallVector<MemAccessInfo, 4> Retries; 721 722 for (auto A : AS) { 723 Value *Ptr = A.getValue(); 724 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 725 MemAccessInfo Access(Ptr, IsWrite); 726 727 if (IsWrite) 728 ++NumWritePtrChecks; 729 else 730 ++NumReadPtrChecks; 731 732 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 733 RunningDepId, ASId, ShouldCheckWrap, false)) { 734 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 735 Retries.push_back(Access); 736 CanDoAliasSetRT = false; 737 } 738 } 739 740 // If we have at least two writes or one write and a read then we need to 741 // check them. But there is no need to checks if there is only one 742 // dependence set for this alias set. 743 // 744 // Note that this function computes CanDoRT and NeedRTCheck independently. 745 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 746 // for which we couldn't find the bounds but we don't actually need to emit 747 // any checks so it does not matter. 748 bool NeedsAliasSetRTCheck = false; 749 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 750 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 751 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 752 753 // We need to perform run-time alias checks, but some pointers had bounds 754 // that couldn't be checked. 755 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 756 // Reset the CanDoSetRt flag and retry all accesses that have failed. 757 // We know that we need these checks, so we can now be more aggressive 758 // and add further checks if required (overflow checks). 759 CanDoAliasSetRT = true; 760 for (auto Access : Retries) 761 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 762 TheLoop, RunningDepId, ASId, 763 ShouldCheckWrap, /*Assume=*/true)) { 764 CanDoAliasSetRT = false; 765 break; 766 } 767 } 768 769 CanDoRT &= CanDoAliasSetRT; 770 NeedRTCheck |= NeedsAliasSetRTCheck; 771 ++ASId; 772 } 773 774 // If the pointers that we would use for the bounds comparison have different 775 // address spaces, assume the values aren't directly comparable, so we can't 776 // use them for the runtime check. We also have to assume they could 777 // overlap. In the future there should be metadata for whether address spaces 778 // are disjoint. 779 unsigned NumPointers = RtCheck.Pointers.size(); 780 for (unsigned i = 0; i < NumPointers; ++i) { 781 for (unsigned j = i + 1; j < NumPointers; ++j) { 782 // Only need to check pointers between two different dependency sets. 783 if (RtCheck.Pointers[i].DependencySetId == 784 RtCheck.Pointers[j].DependencySetId) 785 continue; 786 // Only need to check pointers in the same alias set. 787 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 788 continue; 789 790 Value *PtrI = RtCheck.Pointers[i].PointerValue; 791 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 792 793 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 794 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 795 if (ASi != ASj) { 796 LLVM_DEBUG( 797 dbgs() << "LAA: Runtime check would require comparison between" 798 " different address spaces\n"); 799 return false; 800 } 801 } 802 } 803 804 if (NeedRTCheck && CanDoRT) 805 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 806 807 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 808 << " pointer comparisons.\n"); 809 810 RtCheck.Need = NeedRTCheck; 811 812 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 813 if (!CanDoRTIfNeeded) 814 RtCheck.reset(); 815 return CanDoRTIfNeeded; 816 } 817 818 void AccessAnalysis::processMemAccesses() { 819 // We process the set twice: first we process read-write pointers, last we 820 // process read-only pointers. This allows us to skip dependence tests for 821 // read-only pointers. 822 823 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 824 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 825 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 826 LLVM_DEBUG({ 827 for (auto A : Accesses) 828 dbgs() << "\t" << *A.getPointer() << " (" << 829 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 830 "read-only" : "read")) << ")\n"; 831 }); 832 833 // The AliasSetTracker has nicely partitioned our pointers by metadata 834 // compatibility and potential for underlying-object overlap. As a result, we 835 // only need to check for potential pointer dependencies within each alias 836 // set. 837 for (auto &AS : AST) { 838 // Note that both the alias-set tracker and the alias sets themselves used 839 // linked lists internally and so the iteration order here is deterministic 840 // (matching the original instruction order within each set). 841 842 bool SetHasWrite = false; 843 844 // Map of pointers to last access encountered. 845 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 846 UnderlyingObjToAccessMap ObjToLastAccess; 847 848 // Set of access to check after all writes have been processed. 849 PtrAccessSet DeferredAccesses; 850 851 // Iterate over each alias set twice, once to process read/write pointers, 852 // and then to process read-only pointers. 853 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 854 bool UseDeferred = SetIteration > 0; 855 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 856 857 for (auto AV : AS) { 858 Value *Ptr = AV.getValue(); 859 860 // For a single memory access in AliasSetTracker, Accesses may contain 861 // both read and write, and they both need to be handled for CheckDeps. 862 for (auto AC : S) { 863 if (AC.getPointer() != Ptr) 864 continue; 865 866 bool IsWrite = AC.getInt(); 867 868 // If we're using the deferred access set, then it contains only 869 // reads. 870 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 871 if (UseDeferred && !IsReadOnlyPtr) 872 continue; 873 // Otherwise, the pointer must be in the PtrAccessSet, either as a 874 // read or a write. 875 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 876 S.count(MemAccessInfo(Ptr, false))) && 877 "Alias-set pointer not in the access set?"); 878 879 MemAccessInfo Access(Ptr, IsWrite); 880 DepCands.insert(Access); 881 882 // Memorize read-only pointers for later processing and skip them in 883 // the first round (they need to be checked after we have seen all 884 // write pointers). Note: we also mark pointer that are not 885 // consecutive as "read-only" pointers (so that we check 886 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 887 if (!UseDeferred && IsReadOnlyPtr) { 888 DeferredAccesses.insert(Access); 889 continue; 890 } 891 892 // If this is a write - check other reads and writes for conflicts. If 893 // this is a read only check other writes for conflicts (but only if 894 // there is no other write to the ptr - this is an optimization to 895 // catch "a[i] = a[i] + " without having to do a dependence check). 896 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 897 CheckDeps.push_back(Access); 898 IsRTCheckAnalysisNeeded = true; 899 } 900 901 if (IsWrite) 902 SetHasWrite = true; 903 904 // Create sets of pointers connected by a shared alias set and 905 // underlying object. 906 typedef SmallVector<const Value *, 16> ValueVector; 907 ValueVector TempObjects; 908 909 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 910 LLVM_DEBUG(dbgs() 911 << "Underlying objects for pointer " << *Ptr << "\n"); 912 for (const Value *UnderlyingObj : TempObjects) { 913 // nullptr never alias, don't join sets for pointer that have "null" 914 // in their UnderlyingObjects list. 915 if (isa<ConstantPointerNull>(UnderlyingObj) && 916 !NullPointerIsDefined( 917 TheLoop->getHeader()->getParent(), 918 UnderlyingObj->getType()->getPointerAddressSpace())) 919 continue; 920 921 UnderlyingObjToAccessMap::iterator Prev = 922 ObjToLastAccess.find(UnderlyingObj); 923 if (Prev != ObjToLastAccess.end()) 924 DepCands.unionSets(Access, Prev->second); 925 926 ObjToLastAccess[UnderlyingObj] = Access; 927 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 928 } 929 } 930 } 931 } 932 } 933 } 934 935 static bool isInBoundsGep(Value *Ptr) { 936 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 937 return GEP->isInBounds(); 938 return false; 939 } 940 941 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 942 /// i.e. monotonically increasing/decreasing. 943 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 944 PredicatedScalarEvolution &PSE, const Loop *L) { 945 // FIXME: This should probably only return true for NUW. 946 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 947 return true; 948 949 // Scalar evolution does not propagate the non-wrapping flags to values that 950 // are derived from a non-wrapping induction variable because non-wrapping 951 // could be flow-sensitive. 952 // 953 // Look through the potentially overflowing instruction to try to prove 954 // non-wrapping for the *specific* value of Ptr. 955 956 // The arithmetic implied by an inbounds GEP can't overflow. 957 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 958 if (!GEP || !GEP->isInBounds()) 959 return false; 960 961 // Make sure there is only one non-const index and analyze that. 962 Value *NonConstIndex = nullptr; 963 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 964 if (!isa<ConstantInt>(Index)) { 965 if (NonConstIndex) 966 return false; 967 NonConstIndex = Index; 968 } 969 if (!NonConstIndex) 970 // The recurrence is on the pointer, ignore for now. 971 return false; 972 973 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 974 // AddRec using a NSW operation. 975 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 976 if (OBO->hasNoSignedWrap() && 977 // Assume constant for other the operand so that the AddRec can be 978 // easily found. 979 isa<ConstantInt>(OBO->getOperand(1))) { 980 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 981 982 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 983 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 984 } 985 986 return false; 987 } 988 989 /// Check whether the access through \p Ptr has a constant stride. 990 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 991 const Loop *Lp, const ValueToValueMap &StridesMap, 992 bool Assume, bool ShouldCheckWrap) { 993 Type *Ty = Ptr->getType(); 994 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 995 996 // Make sure that the pointer does not point to aggregate types. 997 auto *PtrTy = cast<PointerType>(Ty); 998 if (PtrTy->getElementType()->isAggregateType()) { 999 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1000 << *Ptr << "\n"); 1001 return 0; 1002 } 1003 1004 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1005 1006 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1007 if (Assume && !AR) 1008 AR = PSE.getAsAddRec(Ptr); 1009 1010 if (!AR) { 1011 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1012 << " SCEV: " << *PtrScev << "\n"); 1013 return 0; 1014 } 1015 1016 // The access function must stride over the innermost loop. 1017 if (Lp != AR->getLoop()) { 1018 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1019 << *Ptr << " SCEV: " << *AR << "\n"); 1020 return 0; 1021 } 1022 1023 // The address calculation must not wrap. Otherwise, a dependence could be 1024 // inverted. 1025 // An inbounds getelementptr that is a AddRec with a unit stride 1026 // cannot wrap per definition. The unit stride requirement is checked later. 1027 // An getelementptr without an inbounds attribute and unit stride would have 1028 // to access the pointer value "0" which is undefined behavior in address 1029 // space 0, therefore we can also vectorize this case. 1030 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1031 bool IsNoWrapAddRec = !ShouldCheckWrap || 1032 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1033 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1034 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1035 NullPointerIsDefined(Lp->getHeader()->getParent(), 1036 PtrTy->getAddressSpace())) { 1037 if (Assume) { 1038 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1039 IsNoWrapAddRec = true; 1040 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1041 << "LAA: Pointer: " << *Ptr << "\n" 1042 << "LAA: SCEV: " << *AR << "\n" 1043 << "LAA: Added an overflow assumption\n"); 1044 } else { 1045 LLVM_DEBUG( 1046 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1047 << *Ptr << " SCEV: " << *AR << "\n"); 1048 return 0; 1049 } 1050 } 1051 1052 // Check the step is constant. 1053 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1054 1055 // Calculate the pointer stride and check if it is constant. 1056 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1057 if (!C) { 1058 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1059 << " SCEV: " << *AR << "\n"); 1060 return 0; 1061 } 1062 1063 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1064 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1065 const APInt &APStepVal = C->getAPInt(); 1066 1067 // Huge step value - give up. 1068 if (APStepVal.getBitWidth() > 64) 1069 return 0; 1070 1071 int64_t StepVal = APStepVal.getSExtValue(); 1072 1073 // Strided access. 1074 int64_t Stride = StepVal / Size; 1075 int64_t Rem = StepVal % Size; 1076 if (Rem) 1077 return 0; 1078 1079 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1080 // know we can't "wrap around the address space". In case of address space 1081 // zero we know that this won't happen without triggering undefined behavior. 1082 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1083 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1084 PtrTy->getAddressSpace()))) { 1085 if (Assume) { 1086 // We can avoid this case by adding a run-time check. 1087 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1088 << "inbounds or in address space 0 may wrap:\n" 1089 << "LAA: Pointer: " << *Ptr << "\n" 1090 << "LAA: SCEV: " << *AR << "\n" 1091 << "LAA: Added an overflow assumption\n"); 1092 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1093 } else 1094 return 0; 1095 } 1096 1097 return Stride; 1098 } 1099 1100 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1101 ScalarEvolution &SE, 1102 SmallVectorImpl<unsigned> &SortedIndices) { 1103 assert(llvm::all_of( 1104 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1105 "Expected list of pointer operands."); 1106 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1107 OffValPairs.reserve(VL.size()); 1108 1109 // Walk over the pointers, and map each of them to an offset relative to 1110 // first pointer in the array. 1111 Value *Ptr0 = VL[0]; 1112 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1113 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1114 1115 llvm::SmallSet<int64_t, 4> Offsets; 1116 for (auto *Ptr : VL) { 1117 // TODO: Outline this code as a special, more time consuming, version of 1118 // computeConstantDifference() function. 1119 if (Ptr->getType()->getPointerAddressSpace() != 1120 Ptr0->getType()->getPointerAddressSpace()) 1121 return false; 1122 // If a pointer refers to a different underlying object, bail - the 1123 // pointers are by definition incomparable. 1124 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1125 if (CurrObj != Obj0) 1126 return false; 1127 1128 const SCEV *Scev = SE.getSCEV(Ptr); 1129 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1130 // The pointers may not have a constant offset from each other, or SCEV 1131 // may just not be smart enough to figure out they do. Regardless, 1132 // there's nothing we can do. 1133 if (!Diff) 1134 return false; 1135 1136 // Check if the pointer with the same offset is found. 1137 int64_t Offset = Diff->getAPInt().getSExtValue(); 1138 if (!Offsets.insert(Offset).second) 1139 return false; 1140 OffValPairs.emplace_back(Offset, Ptr); 1141 } 1142 SortedIndices.clear(); 1143 SortedIndices.resize(VL.size()); 1144 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1145 1146 // Sort the memory accesses and keep the order of their uses in UseOrder. 1147 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1148 return OffValPairs[Left].first < OffValPairs[Right].first; 1149 }); 1150 1151 // Check if the order is consecutive already. 1152 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1153 return I == SortedIndices[I]; 1154 })) 1155 SortedIndices.clear(); 1156 1157 return true; 1158 } 1159 1160 /// Take the address space operand from the Load/Store instruction. 1161 /// Returns -1 if this is not a valid Load/Store instruction. 1162 static unsigned getAddressSpaceOperand(Value *I) { 1163 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1164 return L->getPointerAddressSpace(); 1165 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1166 return S->getPointerAddressSpace(); 1167 return -1; 1168 } 1169 1170 /// Returns true if the memory operations \p A and \p B are consecutive. 1171 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1172 ScalarEvolution &SE, bool CheckType) { 1173 Value *PtrA = getLoadStorePointerOperand(A); 1174 Value *PtrB = getLoadStorePointerOperand(B); 1175 unsigned ASA = getAddressSpaceOperand(A); 1176 unsigned ASB = getAddressSpaceOperand(B); 1177 1178 // Check that the address spaces match and that the pointers are valid. 1179 if (!PtrA || !PtrB || (ASA != ASB)) 1180 return false; 1181 1182 // Make sure that A and B are different pointers. 1183 if (PtrA == PtrB) 1184 return false; 1185 1186 // Make sure that A and B have the same type if required. 1187 if (CheckType && PtrA->getType() != PtrB->getType()) 1188 return false; 1189 1190 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1191 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1192 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1193 1194 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1195 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1196 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1197 1198 // OffsetDelta = OffsetB - OffsetA; 1199 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1200 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1201 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1202 const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); 1203 const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); 1204 // Check if they are based on the same pointer. That makes the offsets 1205 // sufficient. 1206 if (PtrA == PtrB) 1207 return OffsetDelta == Size; 1208 1209 // Compute the necessary base pointer delta to have the necessary final delta 1210 // equal to the size. 1211 // BaseDelta = Size - OffsetDelta; 1212 const SCEV *SizeSCEV = SE.getConstant(Size); 1213 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1214 1215 // Otherwise compute the distance with SCEV between the base pointers. 1216 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1217 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1218 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1219 return X == PtrSCEVB; 1220 } 1221 1222 MemoryDepChecker::VectorizationSafetyStatus 1223 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1224 switch (Type) { 1225 case NoDep: 1226 case Forward: 1227 case BackwardVectorizable: 1228 return VectorizationSafetyStatus::Safe; 1229 1230 case Unknown: 1231 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1232 case ForwardButPreventsForwarding: 1233 case Backward: 1234 case BackwardVectorizableButPreventsForwarding: 1235 return VectorizationSafetyStatus::Unsafe; 1236 } 1237 llvm_unreachable("unexpected DepType!"); 1238 } 1239 1240 bool MemoryDepChecker::Dependence::isBackward() const { 1241 switch (Type) { 1242 case NoDep: 1243 case Forward: 1244 case ForwardButPreventsForwarding: 1245 case Unknown: 1246 return false; 1247 1248 case BackwardVectorizable: 1249 case Backward: 1250 case BackwardVectorizableButPreventsForwarding: 1251 return true; 1252 } 1253 llvm_unreachable("unexpected DepType!"); 1254 } 1255 1256 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1257 return isBackward() || Type == Unknown; 1258 } 1259 1260 bool MemoryDepChecker::Dependence::isForward() const { 1261 switch (Type) { 1262 case Forward: 1263 case ForwardButPreventsForwarding: 1264 return true; 1265 1266 case NoDep: 1267 case Unknown: 1268 case BackwardVectorizable: 1269 case Backward: 1270 case BackwardVectorizableButPreventsForwarding: 1271 return false; 1272 } 1273 llvm_unreachable("unexpected DepType!"); 1274 } 1275 1276 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1277 uint64_t TypeByteSize) { 1278 // If loads occur at a distance that is not a multiple of a feasible vector 1279 // factor store-load forwarding does not take place. 1280 // Positive dependences might cause troubles because vectorizing them might 1281 // prevent store-load forwarding making vectorized code run a lot slower. 1282 // a[i] = a[i-3] ^ a[i-8]; 1283 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1284 // hence on your typical architecture store-load forwarding does not take 1285 // place. Vectorizing in such cases does not make sense. 1286 // Store-load forwarding distance. 1287 1288 // After this many iterations store-to-load forwarding conflicts should not 1289 // cause any slowdowns. 1290 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1291 // Maximum vector factor. 1292 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1293 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1294 1295 // Compute the smallest VF at which the store and load would be misaligned. 1296 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1297 VF *= 2) { 1298 // If the number of vector iteration between the store and the load are 1299 // small we could incur conflicts. 1300 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1301 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1302 break; 1303 } 1304 } 1305 1306 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1307 LLVM_DEBUG( 1308 dbgs() << "LAA: Distance " << Distance 1309 << " that could cause a store-load forwarding conflict\n"); 1310 return true; 1311 } 1312 1313 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1314 MaxVFWithoutSLForwardIssues != 1315 VectorizerParams::MaxVectorWidth * TypeByteSize) 1316 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1317 return false; 1318 } 1319 1320 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1321 if (Status < S) 1322 Status = S; 1323 } 1324 1325 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1326 /// memory accesses, that have the same stride whose absolute value is given 1327 /// in \p Stride, and that have the same type size \p TypeByteSize, 1328 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1329 /// possible to prove statically that the dependence distance is larger 1330 /// than the range that the accesses will travel through the execution of 1331 /// the loop. If so, return true; false otherwise. This is useful for 1332 /// example in loops such as the following (PR31098): 1333 /// for (i = 0; i < D; ++i) { 1334 /// = out[i]; 1335 /// out[i+D] = 1336 /// } 1337 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1338 const SCEV &BackedgeTakenCount, 1339 const SCEV &Dist, uint64_t Stride, 1340 uint64_t TypeByteSize) { 1341 1342 // If we can prove that 1343 // (**) |Dist| > BackedgeTakenCount * Step 1344 // where Step is the absolute stride of the memory accesses in bytes, 1345 // then there is no dependence. 1346 // 1347 // Rationale: 1348 // We basically want to check if the absolute distance (|Dist/Step|) 1349 // is >= the loop iteration count (or > BackedgeTakenCount). 1350 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1351 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1352 // that the dependence distance is >= VF; This is checked elsewhere. 1353 // But in some cases we can prune unknown dependence distances early, and 1354 // even before selecting the VF, and without a runtime test, by comparing 1355 // the distance against the loop iteration count. Since the vectorized code 1356 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1357 // also guarantees that distance >= VF. 1358 // 1359 const uint64_t ByteStride = Stride * TypeByteSize; 1360 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1361 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1362 1363 const SCEV *CastedDist = &Dist; 1364 const SCEV *CastedProduct = Product; 1365 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1366 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1367 1368 // The dependence distance can be positive/negative, so we sign extend Dist; 1369 // The multiplication of the absolute stride in bytes and the 1370 // backedgeTakenCount is non-negative, so we zero extend Product. 1371 if (DistTypeSize > ProductTypeSize) 1372 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1373 else 1374 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1375 1376 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1377 // (If so, then we have proven (**) because |Dist| >= Dist) 1378 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1379 if (SE.isKnownPositive(Minus)) 1380 return true; 1381 1382 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1383 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1384 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1385 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1386 if (SE.isKnownPositive(Minus)) 1387 return true; 1388 1389 return false; 1390 } 1391 1392 /// Check the dependence for two accesses with the same stride \p Stride. 1393 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1394 /// bytes. 1395 /// 1396 /// \returns true if they are independent. 1397 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1398 uint64_t TypeByteSize) { 1399 assert(Stride > 1 && "The stride must be greater than 1"); 1400 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1401 assert(Distance > 0 && "The distance must be non-zero"); 1402 1403 // Skip if the distance is not multiple of type byte size. 1404 if (Distance % TypeByteSize) 1405 return false; 1406 1407 uint64_t ScaledDist = Distance / TypeByteSize; 1408 1409 // No dependence if the scaled distance is not multiple of the stride. 1410 // E.g. 1411 // for (i = 0; i < 1024 ; i += 4) 1412 // A[i+2] = A[i] + 1; 1413 // 1414 // Two accesses in memory (scaled distance is 2, stride is 4): 1415 // | A[0] | | | | A[4] | | | | 1416 // | | | A[2] | | | | A[6] | | 1417 // 1418 // E.g. 1419 // for (i = 0; i < 1024 ; i += 3) 1420 // A[i+4] = A[i] + 1; 1421 // 1422 // Two accesses in memory (scaled distance is 4, stride is 3): 1423 // | A[0] | | | A[3] | | | A[6] | | | 1424 // | | | | | A[4] | | | A[7] | | 1425 return ScaledDist % Stride; 1426 } 1427 1428 MemoryDepChecker::Dependence::DepType 1429 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1430 const MemAccessInfo &B, unsigned BIdx, 1431 const ValueToValueMap &Strides) { 1432 assert (AIdx < BIdx && "Must pass arguments in program order"); 1433 1434 Value *APtr = A.getPointer(); 1435 Value *BPtr = B.getPointer(); 1436 bool AIsWrite = A.getInt(); 1437 bool BIsWrite = B.getInt(); 1438 1439 // Two reads are independent. 1440 if (!AIsWrite && !BIsWrite) 1441 return Dependence::NoDep; 1442 1443 // We cannot check pointers in different address spaces. 1444 if (APtr->getType()->getPointerAddressSpace() != 1445 BPtr->getType()->getPointerAddressSpace()) 1446 return Dependence::Unknown; 1447 1448 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1449 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1450 1451 const SCEV *Src = PSE.getSCEV(APtr); 1452 const SCEV *Sink = PSE.getSCEV(BPtr); 1453 1454 // If the induction step is negative we have to invert source and sink of the 1455 // dependence. 1456 if (StrideAPtr < 0) { 1457 std::swap(APtr, BPtr); 1458 std::swap(Src, Sink); 1459 std::swap(AIsWrite, BIsWrite); 1460 std::swap(AIdx, BIdx); 1461 std::swap(StrideAPtr, StrideBPtr); 1462 } 1463 1464 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1465 1466 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1467 << "(Induction step: " << StrideAPtr << ")\n"); 1468 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1469 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1470 1471 // Need accesses with constant stride. We don't want to vectorize 1472 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1473 // the address space. 1474 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1475 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1476 return Dependence::Unknown; 1477 } 1478 1479 Type *ATy = APtr->getType()->getPointerElementType(); 1480 Type *BTy = BPtr->getType()->getPointerElementType(); 1481 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1482 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1483 uint64_t Stride = std::abs(StrideAPtr); 1484 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1485 if (!C) { 1486 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1487 isSafeDependenceDistance(DL, *(PSE.getSE()), 1488 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1489 TypeByteSize)) 1490 return Dependence::NoDep; 1491 1492 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1493 FoundNonConstantDistanceDependence = true; 1494 return Dependence::Unknown; 1495 } 1496 1497 const APInt &Val = C->getAPInt(); 1498 int64_t Distance = Val.getSExtValue(); 1499 1500 // Attempt to prove strided accesses independent. 1501 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1502 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1503 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1504 return Dependence::NoDep; 1505 } 1506 1507 // Negative distances are not plausible dependencies. 1508 if (Val.isNegative()) { 1509 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1510 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1511 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1512 ATy != BTy)) { 1513 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1514 return Dependence::ForwardButPreventsForwarding; 1515 } 1516 1517 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1518 return Dependence::Forward; 1519 } 1520 1521 // Write to the same location with the same size. 1522 // Could be improved to assert type sizes are the same (i32 == float, etc). 1523 if (Val == 0) { 1524 if (ATy == BTy) 1525 return Dependence::Forward; 1526 LLVM_DEBUG( 1527 dbgs() << "LAA: Zero dependence difference but different types\n"); 1528 return Dependence::Unknown; 1529 } 1530 1531 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1532 1533 if (ATy != BTy) { 1534 LLVM_DEBUG( 1535 dbgs() 1536 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1537 return Dependence::Unknown; 1538 } 1539 1540 // Bail out early if passed-in parameters make vectorization not feasible. 1541 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1542 VectorizerParams::VectorizationFactor : 1); 1543 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1544 VectorizerParams::VectorizationInterleave : 1); 1545 // The minimum number of iterations for a vectorized/unrolled version. 1546 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1547 1548 // It's not vectorizable if the distance is smaller than the minimum distance 1549 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1550 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1551 // TypeByteSize (No need to plus the last gap distance). 1552 // 1553 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1554 // foo(int *A) { 1555 // int *B = (int *)((char *)A + 14); 1556 // for (i = 0 ; i < 1024 ; i += 2) 1557 // B[i] = A[i] + 1; 1558 // } 1559 // 1560 // Two accesses in memory (stride is 2): 1561 // | A[0] | | A[2] | | A[4] | | A[6] | | 1562 // | B[0] | | B[2] | | B[4] | 1563 // 1564 // Distance needs for vectorizing iterations except the last iteration: 1565 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1566 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1567 // 1568 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1569 // 12, which is less than distance. 1570 // 1571 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1572 // the minimum distance needed is 28, which is greater than distance. It is 1573 // not safe to do vectorization. 1574 uint64_t MinDistanceNeeded = 1575 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1576 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1577 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1578 << Distance << '\n'); 1579 return Dependence::Backward; 1580 } 1581 1582 // Unsafe if the minimum distance needed is greater than max safe distance. 1583 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1584 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1585 << MinDistanceNeeded << " size in bytes"); 1586 return Dependence::Backward; 1587 } 1588 1589 // Positive distance bigger than max vectorization factor. 1590 // FIXME: Should use max factor instead of max distance in bytes, which could 1591 // not handle different types. 1592 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1593 // void foo (int *A, char *B) { 1594 // for (unsigned i = 0; i < 1024; i++) { 1595 // A[i+2] = A[i] + 1; 1596 // B[i+2] = B[i] + 1; 1597 // } 1598 // } 1599 // 1600 // This case is currently unsafe according to the max safe distance. If we 1601 // analyze the two accesses on array B, the max safe dependence distance 1602 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1603 // is 8, which is less than 2 and forbidden vectorization, But actually 1604 // both A and B could be vectorized by 2 iterations. 1605 MaxSafeDepDistBytes = 1606 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1607 1608 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1609 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1610 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1611 return Dependence::BackwardVectorizableButPreventsForwarding; 1612 1613 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1614 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1615 << " with max VF = " << MaxVF << '\n'); 1616 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1617 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1618 return Dependence::BackwardVectorizable; 1619 } 1620 1621 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1622 MemAccessInfoList &CheckDeps, 1623 const ValueToValueMap &Strides) { 1624 1625 MaxSafeDepDistBytes = -1; 1626 SmallPtrSet<MemAccessInfo, 8> Visited; 1627 for (MemAccessInfo CurAccess : CheckDeps) { 1628 if (Visited.count(CurAccess)) 1629 continue; 1630 1631 // Get the relevant memory access set. 1632 EquivalenceClasses<MemAccessInfo>::iterator I = 1633 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1634 1635 // Check accesses within this set. 1636 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1637 AccessSets.member_begin(I); 1638 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1639 AccessSets.member_end(); 1640 1641 // Check every access pair. 1642 while (AI != AE) { 1643 Visited.insert(*AI); 1644 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 1645 while (OI != AE) { 1646 // Check every accessing instruction pair in program order. 1647 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1648 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1649 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 1650 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 1651 auto A = std::make_pair(&*AI, *I1); 1652 auto B = std::make_pair(&*OI, *I2); 1653 1654 assert(*I1 != *I2); 1655 if (*I1 > *I2) 1656 std::swap(A, B); 1657 1658 Dependence::DepType Type = 1659 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1660 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1661 1662 // Gather dependences unless we accumulated MaxDependences 1663 // dependences. In that case return as soon as we find the first 1664 // unsafe dependence. This puts a limit on this quadratic 1665 // algorithm. 1666 if (RecordDependences) { 1667 if (Type != Dependence::NoDep) 1668 Dependences.push_back(Dependence(A.second, B.second, Type)); 1669 1670 if (Dependences.size() >= MaxDependences) { 1671 RecordDependences = false; 1672 Dependences.clear(); 1673 LLVM_DEBUG(dbgs() 1674 << "Too many dependences, stopped recording\n"); 1675 } 1676 } 1677 if (!RecordDependences && !isSafeForVectorization()) 1678 return false; 1679 } 1680 ++OI; 1681 } 1682 AI++; 1683 } 1684 } 1685 1686 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1687 return isSafeForVectorization(); 1688 } 1689 1690 SmallVector<Instruction *, 4> 1691 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1692 MemAccessInfo Access(Ptr, isWrite); 1693 auto &IndexVector = Accesses.find(Access)->second; 1694 1695 SmallVector<Instruction *, 4> Insts; 1696 transform(IndexVector, 1697 std::back_inserter(Insts), 1698 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1699 return Insts; 1700 } 1701 1702 const char *MemoryDepChecker::Dependence::DepName[] = { 1703 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1704 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1705 1706 void MemoryDepChecker::Dependence::print( 1707 raw_ostream &OS, unsigned Depth, 1708 const SmallVectorImpl<Instruction *> &Instrs) const { 1709 OS.indent(Depth) << DepName[Type] << ":\n"; 1710 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1711 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1712 } 1713 1714 bool LoopAccessInfo::canAnalyzeLoop() { 1715 // We need to have a loop header. 1716 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1717 << TheLoop->getHeader()->getParent()->getName() << ": " 1718 << TheLoop->getHeader()->getName() << '\n'); 1719 1720 // We can only analyze innermost loops. 1721 if (!TheLoop->empty()) { 1722 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1723 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1724 return false; 1725 } 1726 1727 // We must have a single backedge. 1728 if (TheLoop->getNumBackEdges() != 1) { 1729 LLVM_DEBUG( 1730 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1731 recordAnalysis("CFGNotUnderstood") 1732 << "loop control flow is not understood by analyzer"; 1733 return false; 1734 } 1735 1736 // We must have a single exiting block. 1737 if (!TheLoop->getExitingBlock()) { 1738 LLVM_DEBUG( 1739 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1740 recordAnalysis("CFGNotUnderstood") 1741 << "loop control flow is not understood by analyzer"; 1742 return false; 1743 } 1744 1745 // We only handle bottom-tested loops, i.e. loop in which the condition is 1746 // checked at the end of each iteration. With that we can assume that all 1747 // instructions in the loop are executed the same number of times. 1748 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1749 LLVM_DEBUG( 1750 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1751 recordAnalysis("CFGNotUnderstood") 1752 << "loop control flow is not understood by analyzer"; 1753 return false; 1754 } 1755 1756 // ScalarEvolution needs to be able to find the exit count. 1757 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1758 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1759 recordAnalysis("CantComputeNumberOfIterations") 1760 << "could not determine number of loop iterations"; 1761 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1762 return false; 1763 } 1764 1765 return true; 1766 } 1767 1768 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1769 const TargetLibraryInfo *TLI, 1770 DominatorTree *DT) { 1771 typedef SmallPtrSet<Value*, 16> ValueSet; 1772 1773 // Holds the Load and Store instructions. 1774 SmallVector<LoadInst *, 16> Loads; 1775 SmallVector<StoreInst *, 16> Stores; 1776 1777 // Holds all the different accesses in the loop. 1778 unsigned NumReads = 0; 1779 unsigned NumReadWrites = 0; 1780 1781 bool HasComplexMemInst = false; 1782 1783 // A runtime check is only legal to insert if there are no convergent calls. 1784 HasConvergentOp = false; 1785 1786 PtrRtChecking->Pointers.clear(); 1787 PtrRtChecking->Need = false; 1788 1789 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1790 1791 // For each block. 1792 for (BasicBlock *BB : TheLoop->blocks()) { 1793 // Scan the BB and collect legal loads and stores. Also detect any 1794 // convergent instructions. 1795 for (Instruction &I : *BB) { 1796 if (auto *Call = dyn_cast<CallBase>(&I)) { 1797 if (Call->isConvergent()) 1798 HasConvergentOp = true; 1799 } 1800 1801 // With both a non-vectorizable memory instruction and a convergent 1802 // operation, found in this loop, no reason to continue the search. 1803 if (HasComplexMemInst && HasConvergentOp) { 1804 CanVecMem = false; 1805 return; 1806 } 1807 1808 // Avoid hitting recordAnalysis multiple times. 1809 if (HasComplexMemInst) 1810 continue; 1811 1812 // If this is a load, save it. If this instruction can read from memory 1813 // but is not a load, then we quit. Notice that we don't handle function 1814 // calls that read or write. 1815 if (I.mayReadFromMemory()) { 1816 // Many math library functions read the rounding mode. We will only 1817 // vectorize a loop if it contains known function calls that don't set 1818 // the flag. Therefore, it is safe to ignore this read from memory. 1819 auto *Call = dyn_cast<CallInst>(&I); 1820 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1821 continue; 1822 1823 // If the function has an explicit vectorized counterpart, we can safely 1824 // assume that it can be vectorized. 1825 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1826 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1827 continue; 1828 1829 auto *Ld = dyn_cast<LoadInst>(&I); 1830 if (!Ld) { 1831 recordAnalysis("CantVectorizeInstruction", Ld) 1832 << "instruction cannot be vectorized"; 1833 HasComplexMemInst = true; 1834 continue; 1835 } 1836 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1837 recordAnalysis("NonSimpleLoad", Ld) 1838 << "read with atomic ordering or volatile read"; 1839 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1840 HasComplexMemInst = true; 1841 continue; 1842 } 1843 NumLoads++; 1844 Loads.push_back(Ld); 1845 DepChecker->addAccess(Ld); 1846 if (EnableMemAccessVersioning) 1847 collectStridedAccess(Ld); 1848 continue; 1849 } 1850 1851 // Save 'store' instructions. Abort if other instructions write to memory. 1852 if (I.mayWriteToMemory()) { 1853 auto *St = dyn_cast<StoreInst>(&I); 1854 if (!St) { 1855 recordAnalysis("CantVectorizeInstruction", St) 1856 << "instruction cannot be vectorized"; 1857 HasComplexMemInst = true; 1858 continue; 1859 } 1860 if (!St->isSimple() && !IsAnnotatedParallel) { 1861 recordAnalysis("NonSimpleStore", St) 1862 << "write with atomic ordering or volatile write"; 1863 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1864 HasComplexMemInst = true; 1865 continue; 1866 } 1867 NumStores++; 1868 Stores.push_back(St); 1869 DepChecker->addAccess(St); 1870 if (EnableMemAccessVersioning) 1871 collectStridedAccess(St); 1872 } 1873 } // Next instr. 1874 } // Next block. 1875 1876 if (HasComplexMemInst) { 1877 CanVecMem = false; 1878 return; 1879 } 1880 1881 // Now we have two lists that hold the loads and the stores. 1882 // Next, we find the pointers that they use. 1883 1884 // Check if we see any stores. If there are no stores, then we don't 1885 // care if the pointers are *restrict*. 1886 if (!Stores.size()) { 1887 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1888 CanVecMem = true; 1889 return; 1890 } 1891 1892 MemoryDepChecker::DepCandidates DependentAccesses; 1893 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1894 TheLoop, AA, LI, DependentAccesses, *PSE); 1895 1896 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1897 // multiple times on the same object. If the ptr is accessed twice, once 1898 // for read and once for write, it will only appear once (on the write 1899 // list). This is okay, since we are going to check for conflicts between 1900 // writes and between reads and writes, but not between reads and reads. 1901 ValueSet Seen; 1902 1903 // Record uniform store addresses to identify if we have multiple stores 1904 // to the same address. 1905 ValueSet UniformStores; 1906 1907 for (StoreInst *ST : Stores) { 1908 Value *Ptr = ST->getPointerOperand(); 1909 1910 if (isUniform(Ptr)) 1911 HasDependenceInvolvingLoopInvariantAddress |= 1912 !UniformStores.insert(Ptr).second; 1913 1914 // If we did *not* see this pointer before, insert it to the read-write 1915 // list. At this phase it is only a 'write' list. 1916 if (Seen.insert(Ptr).second) { 1917 ++NumReadWrites; 1918 1919 MemoryLocation Loc = MemoryLocation::get(ST); 1920 // The TBAA metadata could have a control dependency on the predication 1921 // condition, so we cannot rely on it when determining whether or not we 1922 // need runtime pointer checks. 1923 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1924 Loc.AATags.TBAA = nullptr; 1925 1926 Accesses.addStore(Loc); 1927 } 1928 } 1929 1930 if (IsAnnotatedParallel) { 1931 LLVM_DEBUG( 1932 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1933 << "checks.\n"); 1934 CanVecMem = true; 1935 return; 1936 } 1937 1938 for (LoadInst *LD : Loads) { 1939 Value *Ptr = LD->getPointerOperand(); 1940 // If we did *not* see this pointer before, insert it to the 1941 // read list. If we *did* see it before, then it is already in 1942 // the read-write list. This allows us to vectorize expressions 1943 // such as A[i] += x; Because the address of A[i] is a read-write 1944 // pointer. This only works if the index of A[i] is consecutive. 1945 // If the address of i is unknown (for example A[B[i]]) then we may 1946 // read a few words, modify, and write a few words, and some of the 1947 // words may be written to the same address. 1948 bool IsReadOnlyPtr = false; 1949 if (Seen.insert(Ptr).second || 1950 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1951 ++NumReads; 1952 IsReadOnlyPtr = true; 1953 } 1954 1955 // See if there is an unsafe dependency between a load to a uniform address and 1956 // store to the same uniform address. 1957 if (UniformStores.count(Ptr)) { 1958 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1959 "load and uniform store to the same address!\n"); 1960 HasDependenceInvolvingLoopInvariantAddress = true; 1961 } 1962 1963 MemoryLocation Loc = MemoryLocation::get(LD); 1964 // The TBAA metadata could have a control dependency on the predication 1965 // condition, so we cannot rely on it when determining whether or not we 1966 // need runtime pointer checks. 1967 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1968 Loc.AATags.TBAA = nullptr; 1969 1970 Accesses.addLoad(Loc, IsReadOnlyPtr); 1971 } 1972 1973 // If we write (or read-write) to a single destination and there are no 1974 // other reads in this loop then is it safe to vectorize. 1975 if (NumReadWrites == 1 && NumReads == 0) { 1976 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1977 CanVecMem = true; 1978 return; 1979 } 1980 1981 // Build dependence sets and check whether we need a runtime pointer bounds 1982 // check. 1983 Accesses.buildDependenceSets(); 1984 1985 // Find pointers with computable bounds. We are going to use this information 1986 // to place a runtime bound check. 1987 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 1988 TheLoop, SymbolicStrides); 1989 if (!CanDoRTIfNeeded) { 1990 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 1991 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 1992 << "the array bounds.\n"); 1993 CanVecMem = false; 1994 return; 1995 } 1996 1997 LLVM_DEBUG( 1998 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 1999 2000 CanVecMem = true; 2001 if (Accesses.isDependencyCheckNeeded()) { 2002 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2003 CanVecMem = DepChecker->areDepsSafe( 2004 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2005 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2006 2007 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2008 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2009 2010 // Clear the dependency checks. We assume they are not needed. 2011 Accesses.resetDepChecks(*DepChecker); 2012 2013 PtrRtChecking->reset(); 2014 PtrRtChecking->Need = true; 2015 2016 auto *SE = PSE->getSE(); 2017 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2018 SymbolicStrides, true); 2019 2020 // Check that we found the bounds for the pointer. 2021 if (!CanDoRTIfNeeded) { 2022 recordAnalysis("CantCheckMemDepsAtRunTime") 2023 << "cannot check memory dependencies at runtime"; 2024 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2025 CanVecMem = false; 2026 return; 2027 } 2028 2029 CanVecMem = true; 2030 } 2031 } 2032 2033 if (HasConvergentOp) { 2034 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2035 << "cannot add control dependency to convergent operation"; 2036 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2037 "would be needed with a convergent operation\n"); 2038 CanVecMem = false; 2039 return; 2040 } 2041 2042 if (CanVecMem) 2043 LLVM_DEBUG( 2044 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2045 << (PtrRtChecking->Need ? "" : " don't") 2046 << " need runtime memory checks.\n"); 2047 else { 2048 recordAnalysis("UnsafeMemDep") 2049 << "unsafe dependent memory operations in loop. Use " 2050 "#pragma loop distribute(enable) to allow loop distribution " 2051 "to attempt to isolate the offending operations into a separate " 2052 "loop"; 2053 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2054 } 2055 } 2056 2057 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2058 DominatorTree *DT) { 2059 assert(TheLoop->contains(BB) && "Unknown block used"); 2060 2061 // Blocks that do not dominate the latch need predication. 2062 BasicBlock* Latch = TheLoop->getLoopLatch(); 2063 return !DT->dominates(BB, Latch); 2064 } 2065 2066 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2067 Instruction *I) { 2068 assert(!Report && "Multiple reports generated"); 2069 2070 Value *CodeRegion = TheLoop->getHeader(); 2071 DebugLoc DL = TheLoop->getStartLoc(); 2072 2073 if (I) { 2074 CodeRegion = I->getParent(); 2075 // If there is no debug location attached to the instruction, revert back to 2076 // using the loop's. 2077 if (I->getDebugLoc()) 2078 DL = I->getDebugLoc(); 2079 } 2080 2081 Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2082 CodeRegion); 2083 return *Report; 2084 } 2085 2086 bool LoopAccessInfo::isUniform(Value *V) const { 2087 auto *SE = PSE->getSE(); 2088 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2089 // never considered uniform. 2090 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2091 // trivially loop-invariant FP values to be considered uniform. 2092 if (!SE->isSCEVable(V->getType())) 2093 return false; 2094 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2095 } 2096 2097 // FIXME: this function is currently a duplicate of the one in 2098 // LoopVectorize.cpp. 2099 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2100 Instruction *Loc) { 2101 if (FirstInst) 2102 return FirstInst; 2103 if (Instruction *I = dyn_cast<Instruction>(V)) 2104 return I->getParent() == Loc->getParent() ? I : nullptr; 2105 return nullptr; 2106 } 2107 2108 namespace { 2109 2110 /// IR Values for the lower and upper bounds of a pointer evolution. We 2111 /// need to use value-handles because SCEV expansion can invalidate previously 2112 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2113 /// a previous one. 2114 struct PointerBounds { 2115 TrackingVH<Value> Start; 2116 TrackingVH<Value> End; 2117 }; 2118 2119 } // end anonymous namespace 2120 2121 /// Expand code for the lower and upper bound of the pointer group \p CG 2122 /// in \p TheLoop. \return the values for the bounds. 2123 static PointerBounds 2124 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 2125 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 2126 const RuntimePointerChecking &PtrRtChecking) { 2127 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2128 const SCEV *Sc = SE->getSCEV(Ptr); 2129 2130 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2131 LLVMContext &Ctx = Loc->getContext(); 2132 2133 // Use this type for pointer arithmetic. 2134 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2135 2136 if (SE->isLoopInvariant(Sc, TheLoop)) { 2137 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2138 << *Ptr << "\n"); 2139 // Ptr could be in the loop body. If so, expand a new one at the correct 2140 // location. 2141 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2142 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2143 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2144 : Ptr; 2145 // We must return a half-open range, which means incrementing Sc. 2146 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2147 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2148 return {NewPtr, NewPtrPlusOne}; 2149 } else { 2150 Value *Start = nullptr, *End = nullptr; 2151 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2152 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2153 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2154 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2155 << "\n"); 2156 return {Start, End}; 2157 } 2158 } 2159 2160 /// Turns a collection of checks into a collection of expanded upper and 2161 /// lower bounds for both pointers in the check. 2162 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2163 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2164 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2165 const RuntimePointerChecking &PtrRtChecking) { 2166 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2167 2168 // Here we're relying on the SCEV Expander's cache to only emit code for the 2169 // same bounds once. 2170 transform( 2171 PointerChecks, std::back_inserter(ChecksWithBounds), 2172 [&](const RuntimePointerChecking::PointerCheck &Check) { 2173 PointerBounds 2174 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2175 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2176 return std::make_pair(First, Second); 2177 }); 2178 2179 return ChecksWithBounds; 2180 } 2181 2182 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2183 Instruction *Loc, 2184 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2185 const { 2186 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2187 auto *SE = PSE->getSE(); 2188 SCEVExpander Exp(*SE, DL, "induction"); 2189 auto ExpandedChecks = 2190 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2191 2192 LLVMContext &Ctx = Loc->getContext(); 2193 Instruction *FirstInst = nullptr; 2194 IRBuilder<> ChkBuilder(Loc); 2195 // Our instructions might fold to a constant. 2196 Value *MemoryRuntimeCheck = nullptr; 2197 2198 for (const auto &Check : ExpandedChecks) { 2199 const PointerBounds &A = Check.first, &B = Check.second; 2200 // Check if two pointers (A and B) conflict where conflict is computed as: 2201 // start(A) <= end(B) && start(B) <= end(A) 2202 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2203 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2204 2205 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2206 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2207 "Trying to bounds check pointers with different address spaces"); 2208 2209 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2210 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2211 2212 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2213 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2214 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2215 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2216 2217 // [A|B].Start points to the first accessed byte under base [A|B]. 2218 // [A|B].End points to the last accessed byte, plus one. 2219 // There is no conflict when the intervals are disjoint: 2220 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2221 // 2222 // bound0 = (B.Start < A.End) 2223 // bound1 = (A.Start < B.End) 2224 // IsConflict = bound0 & bound1 2225 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2226 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2227 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2228 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2229 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2230 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2231 if (MemoryRuntimeCheck) { 2232 IsConflict = 2233 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2234 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2235 } 2236 MemoryRuntimeCheck = IsConflict; 2237 } 2238 2239 if (!MemoryRuntimeCheck) 2240 return std::make_pair(nullptr, nullptr); 2241 2242 // We have to do this trickery because the IRBuilder might fold the check to a 2243 // constant expression in which case there is no Instruction anchored in a 2244 // the block. 2245 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2246 ConstantInt::getTrue(Ctx)); 2247 ChkBuilder.Insert(Check, "memcheck.conflict"); 2248 FirstInst = getFirstInst(FirstInst, Check, Loc); 2249 return std::make_pair(FirstInst, Check); 2250 } 2251 2252 std::pair<Instruction *, Instruction *> 2253 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2254 if (!PtrRtChecking->Need) 2255 return std::make_pair(nullptr, nullptr); 2256 2257 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2258 } 2259 2260 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2261 Value *Ptr = nullptr; 2262 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2263 Ptr = LI->getPointerOperand(); 2264 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2265 Ptr = SI->getPointerOperand(); 2266 else 2267 return; 2268 2269 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2270 if (!Stride) 2271 return; 2272 2273 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2274 "versioning:"); 2275 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2276 2277 // Avoid adding the "Stride == 1" predicate when we know that 2278 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2279 // or zero iteration loop, as Trip-Count <= Stride == 1. 2280 // 2281 // TODO: We are currently not making a very informed decision on when it is 2282 // beneficial to apply stride versioning. It might make more sense that the 2283 // users of this analysis (such as the vectorizer) will trigger it, based on 2284 // their specific cost considerations; For example, in cases where stride 2285 // versioning does not help resolving memory accesses/dependences, the 2286 // vectorizer should evaluate the cost of the runtime test, and the benefit 2287 // of various possible stride specializations, considering the alternatives 2288 // of using gather/scatters (if available). 2289 2290 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2291 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2292 2293 // Match the types so we can compare the stride and the BETakenCount. 2294 // The Stride can be positive/negative, so we sign extend Stride; 2295 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2296 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2297 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2298 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2299 const SCEV *CastedStride = StrideExpr; 2300 const SCEV *CastedBECount = BETakenCount; 2301 ScalarEvolution *SE = PSE->getSE(); 2302 if (BETypeSize >= StrideTypeSize) 2303 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2304 else 2305 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2306 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2307 // Since TripCount == BackEdgeTakenCount + 1, checking: 2308 // "Stride >= TripCount" is equivalent to checking: 2309 // Stride - BETakenCount > 0 2310 if (SE->isKnownPositive(StrideMinusBETaken)) { 2311 LLVM_DEBUG( 2312 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2313 "Stride==1 predicate will imply that the loop executes " 2314 "at most once.\n"); 2315 return; 2316 } 2317 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2318 2319 SymbolicStrides[Ptr] = Stride; 2320 StrideSet.insert(Stride); 2321 } 2322 2323 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2324 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2325 DominatorTree *DT, LoopInfo *LI) 2326 : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2327 PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), 2328 DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2329 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2330 HasConvergentOp(false), 2331 HasDependenceInvolvingLoopInvariantAddress(false) { 2332 if (canAnalyzeLoop()) 2333 analyzeLoop(AA, LI, TLI, DT); 2334 } 2335 2336 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2337 if (CanVecMem) { 2338 OS.indent(Depth) << "Memory dependences are safe"; 2339 if (MaxSafeDepDistBytes != -1ULL) 2340 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2341 << " bytes"; 2342 if (PtrRtChecking->Need) 2343 OS << " with run-time checks"; 2344 OS << "\n"; 2345 } 2346 2347 if (HasConvergentOp) 2348 OS.indent(Depth) << "Has convergent operation in loop\n"; 2349 2350 if (Report) 2351 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2352 2353 if (auto *Dependences = DepChecker->getDependences()) { 2354 OS.indent(Depth) << "Dependences:\n"; 2355 for (auto &Dep : *Dependences) { 2356 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2357 OS << "\n"; 2358 } 2359 } else 2360 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2361 2362 // List the pair of accesses need run-time checks to prove independence. 2363 PtrRtChecking->print(OS, Depth); 2364 OS << "\n"; 2365 2366 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2367 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2368 << "found in loop.\n"; 2369 2370 OS.indent(Depth) << "SCEV assumptions:\n"; 2371 PSE->getUnionPredicate().print(OS, Depth); 2372 2373 OS << "\n"; 2374 2375 OS.indent(Depth) << "Expressions re-written:\n"; 2376 PSE->print(OS, Depth); 2377 } 2378 2379 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2380 auto &LAI = LoopAccessInfoMap[L]; 2381 2382 if (!LAI) 2383 LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2384 2385 return *LAI.get(); 2386 } 2387 2388 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2389 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2390 2391 for (Loop *TopLevelLoop : *LI) 2392 for (Loop *L : depth_first(TopLevelLoop)) { 2393 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2394 auto &LAI = LAA.getInfo(L); 2395 LAI.print(OS, 4); 2396 } 2397 } 2398 2399 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2400 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2401 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2402 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2403 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2404 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2405 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2406 2407 return false; 2408 } 2409 2410 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2411 AU.addRequired<ScalarEvolutionWrapperPass>(); 2412 AU.addRequired<AAResultsWrapperPass>(); 2413 AU.addRequired<DominatorTreeWrapperPass>(); 2414 AU.addRequired<LoopInfoWrapperPass>(); 2415 2416 AU.setPreservesAll(); 2417 } 2418 2419 char LoopAccessLegacyAnalysis::ID = 0; 2420 static const char laa_name[] = "Loop Access Analysis"; 2421 #define LAA_NAME "loop-accesses" 2422 2423 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2424 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2425 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2426 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2427 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2428 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2429 2430 AnalysisKey LoopAccessAnalysis::Key; 2431 2432 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2433 LoopStandardAnalysisResults &AR) { 2434 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2435 } 2436 2437 namespace llvm { 2438 2439 Pass *createLAAPass() { 2440 return new LoopAccessLegacyAnalysis(); 2441 } 2442 2443 } // end namespace llvm 2444