1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/PatternMatch.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/IR/ValueHandle.h" 54 #include "llvm/InitializePasses.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 bool VectorizerParams::isInterleaveForced() { 139 return ::VectorizationInterleave.getNumOccurrences() > 0; 140 } 141 142 Value *llvm::stripIntegerCast(Value *V) { 143 if (auto *CI = dyn_cast<CastInst>(V)) 144 if (CI->getOperand(0)->getType()->isIntegerTy()) 145 return CI->getOperand(0); 146 return V; 147 } 148 149 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 150 const ValueToValueMap &PtrToStride, 151 Value *Ptr) { 152 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 153 154 // If there is an entry in the map return the SCEV of the pointer with the 155 // symbolic stride replaced by one. 156 ValueToValueMap::const_iterator SI = PtrToStride.find(Ptr); 157 if (SI == PtrToStride.end()) 158 // For a non-symbolic stride, just return the original expression. 159 return OrigSCEV; 160 161 Value *StrideVal = stripIntegerCast(SI->second); 162 163 ScalarEvolution *SE = PSE.getSE(); 164 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 165 const auto *CT = 166 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 167 168 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 169 auto *Expr = PSE.getSCEV(Ptr); 170 171 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 172 << " by: " << *Expr << "\n"); 173 return Expr; 174 } 175 176 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 177 unsigned Index, RuntimePointerChecking &RtCheck) 178 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 179 AddressSpace(RtCheck.Pointers[Index] 180 .PointerValue->getType() 181 ->getPointerAddressSpace()), 182 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 183 Members.push_back(Index); 184 } 185 186 /// Calculate Start and End points of memory access. 187 /// Let's assume A is the first access and B is a memory access on N-th loop 188 /// iteration. Then B is calculated as: 189 /// B = A + Step*N . 190 /// Step value may be positive or negative. 191 /// N is a calculated back-edge taken count: 192 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 193 /// Start and End points are calculated in the following way: 194 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 195 /// where SizeOfElt is the size of single memory access in bytes. 196 /// 197 /// There is no conflict when the intervals are disjoint: 198 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 199 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 200 Type *AccessTy, bool WritePtr, 201 unsigned DepSetId, unsigned ASId, 202 PredicatedScalarEvolution &PSE, 203 bool NeedsFreeze) { 204 ScalarEvolution *SE = PSE.getSE(); 205 206 const SCEV *ScStart; 207 const SCEV *ScEnd; 208 209 if (SE->isLoopInvariant(PtrExpr, Lp)) { 210 ScStart = ScEnd = PtrExpr; 211 } else { 212 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr); 213 assert(AR && "Invalid addrec expression"); 214 const SCEV *Ex = PSE.getBackedgeTakenCount(); 215 216 ScStart = AR->getStart(); 217 ScEnd = AR->evaluateAtIteration(Ex, *SE); 218 const SCEV *Step = AR->getStepRecurrence(*SE); 219 220 // For expressions with negative step, the upper bound is ScStart and the 221 // lower bound is ScEnd. 222 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 223 if (CStep->getValue()->isNegative()) 224 std::swap(ScStart, ScEnd); 225 } else { 226 // Fallback case: the step is not constant, but we can still 227 // get the upper and lower bounds of the interval by using min/max 228 // expressions. 229 ScStart = SE->getUMinExpr(ScStart, ScEnd); 230 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 231 } 232 } 233 // Add the size of the pointed element to ScEnd. 234 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 235 Type *IdxTy = DL.getIndexType(Ptr->getType()); 236 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 237 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 238 239 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 240 NeedsFreeze); 241 } 242 243 void RuntimePointerChecking::tryToCreateDiffCheck( 244 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 245 if (!CanUseDiffCheck) 246 return; 247 248 // If either group contains multiple different pointers, bail out. 249 // TODO: Support multiple pointers by using the minimum or maximum pointer, 250 // depending on src & sink. 251 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) { 252 CanUseDiffCheck = false; 253 return; 254 } 255 256 PointerInfo *Src = &Pointers[CGI.Members[0]]; 257 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 258 259 // If either pointer is read and written, multiple checks may be needed. Bail 260 // out. 261 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 262 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) { 263 CanUseDiffCheck = false; 264 return; 265 } 266 267 ArrayRef<unsigned> AccSrc = 268 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 269 ArrayRef<unsigned> AccSink = 270 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 271 // If either pointer is accessed multiple times, there may not be a clear 272 // src/sink relation. Bail out for now. 273 if (AccSrc.size() != 1 || AccSink.size() != 1) { 274 CanUseDiffCheck = false; 275 return; 276 } 277 // If the sink is accessed before src, swap src/sink. 278 if (AccSink[0] < AccSrc[0]) 279 std::swap(Src, Sink); 280 281 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 282 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 283 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 284 SinkAR->getLoop() != DC.getInnermostLoop()) { 285 CanUseDiffCheck = false; 286 return; 287 } 288 289 const DataLayout &DL = 290 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout(); 291 SmallVector<Instruction *, 4> SrcInsts = 292 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 293 SmallVector<Instruction *, 4> SinkInsts = 294 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 295 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 296 Type *DstTy = getLoadStoreType(SinkInsts[0]); 297 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) { 298 CanUseDiffCheck = false; 299 return; 300 } 301 unsigned AllocSize = 302 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 303 IntegerType *IntTy = 304 IntegerType::get(Src->PointerValue->getContext(), 305 DL.getPointerSizeInBits(CGI.AddressSpace)); 306 307 // Only matching constant steps matching the AllocSize are supported at the 308 // moment. This simplifies the difference computation. Can be extended in the 309 // future. 310 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 311 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 312 Step->getAPInt().abs() != AllocSize) { 313 CanUseDiffCheck = false; 314 return; 315 } 316 317 // When counting down, the dependence distance needs to be swapped. 318 if (Step->getValue()->isNegative()) 319 std::swap(SinkAR, SrcAR); 320 321 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 322 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 323 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 324 isa<SCEVCouldNotCompute>(SrcStartInt)) { 325 CanUseDiffCheck = false; 326 return; 327 } 328 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 329 Src->NeedsFreeze || Sink->NeedsFreeze); 330 } 331 332 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 333 SmallVector<RuntimePointerCheck, 4> Checks; 334 335 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 336 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 337 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 338 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 339 340 if (needsChecking(CGI, CGJ)) { 341 tryToCreateDiffCheck(CGI, CGJ); 342 Checks.push_back(std::make_pair(&CGI, &CGJ)); 343 } 344 } 345 } 346 return Checks; 347 } 348 349 void RuntimePointerChecking::generateChecks( 350 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 351 assert(Checks.empty() && "Checks is not empty"); 352 groupChecks(DepCands, UseDependencies); 353 Checks = generateChecks(); 354 } 355 356 bool RuntimePointerChecking::needsChecking( 357 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 358 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 359 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 360 if (needsChecking(M.Members[I], N.Members[J])) 361 return true; 362 return false; 363 } 364 365 /// Compare \p I and \p J and return the minimum. 366 /// Return nullptr in case we couldn't find an answer. 367 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 368 ScalarEvolution *SE) { 369 const SCEV *Diff = SE->getMinusSCEV(J, I); 370 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 371 372 if (!C) 373 return nullptr; 374 if (C->getValue()->isNegative()) 375 return J; 376 return I; 377 } 378 379 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 380 RuntimePointerChecking &RtCheck) { 381 return addPointer( 382 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 383 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 384 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 385 } 386 387 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 388 const SCEV *End, unsigned AS, 389 bool NeedsFreeze, 390 ScalarEvolution &SE) { 391 assert(AddressSpace == AS && 392 "all pointers in a checking group must be in the same address space"); 393 394 // Compare the starts and ends with the known minimum and maximum 395 // of this set. We need to know how we compare against the min/max 396 // of the set in order to be able to emit memchecks. 397 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 398 if (!Min0) 399 return false; 400 401 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 402 if (!Min1) 403 return false; 404 405 // Update the low bound expression if we've found a new min value. 406 if (Min0 == Start) 407 Low = Start; 408 409 // Update the high bound expression if we've found a new max value. 410 if (Min1 != End) 411 High = End; 412 413 Members.push_back(Index); 414 this->NeedsFreeze |= NeedsFreeze; 415 return true; 416 } 417 418 void RuntimePointerChecking::groupChecks( 419 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 420 // We build the groups from dependency candidates equivalence classes 421 // because: 422 // - We know that pointers in the same equivalence class share 423 // the same underlying object and therefore there is a chance 424 // that we can compare pointers 425 // - We wouldn't be able to merge two pointers for which we need 426 // to emit a memcheck. The classes in DepCands are already 427 // conveniently built such that no two pointers in the same 428 // class need checking against each other. 429 430 // We use the following (greedy) algorithm to construct the groups 431 // For every pointer in the equivalence class: 432 // For each existing group: 433 // - if the difference between this pointer and the min/max bounds 434 // of the group is a constant, then make the pointer part of the 435 // group and update the min/max bounds of that group as required. 436 437 CheckingGroups.clear(); 438 439 // If we need to check two pointers to the same underlying object 440 // with a non-constant difference, we shouldn't perform any pointer 441 // grouping with those pointers. This is because we can easily get 442 // into cases where the resulting check would return false, even when 443 // the accesses are safe. 444 // 445 // The following example shows this: 446 // for (i = 0; i < 1000; ++i) 447 // a[5000 + i * m] = a[i] + a[i + 9000] 448 // 449 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 450 // (0, 10000) which is always false. However, if m is 1, there is no 451 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 452 // us to perform an accurate check in this case. 453 // 454 // The above case requires that we have an UnknownDependence between 455 // accesses to the same underlying object. This cannot happen unless 456 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 457 // is also false. In this case we will use the fallback path and create 458 // separate checking groups for all pointers. 459 460 // If we don't have the dependency partitions, construct a new 461 // checking pointer group for each pointer. This is also required 462 // for correctness, because in this case we can have checking between 463 // pointers to the same underlying object. 464 if (!UseDependencies) { 465 for (unsigned I = 0; I < Pointers.size(); ++I) 466 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 467 return; 468 } 469 470 unsigned TotalComparisons = 0; 471 472 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 473 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 474 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}}); 475 Iter.first->second.push_back(Index); 476 } 477 478 // We need to keep track of what pointers we've already seen so we 479 // don't process them twice. 480 SmallSet<unsigned, 2> Seen; 481 482 // Go through all equivalence classes, get the "pointer check groups" 483 // and add them to the overall solution. We use the order in which accesses 484 // appear in 'Pointers' to enforce determinism. 485 for (unsigned I = 0; I < Pointers.size(); ++I) { 486 // We've seen this pointer before, and therefore already processed 487 // its equivalence class. 488 if (Seen.count(I)) 489 continue; 490 491 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 492 Pointers[I].IsWritePtr); 493 494 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 495 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 496 497 // Because DepCands is constructed by visiting accesses in the order in 498 // which they appear in alias sets (which is deterministic) and the 499 // iteration order within an equivalence class member is only dependent on 500 // the order in which unions and insertions are performed on the 501 // equivalence class, the iteration order is deterministic. 502 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 503 MI != ME; ++MI) { 504 auto PointerI = PositionMap.find(MI->getPointer()); 505 assert(PointerI != PositionMap.end() && 506 "pointer in equivalence class not found in PositionMap"); 507 for (unsigned Pointer : PointerI->second) { 508 bool Merged = false; 509 // Mark this pointer as seen. 510 Seen.insert(Pointer); 511 512 // Go through all the existing sets and see if we can find one 513 // which can include this pointer. 514 for (RuntimeCheckingPtrGroup &Group : Groups) { 515 // Don't perform more than a certain amount of comparisons. 516 // This should limit the cost of grouping the pointers to something 517 // reasonable. If we do end up hitting this threshold, the algorithm 518 // will create separate groups for all remaining pointers. 519 if (TotalComparisons > MemoryCheckMergeThreshold) 520 break; 521 522 TotalComparisons++; 523 524 if (Group.addPointer(Pointer, *this)) { 525 Merged = true; 526 break; 527 } 528 } 529 530 if (!Merged) 531 // We couldn't add this pointer to any existing set or the threshold 532 // for the number of comparisons has been reached. Create a new group 533 // to hold the current pointer. 534 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 535 } 536 } 537 538 // We've computed the grouped checks for this partition. 539 // Save the results and continue with the next one. 540 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 541 } 542 } 543 544 bool RuntimePointerChecking::arePointersInSamePartition( 545 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 546 unsigned PtrIdx2) { 547 return (PtrToPartition[PtrIdx1] != -1 && 548 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 549 } 550 551 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 552 const PointerInfo &PointerI = Pointers[I]; 553 const PointerInfo &PointerJ = Pointers[J]; 554 555 // No need to check if two readonly pointers intersect. 556 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 557 return false; 558 559 // Only need to check pointers between two different dependency sets. 560 if (PointerI.DependencySetId == PointerJ.DependencySetId) 561 return false; 562 563 // Only need to check pointers in the same alias set. 564 if (PointerI.AliasSetId != PointerJ.AliasSetId) 565 return false; 566 567 return true; 568 } 569 570 void RuntimePointerChecking::printChecks( 571 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 572 unsigned Depth) const { 573 unsigned N = 0; 574 for (const auto &Check : Checks) { 575 const auto &First = Check.first->Members, &Second = Check.second->Members; 576 577 OS.indent(Depth) << "Check " << N++ << ":\n"; 578 579 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 580 for (unsigned K = 0; K < First.size(); ++K) 581 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 582 583 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 584 for (unsigned K = 0; K < Second.size(); ++K) 585 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 586 } 587 } 588 589 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 590 591 OS.indent(Depth) << "Run-time memory checks:\n"; 592 printChecks(OS, Checks, Depth); 593 594 OS.indent(Depth) << "Grouped accesses:\n"; 595 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 596 const auto &CG = CheckingGroups[I]; 597 598 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 599 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 600 << ")\n"; 601 for (unsigned J = 0; J < CG.Members.size(); ++J) { 602 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 603 << "\n"; 604 } 605 } 606 } 607 608 namespace { 609 610 /// Analyses memory accesses in a loop. 611 /// 612 /// Checks whether run time pointer checks are needed and builds sets for data 613 /// dependence checking. 614 class AccessAnalysis { 615 public: 616 /// Read or write access location. 617 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 618 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 619 620 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 621 MemoryDepChecker::DepCandidates &DA, 622 PredicatedScalarEvolution &PSE) 623 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), PSE(PSE) {} 624 625 /// Register a load and whether it is only read from. 626 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 627 Value *Ptr = const_cast<Value*>(Loc.Ptr); 628 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 629 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 630 if (IsReadOnly) 631 ReadOnlyPtr.insert(Ptr); 632 } 633 634 /// Register a store. 635 void addStore(MemoryLocation &Loc, Type *AccessTy) { 636 Value *Ptr = const_cast<Value*>(Loc.Ptr); 637 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 638 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 639 } 640 641 /// Check if we can emit a run-time no-alias check for \p Access. 642 /// 643 /// Returns true if we can emit a run-time no alias check for \p Access. 644 /// If we can check this access, this also adds it to a dependence set and 645 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 646 /// we will attempt to use additional run-time checks in order to get 647 /// the bounds of the pointer. 648 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 649 MemAccessInfo Access, Type *AccessTy, 650 const ValueToValueMap &Strides, 651 DenseMap<Value *, unsigned> &DepSetId, 652 Loop *TheLoop, unsigned &RunningDepId, 653 unsigned ASId, bool ShouldCheckStride, bool Assume); 654 655 /// Check whether we can check the pointers at runtime for 656 /// non-intersection. 657 /// 658 /// Returns true if we need no check or if we do and we can generate them 659 /// (i.e. the pointers have computable bounds). 660 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 661 Loop *TheLoop, const ValueToValueMap &Strides, 662 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 663 664 /// Goes over all memory accesses, checks whether a RT check is needed 665 /// and builds sets of dependent accesses. 666 void buildDependenceSets() { 667 processMemAccesses(); 668 } 669 670 /// Initial processing of memory accesses determined that we need to 671 /// perform dependency checking. 672 /// 673 /// Note that this can later be cleared if we retry memcheck analysis without 674 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 675 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 676 677 /// We decided that no dependence analysis would be used. Reset the state. 678 void resetDepChecks(MemoryDepChecker &DepChecker) { 679 CheckDeps.clear(); 680 DepChecker.clearDependences(); 681 } 682 683 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 684 685 private: 686 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 687 688 /// Go over all memory access and check whether runtime pointer checks 689 /// are needed and build sets of dependency check candidates. 690 void processMemAccesses(); 691 692 /// Map of all accesses. Values are the types used to access memory pointed to 693 /// by the pointer. 694 PtrAccessMap Accesses; 695 696 /// The loop being checked. 697 const Loop *TheLoop; 698 699 /// List of accesses that need a further dependence check. 700 MemAccessInfoList CheckDeps; 701 702 /// Set of pointers that are read only. 703 SmallPtrSet<Value*, 16> ReadOnlyPtr; 704 705 /// An alias set tracker to partition the access set by underlying object and 706 //intrinsic property (such as TBAA metadata). 707 AliasSetTracker AST; 708 709 LoopInfo *LI; 710 711 /// Sets of potentially dependent accesses - members of one set share an 712 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 713 /// dependence check. 714 MemoryDepChecker::DepCandidates &DepCands; 715 716 /// Initial processing of memory accesses determined that we may need 717 /// to add memchecks. Perform the analysis to determine the necessary checks. 718 /// 719 /// Note that, this is different from isDependencyCheckNeeded. When we retry 720 /// memcheck analysis without dependency checking 721 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 722 /// cleared while this remains set if we have potentially dependent accesses. 723 bool IsRTCheckAnalysisNeeded = false; 724 725 /// The SCEV predicate containing all the SCEV-related assumptions. 726 PredicatedScalarEvolution &PSE; 727 }; 728 729 } // end anonymous namespace 730 731 /// Check whether a pointer can participate in a runtime bounds check. 732 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 733 /// by adding run-time checks (overflow checks) if necessary. 734 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 735 const SCEV *PtrScev, Loop *L, bool Assume) { 736 // The bounds for loop-invariant pointer is trivial. 737 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 738 return true; 739 740 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 741 742 if (!AR && Assume) 743 AR = PSE.getAsAddRec(Ptr); 744 745 if (!AR) 746 return false; 747 748 return AR->isAffine(); 749 } 750 751 /// Check whether a pointer address cannot wrap. 752 static bool isNoWrap(PredicatedScalarEvolution &PSE, 753 const ValueToValueMap &Strides, Value *Ptr, Type *AccessTy, 754 Loop *L) { 755 const SCEV *PtrScev = PSE.getSCEV(Ptr); 756 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 757 return true; 758 759 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides); 760 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 761 return true; 762 763 return false; 764 } 765 766 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 767 function_ref<void(Value *)> AddPointer) { 768 SmallPtrSet<Value *, 8> Visited; 769 SmallVector<Value *> WorkList; 770 WorkList.push_back(StartPtr); 771 772 while (!WorkList.empty()) { 773 Value *Ptr = WorkList.pop_back_val(); 774 if (!Visited.insert(Ptr).second) 775 continue; 776 auto *PN = dyn_cast<PHINode>(Ptr); 777 // SCEV does not look through non-header PHIs inside the loop. Such phis 778 // can be analyzed by adding separate accesses for each incoming pointer 779 // value. 780 if (PN && InnermostLoop.contains(PN->getParent()) && 781 PN->getParent() != InnermostLoop.getHeader()) { 782 for (const Use &Inc : PN->incoming_values()) 783 WorkList.push_back(Inc); 784 } else 785 AddPointer(Ptr); 786 } 787 } 788 789 // Walk back through the IR for a pointer, looking for a select like the 790 // following: 791 // 792 // %offset = select i1 %cmp, i64 %a, i64 %b 793 // %addr = getelementptr double, double* %base, i64 %offset 794 // %ld = load double, double* %addr, align 8 795 // 796 // We won't be able to form a single SCEVAddRecExpr from this since the 797 // address for each loop iteration depends on %cmp. We could potentially 798 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 799 // memory safety/aliasing if needed. 800 // 801 // If we encounter some IR we don't yet handle, or something obviously fine 802 // like a constant, then we just add the SCEV for that term to the list passed 803 // in by the caller. If we have a node that may potentially yield a valid 804 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 805 // ourselves before adding to the list. 806 static void 807 findForkedSCEVs(ScalarEvolution *SE, const Loop *L, Value *Ptr, 808 SmallVectorImpl<std::pair<const SCEV *, bool>> &ScevList, 809 unsigned Depth) { 810 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 811 // we've exceeded our limit on recursion, just return whatever we have 812 // regardless of whether it can be used for a forked pointer or not, along 813 // with an indication of whether it might be a poison or undef value. 814 const SCEV *Scev = SE->getSCEV(Ptr); 815 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 816 !isa<Instruction>(Ptr) || Depth == 0) { 817 ScevList.push_back( 818 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 819 return; 820 } 821 822 Depth--; 823 824 auto UndefPoisonCheck = [](std::pair<const SCEV *, bool> S) -> bool { 825 return S.second; 826 }; 827 828 Instruction *I = cast<Instruction>(Ptr); 829 unsigned Opcode = I->getOpcode(); 830 switch (Opcode) { 831 case Instruction::GetElementPtr: { 832 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 833 Type *SourceTy = GEP->getSourceElementType(); 834 // We only handle base + single offset GEPs here for now. 835 // Not dealing with preexisting gathers yet, so no vectors. 836 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 837 ScevList.push_back( 838 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP))); 839 break; 840 } 841 SmallVector<std::pair<const SCEV *, bool>, 2> BaseScevs; 842 SmallVector<std::pair<const SCEV *, bool>, 2> OffsetScevs; 843 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 844 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 845 846 // See if we need to freeze our fork... 847 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 848 any_of(OffsetScevs, UndefPoisonCheck); 849 850 // Check that we only have a single fork, on either the base or the offset. 851 // Copy the SCEV across for the one without a fork in order to generate 852 // the full SCEV for both sides of the GEP. 853 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 854 BaseScevs.push_back(BaseScevs[0]); 855 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 856 OffsetScevs.push_back(OffsetScevs[0]); 857 else { 858 ScevList.push_back(std::make_pair(Scev, NeedsFreeze)); 859 break; 860 } 861 862 // Find the pointer type we need to extend to. 863 Type *IntPtrTy = SE->getEffectiveSCEVType( 864 SE->getSCEV(GEP->getPointerOperand())->getType()); 865 866 // Find the size of the type being pointed to. We only have a single 867 // index term (guarded above) so we don't need to index into arrays or 868 // structures, just get the size of the scalar value. 869 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 870 871 // Scale up the offsets by the size of the type, then add to the bases. 872 const SCEV *Scaled1 = SE->getMulExpr( 873 Size, SE->getTruncateOrSignExtend(OffsetScevs[0].first, IntPtrTy)); 874 const SCEV *Scaled2 = SE->getMulExpr( 875 Size, SE->getTruncateOrSignExtend(OffsetScevs[1].first, IntPtrTy)); 876 ScevList.push_back(std::make_pair( 877 SE->getAddExpr(BaseScevs[0].first, Scaled1), NeedsFreeze)); 878 ScevList.push_back(std::make_pair( 879 SE->getAddExpr(BaseScevs[1].first, Scaled2), NeedsFreeze)); 880 break; 881 } 882 case Instruction::Select: { 883 SmallVector<std::pair<const SCEV *, bool>, 2> ChildScevs; 884 // A select means we've found a forked pointer, but we currently only 885 // support a single select per pointer so if there's another behind this 886 // then we just bail out and return the generic SCEV. 887 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 888 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 889 if (ChildScevs.size() == 2) { 890 ScevList.push_back(ChildScevs[0]); 891 ScevList.push_back(ChildScevs[1]); 892 } else 893 ScevList.push_back( 894 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 895 break; 896 } 897 default: 898 // Just return the current SCEV if we haven't handled the instruction yet. 899 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 900 ScevList.push_back( 901 std::make_pair(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr))); 902 break; 903 } 904 } 905 906 static SmallVector<std::pair<const SCEV *, bool>> 907 findForkedPointer(PredicatedScalarEvolution &PSE, 908 const ValueToValueMap &StridesMap, Value *Ptr, 909 const Loop *L) { 910 ScalarEvolution *SE = PSE.getSE(); 911 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 912 SmallVector<std::pair<const SCEV *, bool>> Scevs; 913 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 914 915 // For now, we will only accept a forked pointer with two possible SCEVs. 916 if (Scevs.size() == 2) 917 return Scevs; 918 919 return { 920 std::make_pair(replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false)}; 921 } 922 923 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 924 MemAccessInfo Access, Type *AccessTy, 925 const ValueToValueMap &StridesMap, 926 DenseMap<Value *, unsigned> &DepSetId, 927 Loop *TheLoop, unsigned &RunningDepId, 928 unsigned ASId, bool ShouldCheckWrap, 929 bool Assume) { 930 Value *Ptr = Access.getPointer(); 931 932 SmallVector<std::pair<const SCEV *, bool>> TranslatedPtrs = 933 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 934 935 for (auto &P : TranslatedPtrs) { 936 const SCEV *PtrExpr = P.first; 937 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 938 return false; 939 940 // When we run after a failing dependency check we have to make sure 941 // we don't have wrapping pointers. 942 if (ShouldCheckWrap) { 943 // Skip wrap checking when translating pointers. 944 if (TranslatedPtrs.size() > 1) 945 return false; 946 947 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 948 auto *Expr = PSE.getSCEV(Ptr); 949 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 950 return false; 951 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 952 } 953 } 954 // If there's only one option for Ptr, look it up after bounds and wrap 955 // checking, because assumptions might have been added to PSE. 956 if (TranslatedPtrs.size() == 1) 957 TranslatedPtrs[0] = std::make_pair( 958 replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false); 959 } 960 961 for (auto &P : TranslatedPtrs) { 962 const SCEV *PtrExpr = P.first; 963 964 // The id of the dependence set. 965 unsigned DepId; 966 967 if (isDependencyCheckNeeded()) { 968 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 969 unsigned &LeaderId = DepSetId[Leader]; 970 if (!LeaderId) 971 LeaderId = RunningDepId++; 972 DepId = LeaderId; 973 } else 974 // Each access has its own dependence set. 975 DepId = RunningDepId++; 976 977 bool IsWrite = Access.getInt(); 978 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 979 P.second); 980 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 981 } 982 983 return true; 984 } 985 986 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 987 ScalarEvolution *SE, Loop *TheLoop, 988 const ValueToValueMap &StridesMap, 989 Value *&UncomputablePtr, bool ShouldCheckWrap) { 990 // Find pointers with computable bounds. We are going to use this information 991 // to place a runtime bound check. 992 bool CanDoRT = true; 993 994 bool MayNeedRTCheck = false; 995 if (!IsRTCheckAnalysisNeeded) return true; 996 997 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 998 999 // We assign a consecutive id to access from different alias sets. 1000 // Accesses between different groups doesn't need to be checked. 1001 unsigned ASId = 0; 1002 for (auto &AS : AST) { 1003 int NumReadPtrChecks = 0; 1004 int NumWritePtrChecks = 0; 1005 bool CanDoAliasSetRT = true; 1006 ++ASId; 1007 1008 // We assign consecutive id to access from different dependence sets. 1009 // Accesses within the same set don't need a runtime check. 1010 unsigned RunningDepId = 1; 1011 DenseMap<Value *, unsigned> DepSetId; 1012 1013 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1014 1015 // First, count how many write and read accesses are in the alias set. Also 1016 // collect MemAccessInfos for later. 1017 SmallVector<MemAccessInfo, 4> AccessInfos; 1018 for (const auto &A : AS) { 1019 Value *Ptr = A.getValue(); 1020 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1021 1022 if (IsWrite) 1023 ++NumWritePtrChecks; 1024 else 1025 ++NumReadPtrChecks; 1026 AccessInfos.emplace_back(Ptr, IsWrite); 1027 } 1028 1029 // We do not need runtime checks for this alias set, if there are no writes 1030 // or a single write and no reads. 1031 if (NumWritePtrChecks == 0 || 1032 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1033 assert((AS.size() <= 1 || 1034 all_of(AS, 1035 [this](auto AC) { 1036 MemAccessInfo AccessWrite(AC.getValue(), true); 1037 return DepCands.findValue(AccessWrite) == DepCands.end(); 1038 })) && 1039 "Can only skip updating CanDoRT below, if all entries in AS " 1040 "are reads or there is at most 1 entry"); 1041 continue; 1042 } 1043 1044 for (auto &Access : AccessInfos) { 1045 for (const auto &AccessTy : Accesses[Access]) { 1046 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1047 DepSetId, TheLoop, RunningDepId, ASId, 1048 ShouldCheckWrap, false)) { 1049 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1050 << *Access.getPointer() << '\n'); 1051 Retries.push_back({Access, AccessTy}); 1052 CanDoAliasSetRT = false; 1053 } 1054 } 1055 } 1056 1057 // Note that this function computes CanDoRT and MayNeedRTCheck 1058 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1059 // we have a pointer for which we couldn't find the bounds but we don't 1060 // actually need to emit any checks so it does not matter. 1061 // 1062 // We need runtime checks for this alias set, if there are at least 2 1063 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1064 // any bound checks (because in that case the number of dependence sets is 1065 // incomplete). 1066 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1067 1068 // We need to perform run-time alias checks, but some pointers had bounds 1069 // that couldn't be checked. 1070 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1071 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1072 // We know that we need these checks, so we can now be more aggressive 1073 // and add further checks if required (overflow checks). 1074 CanDoAliasSetRT = true; 1075 for (auto Retry : Retries) { 1076 MemAccessInfo Access = Retry.first; 1077 Type *AccessTy = Retry.second; 1078 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1079 DepSetId, TheLoop, RunningDepId, ASId, 1080 ShouldCheckWrap, /*Assume=*/true)) { 1081 CanDoAliasSetRT = false; 1082 UncomputablePtr = Access.getPointer(); 1083 break; 1084 } 1085 } 1086 } 1087 1088 CanDoRT &= CanDoAliasSetRT; 1089 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1090 ++ASId; 1091 } 1092 1093 // If the pointers that we would use for the bounds comparison have different 1094 // address spaces, assume the values aren't directly comparable, so we can't 1095 // use them for the runtime check. We also have to assume they could 1096 // overlap. In the future there should be metadata for whether address spaces 1097 // are disjoint. 1098 unsigned NumPointers = RtCheck.Pointers.size(); 1099 for (unsigned i = 0; i < NumPointers; ++i) { 1100 for (unsigned j = i + 1; j < NumPointers; ++j) { 1101 // Only need to check pointers between two different dependency sets. 1102 if (RtCheck.Pointers[i].DependencySetId == 1103 RtCheck.Pointers[j].DependencySetId) 1104 continue; 1105 // Only need to check pointers in the same alias set. 1106 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1107 continue; 1108 1109 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1110 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1111 1112 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1113 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1114 if (ASi != ASj) { 1115 LLVM_DEBUG( 1116 dbgs() << "LAA: Runtime check would require comparison between" 1117 " different address spaces\n"); 1118 return false; 1119 } 1120 } 1121 } 1122 1123 if (MayNeedRTCheck && CanDoRT) 1124 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1125 1126 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1127 << " pointer comparisons.\n"); 1128 1129 // If we can do run-time checks, but there are no checks, no runtime checks 1130 // are needed. This can happen when all pointers point to the same underlying 1131 // object for example. 1132 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1133 1134 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1135 if (!CanDoRTIfNeeded) 1136 RtCheck.reset(); 1137 return CanDoRTIfNeeded; 1138 } 1139 1140 void AccessAnalysis::processMemAccesses() { 1141 // We process the set twice: first we process read-write pointers, last we 1142 // process read-only pointers. This allows us to skip dependence tests for 1143 // read-only pointers. 1144 1145 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1146 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1147 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1148 LLVM_DEBUG({ 1149 for (auto A : Accesses) 1150 dbgs() << "\t" << *A.first.getPointer() << " (" 1151 << (A.first.getInt() 1152 ? "write" 1153 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only" 1154 : "read")) 1155 << ")\n"; 1156 }); 1157 1158 // The AliasSetTracker has nicely partitioned our pointers by metadata 1159 // compatibility and potential for underlying-object overlap. As a result, we 1160 // only need to check for potential pointer dependencies within each alias 1161 // set. 1162 for (const auto &AS : AST) { 1163 // Note that both the alias-set tracker and the alias sets themselves used 1164 // linked lists internally and so the iteration order here is deterministic 1165 // (matching the original instruction order within each set). 1166 1167 bool SetHasWrite = false; 1168 1169 // Map of pointers to last access encountered. 1170 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1171 UnderlyingObjToAccessMap ObjToLastAccess; 1172 1173 // Set of access to check after all writes have been processed. 1174 PtrAccessMap DeferredAccesses; 1175 1176 // Iterate over each alias set twice, once to process read/write pointers, 1177 // and then to process read-only pointers. 1178 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1179 bool UseDeferred = SetIteration > 0; 1180 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1181 1182 for (const auto &AV : AS) { 1183 Value *Ptr = AV.getValue(); 1184 1185 // For a single memory access in AliasSetTracker, Accesses may contain 1186 // both read and write, and they both need to be handled for CheckDeps. 1187 for (const auto &AC : S) { 1188 if (AC.first.getPointer() != Ptr) 1189 continue; 1190 1191 bool IsWrite = AC.first.getInt(); 1192 1193 // If we're using the deferred access set, then it contains only 1194 // reads. 1195 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1196 if (UseDeferred && !IsReadOnlyPtr) 1197 continue; 1198 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1199 // read or a write. 1200 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1201 S.count(MemAccessInfo(Ptr, false))) && 1202 "Alias-set pointer not in the access set?"); 1203 1204 MemAccessInfo Access(Ptr, IsWrite); 1205 DepCands.insert(Access); 1206 1207 // Memorize read-only pointers for later processing and skip them in 1208 // the first round (they need to be checked after we have seen all 1209 // write pointers). Note: we also mark pointer that are not 1210 // consecutive as "read-only" pointers (so that we check 1211 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1212 if (!UseDeferred && IsReadOnlyPtr) { 1213 // We only use the pointer keys, the types vector values don't 1214 // matter. 1215 DeferredAccesses.insert({Access, {}}); 1216 continue; 1217 } 1218 1219 // If this is a write - check other reads and writes for conflicts. If 1220 // this is a read only check other writes for conflicts (but only if 1221 // there is no other write to the ptr - this is an optimization to 1222 // catch "a[i] = a[i] + " without having to do a dependence check). 1223 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1224 CheckDeps.push_back(Access); 1225 IsRTCheckAnalysisNeeded = true; 1226 } 1227 1228 if (IsWrite) 1229 SetHasWrite = true; 1230 1231 // Create sets of pointers connected by a shared alias set and 1232 // underlying object. 1233 typedef SmallVector<const Value *, 16> ValueVector; 1234 ValueVector TempObjects; 1235 1236 getUnderlyingObjects(Ptr, TempObjects, LI); 1237 LLVM_DEBUG(dbgs() 1238 << "Underlying objects for pointer " << *Ptr << "\n"); 1239 for (const Value *UnderlyingObj : TempObjects) { 1240 // nullptr never alias, don't join sets for pointer that have "null" 1241 // in their UnderlyingObjects list. 1242 if (isa<ConstantPointerNull>(UnderlyingObj) && 1243 !NullPointerIsDefined( 1244 TheLoop->getHeader()->getParent(), 1245 UnderlyingObj->getType()->getPointerAddressSpace())) 1246 continue; 1247 1248 UnderlyingObjToAccessMap::iterator Prev = 1249 ObjToLastAccess.find(UnderlyingObj); 1250 if (Prev != ObjToLastAccess.end()) 1251 DepCands.unionSets(Access, Prev->second); 1252 1253 ObjToLastAccess[UnderlyingObj] = Access; 1254 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1255 } 1256 } 1257 } 1258 } 1259 } 1260 } 1261 1262 static bool isInBoundsGep(Value *Ptr) { 1263 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 1264 return GEP->isInBounds(); 1265 return false; 1266 } 1267 1268 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1269 /// i.e. monotonically increasing/decreasing. 1270 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1271 PredicatedScalarEvolution &PSE, const Loop *L) { 1272 // FIXME: This should probably only return true for NUW. 1273 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1274 return true; 1275 1276 // Scalar evolution does not propagate the non-wrapping flags to values that 1277 // are derived from a non-wrapping induction variable because non-wrapping 1278 // could be flow-sensitive. 1279 // 1280 // Look through the potentially overflowing instruction to try to prove 1281 // non-wrapping for the *specific* value of Ptr. 1282 1283 // The arithmetic implied by an inbounds GEP can't overflow. 1284 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1285 if (!GEP || !GEP->isInBounds()) 1286 return false; 1287 1288 // Make sure there is only one non-const index and analyze that. 1289 Value *NonConstIndex = nullptr; 1290 for (Value *Index : GEP->indices()) 1291 if (!isa<ConstantInt>(Index)) { 1292 if (NonConstIndex) 1293 return false; 1294 NonConstIndex = Index; 1295 } 1296 if (!NonConstIndex) 1297 // The recurrence is on the pointer, ignore for now. 1298 return false; 1299 1300 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1301 // AddRec using a NSW operation. 1302 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1303 if (OBO->hasNoSignedWrap() && 1304 // Assume constant for other the operand so that the AddRec can be 1305 // easily found. 1306 isa<ConstantInt>(OBO->getOperand(1))) { 1307 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1308 1309 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1310 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1311 } 1312 1313 return false; 1314 } 1315 1316 /// Check whether the access through \p Ptr has a constant stride. 1317 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, 1318 Value *Ptr, const Loop *Lp, 1319 const ValueToValueMap &StridesMap, bool Assume, 1320 bool ShouldCheckWrap) { 1321 Type *Ty = Ptr->getType(); 1322 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1323 1324 if (isa<ScalableVectorType>(AccessTy)) { 1325 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1326 << "\n"); 1327 return 0; 1328 } 1329 1330 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1331 1332 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1333 if (Assume && !AR) 1334 AR = PSE.getAsAddRec(Ptr); 1335 1336 if (!AR) { 1337 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1338 << " SCEV: " << *PtrScev << "\n"); 1339 return 0; 1340 } 1341 1342 // The access function must stride over the innermost loop. 1343 if (Lp != AR->getLoop()) { 1344 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1345 << *Ptr << " SCEV: " << *AR << "\n"); 1346 return 0; 1347 } 1348 1349 // The address calculation must not wrap. Otherwise, a dependence could be 1350 // inverted. 1351 // An inbounds getelementptr that is a AddRec with a unit stride 1352 // cannot wrap per definition. The unit stride requirement is checked later. 1353 // An getelementptr without an inbounds attribute and unit stride would have 1354 // to access the pointer value "0" which is undefined behavior in address 1355 // space 0, therefore we can also vectorize this case. 1356 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1357 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1358 bool IsNoWrapAddRec = !ShouldCheckWrap || 1359 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1360 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1361 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1362 NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace)) { 1363 if (Assume) { 1364 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1365 IsNoWrapAddRec = true; 1366 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1367 << "LAA: Pointer: " << *Ptr << "\n" 1368 << "LAA: SCEV: " << *AR << "\n" 1369 << "LAA: Added an overflow assumption\n"); 1370 } else { 1371 LLVM_DEBUG( 1372 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1373 << *Ptr << " SCEV: " << *AR << "\n"); 1374 return 0; 1375 } 1376 } 1377 1378 // Check the step is constant. 1379 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1380 1381 // Calculate the pointer stride and check if it is constant. 1382 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1383 if (!C) { 1384 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1385 << " SCEV: " << *AR << "\n"); 1386 return 0; 1387 } 1388 1389 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1390 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1391 int64_t Size = AllocSize.getFixedSize(); 1392 const APInt &APStepVal = C->getAPInt(); 1393 1394 // Huge step value - give up. 1395 if (APStepVal.getBitWidth() > 64) 1396 return 0; 1397 1398 int64_t StepVal = APStepVal.getSExtValue(); 1399 1400 // Strided access. 1401 int64_t Stride = StepVal / Size; 1402 int64_t Rem = StepVal % Size; 1403 if (Rem) 1404 return 0; 1405 1406 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1407 // know we can't "wrap around the address space". In case of address space 1408 // zero we know that this won't happen without triggering undefined behavior. 1409 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1410 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1411 AddrSpace))) { 1412 if (Assume) { 1413 // We can avoid this case by adding a run-time check. 1414 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1415 << "inbounds or in address space 0 may wrap:\n" 1416 << "LAA: Pointer: " << *Ptr << "\n" 1417 << "LAA: SCEV: " << *AR << "\n" 1418 << "LAA: Added an overflow assumption\n"); 1419 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1420 } else 1421 return 0; 1422 } 1423 1424 return Stride; 1425 } 1426 1427 Optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB, 1428 Value *PtrB, const DataLayout &DL, 1429 ScalarEvolution &SE, bool StrictCheck, 1430 bool CheckType) { 1431 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1432 assert(cast<PointerType>(PtrA->getType()) 1433 ->isOpaqueOrPointeeTypeMatches(ElemTyA) && "Wrong PtrA type"); 1434 assert(cast<PointerType>(PtrB->getType()) 1435 ->isOpaqueOrPointeeTypeMatches(ElemTyB) && "Wrong PtrB type"); 1436 1437 // Make sure that A and B are different pointers. 1438 if (PtrA == PtrB) 1439 return 0; 1440 1441 // Make sure that the element types are the same if required. 1442 if (CheckType && ElemTyA != ElemTyB) 1443 return None; 1444 1445 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1446 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1447 1448 // Check that the address spaces match. 1449 if (ASA != ASB) 1450 return None; 1451 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1452 1453 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1454 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1455 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1456 1457 int Val; 1458 if (PtrA1 == PtrB1) { 1459 // Retrieve the address space again as pointer stripping now tracks through 1460 // `addrspacecast`. 1461 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1462 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1463 // Check that the address spaces match and that the pointers are valid. 1464 if (ASA != ASB) 1465 return None; 1466 1467 IdxWidth = DL.getIndexSizeInBits(ASA); 1468 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1469 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1470 1471 OffsetB -= OffsetA; 1472 Val = OffsetB.getSExtValue(); 1473 } else { 1474 // Otherwise compute the distance with SCEV between the base pointers. 1475 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1476 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1477 const auto *Diff = 1478 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1479 if (!Diff) 1480 return None; 1481 Val = Diff->getAPInt().getSExtValue(); 1482 } 1483 int Size = DL.getTypeStoreSize(ElemTyA); 1484 int Dist = Val / Size; 1485 1486 // Ensure that the calculated distance matches the type-based one after all 1487 // the bitcasts removal in the provided pointers. 1488 if (!StrictCheck || Dist * Size == Val) 1489 return Dist; 1490 return None; 1491 } 1492 1493 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1494 const DataLayout &DL, ScalarEvolution &SE, 1495 SmallVectorImpl<unsigned> &SortedIndices) { 1496 assert(llvm::all_of( 1497 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1498 "Expected list of pointer operands."); 1499 // Walk over the pointers, and map each of them to an offset relative to 1500 // first pointer in the array. 1501 Value *Ptr0 = VL[0]; 1502 1503 using DistOrdPair = std::pair<int64_t, int>; 1504 auto Compare = llvm::less_first(); 1505 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1506 Offsets.emplace(0, 0); 1507 int Cnt = 1; 1508 bool IsConsecutive = true; 1509 for (auto *Ptr : VL.drop_front()) { 1510 Optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1511 /*StrictCheck=*/true); 1512 if (!Diff) 1513 return false; 1514 1515 // Check if the pointer with the same offset is found. 1516 int64_t Offset = *Diff; 1517 auto Res = Offsets.emplace(Offset, Cnt); 1518 if (!Res.second) 1519 return false; 1520 // Consecutive order if the inserted element is the last one. 1521 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end(); 1522 ++Cnt; 1523 } 1524 SortedIndices.clear(); 1525 if (!IsConsecutive) { 1526 // Fill SortedIndices array only if it is non-consecutive. 1527 SortedIndices.resize(VL.size()); 1528 Cnt = 0; 1529 for (const std::pair<int64_t, int> &Pair : Offsets) { 1530 SortedIndices[Cnt] = Pair.second; 1531 ++Cnt; 1532 } 1533 } 1534 return true; 1535 } 1536 1537 /// Returns true if the memory operations \p A and \p B are consecutive. 1538 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1539 ScalarEvolution &SE, bool CheckType) { 1540 Value *PtrA = getLoadStorePointerOperand(A); 1541 Value *PtrB = getLoadStorePointerOperand(B); 1542 if (!PtrA || !PtrB) 1543 return false; 1544 Type *ElemTyA = getLoadStoreType(A); 1545 Type *ElemTyB = getLoadStoreType(B); 1546 Optional<int> Diff = getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1547 /*StrictCheck=*/true, CheckType); 1548 return Diff && *Diff == 1; 1549 } 1550 1551 void MemoryDepChecker::addAccess(StoreInst *SI) { 1552 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1553 [this, SI](Value *Ptr) { 1554 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1555 InstMap.push_back(SI); 1556 ++AccessIdx; 1557 }); 1558 } 1559 1560 void MemoryDepChecker::addAccess(LoadInst *LI) { 1561 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1562 [this, LI](Value *Ptr) { 1563 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1564 InstMap.push_back(LI); 1565 ++AccessIdx; 1566 }); 1567 } 1568 1569 MemoryDepChecker::VectorizationSafetyStatus 1570 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1571 switch (Type) { 1572 case NoDep: 1573 case Forward: 1574 case BackwardVectorizable: 1575 return VectorizationSafetyStatus::Safe; 1576 1577 case Unknown: 1578 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1579 case ForwardButPreventsForwarding: 1580 case Backward: 1581 case BackwardVectorizableButPreventsForwarding: 1582 return VectorizationSafetyStatus::Unsafe; 1583 } 1584 llvm_unreachable("unexpected DepType!"); 1585 } 1586 1587 bool MemoryDepChecker::Dependence::isBackward() const { 1588 switch (Type) { 1589 case NoDep: 1590 case Forward: 1591 case ForwardButPreventsForwarding: 1592 case Unknown: 1593 return false; 1594 1595 case BackwardVectorizable: 1596 case Backward: 1597 case BackwardVectorizableButPreventsForwarding: 1598 return true; 1599 } 1600 llvm_unreachable("unexpected DepType!"); 1601 } 1602 1603 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1604 return isBackward() || Type == Unknown; 1605 } 1606 1607 bool MemoryDepChecker::Dependence::isForward() const { 1608 switch (Type) { 1609 case Forward: 1610 case ForwardButPreventsForwarding: 1611 return true; 1612 1613 case NoDep: 1614 case Unknown: 1615 case BackwardVectorizable: 1616 case Backward: 1617 case BackwardVectorizableButPreventsForwarding: 1618 return false; 1619 } 1620 llvm_unreachable("unexpected DepType!"); 1621 } 1622 1623 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1624 uint64_t TypeByteSize) { 1625 // If loads occur at a distance that is not a multiple of a feasible vector 1626 // factor store-load forwarding does not take place. 1627 // Positive dependences might cause troubles because vectorizing them might 1628 // prevent store-load forwarding making vectorized code run a lot slower. 1629 // a[i] = a[i-3] ^ a[i-8]; 1630 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1631 // hence on your typical architecture store-load forwarding does not take 1632 // place. Vectorizing in such cases does not make sense. 1633 // Store-load forwarding distance. 1634 1635 // After this many iterations store-to-load forwarding conflicts should not 1636 // cause any slowdowns. 1637 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1638 // Maximum vector factor. 1639 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1640 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1641 1642 // Compute the smallest VF at which the store and load would be misaligned. 1643 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1644 VF *= 2) { 1645 // If the number of vector iteration between the store and the load are 1646 // small we could incur conflicts. 1647 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1648 MaxVFWithoutSLForwardIssues = (VF >> 1); 1649 break; 1650 } 1651 } 1652 1653 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1654 LLVM_DEBUG( 1655 dbgs() << "LAA: Distance " << Distance 1656 << " that could cause a store-load forwarding conflict\n"); 1657 return true; 1658 } 1659 1660 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1661 MaxVFWithoutSLForwardIssues != 1662 VectorizerParams::MaxVectorWidth * TypeByteSize) 1663 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1664 return false; 1665 } 1666 1667 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1668 if (Status < S) 1669 Status = S; 1670 } 1671 1672 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1673 /// memory accesses, that have the same stride whose absolute value is given 1674 /// in \p Stride, and that have the same type size \p TypeByteSize, 1675 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1676 /// possible to prove statically that the dependence distance is larger 1677 /// than the range that the accesses will travel through the execution of 1678 /// the loop. If so, return true; false otherwise. This is useful for 1679 /// example in loops such as the following (PR31098): 1680 /// for (i = 0; i < D; ++i) { 1681 /// = out[i]; 1682 /// out[i+D] = 1683 /// } 1684 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1685 const SCEV &BackedgeTakenCount, 1686 const SCEV &Dist, uint64_t Stride, 1687 uint64_t TypeByteSize) { 1688 1689 // If we can prove that 1690 // (**) |Dist| > BackedgeTakenCount * Step 1691 // where Step is the absolute stride of the memory accesses in bytes, 1692 // then there is no dependence. 1693 // 1694 // Rationale: 1695 // We basically want to check if the absolute distance (|Dist/Step|) 1696 // is >= the loop iteration count (or > BackedgeTakenCount). 1697 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1698 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1699 // that the dependence distance is >= VF; This is checked elsewhere. 1700 // But in some cases we can prune unknown dependence distances early, and 1701 // even before selecting the VF, and without a runtime test, by comparing 1702 // the distance against the loop iteration count. Since the vectorized code 1703 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1704 // also guarantees that distance >= VF. 1705 // 1706 const uint64_t ByteStride = Stride * TypeByteSize; 1707 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1708 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1709 1710 const SCEV *CastedDist = &Dist; 1711 const SCEV *CastedProduct = Product; 1712 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1713 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1714 1715 // The dependence distance can be positive/negative, so we sign extend Dist; 1716 // The multiplication of the absolute stride in bytes and the 1717 // backedgeTakenCount is non-negative, so we zero extend Product. 1718 if (DistTypeSizeBits > ProductTypeSizeBits) 1719 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1720 else 1721 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1722 1723 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1724 // (If so, then we have proven (**) because |Dist| >= Dist) 1725 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1726 if (SE.isKnownPositive(Minus)) 1727 return true; 1728 1729 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1730 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1731 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1732 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1733 if (SE.isKnownPositive(Minus)) 1734 return true; 1735 1736 return false; 1737 } 1738 1739 /// Check the dependence for two accesses with the same stride \p Stride. 1740 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1741 /// bytes. 1742 /// 1743 /// \returns true if they are independent. 1744 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1745 uint64_t TypeByteSize) { 1746 assert(Stride > 1 && "The stride must be greater than 1"); 1747 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1748 assert(Distance > 0 && "The distance must be non-zero"); 1749 1750 // Skip if the distance is not multiple of type byte size. 1751 if (Distance % TypeByteSize) 1752 return false; 1753 1754 uint64_t ScaledDist = Distance / TypeByteSize; 1755 1756 // No dependence if the scaled distance is not multiple of the stride. 1757 // E.g. 1758 // for (i = 0; i < 1024 ; i += 4) 1759 // A[i+2] = A[i] + 1; 1760 // 1761 // Two accesses in memory (scaled distance is 2, stride is 4): 1762 // | A[0] | | | | A[4] | | | | 1763 // | | | A[2] | | | | A[6] | | 1764 // 1765 // E.g. 1766 // for (i = 0; i < 1024 ; i += 3) 1767 // A[i+4] = A[i] + 1; 1768 // 1769 // Two accesses in memory (scaled distance is 4, stride is 3): 1770 // | A[0] | | | A[3] | | | A[6] | | | 1771 // | | | | | A[4] | | | A[7] | | 1772 return ScaledDist % Stride; 1773 } 1774 1775 MemoryDepChecker::Dependence::DepType 1776 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1777 const MemAccessInfo &B, unsigned BIdx, 1778 const ValueToValueMap &Strides) { 1779 assert (AIdx < BIdx && "Must pass arguments in program order"); 1780 1781 Value *APtr = A.getPointer(); 1782 Value *BPtr = B.getPointer(); 1783 bool AIsWrite = A.getInt(); 1784 bool BIsWrite = B.getInt(); 1785 Type *ATy = getLoadStoreType(InstMap[AIdx]); 1786 Type *BTy = getLoadStoreType(InstMap[BIdx]); 1787 1788 // Two reads are independent. 1789 if (!AIsWrite && !BIsWrite) 1790 return Dependence::NoDep; 1791 1792 // We cannot check pointers in different address spaces. 1793 if (APtr->getType()->getPointerAddressSpace() != 1794 BPtr->getType()->getPointerAddressSpace()) 1795 return Dependence::Unknown; 1796 1797 int64_t StrideAPtr = 1798 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true); 1799 int64_t StrideBPtr = 1800 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true); 1801 1802 const SCEV *Src = PSE.getSCEV(APtr); 1803 const SCEV *Sink = PSE.getSCEV(BPtr); 1804 1805 // If the induction step is negative we have to invert source and sink of the 1806 // dependence. 1807 if (StrideAPtr < 0) { 1808 std::swap(APtr, BPtr); 1809 std::swap(ATy, BTy); 1810 std::swap(Src, Sink); 1811 std::swap(AIsWrite, BIsWrite); 1812 std::swap(AIdx, BIdx); 1813 std::swap(StrideAPtr, StrideBPtr); 1814 } 1815 1816 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1817 1818 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1819 << "(Induction step: " << StrideAPtr << ")\n"); 1820 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1821 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1822 1823 // Need accesses with constant stride. We don't want to vectorize 1824 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1825 // the address space. 1826 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1827 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1828 return Dependence::Unknown; 1829 } 1830 1831 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1832 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1833 bool HasSameSize = 1834 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1835 uint64_t Stride = std::abs(StrideAPtr); 1836 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1837 if (!C) { 1838 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize && 1839 isSafeDependenceDistance(DL, *(PSE.getSE()), 1840 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1841 TypeByteSize)) 1842 return Dependence::NoDep; 1843 1844 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1845 FoundNonConstantDistanceDependence = true; 1846 return Dependence::Unknown; 1847 } 1848 1849 const APInt &Val = C->getAPInt(); 1850 int64_t Distance = Val.getSExtValue(); 1851 1852 // Attempt to prove strided accesses independent. 1853 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize && 1854 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1855 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1856 return Dependence::NoDep; 1857 } 1858 1859 // Negative distances are not plausible dependencies. 1860 if (Val.isNegative()) { 1861 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1862 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1863 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1864 !HasSameSize)) { 1865 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1866 return Dependence::ForwardButPreventsForwarding; 1867 } 1868 1869 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1870 return Dependence::Forward; 1871 } 1872 1873 // Write to the same location with the same size. 1874 if (Val == 0) { 1875 if (HasSameSize) 1876 return Dependence::Forward; 1877 LLVM_DEBUG( 1878 dbgs() << "LAA: Zero dependence difference but different type sizes\n"); 1879 return Dependence::Unknown; 1880 } 1881 1882 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1883 1884 if (!HasSameSize) { 1885 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 1886 "different type sizes\n"); 1887 return Dependence::Unknown; 1888 } 1889 1890 // Bail out early if passed-in parameters make vectorization not feasible. 1891 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1892 VectorizerParams::VectorizationFactor : 1); 1893 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1894 VectorizerParams::VectorizationInterleave : 1); 1895 // The minimum number of iterations for a vectorized/unrolled version. 1896 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1897 1898 // It's not vectorizable if the distance is smaller than the minimum distance 1899 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1900 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1901 // TypeByteSize (No need to plus the last gap distance). 1902 // 1903 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1904 // foo(int *A) { 1905 // int *B = (int *)((char *)A + 14); 1906 // for (i = 0 ; i < 1024 ; i += 2) 1907 // B[i] = A[i] + 1; 1908 // } 1909 // 1910 // Two accesses in memory (stride is 2): 1911 // | A[0] | | A[2] | | A[4] | | A[6] | | 1912 // | B[0] | | B[2] | | B[4] | 1913 // 1914 // Distance needs for vectorizing iterations except the last iteration: 1915 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1916 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1917 // 1918 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1919 // 12, which is less than distance. 1920 // 1921 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1922 // the minimum distance needed is 28, which is greater than distance. It is 1923 // not safe to do vectorization. 1924 uint64_t MinDistanceNeeded = 1925 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1926 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1927 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1928 << Distance << '\n'); 1929 return Dependence::Backward; 1930 } 1931 1932 // Unsafe if the minimum distance needed is greater than max safe distance. 1933 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1934 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1935 << MinDistanceNeeded << " size in bytes"); 1936 return Dependence::Backward; 1937 } 1938 1939 // Positive distance bigger than max vectorization factor. 1940 // FIXME: Should use max factor instead of max distance in bytes, which could 1941 // not handle different types. 1942 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1943 // void foo (int *A, char *B) { 1944 // for (unsigned i = 0; i < 1024; i++) { 1945 // A[i+2] = A[i] + 1; 1946 // B[i+2] = B[i] + 1; 1947 // } 1948 // } 1949 // 1950 // This case is currently unsafe according to the max safe distance. If we 1951 // analyze the two accesses on array B, the max safe dependence distance 1952 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1953 // is 8, which is less than 2 and forbidden vectorization, But actually 1954 // both A and B could be vectorized by 2 iterations. 1955 MaxSafeDepDistBytes = 1956 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1957 1958 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1959 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1960 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1961 return Dependence::BackwardVectorizableButPreventsForwarding; 1962 1963 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1964 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1965 << " with max VF = " << MaxVF << '\n'); 1966 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1967 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1968 return Dependence::BackwardVectorizable; 1969 } 1970 1971 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1972 MemAccessInfoList &CheckDeps, 1973 const ValueToValueMap &Strides) { 1974 1975 MaxSafeDepDistBytes = -1; 1976 SmallPtrSet<MemAccessInfo, 8> Visited; 1977 for (MemAccessInfo CurAccess : CheckDeps) { 1978 if (Visited.count(CurAccess)) 1979 continue; 1980 1981 // Get the relevant memory access set. 1982 EquivalenceClasses<MemAccessInfo>::iterator I = 1983 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1984 1985 // Check accesses within this set. 1986 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1987 AccessSets.member_begin(I); 1988 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1989 AccessSets.member_end(); 1990 1991 // Check every access pair. 1992 while (AI != AE) { 1993 Visited.insert(*AI); 1994 bool AIIsWrite = AI->getInt(); 1995 // Check loads only against next equivalent class, but stores also against 1996 // other stores in the same equivalence class - to the same address. 1997 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1998 (AIIsWrite ? AI : std::next(AI)); 1999 while (OI != AE) { 2000 // Check every accessing instruction pair in program order. 2001 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2002 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2003 // Scan all accesses of another equivalence class, but only the next 2004 // accesses of the same equivalent class. 2005 for (std::vector<unsigned>::iterator 2006 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2007 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2008 I2 != I2E; ++I2) { 2009 auto A = std::make_pair(&*AI, *I1); 2010 auto B = std::make_pair(&*OI, *I2); 2011 2012 assert(*I1 != *I2); 2013 if (*I1 > *I2) 2014 std::swap(A, B); 2015 2016 Dependence::DepType Type = 2017 isDependent(*A.first, A.second, *B.first, B.second, Strides); 2018 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2019 2020 // Gather dependences unless we accumulated MaxDependences 2021 // dependences. In that case return as soon as we find the first 2022 // unsafe dependence. This puts a limit on this quadratic 2023 // algorithm. 2024 if (RecordDependences) { 2025 if (Type != Dependence::NoDep) 2026 Dependences.push_back(Dependence(A.second, B.second, Type)); 2027 2028 if (Dependences.size() >= MaxDependences) { 2029 RecordDependences = false; 2030 Dependences.clear(); 2031 LLVM_DEBUG(dbgs() 2032 << "Too many dependences, stopped recording\n"); 2033 } 2034 } 2035 if (!RecordDependences && !isSafeForVectorization()) 2036 return false; 2037 } 2038 ++OI; 2039 } 2040 AI++; 2041 } 2042 } 2043 2044 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2045 return isSafeForVectorization(); 2046 } 2047 2048 SmallVector<Instruction *, 4> 2049 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 2050 MemAccessInfo Access(Ptr, isWrite); 2051 auto &IndexVector = Accesses.find(Access)->second; 2052 2053 SmallVector<Instruction *, 4> Insts; 2054 transform(IndexVector, 2055 std::back_inserter(Insts), 2056 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2057 return Insts; 2058 } 2059 2060 const char *MemoryDepChecker::Dependence::DepName[] = { 2061 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 2062 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 2063 2064 void MemoryDepChecker::Dependence::print( 2065 raw_ostream &OS, unsigned Depth, 2066 const SmallVectorImpl<Instruction *> &Instrs) const { 2067 OS.indent(Depth) << DepName[Type] << ":\n"; 2068 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2069 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2070 } 2071 2072 bool LoopAccessInfo::canAnalyzeLoop() { 2073 // We need to have a loop header. 2074 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 2075 << TheLoop->getHeader()->getParent()->getName() << ": " 2076 << TheLoop->getHeader()->getName() << '\n'); 2077 2078 // We can only analyze innermost loops. 2079 if (!TheLoop->isInnermost()) { 2080 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2081 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2082 return false; 2083 } 2084 2085 // We must have a single backedge. 2086 if (TheLoop->getNumBackEdges() != 1) { 2087 LLVM_DEBUG( 2088 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2089 recordAnalysis("CFGNotUnderstood") 2090 << "loop control flow is not understood by analyzer"; 2091 return false; 2092 } 2093 2094 // ScalarEvolution needs to be able to find the exit count. 2095 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 2096 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2097 recordAnalysis("CantComputeNumberOfIterations") 2098 << "could not determine number of loop iterations"; 2099 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2100 return false; 2101 } 2102 2103 return true; 2104 } 2105 2106 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2107 const TargetLibraryInfo *TLI, 2108 DominatorTree *DT) { 2109 // Holds the Load and Store instructions. 2110 SmallVector<LoadInst *, 16> Loads; 2111 SmallVector<StoreInst *, 16> Stores; 2112 2113 // Holds all the different accesses in the loop. 2114 unsigned NumReads = 0; 2115 unsigned NumReadWrites = 0; 2116 2117 bool HasComplexMemInst = false; 2118 2119 // A runtime check is only legal to insert if there are no convergent calls. 2120 HasConvergentOp = false; 2121 2122 PtrRtChecking->Pointers.clear(); 2123 PtrRtChecking->Need = false; 2124 2125 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2126 2127 const bool EnableMemAccessVersioningOfLoop = 2128 EnableMemAccessVersioning && 2129 !TheLoop->getHeader()->getParent()->hasOptSize(); 2130 2131 // For each block. 2132 for (BasicBlock *BB : TheLoop->blocks()) { 2133 // Scan the BB and collect legal loads and stores. Also detect any 2134 // convergent instructions. 2135 for (Instruction &I : *BB) { 2136 if (auto *Call = dyn_cast<CallBase>(&I)) { 2137 if (Call->isConvergent()) 2138 HasConvergentOp = true; 2139 } 2140 2141 // With both a non-vectorizable memory instruction and a convergent 2142 // operation, found in this loop, no reason to continue the search. 2143 if (HasComplexMemInst && HasConvergentOp) { 2144 CanVecMem = false; 2145 return; 2146 } 2147 2148 // Avoid hitting recordAnalysis multiple times. 2149 if (HasComplexMemInst) 2150 continue; 2151 2152 // If this is a load, save it. If this instruction can read from memory 2153 // but is not a load, then we quit. Notice that we don't handle function 2154 // calls that read or write. 2155 if (I.mayReadFromMemory()) { 2156 // Many math library functions read the rounding mode. We will only 2157 // vectorize a loop if it contains known function calls that don't set 2158 // the flag. Therefore, it is safe to ignore this read from memory. 2159 auto *Call = dyn_cast<CallInst>(&I); 2160 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2161 continue; 2162 2163 // If the function has an explicit vectorized counterpart, we can safely 2164 // assume that it can be vectorized. 2165 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2166 !VFDatabase::getMappings(*Call).empty()) 2167 continue; 2168 2169 auto *Ld = dyn_cast<LoadInst>(&I); 2170 if (!Ld) { 2171 recordAnalysis("CantVectorizeInstruction", Ld) 2172 << "instruction cannot be vectorized"; 2173 HasComplexMemInst = true; 2174 continue; 2175 } 2176 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2177 recordAnalysis("NonSimpleLoad", Ld) 2178 << "read with atomic ordering or volatile read"; 2179 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2180 HasComplexMemInst = true; 2181 continue; 2182 } 2183 NumLoads++; 2184 Loads.push_back(Ld); 2185 DepChecker->addAccess(Ld); 2186 if (EnableMemAccessVersioningOfLoop) 2187 collectStridedAccess(Ld); 2188 continue; 2189 } 2190 2191 // Save 'store' instructions. Abort if other instructions write to memory. 2192 if (I.mayWriteToMemory()) { 2193 auto *St = dyn_cast<StoreInst>(&I); 2194 if (!St) { 2195 recordAnalysis("CantVectorizeInstruction", St) 2196 << "instruction cannot be vectorized"; 2197 HasComplexMemInst = true; 2198 continue; 2199 } 2200 if (!St->isSimple() && !IsAnnotatedParallel) { 2201 recordAnalysis("NonSimpleStore", St) 2202 << "write with atomic ordering or volatile write"; 2203 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2204 HasComplexMemInst = true; 2205 continue; 2206 } 2207 NumStores++; 2208 Stores.push_back(St); 2209 DepChecker->addAccess(St); 2210 if (EnableMemAccessVersioningOfLoop) 2211 collectStridedAccess(St); 2212 } 2213 } // Next instr. 2214 } // Next block. 2215 2216 if (HasComplexMemInst) { 2217 CanVecMem = false; 2218 return; 2219 } 2220 2221 // Now we have two lists that hold the loads and the stores. 2222 // Next, we find the pointers that they use. 2223 2224 // Check if we see any stores. If there are no stores, then we don't 2225 // care if the pointers are *restrict*. 2226 if (!Stores.size()) { 2227 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2228 CanVecMem = true; 2229 return; 2230 } 2231 2232 MemoryDepChecker::DepCandidates DependentAccesses; 2233 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 2234 2235 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2236 // multiple times on the same object. If the ptr is accessed twice, once 2237 // for read and once for write, it will only appear once (on the write 2238 // list). This is okay, since we are going to check for conflicts between 2239 // writes and between reads and writes, but not between reads and reads. 2240 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2241 2242 // Record uniform store addresses to identify if we have multiple stores 2243 // to the same address. 2244 SmallPtrSet<Value *, 16> UniformStores; 2245 2246 for (StoreInst *ST : Stores) { 2247 Value *Ptr = ST->getPointerOperand(); 2248 2249 if (isUniform(Ptr)) { 2250 // Record store instructions to loop invariant addresses 2251 StoresToInvariantAddresses.push_back(ST); 2252 HasDependenceInvolvingLoopInvariantAddress |= 2253 !UniformStores.insert(Ptr).second; 2254 } 2255 2256 // If we did *not* see this pointer before, insert it to the read-write 2257 // list. At this phase it is only a 'write' list. 2258 Type *AccessTy = getLoadStoreType(ST); 2259 if (Seen.insert({Ptr, AccessTy}).second) { 2260 ++NumReadWrites; 2261 2262 MemoryLocation Loc = MemoryLocation::get(ST); 2263 // The TBAA metadata could have a control dependency on the predication 2264 // condition, so we cannot rely on it when determining whether or not we 2265 // need runtime pointer checks. 2266 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2267 Loc.AATags.TBAA = nullptr; 2268 2269 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2270 [&Accesses, AccessTy, Loc](Value *Ptr) { 2271 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2272 Accesses.addStore(NewLoc, AccessTy); 2273 }); 2274 } 2275 } 2276 2277 if (IsAnnotatedParallel) { 2278 LLVM_DEBUG( 2279 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2280 << "checks.\n"); 2281 CanVecMem = true; 2282 return; 2283 } 2284 2285 for (LoadInst *LD : Loads) { 2286 Value *Ptr = LD->getPointerOperand(); 2287 // If we did *not* see this pointer before, insert it to the 2288 // read list. If we *did* see it before, then it is already in 2289 // the read-write list. This allows us to vectorize expressions 2290 // such as A[i] += x; Because the address of A[i] is a read-write 2291 // pointer. This only works if the index of A[i] is consecutive. 2292 // If the address of i is unknown (for example A[B[i]]) then we may 2293 // read a few words, modify, and write a few words, and some of the 2294 // words may be written to the same address. 2295 bool IsReadOnlyPtr = false; 2296 Type *AccessTy = getLoadStoreType(LD); 2297 if (Seen.insert({Ptr, AccessTy}).second || 2298 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides)) { 2299 ++NumReads; 2300 IsReadOnlyPtr = true; 2301 } 2302 2303 // See if there is an unsafe dependency between a load to a uniform address and 2304 // store to the same uniform address. 2305 if (UniformStores.count(Ptr)) { 2306 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2307 "load and uniform store to the same address!\n"); 2308 HasDependenceInvolvingLoopInvariantAddress = true; 2309 } 2310 2311 MemoryLocation Loc = MemoryLocation::get(LD); 2312 // The TBAA metadata could have a control dependency on the predication 2313 // condition, so we cannot rely on it when determining whether or not we 2314 // need runtime pointer checks. 2315 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2316 Loc.AATags.TBAA = nullptr; 2317 2318 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2319 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2320 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2321 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2322 }); 2323 } 2324 2325 // If we write (or read-write) to a single destination and there are no 2326 // other reads in this loop then is it safe to vectorize. 2327 if (NumReadWrites == 1 && NumReads == 0) { 2328 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2329 CanVecMem = true; 2330 return; 2331 } 2332 2333 // Build dependence sets and check whether we need a runtime pointer bounds 2334 // check. 2335 Accesses.buildDependenceSets(); 2336 2337 // Find pointers with computable bounds. We are going to use this information 2338 // to place a runtime bound check. 2339 Value *UncomputablePtr = nullptr; 2340 bool CanDoRTIfNeeded = 2341 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2342 SymbolicStrides, UncomputablePtr, false); 2343 if (!CanDoRTIfNeeded) { 2344 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2345 recordAnalysis("CantIdentifyArrayBounds", I) 2346 << "cannot identify array bounds"; 2347 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2348 << "the array bounds.\n"); 2349 CanVecMem = false; 2350 return; 2351 } 2352 2353 LLVM_DEBUG( 2354 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2355 2356 CanVecMem = true; 2357 if (Accesses.isDependencyCheckNeeded()) { 2358 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2359 CanVecMem = DepChecker->areDepsSafe( 2360 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2361 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2362 2363 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2364 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2365 2366 // Clear the dependency checks. We assume they are not needed. 2367 Accesses.resetDepChecks(*DepChecker); 2368 2369 PtrRtChecking->reset(); 2370 PtrRtChecking->Need = true; 2371 2372 auto *SE = PSE->getSE(); 2373 UncomputablePtr = nullptr; 2374 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2375 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2376 2377 // Check that we found the bounds for the pointer. 2378 if (!CanDoRTIfNeeded) { 2379 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2380 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2381 << "cannot check memory dependencies at runtime"; 2382 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2383 CanVecMem = false; 2384 return; 2385 } 2386 2387 CanVecMem = true; 2388 } 2389 } 2390 2391 if (HasConvergentOp) { 2392 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2393 << "cannot add control dependency to convergent operation"; 2394 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2395 "would be needed with a convergent operation\n"); 2396 CanVecMem = false; 2397 return; 2398 } 2399 2400 if (CanVecMem) 2401 LLVM_DEBUG( 2402 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2403 << (PtrRtChecking->Need ? "" : " don't") 2404 << " need runtime memory checks.\n"); 2405 else 2406 emitUnsafeDependenceRemark(); 2407 } 2408 2409 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2410 auto Deps = getDepChecker().getDependences(); 2411 if (!Deps) 2412 return; 2413 auto Found = std::find_if( 2414 Deps->begin(), Deps->end(), [](const MemoryDepChecker::Dependence &D) { 2415 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2416 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2417 }); 2418 if (Found == Deps->end()) 2419 return; 2420 MemoryDepChecker::Dependence Dep = *Found; 2421 2422 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2423 2424 // Emit remark for first unsafe dependence 2425 OptimizationRemarkAnalysis &R = 2426 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) 2427 << "unsafe dependent memory operations in loop. Use " 2428 "#pragma loop distribute(enable) to allow loop distribution " 2429 "to attempt to isolate the offending operations into a separate " 2430 "loop"; 2431 2432 switch (Dep.Type) { 2433 case MemoryDepChecker::Dependence::NoDep: 2434 case MemoryDepChecker::Dependence::Forward: 2435 case MemoryDepChecker::Dependence::BackwardVectorizable: 2436 llvm_unreachable("Unexpected dependence"); 2437 case MemoryDepChecker::Dependence::Backward: 2438 R << "\nBackward loop carried data dependence."; 2439 break; 2440 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2441 R << "\nForward loop carried data dependence that prevents " 2442 "store-to-load forwarding."; 2443 break; 2444 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2445 R << "\nBackward loop carried data dependence that prevents " 2446 "store-to-load forwarding."; 2447 break; 2448 case MemoryDepChecker::Dependence::Unknown: 2449 R << "\nUnknown data dependence."; 2450 break; 2451 } 2452 2453 if (Instruction *I = Dep.getSource(*this)) { 2454 DebugLoc SourceLoc = I->getDebugLoc(); 2455 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2456 SourceLoc = DD->getDebugLoc(); 2457 if (SourceLoc) 2458 R << " Memory location is the same as accessed at " 2459 << ore::NV("Location", SourceLoc); 2460 } 2461 } 2462 2463 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2464 DominatorTree *DT) { 2465 assert(TheLoop->contains(BB) && "Unknown block used"); 2466 2467 // Blocks that do not dominate the latch need predication. 2468 BasicBlock* Latch = TheLoop->getLoopLatch(); 2469 return !DT->dominates(BB, Latch); 2470 } 2471 2472 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2473 Instruction *I) { 2474 assert(!Report && "Multiple reports generated"); 2475 2476 Value *CodeRegion = TheLoop->getHeader(); 2477 DebugLoc DL = TheLoop->getStartLoc(); 2478 2479 if (I) { 2480 CodeRegion = I->getParent(); 2481 // If there is no debug location attached to the instruction, revert back to 2482 // using the loop's. 2483 if (I->getDebugLoc()) 2484 DL = I->getDebugLoc(); 2485 } 2486 2487 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2488 CodeRegion); 2489 return *Report; 2490 } 2491 2492 bool LoopAccessInfo::isUniform(Value *V) const { 2493 auto *SE = PSE->getSE(); 2494 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2495 // never considered uniform. 2496 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2497 // trivially loop-invariant FP values to be considered uniform. 2498 if (!SE->isSCEVable(V->getType())) 2499 return false; 2500 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2501 } 2502 2503 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2504 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2505 if (!Ptr) 2506 return; 2507 2508 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2509 if (!Stride) 2510 return; 2511 2512 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2513 "versioning:"); 2514 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2515 2516 // Avoid adding the "Stride == 1" predicate when we know that 2517 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2518 // or zero iteration loop, as Trip-Count <= Stride == 1. 2519 // 2520 // TODO: We are currently not making a very informed decision on when it is 2521 // beneficial to apply stride versioning. It might make more sense that the 2522 // users of this analysis (such as the vectorizer) will trigger it, based on 2523 // their specific cost considerations; For example, in cases where stride 2524 // versioning does not help resolving memory accesses/dependences, the 2525 // vectorizer should evaluate the cost of the runtime test, and the benefit 2526 // of various possible stride specializations, considering the alternatives 2527 // of using gather/scatters (if available). 2528 2529 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2530 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2531 2532 // Match the types so we can compare the stride and the BETakenCount. 2533 // The Stride can be positive/negative, so we sign extend Stride; 2534 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2535 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2536 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2537 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType()); 2538 const SCEV *CastedStride = StrideExpr; 2539 const SCEV *CastedBECount = BETakenCount; 2540 ScalarEvolution *SE = PSE->getSE(); 2541 if (BETypeSizeBits >= StrideTypeSizeBits) 2542 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2543 else 2544 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2545 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2546 // Since TripCount == BackEdgeTakenCount + 1, checking: 2547 // "Stride >= TripCount" is equivalent to checking: 2548 // Stride - BETakenCount > 0 2549 if (SE->isKnownPositive(StrideMinusBETaken)) { 2550 LLVM_DEBUG( 2551 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2552 "Stride==1 predicate will imply that the loop executes " 2553 "at most once.\n"); 2554 return; 2555 } 2556 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2557 2558 SymbolicStrides[Ptr] = Stride; 2559 StrideSet.insert(Stride); 2560 } 2561 2562 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2563 const TargetLibraryInfo *TLI, AAResults *AA, 2564 DominatorTree *DT, LoopInfo *LI) 2565 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2566 PtrRtChecking(nullptr), 2567 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) { 2568 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 2569 if (canAnalyzeLoop()) { 2570 analyzeLoop(AA, LI, TLI, DT); 2571 } 2572 } 2573 2574 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2575 if (CanVecMem) { 2576 OS.indent(Depth) << "Memory dependences are safe"; 2577 if (MaxSafeDepDistBytes != -1ULL) 2578 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2579 << " bytes"; 2580 if (PtrRtChecking->Need) 2581 OS << " with run-time checks"; 2582 OS << "\n"; 2583 } 2584 2585 if (HasConvergentOp) 2586 OS.indent(Depth) << "Has convergent operation in loop\n"; 2587 2588 if (Report) 2589 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2590 2591 if (auto *Dependences = DepChecker->getDependences()) { 2592 OS.indent(Depth) << "Dependences:\n"; 2593 for (const auto &Dep : *Dependences) { 2594 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2595 OS << "\n"; 2596 } 2597 } else 2598 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2599 2600 // List the pair of accesses need run-time checks to prove independence. 2601 PtrRtChecking->print(OS, Depth); 2602 OS << "\n"; 2603 2604 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2605 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2606 << "found in loop.\n"; 2607 2608 OS.indent(Depth) << "SCEV assumptions:\n"; 2609 PSE->getPredicate().print(OS, Depth); 2610 2611 OS << "\n"; 2612 2613 OS.indent(Depth) << "Expressions re-written:\n"; 2614 PSE->print(OS, Depth); 2615 } 2616 2617 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2618 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2619 } 2620 2621 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2622 auto &LAI = LoopAccessInfoMap[L]; 2623 2624 if (!LAI) 2625 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2626 2627 return *LAI; 2628 } 2629 2630 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2631 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2632 2633 for (Loop *TopLevelLoop : *LI) 2634 for (Loop *L : depth_first(TopLevelLoop)) { 2635 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2636 auto &LAI = LAA.getInfo(L); 2637 LAI.print(OS, 4); 2638 } 2639 } 2640 2641 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2642 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2643 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2644 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2645 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2646 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2647 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2648 2649 return false; 2650 } 2651 2652 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2653 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 2654 AU.addRequiredTransitive<AAResultsWrapperPass>(); 2655 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 2656 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 2657 2658 AU.setPreservesAll(); 2659 } 2660 2661 char LoopAccessLegacyAnalysis::ID = 0; 2662 static const char laa_name[] = "Loop Access Analysis"; 2663 #define LAA_NAME "loop-accesses" 2664 2665 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2666 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2667 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2668 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2669 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2670 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2671 2672 AnalysisKey LoopAccessAnalysis::Key; 2673 2674 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2675 LoopStandardAnalysisResults &AR) { 2676 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2677 } 2678 2679 namespace llvm { 2680 2681 Pass *createLAAPass() { 2682 return new LoopAccessLegacyAnalysis(); 2683 } 2684 2685 } // end namespace llvm 2686