1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const auto *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 auto *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<std::pair<const SCEV *, Type *>, 210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {{PtrExpr, AccessTy}, 215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 216 if (!Ins) 217 return Iter->second; 218 219 const SCEV *ScStart; 220 const SCEV *ScEnd; 221 222 if (SE->isLoopInvariant(PtrExpr, Lp)) { 223 ScStart = ScEnd = PtrExpr; 224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 226 227 ScStart = AR->getStart(); 228 ScEnd = AR->evaluateAtIteration(Ex, *SE); 229 const SCEV *Step = AR->getStepRecurrence(*SE); 230 231 // For expressions with negative step, the upper bound is ScStart and the 232 // lower bound is ScEnd. 233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 234 if (CStep->getValue()->isNegative()) 235 std::swap(ScStart, ScEnd); 236 } else { 237 // Fallback case: the step is not constant, but we can still 238 // get the upper and lower bounds of the interval by using min/max 239 // expressions. 240 ScStart = SE->getUMinExpr(ScStart, ScEnd); 241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 242 } 243 } else 244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 245 246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 248 249 // Add the size of the pointed element to ScEnd. 250 auto &DL = Lp->getHeader()->getDataLayout(); 251 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 254 255 Iter->second = {ScStart, ScEnd}; 256 return Iter->second; 257 } 258 259 /// Calculate Start and End points of memory access using 260 /// getStartAndEndForAccess. 261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 262 Type *AccessTy, bool WritePtr, 263 unsigned DepSetId, unsigned ASId, 264 PredicatedScalarEvolution &PSE, 265 bool NeedsFreeze) { 266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 268 assert(!isa<SCEVCouldNotCompute>(ScStart) && 269 !isa<SCEVCouldNotCompute>(ScEnd) && 270 "must be able to compute both start and end expressions"); 271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 272 NeedsFreeze); 273 } 274 275 bool RuntimePointerChecking::tryToCreateDiffCheck( 276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 277 // If either group contains multiple different pointers, bail out. 278 // TODO: Support multiple pointers by using the minimum or maximum pointer, 279 // depending on src & sink. 280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 281 return false; 282 283 PointerInfo *Src = &Pointers[CGI.Members[0]]; 284 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 285 286 // If either pointer is read and written, multiple checks may be needed. Bail 287 // out. 288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 290 return false; 291 292 ArrayRef<unsigned> AccSrc = 293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 294 ArrayRef<unsigned> AccSink = 295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 296 // If either pointer is accessed multiple times, there may not be a clear 297 // src/sink relation. Bail out for now. 298 if (AccSrc.size() != 1 || AccSink.size() != 1) 299 return false; 300 301 // If the sink is accessed before src, swap src/sink. 302 if (AccSink[0] < AccSrc[0]) 303 std::swap(Src, Sink); 304 305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 308 SinkAR->getLoop() != DC.getInnermostLoop()) 309 return false; 310 311 SmallVector<Instruction *, 4> SrcInsts = 312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 313 SmallVector<Instruction *, 4> SinkInsts = 314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 315 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 316 Type *DstTy = getLoadStoreType(SinkInsts[0]); 317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 318 return false; 319 320 const DataLayout &DL = 321 SinkAR->getLoop()->getHeader()->getDataLayout(); 322 unsigned AllocSize = 323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 324 325 // Only matching constant steps matching the AllocSize are supported at the 326 // moment. This simplifies the difference computation. Can be extended in the 327 // future. 328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 330 Step->getAPInt().abs() != AllocSize) 331 return false; 332 333 IntegerType *IntTy = 334 IntegerType::get(Src->PointerValue->getContext(), 335 DL.getPointerSizeInBits(CGI.AddressSpace)); 336 337 // When counting down, the dependence distance needs to be swapped. 338 if (Step->getValue()->isNegative()) 339 std::swap(SinkAR, SrcAR); 340 341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 343 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 344 isa<SCEVCouldNotCompute>(SrcStartInt)) 345 return false; 346 347 const Loop *InnerLoop = SrcAR->getLoop(); 348 // If the start values for both Src and Sink also vary according to an outer 349 // loop, then it's probably better to avoid creating diff checks because 350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 351 // do the expanded full range overlap checks, which can be hoisted. 352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 356 const Loop *StartARLoop = SrcStartAR->getLoop(); 357 if (StartARLoop == SinkStartAR->getLoop() && 358 StartARLoop == InnerLoop->getParentLoop() && 359 // If the diff check would already be loop invariant (due to the 360 // recurrences being the same), then we prefer to keep the diff checks 361 // because they are cheaper. 362 SrcStartAR->getStepRecurrence(*SE) != 363 SinkStartAR->getStepRecurrence(*SE)) { 364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 365 "cannot be hoisted out of the outer loop\n"); 366 return false; 367 } 368 } 369 370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 371 << "SrcStart: " << *SrcStartInt << '\n' 372 << "SinkStartInt: " << *SinkStartInt << '\n'); 373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 374 Src->NeedsFreeze || Sink->NeedsFreeze); 375 return true; 376 } 377 378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 379 SmallVector<RuntimePointerCheck, 4> Checks; 380 381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 385 386 if (needsChecking(CGI, CGJ)) { 387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 388 Checks.push_back(std::make_pair(&CGI, &CGJ)); 389 } 390 } 391 } 392 return Checks; 393 } 394 395 void RuntimePointerChecking::generateChecks( 396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 397 assert(Checks.empty() && "Checks is not empty"); 398 groupChecks(DepCands, UseDependencies); 399 Checks = generateChecks(); 400 } 401 402 bool RuntimePointerChecking::needsChecking( 403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 404 for (const auto &I : M.Members) 405 for (const auto &J : N.Members) 406 if (needsChecking(I, J)) 407 return true; 408 return false; 409 } 410 411 /// Compare \p I and \p J and return the minimum. 412 /// Return nullptr in case we couldn't find an answer. 413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 414 ScalarEvolution *SE) { 415 const SCEV *Diff = SE->getMinusSCEV(J, I); 416 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 417 418 if (!C) 419 return nullptr; 420 return C->getValue()->isNegative() ? J : I; 421 } 422 423 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 424 RuntimePointerChecking &RtCheck) { 425 return addPointer( 426 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 427 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 428 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 429 } 430 431 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 432 const SCEV *End, unsigned AS, 433 bool NeedsFreeze, 434 ScalarEvolution &SE) { 435 assert(AddressSpace == AS && 436 "all pointers in a checking group must be in the same address space"); 437 438 // Compare the starts and ends with the known minimum and maximum 439 // of this set. We need to know how we compare against the min/max 440 // of the set in order to be able to emit memchecks. 441 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 442 if (!Min0) 443 return false; 444 445 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 446 if (!Min1) 447 return false; 448 449 // Update the low bound expression if we've found a new min value. 450 if (Min0 == Start) 451 Low = Start; 452 453 // Update the high bound expression if we've found a new max value. 454 if (Min1 != End) 455 High = End; 456 457 Members.push_back(Index); 458 this->NeedsFreeze |= NeedsFreeze; 459 return true; 460 } 461 462 void RuntimePointerChecking::groupChecks( 463 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 464 // We build the groups from dependency candidates equivalence classes 465 // because: 466 // - We know that pointers in the same equivalence class share 467 // the same underlying object and therefore there is a chance 468 // that we can compare pointers 469 // - We wouldn't be able to merge two pointers for which we need 470 // to emit a memcheck. The classes in DepCands are already 471 // conveniently built such that no two pointers in the same 472 // class need checking against each other. 473 474 // We use the following (greedy) algorithm to construct the groups 475 // For every pointer in the equivalence class: 476 // For each existing group: 477 // - if the difference between this pointer and the min/max bounds 478 // of the group is a constant, then make the pointer part of the 479 // group and update the min/max bounds of that group as required. 480 481 CheckingGroups.clear(); 482 483 // If we need to check two pointers to the same underlying object 484 // with a non-constant difference, we shouldn't perform any pointer 485 // grouping with those pointers. This is because we can easily get 486 // into cases where the resulting check would return false, even when 487 // the accesses are safe. 488 // 489 // The following example shows this: 490 // for (i = 0; i < 1000; ++i) 491 // a[5000 + i * m] = a[i] + a[i + 9000] 492 // 493 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 494 // (0, 10000) which is always false. However, if m is 1, there is no 495 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 496 // us to perform an accurate check in this case. 497 // 498 // The above case requires that we have an UnknownDependence between 499 // accesses to the same underlying object. This cannot happen unless 500 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 501 // is also false. In this case we will use the fallback path and create 502 // separate checking groups for all pointers. 503 504 // If we don't have the dependency partitions, construct a new 505 // checking pointer group for each pointer. This is also required 506 // for correctness, because in this case we can have checking between 507 // pointers to the same underlying object. 508 if (!UseDependencies) { 509 for (unsigned I = 0; I < Pointers.size(); ++I) 510 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 511 return; 512 } 513 514 unsigned TotalComparisons = 0; 515 516 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 517 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 518 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}}); 519 It->second.push_back(Index); 520 } 521 522 // We need to keep track of what pointers we've already seen so we 523 // don't process them twice. 524 SmallSet<unsigned, 2> Seen; 525 526 // Go through all equivalence classes, get the "pointer check groups" 527 // and add them to the overall solution. We use the order in which accesses 528 // appear in 'Pointers' to enforce determinism. 529 for (unsigned I = 0; I < Pointers.size(); ++I) { 530 // We've seen this pointer before, and therefore already processed 531 // its equivalence class. 532 if (Seen.count(I)) 533 continue; 534 535 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 536 Pointers[I].IsWritePtr); 537 538 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 539 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 540 541 // Because DepCands is constructed by visiting accesses in the order in 542 // which they appear in alias sets (which is deterministic) and the 543 // iteration order within an equivalence class member is only dependent on 544 // the order in which unions and insertions are performed on the 545 // equivalence class, the iteration order is deterministic. 546 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 547 MI != ME; ++MI) { 548 auto PointerI = PositionMap.find(MI->getPointer()); 549 assert(PointerI != PositionMap.end() && 550 "pointer in equivalence class not found in PositionMap"); 551 for (unsigned Pointer : PointerI->second) { 552 bool Merged = false; 553 // Mark this pointer as seen. 554 Seen.insert(Pointer); 555 556 // Go through all the existing sets and see if we can find one 557 // which can include this pointer. 558 for (RuntimeCheckingPtrGroup &Group : Groups) { 559 // Don't perform more than a certain amount of comparisons. 560 // This should limit the cost of grouping the pointers to something 561 // reasonable. If we do end up hitting this threshold, the algorithm 562 // will create separate groups for all remaining pointers. 563 if (TotalComparisons > MemoryCheckMergeThreshold) 564 break; 565 566 TotalComparisons++; 567 568 if (Group.addPointer(Pointer, *this)) { 569 Merged = true; 570 break; 571 } 572 } 573 574 if (!Merged) 575 // We couldn't add this pointer to any existing set or the threshold 576 // for the number of comparisons has been reached. Create a new group 577 // to hold the current pointer. 578 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 579 } 580 } 581 582 // We've computed the grouped checks for this partition. 583 // Save the results and continue with the next one. 584 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 585 } 586 } 587 588 bool RuntimePointerChecking::arePointersInSamePartition( 589 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 590 unsigned PtrIdx2) { 591 return (PtrToPartition[PtrIdx1] != -1 && 592 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 593 } 594 595 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 596 const PointerInfo &PointerI = Pointers[I]; 597 const PointerInfo &PointerJ = Pointers[J]; 598 599 // No need to check if two readonly pointers intersect. 600 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 601 return false; 602 603 // Only need to check pointers between two different dependency sets. 604 if (PointerI.DependencySetId == PointerJ.DependencySetId) 605 return false; 606 607 // Only need to check pointers in the same alias set. 608 if (PointerI.AliasSetId != PointerJ.AliasSetId) 609 return false; 610 611 return true; 612 } 613 614 void RuntimePointerChecking::printChecks( 615 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 616 unsigned Depth) const { 617 unsigned N = 0; 618 for (const auto &[Check1, Check2] : Checks) { 619 const auto &First = Check1->Members, &Second = Check2->Members; 620 621 OS.indent(Depth) << "Check " << N++ << ":\n"; 622 623 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 624 for (unsigned K : First) 625 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 626 627 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 628 for (unsigned K : Second) 629 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 630 } 631 } 632 633 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 634 635 OS.indent(Depth) << "Run-time memory checks:\n"; 636 printChecks(OS, Checks, Depth); 637 638 OS.indent(Depth) << "Grouped accesses:\n"; 639 for (const auto &CG : CheckingGroups) { 640 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 641 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 642 << ")\n"; 643 for (unsigned Member : CG.Members) { 644 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 645 } 646 } 647 } 648 649 namespace { 650 651 /// Analyses memory accesses in a loop. 652 /// 653 /// Checks whether run time pointer checks are needed and builds sets for data 654 /// dependence checking. 655 class AccessAnalysis { 656 public: 657 /// Read or write access location. 658 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 659 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 660 661 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 662 MemoryDepChecker::DepCandidates &DA, 663 PredicatedScalarEvolution &PSE, 664 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 665 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 666 LoopAliasScopes(LoopAliasScopes) { 667 // We're analyzing dependences across loop iterations. 668 BAA.enableCrossIterationMode(); 669 } 670 671 /// Register a load and whether it is only read from. 672 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 673 Value *Ptr = const_cast<Value *>(Loc.Ptr); 674 AST.add(adjustLoc(Loc)); 675 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 676 if (IsReadOnly) 677 ReadOnlyPtr.insert(Ptr); 678 } 679 680 /// Register a store. 681 void addStore(MemoryLocation &Loc, Type *AccessTy) { 682 Value *Ptr = const_cast<Value *>(Loc.Ptr); 683 AST.add(adjustLoc(Loc)); 684 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 685 } 686 687 /// Check if we can emit a run-time no-alias check for \p Access. 688 /// 689 /// Returns true if we can emit a run-time no alias check for \p Access. 690 /// If we can check this access, this also adds it to a dependence set and 691 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 692 /// we will attempt to use additional run-time checks in order to get 693 /// the bounds of the pointer. 694 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 695 MemAccessInfo Access, Type *AccessTy, 696 const DenseMap<Value *, const SCEV *> &Strides, 697 DenseMap<Value *, unsigned> &DepSetId, 698 Loop *TheLoop, unsigned &RunningDepId, 699 unsigned ASId, bool ShouldCheckStride, bool Assume); 700 701 /// Check whether we can check the pointers at runtime for 702 /// non-intersection. 703 /// 704 /// Returns true if we need no check or if we do and we can generate them 705 /// (i.e. the pointers have computable bounds). 706 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 707 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 708 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 709 710 /// Goes over all memory accesses, checks whether a RT check is needed 711 /// and builds sets of dependent accesses. 712 void buildDependenceSets() { 713 processMemAccesses(); 714 } 715 716 /// Initial processing of memory accesses determined that we need to 717 /// perform dependency checking. 718 /// 719 /// Note that this can later be cleared if we retry memcheck analysis without 720 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 721 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 722 723 /// We decided that no dependence analysis would be used. Reset the state. 724 void resetDepChecks(MemoryDepChecker &DepChecker) { 725 CheckDeps.clear(); 726 DepChecker.clearDependences(); 727 } 728 729 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 730 731 private: 732 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 733 734 /// Adjust the MemoryLocation so that it represents accesses to this 735 /// location across all iterations, rather than a single one. 736 MemoryLocation adjustLoc(MemoryLocation Loc) const { 737 // The accessed location varies within the loop, but remains within the 738 // underlying object. 739 Loc.Size = LocationSize::beforeOrAfterPointer(); 740 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 741 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 742 return Loc; 743 } 744 745 /// Drop alias scopes that are only valid within a single loop iteration. 746 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 747 if (!ScopeList) 748 return nullptr; 749 750 // For the sake of simplicity, drop the whole scope list if any scope is 751 // iteration-local. 752 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 753 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 754 })) 755 return nullptr; 756 757 return ScopeList; 758 } 759 760 /// Go over all memory access and check whether runtime pointer checks 761 /// are needed and build sets of dependency check candidates. 762 void processMemAccesses(); 763 764 /// Map of all accesses. Values are the types used to access memory pointed to 765 /// by the pointer. 766 PtrAccessMap Accesses; 767 768 /// The loop being checked. 769 const Loop *TheLoop; 770 771 /// List of accesses that need a further dependence check. 772 MemAccessInfoList CheckDeps; 773 774 /// Set of pointers that are read only. 775 SmallPtrSet<Value*, 16> ReadOnlyPtr; 776 777 /// Batched alias analysis results. 778 BatchAAResults BAA; 779 780 /// An alias set tracker to partition the access set by underlying object and 781 //intrinsic property (such as TBAA metadata). 782 AliasSetTracker AST; 783 784 LoopInfo *LI; 785 786 /// Sets of potentially dependent accesses - members of one set share an 787 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 788 /// dependence check. 789 MemoryDepChecker::DepCandidates &DepCands; 790 791 /// Initial processing of memory accesses determined that we may need 792 /// to add memchecks. Perform the analysis to determine the necessary checks. 793 /// 794 /// Note that, this is different from isDependencyCheckNeeded. When we retry 795 /// memcheck analysis without dependency checking 796 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 797 /// cleared while this remains set if we have potentially dependent accesses. 798 bool IsRTCheckAnalysisNeeded = false; 799 800 /// The SCEV predicate containing all the SCEV-related assumptions. 801 PredicatedScalarEvolution &PSE; 802 803 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 804 805 /// Alias scopes that are declared inside the loop, and as such not valid 806 /// across iterations. 807 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 808 }; 809 810 } // end anonymous namespace 811 812 /// Check whether a pointer can participate in a runtime bounds check. 813 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 814 /// by adding run-time checks (overflow checks) if necessary. 815 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 816 const SCEV *PtrScev, Loop *L, bool Assume) { 817 // The bounds for loop-invariant pointer is trivial. 818 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 819 return true; 820 821 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 822 823 if (!AR && Assume) 824 AR = PSE.getAsAddRec(Ptr); 825 826 if (!AR) 827 return false; 828 829 return AR->isAffine(); 830 } 831 832 /// Check whether a pointer address cannot wrap. 833 static bool isNoWrap(PredicatedScalarEvolution &PSE, 834 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 835 Loop *L) { 836 const SCEV *PtrScev = PSE.getSCEV(Ptr); 837 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 838 return true; 839 840 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 841 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 842 return true; 843 844 return false; 845 } 846 847 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 848 function_ref<void(Value *)> AddPointer) { 849 SmallPtrSet<Value *, 8> Visited; 850 SmallVector<Value *> WorkList; 851 WorkList.push_back(StartPtr); 852 853 while (!WorkList.empty()) { 854 Value *Ptr = WorkList.pop_back_val(); 855 if (!Visited.insert(Ptr).second) 856 continue; 857 auto *PN = dyn_cast<PHINode>(Ptr); 858 // SCEV does not look through non-header PHIs inside the loop. Such phis 859 // can be analyzed by adding separate accesses for each incoming pointer 860 // value. 861 if (PN && InnermostLoop.contains(PN->getParent()) && 862 PN->getParent() != InnermostLoop.getHeader()) { 863 for (const Use &Inc : PN->incoming_values()) 864 WorkList.push_back(Inc); 865 } else 866 AddPointer(Ptr); 867 } 868 } 869 870 // Walk back through the IR for a pointer, looking for a select like the 871 // following: 872 // 873 // %offset = select i1 %cmp, i64 %a, i64 %b 874 // %addr = getelementptr double, double* %base, i64 %offset 875 // %ld = load double, double* %addr, align 8 876 // 877 // We won't be able to form a single SCEVAddRecExpr from this since the 878 // address for each loop iteration depends on %cmp. We could potentially 879 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 880 // memory safety/aliasing if needed. 881 // 882 // If we encounter some IR we don't yet handle, or something obviously fine 883 // like a constant, then we just add the SCEV for that term to the list passed 884 // in by the caller. If we have a node that may potentially yield a valid 885 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 886 // ourselves before adding to the list. 887 static void findForkedSCEVs( 888 ScalarEvolution *SE, const Loop *L, Value *Ptr, 889 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 890 unsigned Depth) { 891 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 892 // we've exceeded our limit on recursion, just return whatever we have 893 // regardless of whether it can be used for a forked pointer or not, along 894 // with an indication of whether it might be a poison or undef value. 895 const SCEV *Scev = SE->getSCEV(Ptr); 896 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 897 !isa<Instruction>(Ptr) || Depth == 0) { 898 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 899 return; 900 } 901 902 Depth--; 903 904 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 905 return get<1>(S); 906 }; 907 908 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 909 switch (Opcode) { 910 case Instruction::Add: 911 return SE->getAddExpr(L, R); 912 case Instruction::Sub: 913 return SE->getMinusSCEV(L, R); 914 default: 915 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 916 } 917 }; 918 919 Instruction *I = cast<Instruction>(Ptr); 920 unsigned Opcode = I->getOpcode(); 921 switch (Opcode) { 922 case Instruction::GetElementPtr: { 923 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 924 Type *SourceTy = GEP->getSourceElementType(); 925 // We only handle base + single offset GEPs here for now. 926 // Not dealing with preexisting gathers yet, so no vectors. 927 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 928 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 929 break; 930 } 931 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 932 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 933 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 934 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 935 936 // See if we need to freeze our fork... 937 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 938 any_of(OffsetScevs, UndefPoisonCheck); 939 940 // Check that we only have a single fork, on either the base or the offset. 941 // Copy the SCEV across for the one without a fork in order to generate 942 // the full SCEV for both sides of the GEP. 943 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 944 BaseScevs.push_back(BaseScevs[0]); 945 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 946 OffsetScevs.push_back(OffsetScevs[0]); 947 else { 948 ScevList.emplace_back(Scev, NeedsFreeze); 949 break; 950 } 951 952 // Find the pointer type we need to extend to. 953 Type *IntPtrTy = SE->getEffectiveSCEVType( 954 SE->getSCEV(GEP->getPointerOperand())->getType()); 955 956 // Find the size of the type being pointed to. We only have a single 957 // index term (guarded above) so we don't need to index into arrays or 958 // structures, just get the size of the scalar value. 959 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 960 961 // Scale up the offsets by the size of the type, then add to the bases. 962 const SCEV *Scaled1 = SE->getMulExpr( 963 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 964 const SCEV *Scaled2 = SE->getMulExpr( 965 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 966 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 967 NeedsFreeze); 968 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 969 NeedsFreeze); 970 break; 971 } 972 case Instruction::Select: { 973 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 974 // A select means we've found a forked pointer, but we currently only 975 // support a single select per pointer so if there's another behind this 976 // then we just bail out and return the generic SCEV. 977 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 978 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 979 if (ChildScevs.size() == 2) { 980 ScevList.push_back(ChildScevs[0]); 981 ScevList.push_back(ChildScevs[1]); 982 } else 983 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 984 break; 985 } 986 case Instruction::PHI: { 987 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 988 // A phi means we've found a forked pointer, but we currently only 989 // support a single phi per pointer so if there's another behind this 990 // then we just bail out and return the generic SCEV. 991 if (I->getNumOperands() == 2) { 992 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 993 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 994 } 995 if (ChildScevs.size() == 2) { 996 ScevList.push_back(ChildScevs[0]); 997 ScevList.push_back(ChildScevs[1]); 998 } else 999 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1000 break; 1001 } 1002 case Instruction::Add: 1003 case Instruction::Sub: { 1004 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 1005 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 1006 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 1007 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 1008 1009 // See if we need to freeze our fork... 1010 bool NeedsFreeze = 1011 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1012 1013 // Check that we only have a single fork, on either the left or right side. 1014 // Copy the SCEV across for the one without a fork in order to generate 1015 // the full SCEV for both sides of the BinOp. 1016 if (LScevs.size() == 2 && RScevs.size() == 1) 1017 RScevs.push_back(RScevs[0]); 1018 else if (RScevs.size() == 2 && LScevs.size() == 1) 1019 LScevs.push_back(LScevs[0]); 1020 else { 1021 ScevList.emplace_back(Scev, NeedsFreeze); 1022 break; 1023 } 1024 1025 ScevList.emplace_back( 1026 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1027 NeedsFreeze); 1028 ScevList.emplace_back( 1029 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1030 NeedsFreeze); 1031 break; 1032 } 1033 default: 1034 // Just return the current SCEV if we haven't handled the instruction yet. 1035 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1036 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1037 break; 1038 } 1039 } 1040 1041 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1042 findForkedPointer(PredicatedScalarEvolution &PSE, 1043 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1044 const Loop *L) { 1045 ScalarEvolution *SE = PSE.getSE(); 1046 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1047 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1048 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1049 1050 // For now, we will only accept a forked pointer with two possible SCEVs 1051 // that are either SCEVAddRecExprs or loop invariant. 1052 if (Scevs.size() == 2 && 1053 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1054 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1055 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1056 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1057 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1058 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1059 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1060 return Scevs; 1061 } 1062 1063 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1064 } 1065 1066 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1067 MemAccessInfo Access, Type *AccessTy, 1068 const DenseMap<Value *, const SCEV *> &StridesMap, 1069 DenseMap<Value *, unsigned> &DepSetId, 1070 Loop *TheLoop, unsigned &RunningDepId, 1071 unsigned ASId, bool ShouldCheckWrap, 1072 bool Assume) { 1073 Value *Ptr = Access.getPointer(); 1074 1075 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1076 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1077 1078 for (auto &P : TranslatedPtrs) { 1079 const SCEV *PtrExpr = get<0>(P); 1080 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1081 return false; 1082 1083 // When we run after a failing dependency check we have to make sure 1084 // we don't have wrapping pointers. 1085 if (ShouldCheckWrap) { 1086 // Skip wrap checking when translating pointers. 1087 if (TranslatedPtrs.size() > 1) 1088 return false; 1089 1090 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1091 auto *Expr = PSE.getSCEV(Ptr); 1092 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1093 return false; 1094 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1095 } 1096 } 1097 // If there's only one option for Ptr, look it up after bounds and wrap 1098 // checking, because assumptions might have been added to PSE. 1099 if (TranslatedPtrs.size() == 1) 1100 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1101 false}; 1102 } 1103 1104 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1105 // The id of the dependence set. 1106 unsigned DepId; 1107 1108 if (isDependencyCheckNeeded()) { 1109 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1110 unsigned &LeaderId = DepSetId[Leader]; 1111 if (!LeaderId) 1112 LeaderId = RunningDepId++; 1113 DepId = LeaderId; 1114 } else 1115 // Each access has its own dependence set. 1116 DepId = RunningDepId++; 1117 1118 bool IsWrite = Access.getInt(); 1119 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1120 NeedsFreeze); 1121 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1122 } 1123 1124 return true; 1125 } 1126 1127 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1128 ScalarEvolution *SE, Loop *TheLoop, 1129 const DenseMap<Value *, const SCEV *> &StridesMap, 1130 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1131 // Find pointers with computable bounds. We are going to use this information 1132 // to place a runtime bound check. 1133 bool CanDoRT = true; 1134 1135 bool MayNeedRTCheck = false; 1136 if (!IsRTCheckAnalysisNeeded) return true; 1137 1138 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1139 1140 // We assign a consecutive id to access from different alias sets. 1141 // Accesses between different groups doesn't need to be checked. 1142 unsigned ASId = 0; 1143 for (auto &AS : AST) { 1144 int NumReadPtrChecks = 0; 1145 int NumWritePtrChecks = 0; 1146 bool CanDoAliasSetRT = true; 1147 ++ASId; 1148 auto ASPointers = AS.getPointers(); 1149 1150 // We assign consecutive id to access from different dependence sets. 1151 // Accesses within the same set don't need a runtime check. 1152 unsigned RunningDepId = 1; 1153 DenseMap<Value *, unsigned> DepSetId; 1154 1155 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1156 1157 // First, count how many write and read accesses are in the alias set. Also 1158 // collect MemAccessInfos for later. 1159 SmallVector<MemAccessInfo, 4> AccessInfos; 1160 for (const Value *ConstPtr : ASPointers) { 1161 Value *Ptr = const_cast<Value *>(ConstPtr); 1162 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1163 if (IsWrite) 1164 ++NumWritePtrChecks; 1165 else 1166 ++NumReadPtrChecks; 1167 AccessInfos.emplace_back(Ptr, IsWrite); 1168 } 1169 1170 // We do not need runtime checks for this alias set, if there are no writes 1171 // or a single write and no reads. 1172 if (NumWritePtrChecks == 0 || 1173 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1174 assert((ASPointers.size() <= 1 || 1175 all_of(ASPointers, 1176 [this](const Value *Ptr) { 1177 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1178 true); 1179 return DepCands.findValue(AccessWrite) == DepCands.end(); 1180 })) && 1181 "Can only skip updating CanDoRT below, if all entries in AS " 1182 "are reads or there is at most 1 entry"); 1183 continue; 1184 } 1185 1186 for (auto &Access : AccessInfos) { 1187 for (const auto &AccessTy : Accesses[Access]) { 1188 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1189 DepSetId, TheLoop, RunningDepId, ASId, 1190 ShouldCheckWrap, false)) { 1191 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1192 << *Access.getPointer() << '\n'); 1193 Retries.push_back({Access, AccessTy}); 1194 CanDoAliasSetRT = false; 1195 } 1196 } 1197 } 1198 1199 // Note that this function computes CanDoRT and MayNeedRTCheck 1200 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1201 // we have a pointer for which we couldn't find the bounds but we don't 1202 // actually need to emit any checks so it does not matter. 1203 // 1204 // We need runtime checks for this alias set, if there are at least 2 1205 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1206 // any bound checks (because in that case the number of dependence sets is 1207 // incomplete). 1208 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1209 1210 // We need to perform run-time alias checks, but some pointers had bounds 1211 // that couldn't be checked. 1212 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1213 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1214 // We know that we need these checks, so we can now be more aggressive 1215 // and add further checks if required (overflow checks). 1216 CanDoAliasSetRT = true; 1217 for (const auto &[Access, AccessTy] : Retries) { 1218 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1219 DepSetId, TheLoop, RunningDepId, ASId, 1220 ShouldCheckWrap, /*Assume=*/true)) { 1221 CanDoAliasSetRT = false; 1222 UncomputablePtr = Access.getPointer(); 1223 break; 1224 } 1225 } 1226 } 1227 1228 CanDoRT &= CanDoAliasSetRT; 1229 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1230 ++ASId; 1231 } 1232 1233 // If the pointers that we would use for the bounds comparison have different 1234 // address spaces, assume the values aren't directly comparable, so we can't 1235 // use them for the runtime check. We also have to assume they could 1236 // overlap. In the future there should be metadata for whether address spaces 1237 // are disjoint. 1238 unsigned NumPointers = RtCheck.Pointers.size(); 1239 for (unsigned i = 0; i < NumPointers; ++i) { 1240 for (unsigned j = i + 1; j < NumPointers; ++j) { 1241 // Only need to check pointers between two different dependency sets. 1242 if (RtCheck.Pointers[i].DependencySetId == 1243 RtCheck.Pointers[j].DependencySetId) 1244 continue; 1245 // Only need to check pointers in the same alias set. 1246 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1247 continue; 1248 1249 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1250 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1251 1252 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1253 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1254 if (ASi != ASj) { 1255 LLVM_DEBUG( 1256 dbgs() << "LAA: Runtime check would require comparison between" 1257 " different address spaces\n"); 1258 return false; 1259 } 1260 } 1261 } 1262 1263 if (MayNeedRTCheck && CanDoRT) 1264 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1265 1266 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1267 << " pointer comparisons.\n"); 1268 1269 // If we can do run-time checks, but there are no checks, no runtime checks 1270 // are needed. This can happen when all pointers point to the same underlying 1271 // object for example. 1272 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1273 1274 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1275 if (!CanDoRTIfNeeded) 1276 RtCheck.reset(); 1277 return CanDoRTIfNeeded; 1278 } 1279 1280 void AccessAnalysis::processMemAccesses() { 1281 // We process the set twice: first we process read-write pointers, last we 1282 // process read-only pointers. This allows us to skip dependence tests for 1283 // read-only pointers. 1284 1285 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1286 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1287 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1288 LLVM_DEBUG({ 1289 for (const auto &[A, _] : Accesses) 1290 dbgs() << "\t" << *A.getPointer() << " (" 1291 << (A.getInt() ? "write" 1292 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1293 : "read")) 1294 << ")\n"; 1295 }); 1296 1297 // The AliasSetTracker has nicely partitioned our pointers by metadata 1298 // compatibility and potential for underlying-object overlap. As a result, we 1299 // only need to check for potential pointer dependencies within each alias 1300 // set. 1301 for (const auto &AS : AST) { 1302 // Note that both the alias-set tracker and the alias sets themselves used 1303 // ordered collections internally and so the iteration order here is 1304 // deterministic. 1305 auto ASPointers = AS.getPointers(); 1306 1307 bool SetHasWrite = false; 1308 1309 // Map of pointers to last access encountered. 1310 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1311 UnderlyingObjToAccessMap ObjToLastAccess; 1312 1313 // Set of access to check after all writes have been processed. 1314 PtrAccessMap DeferredAccesses; 1315 1316 // Iterate over each alias set twice, once to process read/write pointers, 1317 // and then to process read-only pointers. 1318 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1319 bool UseDeferred = SetIteration > 0; 1320 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1321 1322 for (const Value *ConstPtr : ASPointers) { 1323 Value *Ptr = const_cast<Value *>(ConstPtr); 1324 1325 // For a single memory access in AliasSetTracker, Accesses may contain 1326 // both read and write, and they both need to be handled for CheckDeps. 1327 for (const auto &[AC, _] : S) { 1328 if (AC.getPointer() != Ptr) 1329 continue; 1330 1331 bool IsWrite = AC.getInt(); 1332 1333 // If we're using the deferred access set, then it contains only 1334 // reads. 1335 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1336 if (UseDeferred && !IsReadOnlyPtr) 1337 continue; 1338 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1339 // read or a write. 1340 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1341 S.count(MemAccessInfo(Ptr, false))) && 1342 "Alias-set pointer not in the access set?"); 1343 1344 MemAccessInfo Access(Ptr, IsWrite); 1345 DepCands.insert(Access); 1346 1347 // Memorize read-only pointers for later processing and skip them in 1348 // the first round (they need to be checked after we have seen all 1349 // write pointers). Note: we also mark pointer that are not 1350 // consecutive as "read-only" pointers (so that we check 1351 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1352 if (!UseDeferred && IsReadOnlyPtr) { 1353 // We only use the pointer keys, the types vector values don't 1354 // matter. 1355 DeferredAccesses.insert({Access, {}}); 1356 continue; 1357 } 1358 1359 // If this is a write - check other reads and writes for conflicts. If 1360 // this is a read only check other writes for conflicts (but only if 1361 // there is no other write to the ptr - this is an optimization to 1362 // catch "a[i] = a[i] + " without having to do a dependence check). 1363 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1364 CheckDeps.push_back(Access); 1365 IsRTCheckAnalysisNeeded = true; 1366 } 1367 1368 if (IsWrite) 1369 SetHasWrite = true; 1370 1371 // Create sets of pointers connected by a shared alias set and 1372 // underlying object. 1373 typedef SmallVector<const Value *, 16> ValueVector; 1374 ValueVector TempObjects; 1375 1376 UnderlyingObjects[Ptr] = {}; 1377 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1378 ::getUnderlyingObjects(Ptr, UOs, LI); 1379 LLVM_DEBUG(dbgs() 1380 << "Underlying objects for pointer " << *Ptr << "\n"); 1381 for (const Value *UnderlyingObj : UOs) { 1382 // nullptr never alias, don't join sets for pointer that have "null" 1383 // in their UnderlyingObjects list. 1384 if (isa<ConstantPointerNull>(UnderlyingObj) && 1385 !NullPointerIsDefined( 1386 TheLoop->getHeader()->getParent(), 1387 UnderlyingObj->getType()->getPointerAddressSpace())) 1388 continue; 1389 1390 UnderlyingObjToAccessMap::iterator Prev = 1391 ObjToLastAccess.find(UnderlyingObj); 1392 if (Prev != ObjToLastAccess.end()) 1393 DepCands.unionSets(Access, Prev->second); 1394 1395 ObjToLastAccess[UnderlyingObj] = Access; 1396 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1397 } 1398 } 1399 } 1400 } 1401 } 1402 } 1403 1404 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1405 /// i.e. monotonically increasing/decreasing. 1406 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1407 PredicatedScalarEvolution &PSE, const Loop *L) { 1408 1409 // FIXME: This should probably only return true for NUW. 1410 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1411 return true; 1412 1413 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1414 return true; 1415 1416 // Scalar evolution does not propagate the non-wrapping flags to values that 1417 // are derived from a non-wrapping induction variable because non-wrapping 1418 // could be flow-sensitive. 1419 // 1420 // Look through the potentially overflowing instruction to try to prove 1421 // non-wrapping for the *specific* value of Ptr. 1422 1423 // The arithmetic implied by an inbounds GEP can't overflow. 1424 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1425 if (!GEP || !GEP->isInBounds()) 1426 return false; 1427 1428 // Make sure there is only one non-const index and analyze that. 1429 Value *NonConstIndex = nullptr; 1430 for (Value *Index : GEP->indices()) 1431 if (!isa<ConstantInt>(Index)) { 1432 if (NonConstIndex) 1433 return false; 1434 NonConstIndex = Index; 1435 } 1436 if (!NonConstIndex) 1437 // The recurrence is on the pointer, ignore for now. 1438 return false; 1439 1440 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1441 // AddRec using a NSW operation. 1442 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1443 if (OBO->hasNoSignedWrap() && 1444 // Assume constant for other the operand so that the AddRec can be 1445 // easily found. 1446 isa<ConstantInt>(OBO->getOperand(1))) { 1447 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1448 1449 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1450 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1451 } 1452 1453 return false; 1454 } 1455 1456 /// Check whether the access through \p Ptr has a constant stride. 1457 std::optional<int64_t> 1458 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 1459 const Loop *Lp, 1460 const DenseMap<Value *, const SCEV *> &StridesMap, 1461 bool Assume, bool ShouldCheckWrap) { 1462 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1463 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp)) 1464 return {0}; 1465 1466 Type *Ty = Ptr->getType(); 1467 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1468 if (isa<ScalableVectorType>(AccessTy)) { 1469 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1470 << "\n"); 1471 return std::nullopt; 1472 } 1473 1474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1475 if (Assume && !AR) 1476 AR = PSE.getAsAddRec(Ptr); 1477 1478 if (!AR) { 1479 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1480 << " SCEV: " << *PtrScev << "\n"); 1481 return std::nullopt; 1482 } 1483 1484 // The access function must stride over the innermost loop. 1485 if (Lp != AR->getLoop()) { 1486 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1487 << *Ptr << " SCEV: " << *AR << "\n"); 1488 return std::nullopt; 1489 } 1490 1491 // Check the step is constant. 1492 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1493 1494 // Calculate the pointer stride and check if it is constant. 1495 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1496 if (!C) { 1497 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1498 << " SCEV: " << *AR << "\n"); 1499 return std::nullopt; 1500 } 1501 1502 auto &DL = Lp->getHeader()->getDataLayout(); 1503 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1504 int64_t Size = AllocSize.getFixedValue(); 1505 const APInt &APStepVal = C->getAPInt(); 1506 1507 // Huge step value - give up. 1508 if (APStepVal.getBitWidth() > 64) 1509 return std::nullopt; 1510 1511 int64_t StepVal = APStepVal.getSExtValue(); 1512 1513 // Strided access. 1514 int64_t Stride = StepVal / Size; 1515 int64_t Rem = StepVal % Size; 1516 if (Rem) 1517 return std::nullopt; 1518 1519 if (!ShouldCheckWrap) 1520 return Stride; 1521 1522 // The address calculation must not wrap. Otherwise, a dependence could be 1523 // inverted. 1524 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1525 return Stride; 1526 1527 // An inbounds getelementptr that is a AddRec with a unit stride 1528 // cannot wrap per definition. If it did, the result would be poison 1529 // and any memory access dependent on it would be immediate UB 1530 // when executed. 1531 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1532 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1533 return Stride; 1534 1535 // If the null pointer is undefined, then a access sequence which would 1536 // otherwise access it can be assumed not to unsigned wrap. Note that this 1537 // assumes the object in memory is aligned to the natural alignment. 1538 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1539 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1540 (Stride == 1 || Stride == -1)) 1541 return Stride; 1542 1543 if (Assume) { 1544 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1545 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1546 << "LAA: Pointer: " << *Ptr << "\n" 1547 << "LAA: SCEV: " << *AR << "\n" 1548 << "LAA: Added an overflow assumption\n"); 1549 return Stride; 1550 } 1551 LLVM_DEBUG( 1552 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1553 << *Ptr << " SCEV: " << *AR << "\n"); 1554 return std::nullopt; 1555 } 1556 1557 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1558 Type *ElemTyB, Value *PtrB, 1559 const DataLayout &DL, 1560 ScalarEvolution &SE, bool StrictCheck, 1561 bool CheckType) { 1562 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1563 1564 // Make sure that A and B are different pointers. 1565 if (PtrA == PtrB) 1566 return 0; 1567 1568 // Make sure that the element types are the same if required. 1569 if (CheckType && ElemTyA != ElemTyB) 1570 return std::nullopt; 1571 1572 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1573 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1574 1575 // Check that the address spaces match. 1576 if (ASA != ASB) 1577 return std::nullopt; 1578 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1579 1580 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1581 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1582 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1583 1584 int Val; 1585 if (PtrA1 == PtrB1) { 1586 // Retrieve the address space again as pointer stripping now tracks through 1587 // `addrspacecast`. 1588 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1589 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1590 // Check that the address spaces match and that the pointers are valid. 1591 if (ASA != ASB) 1592 return std::nullopt; 1593 1594 IdxWidth = DL.getIndexSizeInBits(ASA); 1595 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1596 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1597 1598 OffsetB -= OffsetA; 1599 Val = OffsetB.getSExtValue(); 1600 } else { 1601 // Otherwise compute the distance with SCEV between the base pointers. 1602 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1603 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1604 const auto *Diff = 1605 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1606 if (!Diff) 1607 return std::nullopt; 1608 Val = Diff->getAPInt().getSExtValue(); 1609 } 1610 int Size = DL.getTypeStoreSize(ElemTyA); 1611 int Dist = Val / Size; 1612 1613 // Ensure that the calculated distance matches the type-based one after all 1614 // the bitcasts removal in the provided pointers. 1615 if (!StrictCheck || Dist * Size == Val) 1616 return Dist; 1617 return std::nullopt; 1618 } 1619 1620 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1621 const DataLayout &DL, ScalarEvolution &SE, 1622 SmallVectorImpl<unsigned> &SortedIndices) { 1623 assert(llvm::all_of( 1624 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1625 "Expected list of pointer operands."); 1626 // Walk over the pointers, and map each of them to an offset relative to 1627 // first pointer in the array. 1628 Value *Ptr0 = VL[0]; 1629 1630 using DistOrdPair = std::pair<int64_t, int>; 1631 auto Compare = llvm::less_first(); 1632 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1633 Offsets.emplace(0, 0); 1634 bool IsConsecutive = true; 1635 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1636 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1637 /*StrictCheck=*/true); 1638 if (!Diff) 1639 return false; 1640 1641 // Check if the pointer with the same offset is found. 1642 int64_t Offset = *Diff; 1643 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1644 if (!IsInserted) 1645 return false; 1646 // Consecutive order if the inserted element is the last one. 1647 IsConsecutive &= std::next(It) == Offsets.end(); 1648 } 1649 SortedIndices.clear(); 1650 if (!IsConsecutive) { 1651 // Fill SortedIndices array only if it is non-consecutive. 1652 SortedIndices.resize(VL.size()); 1653 for (auto [Idx, Off] : enumerate(Offsets)) 1654 SortedIndices[Idx] = Off.second; 1655 } 1656 return true; 1657 } 1658 1659 /// Returns true if the memory operations \p A and \p B are consecutive. 1660 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1661 ScalarEvolution &SE, bool CheckType) { 1662 Value *PtrA = getLoadStorePointerOperand(A); 1663 Value *PtrB = getLoadStorePointerOperand(B); 1664 if (!PtrA || !PtrB) 1665 return false; 1666 Type *ElemTyA = getLoadStoreType(A); 1667 Type *ElemTyB = getLoadStoreType(B); 1668 std::optional<int> Diff = 1669 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1670 /*StrictCheck=*/true, CheckType); 1671 return Diff && *Diff == 1; 1672 } 1673 1674 void MemoryDepChecker::addAccess(StoreInst *SI) { 1675 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1676 [this, SI](Value *Ptr) { 1677 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1678 InstMap.push_back(SI); 1679 ++AccessIdx; 1680 }); 1681 } 1682 1683 void MemoryDepChecker::addAccess(LoadInst *LI) { 1684 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1685 [this, LI](Value *Ptr) { 1686 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1687 InstMap.push_back(LI); 1688 ++AccessIdx; 1689 }); 1690 } 1691 1692 MemoryDepChecker::VectorizationSafetyStatus 1693 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1694 switch (Type) { 1695 case NoDep: 1696 case Forward: 1697 case BackwardVectorizable: 1698 return VectorizationSafetyStatus::Safe; 1699 1700 case Unknown: 1701 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1702 case ForwardButPreventsForwarding: 1703 case Backward: 1704 case BackwardVectorizableButPreventsForwarding: 1705 case IndirectUnsafe: 1706 return VectorizationSafetyStatus::Unsafe; 1707 } 1708 llvm_unreachable("unexpected DepType!"); 1709 } 1710 1711 bool MemoryDepChecker::Dependence::isBackward() const { 1712 switch (Type) { 1713 case NoDep: 1714 case Forward: 1715 case ForwardButPreventsForwarding: 1716 case Unknown: 1717 case IndirectUnsafe: 1718 return false; 1719 1720 case BackwardVectorizable: 1721 case Backward: 1722 case BackwardVectorizableButPreventsForwarding: 1723 return true; 1724 } 1725 llvm_unreachable("unexpected DepType!"); 1726 } 1727 1728 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1729 return isBackward() || Type == Unknown || Type == IndirectUnsafe; 1730 } 1731 1732 bool MemoryDepChecker::Dependence::isForward() const { 1733 switch (Type) { 1734 case Forward: 1735 case ForwardButPreventsForwarding: 1736 return true; 1737 1738 case NoDep: 1739 case Unknown: 1740 case BackwardVectorizable: 1741 case Backward: 1742 case BackwardVectorizableButPreventsForwarding: 1743 case IndirectUnsafe: 1744 return false; 1745 } 1746 llvm_unreachable("unexpected DepType!"); 1747 } 1748 1749 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1750 uint64_t TypeByteSize) { 1751 // If loads occur at a distance that is not a multiple of a feasible vector 1752 // factor store-load forwarding does not take place. 1753 // Positive dependences might cause troubles because vectorizing them might 1754 // prevent store-load forwarding making vectorized code run a lot slower. 1755 // a[i] = a[i-3] ^ a[i-8]; 1756 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1757 // hence on your typical architecture store-load forwarding does not take 1758 // place. Vectorizing in such cases does not make sense. 1759 // Store-load forwarding distance. 1760 1761 // After this many iterations store-to-load forwarding conflicts should not 1762 // cause any slowdowns. 1763 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1764 // Maximum vector factor. 1765 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1766 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1767 1768 // Compute the smallest VF at which the store and load would be misaligned. 1769 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1770 VF *= 2) { 1771 // If the number of vector iteration between the store and the load are 1772 // small we could incur conflicts. 1773 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1774 MaxVFWithoutSLForwardIssues = (VF >> 1); 1775 break; 1776 } 1777 } 1778 1779 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1780 LLVM_DEBUG( 1781 dbgs() << "LAA: Distance " << Distance 1782 << " that could cause a store-load forwarding conflict\n"); 1783 return true; 1784 } 1785 1786 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1787 MaxVFWithoutSLForwardIssues != 1788 VectorizerParams::MaxVectorWidth * TypeByteSize) 1789 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1790 return false; 1791 } 1792 1793 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1794 if (Status < S) 1795 Status = S; 1796 } 1797 1798 /// Given a dependence-distance \p Dist between two 1799 /// memory accesses, that have strides in the same direction whose absolute 1800 /// value of the maximum stride is given in \p MaxStride, and that have the same 1801 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1802 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1803 /// distance is larger than the range that the accesses will travel through the 1804 /// execution of the loop. If so, return true; false otherwise. This is useful 1805 /// for example in loops such as the following (PR31098): 1806 /// for (i = 0; i < D; ++i) { 1807 /// = out[i]; 1808 /// out[i+D] = 1809 /// } 1810 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1811 const SCEV &MaxBTC, const SCEV &Dist, 1812 uint64_t MaxStride, 1813 uint64_t TypeByteSize) { 1814 1815 // If we can prove that 1816 // (**) |Dist| > MaxBTC * Step 1817 // where Step is the absolute stride of the memory accesses in bytes, 1818 // then there is no dependence. 1819 // 1820 // Rationale: 1821 // We basically want to check if the absolute distance (|Dist/Step|) 1822 // is >= the loop iteration count (or > MaxBTC). 1823 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1824 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1825 // that the dependence distance is >= VF; This is checked elsewhere. 1826 // But in some cases we can prune dependence distances early, and 1827 // even before selecting the VF, and without a runtime test, by comparing 1828 // the distance against the loop iteration count. Since the vectorized code 1829 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1830 // also guarantees that distance >= VF. 1831 // 1832 const uint64_t ByteStride = MaxStride * TypeByteSize; 1833 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1834 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1835 1836 const SCEV *CastedDist = &Dist; 1837 const SCEV *CastedProduct = Product; 1838 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1839 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1840 1841 // The dependence distance can be positive/negative, so we sign extend Dist; 1842 // The multiplication of the absolute stride in bytes and the 1843 // backedgeTakenCount is non-negative, so we zero extend Product. 1844 if (DistTypeSizeBits > ProductTypeSizeBits) 1845 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1846 else 1847 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1848 1849 // Is Dist - (MaxBTC * Step) > 0 ? 1850 // (If so, then we have proven (**) because |Dist| >= Dist) 1851 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1852 if (SE.isKnownPositive(Minus)) 1853 return true; 1854 1855 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1856 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1857 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1858 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1859 return SE.isKnownPositive(Minus); 1860 } 1861 1862 /// Check the dependence for two accesses with the same stride \p Stride. 1863 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1864 /// bytes. 1865 /// 1866 /// \returns true if they are independent. 1867 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1868 uint64_t TypeByteSize) { 1869 assert(Stride > 1 && "The stride must be greater than 1"); 1870 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1871 assert(Distance > 0 && "The distance must be non-zero"); 1872 1873 // Skip if the distance is not multiple of type byte size. 1874 if (Distance % TypeByteSize) 1875 return false; 1876 1877 uint64_t ScaledDist = Distance / TypeByteSize; 1878 1879 // No dependence if the scaled distance is not multiple of the stride. 1880 // E.g. 1881 // for (i = 0; i < 1024 ; i += 4) 1882 // A[i+2] = A[i] + 1; 1883 // 1884 // Two accesses in memory (scaled distance is 2, stride is 4): 1885 // | A[0] | | | | A[4] | | | | 1886 // | | | A[2] | | | | A[6] | | 1887 // 1888 // E.g. 1889 // for (i = 0; i < 1024 ; i += 3) 1890 // A[i+4] = A[i] + 1; 1891 // 1892 // Two accesses in memory (scaled distance is 4, stride is 3): 1893 // | A[0] | | | A[3] | | | A[6] | | | 1894 // | | | | | A[4] | | | A[7] | | 1895 return ScaledDist % Stride; 1896 } 1897 1898 std::variant<MemoryDepChecker::Dependence::DepType, 1899 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1900 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1901 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1902 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) { 1903 const auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1904 auto &SE = *PSE.getSE(); 1905 auto [APtr, AIsWrite] = A; 1906 auto [BPtr, BIsWrite] = B; 1907 1908 // Two reads are independent. 1909 if (!AIsWrite && !BIsWrite) 1910 return MemoryDepChecker::Dependence::NoDep; 1911 1912 Type *ATy = getLoadStoreType(AInst); 1913 Type *BTy = getLoadStoreType(BInst); 1914 1915 // We cannot check pointers in different address spaces. 1916 if (APtr->getType()->getPointerAddressSpace() != 1917 BPtr->getType()->getPointerAddressSpace()) 1918 return MemoryDepChecker::Dependence::Unknown; 1919 1920 std::optional<int64_t> StrideAPtr = 1921 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true); 1922 std::optional<int64_t> StrideBPtr = 1923 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true); 1924 1925 const SCEV *Src = PSE.getSCEV(APtr); 1926 const SCEV *Sink = PSE.getSCEV(BPtr); 1927 1928 // If the induction step is negative we have to invert source and sink of the 1929 // dependence when measuring the distance between them. We should not swap 1930 // AIsWrite with BIsWrite, as their uses expect them in program order. 1931 if (StrideAPtr && *StrideAPtr < 0) { 1932 std::swap(Src, Sink); 1933 std::swap(AInst, BInst); 1934 std::swap(StrideAPtr, StrideBPtr); 1935 } 1936 1937 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1938 1939 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1940 << "\n"); 1941 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1942 << ": " << *Dist << "\n"); 1943 1944 // Check if we can prove that Sink only accesses memory after Src's end or 1945 // vice versa. At the moment this is limited to cases where either source or 1946 // sink are loop invariant to avoid compile-time increases. This is not 1947 // required for correctness. 1948 if (SE.isLoopInvariant(Src, InnermostLoop) || 1949 SE.isLoopInvariant(Sink, InnermostLoop)) { 1950 const auto &[SrcStart, SrcEnd] = 1951 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1952 const auto &[SinkStart, SinkEnd] = 1953 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1954 if (!isa<SCEVCouldNotCompute>(SrcStart) && 1955 !isa<SCEVCouldNotCompute>(SrcEnd) && 1956 !isa<SCEVCouldNotCompute>(SinkStart) && 1957 !isa<SCEVCouldNotCompute>(SinkEnd)) { 1958 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1959 return MemoryDepChecker::Dependence::NoDep; 1960 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1961 return MemoryDepChecker::Dependence::NoDep; 1962 } 1963 } 1964 1965 // Need accesses with constant strides and the same direction for further 1966 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and 1967 // similar code or pointer arithmetic that could wrap in the address space. 1968 1969 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and 1970 // not loop-invariant (stride will be 0 in that case), we cannot analyze the 1971 // dependence further and also cannot generate runtime checks. 1972 if (!StrideAPtr || !StrideBPtr) { 1973 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1974 return MemoryDepChecker::Dependence::IndirectUnsafe; 1975 } 1976 1977 int64_t StrideAPtrInt = *StrideAPtr; 1978 int64_t StrideBPtrInt = *StrideBPtr; 1979 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt 1980 << " Sink induction step: " << StrideBPtrInt << "\n"); 1981 // At least Src or Sink are loop invariant and the other is strided or 1982 // invariant. We can generate a runtime check to disambiguate the accesses. 1983 if (StrideAPtrInt == 0 || StrideBPtrInt == 0) 1984 return MemoryDepChecker::Dependence::Unknown; 1985 1986 // Both Src and Sink have a constant stride, check if they are in the same 1987 // direction. 1988 if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) || 1989 (StrideAPtrInt < 0 && StrideBPtrInt > 0)) { 1990 LLVM_DEBUG( 1991 dbgs() << "Pointer access with strides in different directions\n"); 1992 return MemoryDepChecker::Dependence::Unknown; 1993 } 1994 1995 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1996 bool HasSameSize = 1997 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1998 if (!HasSameSize) 1999 TypeByteSize = 0; 2000 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt), 2001 std::abs(StrideBPtrInt), TypeByteSize, 2002 AIsWrite, BIsWrite); 2003 } 2004 2005 MemoryDepChecker::Dependence::DepType 2006 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 2007 const MemAccessInfo &B, unsigned BIdx) { 2008 assert(AIdx < BIdx && "Must pass arguments in program order"); 2009 2010 // Get the dependence distance, stride, type size and what access writes for 2011 // the dependence between A and B. 2012 auto Res = 2013 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]); 2014 if (std::holds_alternative<Dependence::DepType>(Res)) 2015 return std::get<Dependence::DepType>(Res); 2016 2017 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2018 std::get<DepDistanceStrideAndSizeInfo>(Res); 2019 bool HasSameSize = TypeByteSize > 0; 2020 2021 std::optional<uint64_t> CommonStride = 2022 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2023 if (isa<SCEVCouldNotCompute>(Dist)) { 2024 // TODO: Relax requirement that there is a common stride to retry with 2025 // non-constant distance dependencies. 2026 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2027 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2028 return Dependence::Unknown; 2029 } 2030 2031 ScalarEvolution &SE = *PSE.getSE(); 2032 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2033 uint64_t MaxStride = std::max(StrideA, StrideB); 2034 2035 // If the distance between the acecsses is larger than their maximum absolute 2036 // stride multiplied by the symbolic maximum backedge taken count (which is an 2037 // upper bound of the number of iterations), the accesses are independet, i.e. 2038 // they are far enough appart that accesses won't access the same location 2039 // across all loop ierations. 2040 if (HasSameSize && isSafeDependenceDistance( 2041 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2042 *Dist, MaxStride, TypeByteSize)) 2043 return Dependence::NoDep; 2044 2045 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 2046 2047 // Attempt to prove strided accesses independent. 2048 if (C) { 2049 const APInt &Val = C->getAPInt(); 2050 int64_t Distance = Val.getSExtValue(); 2051 2052 // If the distance between accesses and their strides are known constants, 2053 // check whether the accesses interlace each other. 2054 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 && 2055 HasSameSize && 2056 areStridedAccessesIndependent(std::abs(Distance), *CommonStride, 2057 TypeByteSize)) { 2058 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2059 return Dependence::NoDep; 2060 } 2061 } else 2062 Dist = SE.applyLoopGuards(Dist, InnermostLoop); 2063 2064 // Negative distances are not plausible dependencies. 2065 if (SE.isKnownNonPositive(Dist)) { 2066 if (SE.isKnownNonNegative(Dist)) { 2067 if (HasSameSize) { 2068 // Write to the same location with the same size. 2069 return Dependence::Forward; 2070 } 2071 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2072 "different type sizes\n"); 2073 return Dependence::Unknown; 2074 } 2075 2076 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2077 // Check if the first access writes to a location that is read in a later 2078 // iteration, where the distance between them is not a multiple of a vector 2079 // factor and relatively small. 2080 // 2081 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2082 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2083 // forward dependency will allow vectorization using any width. 2084 2085 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2086 if (!C) { 2087 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2088 // condition to consider retrying with runtime checks. Historically, we 2089 // did not set it when strides were different but there is no inherent 2090 // reason to. 2091 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2092 return Dependence::Unknown; 2093 } 2094 if (!HasSameSize || 2095 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(), 2096 TypeByteSize)) { 2097 LLVM_DEBUG( 2098 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2099 return Dependence::ForwardButPreventsForwarding; 2100 } 2101 } 2102 2103 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2104 return Dependence::Forward; 2105 } 2106 2107 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2108 // Below we only handle strictly positive distances. 2109 if (MinDistance <= 0) { 2110 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2111 return Dependence::Unknown; 2112 } 2113 2114 if (!isa<SCEVConstant>(Dist)) { 2115 // Previously this case would be treated as Unknown, possibly setting 2116 // FoundNonConstantDistanceDependence to force re-trying with runtime 2117 // checks. Until the TODO below is addressed, set it here to preserve 2118 // original behavior w.r.t. re-trying with runtime checks. 2119 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2120 // condition to consider retrying with runtime checks. Historically, we 2121 // did not set it when strides were different but there is no inherent 2122 // reason to. 2123 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2124 } 2125 2126 if (!HasSameSize) { 2127 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2128 "different type sizes\n"); 2129 return Dependence::Unknown; 2130 } 2131 2132 if (!CommonStride) 2133 return Dependence::Unknown; 2134 2135 // Bail out early if passed-in parameters make vectorization not feasible. 2136 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2137 VectorizerParams::VectorizationFactor : 1); 2138 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2139 VectorizerParams::VectorizationInterleave : 1); 2140 // The minimum number of iterations for a vectorized/unrolled version. 2141 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2142 2143 // It's not vectorizable if the distance is smaller than the minimum distance 2144 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2145 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2146 // TypeByteSize (No need to plus the last gap distance). 2147 // 2148 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2149 // foo(int *A) { 2150 // int *B = (int *)((char *)A + 14); 2151 // for (i = 0 ; i < 1024 ; i += 2) 2152 // B[i] = A[i] + 1; 2153 // } 2154 // 2155 // Two accesses in memory (stride is 2): 2156 // | A[0] | | A[2] | | A[4] | | A[6] | | 2157 // | B[0] | | B[2] | | B[4] | 2158 // 2159 // MinDistance needs for vectorizing iterations except the last iteration: 2160 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2161 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2162 // 2163 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2164 // 12, which is less than distance. 2165 // 2166 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2167 // the minimum distance needed is 28, which is greater than distance. It is 2168 // not safe to do vectorization. 2169 2170 // We know that Dist is positive, but it may not be constant. Use the signed 2171 // minimum for computations below, as this ensures we compute the closest 2172 // possible dependence distance. 2173 uint64_t MinDistanceNeeded = 2174 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2175 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2176 if (!isa<SCEVConstant>(Dist)) { 2177 // For non-constant distances, we checked the lower bound of the 2178 // dependence distance and the distance may be larger at runtime (and safe 2179 // for vectorization). Classify it as Unknown, so we re-try with runtime 2180 // checks. 2181 return Dependence::Unknown; 2182 } 2183 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2184 << MinDistance << '\n'); 2185 return Dependence::Backward; 2186 } 2187 2188 // Unsafe if the minimum distance needed is greater than smallest dependence 2189 // distance distance. 2190 if (MinDistanceNeeded > MinDepDistBytes) { 2191 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2192 << MinDistanceNeeded << " size in bytes\n"); 2193 return Dependence::Backward; 2194 } 2195 2196 // Positive distance bigger than max vectorization factor. 2197 // FIXME: Should use max factor instead of max distance in bytes, which could 2198 // not handle different types. 2199 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2200 // void foo (int *A, char *B) { 2201 // for (unsigned i = 0; i < 1024; i++) { 2202 // A[i+2] = A[i] + 1; 2203 // B[i+2] = B[i] + 1; 2204 // } 2205 // } 2206 // 2207 // This case is currently unsafe according to the max safe distance. If we 2208 // analyze the two accesses on array B, the max safe dependence distance 2209 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2210 // is 8, which is less than 2 and forbidden vectorization, But actually 2211 // both A and B could be vectorized by 2 iterations. 2212 MinDepDistBytes = 2213 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2214 2215 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2216 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2217 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2218 isa<SCEVConstant>(Dist) && 2219 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2220 // Sanity check that we didn't update MinDepDistBytes when calling 2221 // couldPreventStoreLoadForward 2222 assert(MinDepDistBytes == MinDepDistBytesOld && 2223 "An update to MinDepDistBytes requires an update to " 2224 "MaxSafeVectorWidthInBits"); 2225 (void)MinDepDistBytesOld; 2226 return Dependence::BackwardVectorizableButPreventsForwarding; 2227 } 2228 2229 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2230 // since there is a backwards dependency. 2231 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2232 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2233 << " with max VF = " << MaxVF << '\n'); 2234 2235 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2236 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) { 2237 // For non-constant distances, we checked the lower bound of the dependence 2238 // distance and the distance may be larger at runtime (and safe for 2239 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2240 return Dependence::Unknown; 2241 } 2242 2243 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2244 return Dependence::BackwardVectorizable; 2245 } 2246 2247 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets, 2248 const MemAccessInfoList &CheckDeps) { 2249 2250 MinDepDistBytes = -1; 2251 SmallPtrSet<MemAccessInfo, 8> Visited; 2252 for (MemAccessInfo CurAccess : CheckDeps) { 2253 if (Visited.count(CurAccess)) 2254 continue; 2255 2256 // Get the relevant memory access set. 2257 EquivalenceClasses<MemAccessInfo>::iterator I = 2258 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2259 2260 // Check accesses within this set. 2261 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2262 AccessSets.member_begin(I); 2263 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2264 AccessSets.member_end(); 2265 2266 // Check every access pair. 2267 while (AI != AE) { 2268 Visited.insert(*AI); 2269 bool AIIsWrite = AI->getInt(); 2270 // Check loads only against next equivalent class, but stores also against 2271 // other stores in the same equivalence class - to the same address. 2272 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2273 (AIIsWrite ? AI : std::next(AI)); 2274 while (OI != AE) { 2275 // Check every accessing instruction pair in program order. 2276 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2277 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2278 // Scan all accesses of another equivalence class, but only the next 2279 // accesses of the same equivalent class. 2280 for (std::vector<unsigned>::iterator 2281 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2282 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2283 I2 != I2E; ++I2) { 2284 auto A = std::make_pair(&*AI, *I1); 2285 auto B = std::make_pair(&*OI, *I2); 2286 2287 assert(*I1 != *I2); 2288 if (*I1 > *I2) 2289 std::swap(A, B); 2290 2291 Dependence::DepType Type = 2292 isDependent(*A.first, A.second, *B.first, B.second); 2293 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2294 2295 // Gather dependences unless we accumulated MaxDependences 2296 // dependences. In that case return as soon as we find the first 2297 // unsafe dependence. This puts a limit on this quadratic 2298 // algorithm. 2299 if (RecordDependences) { 2300 if (Type != Dependence::NoDep) 2301 Dependences.push_back(Dependence(A.second, B.second, Type)); 2302 2303 if (Dependences.size() >= MaxDependences) { 2304 RecordDependences = false; 2305 Dependences.clear(); 2306 LLVM_DEBUG(dbgs() 2307 << "Too many dependences, stopped recording\n"); 2308 } 2309 } 2310 if (!RecordDependences && !isSafeForVectorization()) 2311 return false; 2312 } 2313 ++OI; 2314 } 2315 ++AI; 2316 } 2317 } 2318 2319 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2320 return isSafeForVectorization(); 2321 } 2322 2323 SmallVector<Instruction *, 4> 2324 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2325 MemAccessInfo Access(Ptr, IsWrite); 2326 auto &IndexVector = Accesses.find(Access)->second; 2327 2328 SmallVector<Instruction *, 4> Insts; 2329 transform(IndexVector, 2330 std::back_inserter(Insts), 2331 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2332 return Insts; 2333 } 2334 2335 const char *MemoryDepChecker::Dependence::DepName[] = { 2336 "NoDep", 2337 "Unknown", 2338 "IndirectUnsafe", 2339 "Forward", 2340 "ForwardButPreventsForwarding", 2341 "Backward", 2342 "BackwardVectorizable", 2343 "BackwardVectorizableButPreventsForwarding"}; 2344 2345 void MemoryDepChecker::Dependence::print( 2346 raw_ostream &OS, unsigned Depth, 2347 const SmallVectorImpl<Instruction *> &Instrs) const { 2348 OS.indent(Depth) << DepName[Type] << ":\n"; 2349 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2350 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2351 } 2352 2353 bool LoopAccessInfo::canAnalyzeLoop() { 2354 // We need to have a loop header. 2355 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2356 << TheLoop->getHeader()->getParent()->getName() << "' from " 2357 << TheLoop->getLocStr() << "\n"); 2358 2359 // We can only analyze innermost loops. 2360 if (!TheLoop->isInnermost()) { 2361 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2362 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2363 return false; 2364 } 2365 2366 // We must have a single backedge. 2367 if (TheLoop->getNumBackEdges() != 1) { 2368 LLVM_DEBUG( 2369 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2370 recordAnalysis("CFGNotUnderstood") 2371 << "loop control flow is not understood by analyzer"; 2372 return false; 2373 } 2374 2375 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2376 // count, which is an upper bound on the number of loop iterations. The loop 2377 // may execute fewer iterations, if it exits via an uncountable exit. 2378 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2379 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2380 recordAnalysis("CantComputeNumberOfIterations") 2381 << "could not determine number of loop iterations"; 2382 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2383 return false; 2384 } 2385 2386 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2387 << TheLoop->getHeader()->getName() << "\n"); 2388 return true; 2389 } 2390 2391 bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2392 const TargetLibraryInfo *TLI, 2393 DominatorTree *DT) { 2394 // Holds the Load and Store instructions. 2395 SmallVector<LoadInst *, 16> Loads; 2396 SmallVector<StoreInst *, 16> Stores; 2397 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2398 2399 // Holds all the different accesses in the loop. 2400 unsigned NumReads = 0; 2401 unsigned NumReadWrites = 0; 2402 2403 bool HasComplexMemInst = false; 2404 2405 // A runtime check is only legal to insert if there are no convergent calls. 2406 HasConvergentOp = false; 2407 2408 PtrRtChecking->Pointers.clear(); 2409 PtrRtChecking->Need = false; 2410 2411 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2412 2413 const bool EnableMemAccessVersioningOfLoop = 2414 EnableMemAccessVersioning && 2415 !TheLoop->getHeader()->getParent()->hasOptSize(); 2416 2417 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2418 // loop info, as it may be arbitrary. 2419 LoopBlocksRPO RPOT(TheLoop); 2420 RPOT.perform(LI); 2421 for (BasicBlock *BB : RPOT) { 2422 // Scan the BB and collect legal loads and stores. Also detect any 2423 // convergent instructions. 2424 for (Instruction &I : *BB) { 2425 if (auto *Call = dyn_cast<CallBase>(&I)) { 2426 if (Call->isConvergent()) 2427 HasConvergentOp = true; 2428 } 2429 2430 // With both a non-vectorizable memory instruction and a convergent 2431 // operation, found in this loop, no reason to continue the search. 2432 if (HasComplexMemInst && HasConvergentOp) 2433 return false; 2434 2435 // Avoid hitting recordAnalysis multiple times. 2436 if (HasComplexMemInst) 2437 continue; 2438 2439 // Record alias scopes defined inside the loop. 2440 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2441 for (Metadata *Op : Decl->getScopeList()->operands()) 2442 LoopAliasScopes.insert(cast<MDNode>(Op)); 2443 2444 // Many math library functions read the rounding mode. We will only 2445 // vectorize a loop if it contains known function calls that don't set 2446 // the flag. Therefore, it is safe to ignore this read from memory. 2447 auto *Call = dyn_cast<CallInst>(&I); 2448 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2449 continue; 2450 2451 // If this is a load, save it. If this instruction can read from memory 2452 // but is not a load, then we quit. Notice that we don't handle function 2453 // calls that read or write. 2454 if (I.mayReadFromMemory()) { 2455 // If the function has an explicit vectorized counterpart, we can safely 2456 // assume that it can be vectorized. 2457 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2458 !VFDatabase::getMappings(*Call).empty()) 2459 continue; 2460 2461 auto *Ld = dyn_cast<LoadInst>(&I); 2462 if (!Ld) { 2463 recordAnalysis("CantVectorizeInstruction", Ld) 2464 << "instruction cannot be vectorized"; 2465 HasComplexMemInst = true; 2466 continue; 2467 } 2468 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2469 recordAnalysis("NonSimpleLoad", Ld) 2470 << "read with atomic ordering or volatile read"; 2471 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2472 HasComplexMemInst = true; 2473 continue; 2474 } 2475 NumLoads++; 2476 Loads.push_back(Ld); 2477 DepChecker->addAccess(Ld); 2478 if (EnableMemAccessVersioningOfLoop) 2479 collectStridedAccess(Ld); 2480 continue; 2481 } 2482 2483 // Save 'store' instructions. Abort if other instructions write to memory. 2484 if (I.mayWriteToMemory()) { 2485 auto *St = dyn_cast<StoreInst>(&I); 2486 if (!St) { 2487 recordAnalysis("CantVectorizeInstruction", St) 2488 << "instruction cannot be vectorized"; 2489 HasComplexMemInst = true; 2490 continue; 2491 } 2492 if (!St->isSimple() && !IsAnnotatedParallel) { 2493 recordAnalysis("NonSimpleStore", St) 2494 << "write with atomic ordering or volatile write"; 2495 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2496 HasComplexMemInst = true; 2497 continue; 2498 } 2499 NumStores++; 2500 Stores.push_back(St); 2501 DepChecker->addAccess(St); 2502 if (EnableMemAccessVersioningOfLoop) 2503 collectStridedAccess(St); 2504 } 2505 } // Next instr. 2506 } // Next block. 2507 2508 if (HasComplexMemInst) 2509 return false; 2510 2511 // Now we have two lists that hold the loads and the stores. 2512 // Next, we find the pointers that they use. 2513 2514 // Check if we see any stores. If there are no stores, then we don't 2515 // care if the pointers are *restrict*. 2516 if (!Stores.size()) { 2517 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2518 return true; 2519 } 2520 2521 MemoryDepChecker::DepCandidates DependentAccesses; 2522 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2523 LoopAliasScopes); 2524 2525 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2526 // multiple times on the same object. If the ptr is accessed twice, once 2527 // for read and once for write, it will only appear once (on the write 2528 // list). This is okay, since we are going to check for conflicts between 2529 // writes and between reads and writes, but not between reads and reads. 2530 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2531 2532 // Record uniform store addresses to identify if we have multiple stores 2533 // to the same address. 2534 SmallPtrSet<Value *, 16> UniformStores; 2535 2536 for (StoreInst *ST : Stores) { 2537 Value *Ptr = ST->getPointerOperand(); 2538 2539 if (isInvariant(Ptr)) { 2540 // Record store instructions to loop invariant addresses 2541 StoresToInvariantAddresses.push_back(ST); 2542 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2543 !UniformStores.insert(Ptr).second; 2544 } 2545 2546 // If we did *not* see this pointer before, insert it to the read-write 2547 // list. At this phase it is only a 'write' list. 2548 Type *AccessTy = getLoadStoreType(ST); 2549 if (Seen.insert({Ptr, AccessTy}).second) { 2550 ++NumReadWrites; 2551 2552 MemoryLocation Loc = MemoryLocation::get(ST); 2553 // The TBAA metadata could have a control dependency on the predication 2554 // condition, so we cannot rely on it when determining whether or not we 2555 // need runtime pointer checks. 2556 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2557 Loc.AATags.TBAA = nullptr; 2558 2559 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2560 [&Accesses, AccessTy, Loc](Value *Ptr) { 2561 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2562 Accesses.addStore(NewLoc, AccessTy); 2563 }); 2564 } 2565 } 2566 2567 if (IsAnnotatedParallel) { 2568 LLVM_DEBUG( 2569 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2570 << "checks.\n"); 2571 return true; 2572 } 2573 2574 for (LoadInst *LD : Loads) { 2575 Value *Ptr = LD->getPointerOperand(); 2576 // If we did *not* see this pointer before, insert it to the 2577 // read list. If we *did* see it before, then it is already in 2578 // the read-write list. This allows us to vectorize expressions 2579 // such as A[i] += x; Because the address of A[i] is a read-write 2580 // pointer. This only works if the index of A[i] is consecutive. 2581 // If the address of i is unknown (for example A[B[i]]) then we may 2582 // read a few words, modify, and write a few words, and some of the 2583 // words may be written to the same address. 2584 bool IsReadOnlyPtr = false; 2585 Type *AccessTy = getLoadStoreType(LD); 2586 if (Seen.insert({Ptr, AccessTy}).second || 2587 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2588 ++NumReads; 2589 IsReadOnlyPtr = true; 2590 } 2591 2592 // See if there is an unsafe dependency between a load to a uniform address and 2593 // store to the same uniform address. 2594 if (UniformStores.count(Ptr)) { 2595 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2596 "load and uniform store to the same address!\n"); 2597 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2598 } 2599 2600 MemoryLocation Loc = MemoryLocation::get(LD); 2601 // The TBAA metadata could have a control dependency on the predication 2602 // condition, so we cannot rely on it when determining whether or not we 2603 // need runtime pointer checks. 2604 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2605 Loc.AATags.TBAA = nullptr; 2606 2607 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2608 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2609 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2610 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2611 }); 2612 } 2613 2614 // If we write (or read-write) to a single destination and there are no 2615 // other reads in this loop then is it safe to vectorize. 2616 if (NumReadWrites == 1 && NumReads == 0) { 2617 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2618 return true; 2619 } 2620 2621 // Build dependence sets and check whether we need a runtime pointer bounds 2622 // check. 2623 Accesses.buildDependenceSets(); 2624 2625 // Find pointers with computable bounds. We are going to use this information 2626 // to place a runtime bound check. 2627 Value *UncomputablePtr = nullptr; 2628 bool CanDoRTIfNeeded = 2629 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2630 SymbolicStrides, UncomputablePtr, false); 2631 if (!CanDoRTIfNeeded) { 2632 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2633 recordAnalysis("CantIdentifyArrayBounds", I) 2634 << "cannot identify array bounds"; 2635 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2636 << "the array bounds.\n"); 2637 return false; 2638 } 2639 2640 LLVM_DEBUG( 2641 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2642 2643 bool DepsAreSafe = true; 2644 if (Accesses.isDependencyCheckNeeded()) { 2645 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2646 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2647 Accesses.getDependenciesToCheck()); 2648 2649 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2650 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2651 2652 // Clear the dependency checks. We assume they are not needed. 2653 Accesses.resetDepChecks(*DepChecker); 2654 2655 PtrRtChecking->reset(); 2656 PtrRtChecking->Need = true; 2657 2658 auto *SE = PSE->getSE(); 2659 UncomputablePtr = nullptr; 2660 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2661 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2662 2663 // Check that we found the bounds for the pointer. 2664 if (!CanDoRTIfNeeded) { 2665 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2666 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2667 << "cannot check memory dependencies at runtime"; 2668 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2669 return false; 2670 } 2671 DepsAreSafe = true; 2672 } 2673 } 2674 2675 if (HasConvergentOp) { 2676 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2677 << "cannot add control dependency to convergent operation"; 2678 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2679 "would be needed with a convergent operation\n"); 2680 return false; 2681 } 2682 2683 if (DepsAreSafe) { 2684 LLVM_DEBUG( 2685 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2686 << (PtrRtChecking->Need ? "" : " don't") 2687 << " need runtime memory checks.\n"); 2688 return true; 2689 } 2690 2691 emitUnsafeDependenceRemark(); 2692 return false; 2693 } 2694 2695 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2696 const auto *Deps = getDepChecker().getDependences(); 2697 if (!Deps) 2698 return; 2699 const auto *Found = 2700 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2701 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2702 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2703 }); 2704 if (Found == Deps->end()) 2705 return; 2706 MemoryDepChecker::Dependence Dep = *Found; 2707 2708 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2709 2710 // Emit remark for first unsafe dependence 2711 bool HasForcedDistribution = false; 2712 std::optional<const MDOperand *> Value = 2713 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2714 if (Value) { 2715 const MDOperand *Op = *Value; 2716 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2717 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2718 } 2719 2720 const std::string Info = 2721 HasForcedDistribution 2722 ? "unsafe dependent memory operations in loop." 2723 : "unsafe dependent memory operations in loop. Use " 2724 "#pragma clang loop distribute(enable) to allow loop distribution " 2725 "to attempt to isolate the offending operations into a separate " 2726 "loop"; 2727 OptimizationRemarkAnalysis &R = 2728 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2729 2730 switch (Dep.Type) { 2731 case MemoryDepChecker::Dependence::NoDep: 2732 case MemoryDepChecker::Dependence::Forward: 2733 case MemoryDepChecker::Dependence::BackwardVectorizable: 2734 llvm_unreachable("Unexpected dependence"); 2735 case MemoryDepChecker::Dependence::Backward: 2736 R << "\nBackward loop carried data dependence."; 2737 break; 2738 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2739 R << "\nForward loop carried data dependence that prevents " 2740 "store-to-load forwarding."; 2741 break; 2742 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2743 R << "\nBackward loop carried data dependence that prevents " 2744 "store-to-load forwarding."; 2745 break; 2746 case MemoryDepChecker::Dependence::IndirectUnsafe: 2747 R << "\nUnsafe indirect dependence."; 2748 break; 2749 case MemoryDepChecker::Dependence::Unknown: 2750 R << "\nUnknown data dependence."; 2751 break; 2752 } 2753 2754 if (Instruction *I = Dep.getSource(getDepChecker())) { 2755 DebugLoc SourceLoc = I->getDebugLoc(); 2756 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2757 SourceLoc = DD->getDebugLoc(); 2758 if (SourceLoc) 2759 R << " Memory location is the same as accessed at " 2760 << ore::NV("Location", SourceLoc); 2761 } 2762 } 2763 2764 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2765 DominatorTree *DT) { 2766 assert(TheLoop->contains(BB) && "Unknown block used"); 2767 2768 // Blocks that do not dominate the latch need predication. 2769 BasicBlock* Latch = TheLoop->getLoopLatch(); 2770 return !DT->dominates(BB, Latch); 2771 } 2772 2773 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2774 Instruction *I) { 2775 assert(!Report && "Multiple reports generated"); 2776 2777 Value *CodeRegion = TheLoop->getHeader(); 2778 DebugLoc DL = TheLoop->getStartLoc(); 2779 2780 if (I) { 2781 CodeRegion = I->getParent(); 2782 // If there is no debug location attached to the instruction, revert back to 2783 // using the loop's. 2784 if (I->getDebugLoc()) 2785 DL = I->getDebugLoc(); 2786 } 2787 2788 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2789 CodeRegion); 2790 return *Report; 2791 } 2792 2793 bool LoopAccessInfo::isInvariant(Value *V) const { 2794 auto *SE = PSE->getSE(); 2795 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2796 // trivially loop-invariant FP values to be considered invariant. 2797 if (!SE->isSCEVable(V->getType())) 2798 return false; 2799 const SCEV *S = SE->getSCEV(V); 2800 return SE->isLoopInvariant(S, TheLoop); 2801 } 2802 2803 /// Find the operand of the GEP that should be checked for consecutive 2804 /// stores. This ignores trailing indices that have no effect on the final 2805 /// pointer. 2806 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2807 const DataLayout &DL = Gep->getDataLayout(); 2808 unsigned LastOperand = Gep->getNumOperands() - 1; 2809 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2810 2811 // Walk backwards and try to peel off zeros. 2812 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2813 // Find the type we're currently indexing into. 2814 gep_type_iterator GEPTI = gep_type_begin(Gep); 2815 std::advance(GEPTI, LastOperand - 2); 2816 2817 // If it's a type with the same allocation size as the result of the GEP we 2818 // can peel off the zero index. 2819 TypeSize ElemSize = GEPTI.isStruct() 2820 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2821 : GEPTI.getSequentialElementStride(DL); 2822 if (ElemSize != GEPAllocSize) 2823 break; 2824 --LastOperand; 2825 } 2826 2827 return LastOperand; 2828 } 2829 2830 /// If the argument is a GEP, then returns the operand identified by 2831 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2832 /// operand, it returns that instead. 2833 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2834 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2835 if (!GEP) 2836 return Ptr; 2837 2838 unsigned InductionOperand = getGEPInductionOperand(GEP); 2839 2840 // Check that all of the gep indices are uniform except for our induction 2841 // operand. 2842 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2843 if (I != InductionOperand && 2844 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2845 return Ptr; 2846 return GEP->getOperand(InductionOperand); 2847 } 2848 2849 /// Get the stride of a pointer access in a loop. Looks for symbolic 2850 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2851 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2852 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2853 if (!PtrTy || PtrTy->isAggregateType()) 2854 return nullptr; 2855 2856 // Try to remove a gep instruction to make the pointer (actually index at this 2857 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2858 // pointer, otherwise, we are analyzing the index. 2859 Value *OrigPtr = Ptr; 2860 2861 // The size of the pointer access. 2862 int64_t PtrAccessSize = 1; 2863 2864 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2865 const SCEV *V = SE->getSCEV(Ptr); 2866 2867 if (Ptr != OrigPtr) 2868 // Strip off casts. 2869 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2870 V = C->getOperand(); 2871 2872 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2873 if (!S) 2874 return nullptr; 2875 2876 // If the pointer is invariant then there is no stride and it makes no 2877 // sense to add it here. 2878 if (Lp != S->getLoop()) 2879 return nullptr; 2880 2881 V = S->getStepRecurrence(*SE); 2882 if (!V) 2883 return nullptr; 2884 2885 // Strip off the size of access multiplication if we are still analyzing the 2886 // pointer. 2887 if (OrigPtr == Ptr) { 2888 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2889 if (M->getOperand(0)->getSCEVType() != scConstant) 2890 return nullptr; 2891 2892 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2893 2894 // Huge step value - give up. 2895 if (APStepVal.getBitWidth() > 64) 2896 return nullptr; 2897 2898 int64_t StepVal = APStepVal.getSExtValue(); 2899 if (PtrAccessSize != StepVal) 2900 return nullptr; 2901 V = M->getOperand(1); 2902 } 2903 } 2904 2905 // Note that the restriction after this loop invariant check are only 2906 // profitability restrictions. 2907 if (!SE->isLoopInvariant(V, Lp)) 2908 return nullptr; 2909 2910 // Look for the loop invariant symbolic value. 2911 if (isa<SCEVUnknown>(V)) 2912 return V; 2913 2914 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2915 if (isa<SCEVUnknown>(C->getOperand())) 2916 return V; 2917 2918 return nullptr; 2919 } 2920 2921 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2922 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2923 if (!Ptr) 2924 return; 2925 2926 // Note: getStrideFromPointer is a *profitability* heuristic. We 2927 // could broaden the scope of values returned here - to anything 2928 // which happens to be loop invariant and contributes to the 2929 // computation of an interesting IV - but we chose not to as we 2930 // don't have a cost model here, and broadening the scope exposes 2931 // far too many unprofitable cases. 2932 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2933 if (!StrideExpr) 2934 return; 2935 2936 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2937 "versioning:"); 2938 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2939 2940 if (!SpeculateUnitStride) { 2941 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2942 return; 2943 } 2944 2945 // Avoid adding the "Stride == 1" predicate when we know that 2946 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2947 // or zero iteration loop, as Trip-Count <= Stride == 1. 2948 // 2949 // TODO: We are currently not making a very informed decision on when it is 2950 // beneficial to apply stride versioning. It might make more sense that the 2951 // users of this analysis (such as the vectorizer) will trigger it, based on 2952 // their specific cost considerations; For example, in cases where stride 2953 // versioning does not help resolving memory accesses/dependences, the 2954 // vectorizer should evaluate the cost of the runtime test, and the benefit 2955 // of various possible stride specializations, considering the alternatives 2956 // of using gather/scatters (if available). 2957 2958 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2959 2960 // Match the types so we can compare the stride and the MaxBTC. 2961 // The Stride can be positive/negative, so we sign extend Stride; 2962 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2963 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2964 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2965 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2966 const SCEV *CastedStride = StrideExpr; 2967 const SCEV *CastedBECount = MaxBTC; 2968 ScalarEvolution *SE = PSE->getSE(); 2969 if (BETypeSizeBits >= StrideTypeSizeBits) 2970 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2971 else 2972 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2973 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2974 // Since TripCount == BackEdgeTakenCount + 1, checking: 2975 // "Stride >= TripCount" is equivalent to checking: 2976 // Stride - MaxBTC> 0 2977 if (SE->isKnownPositive(StrideMinusBETaken)) { 2978 LLVM_DEBUG( 2979 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2980 "Stride==1 predicate will imply that the loop executes " 2981 "at most once.\n"); 2982 return; 2983 } 2984 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2985 2986 // Strip back off the integer cast, and check that our result is a 2987 // SCEVUnknown as we expect. 2988 const SCEV *StrideBase = StrideExpr; 2989 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2990 StrideBase = C->getOperand(); 2991 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2992 } 2993 2994 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2995 const TargetTransformInfo *TTI, 2996 const TargetLibraryInfo *TLI, AAResults *AA, 2997 DominatorTree *DT, LoopInfo *LI) 2998 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2999 PtrRtChecking(nullptr), TheLoop(L) { 3000 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3001 if (TTI) { 3002 TypeSize FixedWidth = 3003 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3004 if (FixedWidth.isNonZero()) { 3005 // Scale the vector width by 2 as rough estimate to also consider 3006 // interleaving. 3007 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3008 } 3009 3010 TypeSize ScalableWidth = 3011 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3012 if (ScalableWidth.isNonZero()) 3013 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3014 } 3015 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3016 MaxTargetVectorWidthInBits); 3017 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3018 if (canAnalyzeLoop()) 3019 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3020 } 3021 3022 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3023 if (CanVecMem) { 3024 OS.indent(Depth) << "Memory dependences are safe"; 3025 const MemoryDepChecker &DC = getDepChecker(); 3026 if (!DC.isSafeForAnyVectorWidth()) 3027 OS << " with a maximum safe vector width of " 3028 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3029 if (PtrRtChecking->Need) 3030 OS << " with run-time checks"; 3031 OS << "\n"; 3032 } 3033 3034 if (HasConvergentOp) 3035 OS.indent(Depth) << "Has convergent operation in loop\n"; 3036 3037 if (Report) 3038 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3039 3040 if (auto *Dependences = DepChecker->getDependences()) { 3041 OS.indent(Depth) << "Dependences:\n"; 3042 for (const auto &Dep : *Dependences) { 3043 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3044 OS << "\n"; 3045 } 3046 } else 3047 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3048 3049 // List the pair of accesses need run-time checks to prove independence. 3050 PtrRtChecking->print(OS, Depth); 3051 OS << "\n"; 3052 3053 OS.indent(Depth) 3054 << "Non vectorizable stores to invariant address were " 3055 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3056 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3057 ? "" 3058 : "not ") 3059 << "found in loop.\n"; 3060 3061 OS.indent(Depth) << "SCEV assumptions:\n"; 3062 PSE->getPredicate().print(OS, Depth); 3063 3064 OS << "\n"; 3065 3066 OS.indent(Depth) << "Expressions re-written:\n"; 3067 PSE->print(OS, Depth); 3068 } 3069 3070 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3071 auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3072 3073 if (Inserted) 3074 It->second = 3075 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3076 3077 return *It->second; 3078 } 3079 void LoopAccessInfoManager::clear() { 3080 SmallVector<Loop *> ToRemove; 3081 // Collect LoopAccessInfo entries that may keep references to IR outside the 3082 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3083 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3084 // SCEVs, e.g. for pointer expressions. 3085 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3086 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3087 LAI->getPSE().getPredicate().isAlwaysTrue()) 3088 continue; 3089 ToRemove.push_back(L); 3090 } 3091 3092 for (Loop *L : ToRemove) 3093 LoopAccessInfoMap.erase(L); 3094 } 3095 3096 bool LoopAccessInfoManager::invalidate( 3097 Function &F, const PreservedAnalyses &PA, 3098 FunctionAnalysisManager::Invalidator &Inv) { 3099 // Check whether our analysis is preserved. 3100 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3101 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3102 // If not, give up now. 3103 return true; 3104 3105 // Check whether the analyses we depend on became invalid for any reason. 3106 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3107 // invalid. 3108 return Inv.invalidate<AAManager>(F, PA) || 3109 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3110 Inv.invalidate<LoopAnalysis>(F, PA) || 3111 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3112 } 3113 3114 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3115 FunctionAnalysisManager &FAM) { 3116 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3117 auto &AA = FAM.getResult<AAManager>(F); 3118 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3119 auto &LI = FAM.getResult<LoopAnalysis>(F); 3120 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3121 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3122 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3123 } 3124 3125 AnalysisKey LoopAccessAnalysis::Key; 3126