1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/IRBuilder.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Pass.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <cstdlib> 65 #include <iterator> 66 #include <utility> 67 #include <vector> 68 69 using namespace llvm; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 bool VectorizerParams::isInterleaveForced() { 134 return ::VectorizationInterleave.getNumOccurrences() > 0; 135 } 136 137 Value *llvm::stripIntegerCast(Value *V) { 138 if (auto *CI = dyn_cast<CastInst>(V)) 139 if (CI->getOperand(0)->getType()->isIntegerTy()) 140 return CI->getOperand(0); 141 return V; 142 } 143 144 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 145 const ValueToValueMap &PtrToStride, 146 Value *Ptr, Value *OrigPtr) { 147 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 148 149 // If there is an entry in the map return the SCEV of the pointer with the 150 // symbolic stride replaced by one. 151 ValueToValueMap::const_iterator SI = 152 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 153 if (SI != PtrToStride.end()) { 154 Value *StrideVal = SI->second; 155 156 // Strip casts. 157 StrideVal = stripIntegerCast(StrideVal); 158 159 ScalarEvolution *SE = PSE.getSE(); 160 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 161 const auto *CT = 162 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 163 164 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 165 auto *Expr = PSE.getSCEV(Ptr); 166 167 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 168 << " by: " << *Expr << "\n"); 169 return Expr; 170 } 171 172 // Otherwise, just return the SCEV of the original pointer. 173 return OrigSCEV; 174 } 175 176 /// Calculate Start and End points of memory access. 177 /// Let's assume A is the first access and B is a memory access on N-th loop 178 /// iteration. Then B is calculated as: 179 /// B = A + Step*N . 180 /// Step value may be positive or negative. 181 /// N is a calculated back-edge taken count: 182 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 183 /// Start and End points are calculated in the following way: 184 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 185 /// where SizeOfElt is the size of single memory access in bytes. 186 /// 187 /// There is no conflict when the intervals are disjoint: 188 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 189 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 190 unsigned DepSetId, unsigned ASId, 191 const ValueToValueMap &Strides, 192 PredicatedScalarEvolution &PSE) { 193 // Get the stride replaced scev. 194 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 195 ScalarEvolution *SE = PSE.getSE(); 196 197 const SCEV *ScStart; 198 const SCEV *ScEnd; 199 200 if (SE->isLoopInvariant(Sc, Lp)) 201 ScStart = ScEnd = Sc; 202 else { 203 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 204 assert(AR && "Invalid addrec expression"); 205 const SCEV *Ex = PSE.getBackedgeTakenCount(); 206 207 ScStart = AR->getStart(); 208 ScEnd = AR->evaluateAtIteration(Ex, *SE); 209 const SCEV *Step = AR->getStepRecurrence(*SE); 210 211 // For expressions with negative step, the upper bound is ScStart and the 212 // lower bound is ScEnd. 213 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 214 if (CStep->getValue()->isNegative()) 215 std::swap(ScStart, ScEnd); 216 } else { 217 // Fallback case: the step is not constant, but we can still 218 // get the upper and lower bounds of the interval by using min/max 219 // expressions. 220 ScStart = SE->getUMinExpr(ScStart, ScEnd); 221 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 222 } 223 // Add the size of the pointed element to ScEnd. 224 unsigned EltSize = 225 Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; 226 const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); 227 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 228 } 229 230 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 231 } 232 233 SmallVector<RuntimePointerChecking::PointerCheck, 4> 234 RuntimePointerChecking::generateChecks() const { 235 SmallVector<PointerCheck, 4> Checks; 236 237 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 238 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 239 const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; 240 const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; 241 242 if (needsChecking(CGI, CGJ)) 243 Checks.push_back(std::make_pair(&CGI, &CGJ)); 244 } 245 } 246 return Checks; 247 } 248 249 void RuntimePointerChecking::generateChecks( 250 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 251 assert(Checks.empty() && "Checks is not empty"); 252 groupChecks(DepCands, UseDependencies); 253 Checks = generateChecks(); 254 } 255 256 bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, 257 const CheckingPtrGroup &N) const { 258 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 259 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 260 if (needsChecking(M.Members[I], N.Members[J])) 261 return true; 262 return false; 263 } 264 265 /// Compare \p I and \p J and return the minimum. 266 /// Return nullptr in case we couldn't find an answer. 267 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 268 ScalarEvolution *SE) { 269 const SCEV *Diff = SE->getMinusSCEV(J, I); 270 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 271 272 if (!C) 273 return nullptr; 274 if (C->getValue()->isNegative()) 275 return J; 276 return I; 277 } 278 279 bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { 280 const SCEV *Start = RtCheck.Pointers[Index].Start; 281 const SCEV *End = RtCheck.Pointers[Index].End; 282 283 // Compare the starts and ends with the known minimum and maximum 284 // of this set. We need to know how we compare against the min/max 285 // of the set in order to be able to emit memchecks. 286 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 287 if (!Min0) 288 return false; 289 290 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 291 if (!Min1) 292 return false; 293 294 // Update the low bound expression if we've found a new min value. 295 if (Min0 == Start) 296 Low = Start; 297 298 // Update the high bound expression if we've found a new max value. 299 if (Min1 != End) 300 High = End; 301 302 Members.push_back(Index); 303 return true; 304 } 305 306 void RuntimePointerChecking::groupChecks( 307 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 308 // We build the groups from dependency candidates equivalence classes 309 // because: 310 // - We know that pointers in the same equivalence class share 311 // the same underlying object and therefore there is a chance 312 // that we can compare pointers 313 // - We wouldn't be able to merge two pointers for which we need 314 // to emit a memcheck. The classes in DepCands are already 315 // conveniently built such that no two pointers in the same 316 // class need checking against each other. 317 318 // We use the following (greedy) algorithm to construct the groups 319 // For every pointer in the equivalence class: 320 // For each existing group: 321 // - if the difference between this pointer and the min/max bounds 322 // of the group is a constant, then make the pointer part of the 323 // group and update the min/max bounds of that group as required. 324 325 CheckingGroups.clear(); 326 327 // If we need to check two pointers to the same underlying object 328 // with a non-constant difference, we shouldn't perform any pointer 329 // grouping with those pointers. This is because we can easily get 330 // into cases where the resulting check would return false, even when 331 // the accesses are safe. 332 // 333 // The following example shows this: 334 // for (i = 0; i < 1000; ++i) 335 // a[5000 + i * m] = a[i] + a[i + 9000] 336 // 337 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 338 // (0, 10000) which is always false. However, if m is 1, there is no 339 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 340 // us to perform an accurate check in this case. 341 // 342 // The above case requires that we have an UnknownDependence between 343 // accesses to the same underlying object. This cannot happen unless 344 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 345 // is also false. In this case we will use the fallback path and create 346 // separate checking groups for all pointers. 347 348 // If we don't have the dependency partitions, construct a new 349 // checking pointer group for each pointer. This is also required 350 // for correctness, because in this case we can have checking between 351 // pointers to the same underlying object. 352 if (!UseDependencies) { 353 for (unsigned I = 0; I < Pointers.size(); ++I) 354 CheckingGroups.push_back(CheckingPtrGroup(I, *this)); 355 return; 356 } 357 358 unsigned TotalComparisons = 0; 359 360 DenseMap<Value *, unsigned> PositionMap; 361 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 362 PositionMap[Pointers[Index].PointerValue] = Index; 363 364 // We need to keep track of what pointers we've already seen so we 365 // don't process them twice. 366 SmallSet<unsigned, 2> Seen; 367 368 // Go through all equivalence classes, get the "pointer check groups" 369 // and add them to the overall solution. We use the order in which accesses 370 // appear in 'Pointers' to enforce determinism. 371 for (unsigned I = 0; I < Pointers.size(); ++I) { 372 // We've seen this pointer before, and therefore already processed 373 // its equivalence class. 374 if (Seen.count(I)) 375 continue; 376 377 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 378 Pointers[I].IsWritePtr); 379 380 SmallVector<CheckingPtrGroup, 2> Groups; 381 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 382 383 // Because DepCands is constructed by visiting accesses in the order in 384 // which they appear in alias sets (which is deterministic) and the 385 // iteration order within an equivalence class member is only dependent on 386 // the order in which unions and insertions are performed on the 387 // equivalence class, the iteration order is deterministic. 388 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 389 MI != ME; ++MI) { 390 unsigned Pointer = PositionMap[MI->getPointer()]; 391 bool Merged = false; 392 // Mark this pointer as seen. 393 Seen.insert(Pointer); 394 395 // Go through all the existing sets and see if we can find one 396 // which can include this pointer. 397 for (CheckingPtrGroup &Group : Groups) { 398 // Don't perform more than a certain amount of comparisons. 399 // This should limit the cost of grouping the pointers to something 400 // reasonable. If we do end up hitting this threshold, the algorithm 401 // will create separate groups for all remaining pointers. 402 if (TotalComparisons > MemoryCheckMergeThreshold) 403 break; 404 405 TotalComparisons++; 406 407 if (Group.addPointer(Pointer)) { 408 Merged = true; 409 break; 410 } 411 } 412 413 if (!Merged) 414 // We couldn't add this pointer to any existing set or the threshold 415 // for the number of comparisons has been reached. Create a new group 416 // to hold the current pointer. 417 Groups.push_back(CheckingPtrGroup(Pointer, *this)); 418 } 419 420 // We've computed the grouped checks for this partition. 421 // Save the results and continue with the next one. 422 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 423 } 424 } 425 426 bool RuntimePointerChecking::arePointersInSamePartition( 427 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 428 unsigned PtrIdx2) { 429 return (PtrToPartition[PtrIdx1] != -1 && 430 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 431 } 432 433 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 434 const PointerInfo &PointerI = Pointers[I]; 435 const PointerInfo &PointerJ = Pointers[J]; 436 437 // No need to check if two readonly pointers intersect. 438 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 439 return false; 440 441 // Only need to check pointers between two different dependency sets. 442 if (PointerI.DependencySetId == PointerJ.DependencySetId) 443 return false; 444 445 // Only need to check pointers in the same alias set. 446 if (PointerI.AliasSetId != PointerJ.AliasSetId) 447 return false; 448 449 return true; 450 } 451 452 void RuntimePointerChecking::printChecks( 453 raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, 454 unsigned Depth) const { 455 unsigned N = 0; 456 for (const auto &Check : Checks) { 457 const auto &First = Check.first->Members, &Second = Check.second->Members; 458 459 OS.indent(Depth) << "Check " << N++ << ":\n"; 460 461 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 462 for (unsigned K = 0; K < First.size(); ++K) 463 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 464 465 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 466 for (unsigned K = 0; K < Second.size(); ++K) 467 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 468 } 469 } 470 471 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 472 473 OS.indent(Depth) << "Run-time memory checks:\n"; 474 printChecks(OS, Checks, Depth); 475 476 OS.indent(Depth) << "Grouped accesses:\n"; 477 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 478 const auto &CG = CheckingGroups[I]; 479 480 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 481 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 482 << ")\n"; 483 for (unsigned J = 0; J < CG.Members.size(); ++J) { 484 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 485 << "\n"; 486 } 487 } 488 } 489 490 namespace { 491 492 /// Analyses memory accesses in a loop. 493 /// 494 /// Checks whether run time pointer checks are needed and builds sets for data 495 /// dependence checking. 496 class AccessAnalysis { 497 public: 498 /// Read or write access location. 499 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 500 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 501 502 AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, 503 LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, 504 PredicatedScalarEvolution &PSE) 505 : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 506 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 507 508 /// Register a load and whether it is only read from. 509 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 510 Value *Ptr = const_cast<Value*>(Loc.Ptr); 511 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 512 Accesses.insert(MemAccessInfo(Ptr, false)); 513 if (IsReadOnly) 514 ReadOnlyPtr.insert(Ptr); 515 } 516 517 /// Register a store. 518 void addStore(MemoryLocation &Loc) { 519 Value *Ptr = const_cast<Value*>(Loc.Ptr); 520 AST.add(Ptr, LocationSize::unknown(), Loc.AATags); 521 Accesses.insert(MemAccessInfo(Ptr, true)); 522 } 523 524 /// Check if we can emit a run-time no-alias check for \p Access. 525 /// 526 /// Returns true if we can emit a run-time no alias check for \p Access. 527 /// If we can check this access, this also adds it to a dependence set and 528 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 529 /// we will attempt to use additional run-time checks in order to get 530 /// the bounds of the pointer. 531 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 532 MemAccessInfo Access, 533 const ValueToValueMap &Strides, 534 DenseMap<Value *, unsigned> &DepSetId, 535 Loop *TheLoop, unsigned &RunningDepId, 536 unsigned ASId, bool ShouldCheckStride, 537 bool Assume); 538 539 /// Check whether we can check the pointers at runtime for 540 /// non-intersection. 541 /// 542 /// Returns true if we need no check or if we do and we can generate them 543 /// (i.e. the pointers have computable bounds). 544 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 545 Loop *TheLoop, const ValueToValueMap &Strides, 546 bool ShouldCheckWrap = false); 547 548 /// Goes over all memory accesses, checks whether a RT check is needed 549 /// and builds sets of dependent accesses. 550 void buildDependenceSets() { 551 processMemAccesses(); 552 } 553 554 /// Initial processing of memory accesses determined that we need to 555 /// perform dependency checking. 556 /// 557 /// Note that this can later be cleared if we retry memcheck analysis without 558 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 559 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 560 561 /// We decided that no dependence analysis would be used. Reset the state. 562 void resetDepChecks(MemoryDepChecker &DepChecker) { 563 CheckDeps.clear(); 564 DepChecker.clearDependences(); 565 } 566 567 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 568 569 private: 570 typedef SetVector<MemAccessInfo> PtrAccessSet; 571 572 /// Go over all memory access and check whether runtime pointer checks 573 /// are needed and build sets of dependency check candidates. 574 void processMemAccesses(); 575 576 /// Set of all accesses. 577 PtrAccessSet Accesses; 578 579 const DataLayout &DL; 580 581 /// The loop being checked. 582 const Loop *TheLoop; 583 584 /// List of accesses that need a further dependence check. 585 MemAccessInfoList CheckDeps; 586 587 /// Set of pointers that are read only. 588 SmallPtrSet<Value*, 16> ReadOnlyPtr; 589 590 /// An alias set tracker to partition the access set by underlying object and 591 //intrinsic property (such as TBAA metadata). 592 AliasSetTracker AST; 593 594 LoopInfo *LI; 595 596 /// Sets of potentially dependent accesses - members of one set share an 597 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 598 /// dependence check. 599 MemoryDepChecker::DepCandidates &DepCands; 600 601 /// Initial processing of memory accesses determined that we may need 602 /// to add memchecks. Perform the analysis to determine the necessary checks. 603 /// 604 /// Note that, this is different from isDependencyCheckNeeded. When we retry 605 /// memcheck analysis without dependency checking 606 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 607 /// cleared while this remains set if we have potentially dependent accesses. 608 bool IsRTCheckAnalysisNeeded; 609 610 /// The SCEV predicate containing all the SCEV-related assumptions. 611 PredicatedScalarEvolution &PSE; 612 }; 613 614 } // end anonymous namespace 615 616 /// Check whether a pointer can participate in a runtime bounds check. 617 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 618 /// by adding run-time checks (overflow checks) if necessary. 619 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 620 const ValueToValueMap &Strides, Value *Ptr, 621 Loop *L, bool Assume) { 622 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 623 624 // The bounds for loop-invariant pointer is trivial. 625 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 626 return true; 627 628 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 629 630 if (!AR && Assume) 631 AR = PSE.getAsAddRec(Ptr); 632 633 if (!AR) 634 return false; 635 636 return AR->isAffine(); 637 } 638 639 /// Check whether a pointer address cannot wrap. 640 static bool isNoWrap(PredicatedScalarEvolution &PSE, 641 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 642 const SCEV *PtrScev = PSE.getSCEV(Ptr); 643 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 644 return true; 645 646 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 647 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 648 return true; 649 650 return false; 651 } 652 653 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 654 MemAccessInfo Access, 655 const ValueToValueMap &StridesMap, 656 DenseMap<Value *, unsigned> &DepSetId, 657 Loop *TheLoop, unsigned &RunningDepId, 658 unsigned ASId, bool ShouldCheckWrap, 659 bool Assume) { 660 Value *Ptr = Access.getPointer(); 661 662 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 663 return false; 664 665 // When we run after a failing dependency check we have to make sure 666 // we don't have wrapping pointers. 667 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 668 auto *Expr = PSE.getSCEV(Ptr); 669 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 670 return false; 671 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 672 } 673 674 // The id of the dependence set. 675 unsigned DepId; 676 677 if (isDependencyCheckNeeded()) { 678 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 679 unsigned &LeaderId = DepSetId[Leader]; 680 if (!LeaderId) 681 LeaderId = RunningDepId++; 682 DepId = LeaderId; 683 } else 684 // Each access has its own dependence set. 685 DepId = RunningDepId++; 686 687 bool IsWrite = Access.getInt(); 688 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 689 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 690 691 return true; 692 } 693 694 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 695 ScalarEvolution *SE, Loop *TheLoop, 696 const ValueToValueMap &StridesMap, 697 bool ShouldCheckWrap) { 698 // Find pointers with computable bounds. We are going to use this information 699 // to place a runtime bound check. 700 bool CanDoRT = true; 701 702 bool NeedRTCheck = false; 703 if (!IsRTCheckAnalysisNeeded) return true; 704 705 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 706 707 // We assign a consecutive id to access from different alias sets. 708 // Accesses between different groups doesn't need to be checked. 709 unsigned ASId = 1; 710 for (auto &AS : AST) { 711 int NumReadPtrChecks = 0; 712 int NumWritePtrChecks = 0; 713 bool CanDoAliasSetRT = true; 714 715 // We assign consecutive id to access from different dependence sets. 716 // Accesses within the same set don't need a runtime check. 717 unsigned RunningDepId = 1; 718 DenseMap<Value *, unsigned> DepSetId; 719 720 SmallVector<MemAccessInfo, 4> Retries; 721 722 for (auto A : AS) { 723 Value *Ptr = A.getValue(); 724 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 725 MemAccessInfo Access(Ptr, IsWrite); 726 727 if (IsWrite) 728 ++NumWritePtrChecks; 729 else 730 ++NumReadPtrChecks; 731 732 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 733 RunningDepId, ASId, ShouldCheckWrap, false)) { 734 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); 735 Retries.push_back(Access); 736 CanDoAliasSetRT = false; 737 } 738 } 739 740 // If we have at least two writes or one write and a read then we need to 741 // check them. But there is no need to checks if there is only one 742 // dependence set for this alias set. 743 // 744 // Note that this function computes CanDoRT and NeedRTCheck independently. 745 // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer 746 // for which we couldn't find the bounds but we don't actually need to emit 747 // any checks so it does not matter. 748 bool NeedsAliasSetRTCheck = false; 749 if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) 750 NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || 751 (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); 752 753 // We need to perform run-time alias checks, but some pointers had bounds 754 // that couldn't be checked. 755 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 756 // Reset the CanDoSetRt flag and retry all accesses that have failed. 757 // We know that we need these checks, so we can now be more aggressive 758 // and add further checks if required (overflow checks). 759 CanDoAliasSetRT = true; 760 for (auto Access : Retries) 761 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 762 TheLoop, RunningDepId, ASId, 763 ShouldCheckWrap, /*Assume=*/true)) { 764 CanDoAliasSetRT = false; 765 break; 766 } 767 } 768 769 CanDoRT &= CanDoAliasSetRT; 770 NeedRTCheck |= NeedsAliasSetRTCheck; 771 ++ASId; 772 } 773 774 // If the pointers that we would use for the bounds comparison have different 775 // address spaces, assume the values aren't directly comparable, so we can't 776 // use them for the runtime check. We also have to assume they could 777 // overlap. In the future there should be metadata for whether address spaces 778 // are disjoint. 779 unsigned NumPointers = RtCheck.Pointers.size(); 780 for (unsigned i = 0; i < NumPointers; ++i) { 781 for (unsigned j = i + 1; j < NumPointers; ++j) { 782 // Only need to check pointers between two different dependency sets. 783 if (RtCheck.Pointers[i].DependencySetId == 784 RtCheck.Pointers[j].DependencySetId) 785 continue; 786 // Only need to check pointers in the same alias set. 787 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 788 continue; 789 790 Value *PtrI = RtCheck.Pointers[i].PointerValue; 791 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 792 793 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 794 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 795 if (ASi != ASj) { 796 LLVM_DEBUG( 797 dbgs() << "LAA: Runtime check would require comparison between" 798 " different address spaces\n"); 799 return false; 800 } 801 } 802 } 803 804 if (NeedRTCheck && CanDoRT) 805 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 806 807 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 808 << " pointer comparisons.\n"); 809 810 RtCheck.Need = NeedRTCheck; 811 812 bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; 813 if (!CanDoRTIfNeeded) 814 RtCheck.reset(); 815 return CanDoRTIfNeeded; 816 } 817 818 void AccessAnalysis::processMemAccesses() { 819 // We process the set twice: first we process read-write pointers, last we 820 // process read-only pointers. This allows us to skip dependence tests for 821 // read-only pointers. 822 823 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 824 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 825 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 826 LLVM_DEBUG({ 827 for (auto A : Accesses) 828 dbgs() << "\t" << *A.getPointer() << " (" << 829 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 830 "read-only" : "read")) << ")\n"; 831 }); 832 833 // The AliasSetTracker has nicely partitioned our pointers by metadata 834 // compatibility and potential for underlying-object overlap. As a result, we 835 // only need to check for potential pointer dependencies within each alias 836 // set. 837 for (auto &AS : AST) { 838 // Note that both the alias-set tracker and the alias sets themselves used 839 // linked lists internally and so the iteration order here is deterministic 840 // (matching the original instruction order within each set). 841 842 bool SetHasWrite = false; 843 844 // Map of pointers to last access encountered. 845 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 846 UnderlyingObjToAccessMap ObjToLastAccess; 847 848 // Set of access to check after all writes have been processed. 849 PtrAccessSet DeferredAccesses; 850 851 // Iterate over each alias set twice, once to process read/write pointers, 852 // and then to process read-only pointers. 853 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 854 bool UseDeferred = SetIteration > 0; 855 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 856 857 for (auto AV : AS) { 858 Value *Ptr = AV.getValue(); 859 860 // For a single memory access in AliasSetTracker, Accesses may contain 861 // both read and write, and they both need to be handled for CheckDeps. 862 for (auto AC : S) { 863 if (AC.getPointer() != Ptr) 864 continue; 865 866 bool IsWrite = AC.getInt(); 867 868 // If we're using the deferred access set, then it contains only 869 // reads. 870 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 871 if (UseDeferred && !IsReadOnlyPtr) 872 continue; 873 // Otherwise, the pointer must be in the PtrAccessSet, either as a 874 // read or a write. 875 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 876 S.count(MemAccessInfo(Ptr, false))) && 877 "Alias-set pointer not in the access set?"); 878 879 MemAccessInfo Access(Ptr, IsWrite); 880 DepCands.insert(Access); 881 882 // Memorize read-only pointers for later processing and skip them in 883 // the first round (they need to be checked after we have seen all 884 // write pointers). Note: we also mark pointer that are not 885 // consecutive as "read-only" pointers (so that we check 886 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 887 if (!UseDeferred && IsReadOnlyPtr) { 888 DeferredAccesses.insert(Access); 889 continue; 890 } 891 892 // If this is a write - check other reads and writes for conflicts. If 893 // this is a read only check other writes for conflicts (but only if 894 // there is no other write to the ptr - this is an optimization to 895 // catch "a[i] = a[i] + " without having to do a dependence check). 896 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 897 CheckDeps.push_back(Access); 898 IsRTCheckAnalysisNeeded = true; 899 } 900 901 if (IsWrite) 902 SetHasWrite = true; 903 904 // Create sets of pointers connected by a shared alias set and 905 // underlying object. 906 typedef SmallVector<const Value *, 16> ValueVector; 907 ValueVector TempObjects; 908 909 GetUnderlyingObjects(Ptr, TempObjects, DL, LI); 910 LLVM_DEBUG(dbgs() 911 << "Underlying objects for pointer " << *Ptr << "\n"); 912 for (const Value *UnderlyingObj : TempObjects) { 913 // nullptr never alias, don't join sets for pointer that have "null" 914 // in their UnderlyingObjects list. 915 if (isa<ConstantPointerNull>(UnderlyingObj) && 916 !NullPointerIsDefined( 917 TheLoop->getHeader()->getParent(), 918 UnderlyingObj->getType()->getPointerAddressSpace())) 919 continue; 920 921 UnderlyingObjToAccessMap::iterator Prev = 922 ObjToLastAccess.find(UnderlyingObj); 923 if (Prev != ObjToLastAccess.end()) 924 DepCands.unionSets(Access, Prev->second); 925 926 ObjToLastAccess[UnderlyingObj] = Access; 927 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 928 } 929 } 930 } 931 } 932 } 933 } 934 935 static bool isInBoundsGep(Value *Ptr) { 936 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 937 return GEP->isInBounds(); 938 return false; 939 } 940 941 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 942 /// i.e. monotonically increasing/decreasing. 943 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 944 PredicatedScalarEvolution &PSE, const Loop *L) { 945 // FIXME: This should probably only return true for NUW. 946 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 947 return true; 948 949 // Scalar evolution does not propagate the non-wrapping flags to values that 950 // are derived from a non-wrapping induction variable because non-wrapping 951 // could be flow-sensitive. 952 // 953 // Look through the potentially overflowing instruction to try to prove 954 // non-wrapping for the *specific* value of Ptr. 955 956 // The arithmetic implied by an inbounds GEP can't overflow. 957 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 958 if (!GEP || !GEP->isInBounds()) 959 return false; 960 961 // Make sure there is only one non-const index and analyze that. 962 Value *NonConstIndex = nullptr; 963 for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) 964 if (!isa<ConstantInt>(Index)) { 965 if (NonConstIndex) 966 return false; 967 NonConstIndex = Index; 968 } 969 if (!NonConstIndex) 970 // The recurrence is on the pointer, ignore for now. 971 return false; 972 973 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 974 // AddRec using a NSW operation. 975 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 976 if (OBO->hasNoSignedWrap() && 977 // Assume constant for other the operand so that the AddRec can be 978 // easily found. 979 isa<ConstantInt>(OBO->getOperand(1))) { 980 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 981 982 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 983 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 984 } 985 986 return false; 987 } 988 989 /// Check whether the access through \p Ptr has a constant stride. 990 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 991 const Loop *Lp, const ValueToValueMap &StridesMap, 992 bool Assume, bool ShouldCheckWrap) { 993 Type *Ty = Ptr->getType(); 994 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 995 996 // Make sure that the pointer does not point to aggregate types. 997 auto *PtrTy = cast<PointerType>(Ty); 998 if (PtrTy->getElementType()->isAggregateType()) { 999 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1000 << *Ptr << "\n"); 1001 return 0; 1002 } 1003 1004 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1005 1006 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1007 if (Assume && !AR) 1008 AR = PSE.getAsAddRec(Ptr); 1009 1010 if (!AR) { 1011 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1012 << " SCEV: " << *PtrScev << "\n"); 1013 return 0; 1014 } 1015 1016 // The access function must stride over the innermost loop. 1017 if (Lp != AR->getLoop()) { 1018 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1019 << *Ptr << " SCEV: " << *AR << "\n"); 1020 return 0; 1021 } 1022 1023 // The address calculation must not wrap. Otherwise, a dependence could be 1024 // inverted. 1025 // An inbounds getelementptr that is a AddRec with a unit stride 1026 // cannot wrap per definition. The unit stride requirement is checked later. 1027 // An getelementptr without an inbounds attribute and unit stride would have 1028 // to access the pointer value "0" which is undefined behavior in address 1029 // space 0, therefore we can also vectorize this case. 1030 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1031 bool IsNoWrapAddRec = !ShouldCheckWrap || 1032 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1033 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1034 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1035 NullPointerIsDefined(Lp->getHeader()->getParent(), 1036 PtrTy->getAddressSpace())) { 1037 if (Assume) { 1038 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1039 IsNoWrapAddRec = true; 1040 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1041 << "LAA: Pointer: " << *Ptr << "\n" 1042 << "LAA: SCEV: " << *AR << "\n" 1043 << "LAA: Added an overflow assumption\n"); 1044 } else { 1045 LLVM_DEBUG( 1046 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1047 << *Ptr << " SCEV: " << *AR << "\n"); 1048 return 0; 1049 } 1050 } 1051 1052 // Check the step is constant. 1053 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1054 1055 // Calculate the pointer stride and check if it is constant. 1056 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1057 if (!C) { 1058 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1059 << " SCEV: " << *AR << "\n"); 1060 return 0; 1061 } 1062 1063 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1064 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1065 const APInt &APStepVal = C->getAPInt(); 1066 1067 // Huge step value - give up. 1068 if (APStepVal.getBitWidth() > 64) 1069 return 0; 1070 1071 int64_t StepVal = APStepVal.getSExtValue(); 1072 1073 // Strided access. 1074 int64_t Stride = StepVal / Size; 1075 int64_t Rem = StepVal % Size; 1076 if (Rem) 1077 return 0; 1078 1079 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1080 // know we can't "wrap around the address space". In case of address space 1081 // zero we know that this won't happen without triggering undefined behavior. 1082 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1083 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1084 PtrTy->getAddressSpace()))) { 1085 if (Assume) { 1086 // We can avoid this case by adding a run-time check. 1087 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1088 << "inbounds or in address space 0 may wrap:\n" 1089 << "LAA: Pointer: " << *Ptr << "\n" 1090 << "LAA: SCEV: " << *AR << "\n" 1091 << "LAA: Added an overflow assumption\n"); 1092 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1093 } else 1094 return 0; 1095 } 1096 1097 return Stride; 1098 } 1099 1100 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1101 ScalarEvolution &SE, 1102 SmallVectorImpl<unsigned> &SortedIndices) { 1103 assert(llvm::all_of( 1104 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1105 "Expected list of pointer operands."); 1106 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1107 OffValPairs.reserve(VL.size()); 1108 1109 // Walk over the pointers, and map each of them to an offset relative to 1110 // first pointer in the array. 1111 Value *Ptr0 = VL[0]; 1112 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1113 Value *Obj0 = GetUnderlyingObject(Ptr0, DL); 1114 1115 llvm::SmallSet<int64_t, 4> Offsets; 1116 for (auto *Ptr : VL) { 1117 // TODO: Outline this code as a special, more time consuming, version of 1118 // computeConstantDifference() function. 1119 if (Ptr->getType()->getPointerAddressSpace() != 1120 Ptr0->getType()->getPointerAddressSpace()) 1121 return false; 1122 // If a pointer refers to a different underlying object, bail - the 1123 // pointers are by definition incomparable. 1124 Value *CurrObj = GetUnderlyingObject(Ptr, DL); 1125 if (CurrObj != Obj0) 1126 return false; 1127 1128 const SCEV *Scev = SE.getSCEV(Ptr); 1129 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1130 // The pointers may not have a constant offset from each other, or SCEV 1131 // may just not be smart enough to figure out they do. Regardless, 1132 // there's nothing we can do. 1133 if (!Diff) 1134 return false; 1135 1136 // Check if the pointer with the same offset is found. 1137 int64_t Offset = Diff->getAPInt().getSExtValue(); 1138 if (!Offsets.insert(Offset).second) 1139 return false; 1140 OffValPairs.emplace_back(Offset, Ptr); 1141 } 1142 SortedIndices.clear(); 1143 SortedIndices.resize(VL.size()); 1144 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1145 1146 // Sort the memory accesses and keep the order of their uses in UseOrder. 1147 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1148 return OffValPairs[Left].first < OffValPairs[Right].first; 1149 }); 1150 1151 // Check if the order is consecutive already. 1152 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1153 return I == SortedIndices[I]; 1154 })) 1155 SortedIndices.clear(); 1156 1157 return true; 1158 } 1159 1160 /// Take the address space operand from the Load/Store instruction. 1161 /// Returns -1 if this is not a valid Load/Store instruction. 1162 static unsigned getAddressSpaceOperand(Value *I) { 1163 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1164 return L->getPointerAddressSpace(); 1165 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1166 return S->getPointerAddressSpace(); 1167 return -1; 1168 } 1169 1170 /// Returns true if the memory operations \p A and \p B are consecutive. 1171 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1172 ScalarEvolution &SE, bool CheckType) { 1173 Value *PtrA = getLoadStorePointerOperand(A); 1174 Value *PtrB = getLoadStorePointerOperand(B); 1175 unsigned ASA = getAddressSpaceOperand(A); 1176 unsigned ASB = getAddressSpaceOperand(B); 1177 1178 // Check that the address spaces match and that the pointers are valid. 1179 if (!PtrA || !PtrB || (ASA != ASB)) 1180 return false; 1181 1182 // Make sure that A and B are different pointers. 1183 if (PtrA == PtrB) 1184 return false; 1185 1186 // Make sure that A and B have the same type if required. 1187 if (CheckType && PtrA->getType() != PtrB->getType()) 1188 return false; 1189 1190 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1191 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1192 1193 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1194 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1195 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1196 1197 // Retrieve the address space again as pointer stripping now tracks through 1198 // `addrspacecast`. 1199 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1200 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1201 // Check that the address spaces match and that the pointers are valid. 1202 if (ASA != ASB) 1203 return false; 1204 1205 IdxWidth = DL.getIndexSizeInBits(ASA); 1206 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1207 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1208 1209 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1210 1211 // OffsetDelta = OffsetB - OffsetA; 1212 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1213 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1214 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1215 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1216 1217 // Check if they are based on the same pointer. That makes the offsets 1218 // sufficient. 1219 if (PtrA == PtrB) 1220 return OffsetDelta == Size; 1221 1222 // Compute the necessary base pointer delta to have the necessary final delta 1223 // equal to the size. 1224 // BaseDelta = Size - OffsetDelta; 1225 const SCEV *SizeSCEV = SE.getConstant(Size); 1226 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1227 1228 // Otherwise compute the distance with SCEV between the base pointers. 1229 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1230 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1231 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1232 return X == PtrSCEVB; 1233 } 1234 1235 MemoryDepChecker::VectorizationSafetyStatus 1236 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1237 switch (Type) { 1238 case NoDep: 1239 case Forward: 1240 case BackwardVectorizable: 1241 return VectorizationSafetyStatus::Safe; 1242 1243 case Unknown: 1244 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1245 case ForwardButPreventsForwarding: 1246 case Backward: 1247 case BackwardVectorizableButPreventsForwarding: 1248 return VectorizationSafetyStatus::Unsafe; 1249 } 1250 llvm_unreachable("unexpected DepType!"); 1251 } 1252 1253 bool MemoryDepChecker::Dependence::isBackward() const { 1254 switch (Type) { 1255 case NoDep: 1256 case Forward: 1257 case ForwardButPreventsForwarding: 1258 case Unknown: 1259 return false; 1260 1261 case BackwardVectorizable: 1262 case Backward: 1263 case BackwardVectorizableButPreventsForwarding: 1264 return true; 1265 } 1266 llvm_unreachable("unexpected DepType!"); 1267 } 1268 1269 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1270 return isBackward() || Type == Unknown; 1271 } 1272 1273 bool MemoryDepChecker::Dependence::isForward() const { 1274 switch (Type) { 1275 case Forward: 1276 case ForwardButPreventsForwarding: 1277 return true; 1278 1279 case NoDep: 1280 case Unknown: 1281 case BackwardVectorizable: 1282 case Backward: 1283 case BackwardVectorizableButPreventsForwarding: 1284 return false; 1285 } 1286 llvm_unreachable("unexpected DepType!"); 1287 } 1288 1289 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1290 uint64_t TypeByteSize) { 1291 // If loads occur at a distance that is not a multiple of a feasible vector 1292 // factor store-load forwarding does not take place. 1293 // Positive dependences might cause troubles because vectorizing them might 1294 // prevent store-load forwarding making vectorized code run a lot slower. 1295 // a[i] = a[i-3] ^ a[i-8]; 1296 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1297 // hence on your typical architecture store-load forwarding does not take 1298 // place. Vectorizing in such cases does not make sense. 1299 // Store-load forwarding distance. 1300 1301 // After this many iterations store-to-load forwarding conflicts should not 1302 // cause any slowdowns. 1303 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1304 // Maximum vector factor. 1305 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1306 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1307 1308 // Compute the smallest VF at which the store and load would be misaligned. 1309 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1310 VF *= 2) { 1311 // If the number of vector iteration between the store and the load are 1312 // small we could incur conflicts. 1313 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1314 MaxVFWithoutSLForwardIssues = (VF >>= 1); 1315 break; 1316 } 1317 } 1318 1319 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1320 LLVM_DEBUG( 1321 dbgs() << "LAA: Distance " << Distance 1322 << " that could cause a store-load forwarding conflict\n"); 1323 return true; 1324 } 1325 1326 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1327 MaxVFWithoutSLForwardIssues != 1328 VectorizerParams::MaxVectorWidth * TypeByteSize) 1329 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1330 return false; 1331 } 1332 1333 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1334 if (Status < S) 1335 Status = S; 1336 } 1337 1338 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1339 /// memory accesses, that have the same stride whose absolute value is given 1340 /// in \p Stride, and that have the same type size \p TypeByteSize, 1341 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1342 /// possible to prove statically that the dependence distance is larger 1343 /// than the range that the accesses will travel through the execution of 1344 /// the loop. If so, return true; false otherwise. This is useful for 1345 /// example in loops such as the following (PR31098): 1346 /// for (i = 0; i < D; ++i) { 1347 /// = out[i]; 1348 /// out[i+D] = 1349 /// } 1350 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1351 const SCEV &BackedgeTakenCount, 1352 const SCEV &Dist, uint64_t Stride, 1353 uint64_t TypeByteSize) { 1354 1355 // If we can prove that 1356 // (**) |Dist| > BackedgeTakenCount * Step 1357 // where Step is the absolute stride of the memory accesses in bytes, 1358 // then there is no dependence. 1359 // 1360 // Rationale: 1361 // We basically want to check if the absolute distance (|Dist/Step|) 1362 // is >= the loop iteration count (or > BackedgeTakenCount). 1363 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1364 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1365 // that the dependence distance is >= VF; This is checked elsewhere. 1366 // But in some cases we can prune unknown dependence distances early, and 1367 // even before selecting the VF, and without a runtime test, by comparing 1368 // the distance against the loop iteration count. Since the vectorized code 1369 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1370 // also guarantees that distance >= VF. 1371 // 1372 const uint64_t ByteStride = Stride * TypeByteSize; 1373 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1374 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1375 1376 const SCEV *CastedDist = &Dist; 1377 const SCEV *CastedProduct = Product; 1378 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1379 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1380 1381 // The dependence distance can be positive/negative, so we sign extend Dist; 1382 // The multiplication of the absolute stride in bytes and the 1383 // backedgeTakenCount is non-negative, so we zero extend Product. 1384 if (DistTypeSize > ProductTypeSize) 1385 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1386 else 1387 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1388 1389 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1390 // (If so, then we have proven (**) because |Dist| >= Dist) 1391 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1392 if (SE.isKnownPositive(Minus)) 1393 return true; 1394 1395 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1396 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1397 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1398 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1399 if (SE.isKnownPositive(Minus)) 1400 return true; 1401 1402 return false; 1403 } 1404 1405 /// Check the dependence for two accesses with the same stride \p Stride. 1406 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1407 /// bytes. 1408 /// 1409 /// \returns true if they are independent. 1410 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1411 uint64_t TypeByteSize) { 1412 assert(Stride > 1 && "The stride must be greater than 1"); 1413 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1414 assert(Distance > 0 && "The distance must be non-zero"); 1415 1416 // Skip if the distance is not multiple of type byte size. 1417 if (Distance % TypeByteSize) 1418 return false; 1419 1420 uint64_t ScaledDist = Distance / TypeByteSize; 1421 1422 // No dependence if the scaled distance is not multiple of the stride. 1423 // E.g. 1424 // for (i = 0; i < 1024 ; i += 4) 1425 // A[i+2] = A[i] + 1; 1426 // 1427 // Two accesses in memory (scaled distance is 2, stride is 4): 1428 // | A[0] | | | | A[4] | | | | 1429 // | | | A[2] | | | | A[6] | | 1430 // 1431 // E.g. 1432 // for (i = 0; i < 1024 ; i += 3) 1433 // A[i+4] = A[i] + 1; 1434 // 1435 // Two accesses in memory (scaled distance is 4, stride is 3): 1436 // | A[0] | | | A[3] | | | A[6] | | | 1437 // | | | | | A[4] | | | A[7] | | 1438 return ScaledDist % Stride; 1439 } 1440 1441 MemoryDepChecker::Dependence::DepType 1442 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1443 const MemAccessInfo &B, unsigned BIdx, 1444 const ValueToValueMap &Strides) { 1445 assert (AIdx < BIdx && "Must pass arguments in program order"); 1446 1447 Value *APtr = A.getPointer(); 1448 Value *BPtr = B.getPointer(); 1449 bool AIsWrite = A.getInt(); 1450 bool BIsWrite = B.getInt(); 1451 1452 // Two reads are independent. 1453 if (!AIsWrite && !BIsWrite) 1454 return Dependence::NoDep; 1455 1456 // We cannot check pointers in different address spaces. 1457 if (APtr->getType()->getPointerAddressSpace() != 1458 BPtr->getType()->getPointerAddressSpace()) 1459 return Dependence::Unknown; 1460 1461 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1462 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1463 1464 const SCEV *Src = PSE.getSCEV(APtr); 1465 const SCEV *Sink = PSE.getSCEV(BPtr); 1466 1467 // If the induction step is negative we have to invert source and sink of the 1468 // dependence. 1469 if (StrideAPtr < 0) { 1470 std::swap(APtr, BPtr); 1471 std::swap(Src, Sink); 1472 std::swap(AIsWrite, BIsWrite); 1473 std::swap(AIdx, BIdx); 1474 std::swap(StrideAPtr, StrideBPtr); 1475 } 1476 1477 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1478 1479 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1480 << "(Induction step: " << StrideAPtr << ")\n"); 1481 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1482 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1483 1484 // Need accesses with constant stride. We don't want to vectorize 1485 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1486 // the address space. 1487 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1488 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1489 return Dependence::Unknown; 1490 } 1491 1492 Type *ATy = APtr->getType()->getPointerElementType(); 1493 Type *BTy = BPtr->getType()->getPointerElementType(); 1494 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1495 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1496 uint64_t Stride = std::abs(StrideAPtr); 1497 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1498 if (!C) { 1499 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1500 isSafeDependenceDistance(DL, *(PSE.getSE()), 1501 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1502 TypeByteSize)) 1503 return Dependence::NoDep; 1504 1505 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1506 FoundNonConstantDistanceDependence = true; 1507 return Dependence::Unknown; 1508 } 1509 1510 const APInt &Val = C->getAPInt(); 1511 int64_t Distance = Val.getSExtValue(); 1512 1513 // Attempt to prove strided accesses independent. 1514 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1515 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1516 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1517 return Dependence::NoDep; 1518 } 1519 1520 // Negative distances are not plausible dependencies. 1521 if (Val.isNegative()) { 1522 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1523 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1524 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1525 ATy != BTy)) { 1526 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1527 return Dependence::ForwardButPreventsForwarding; 1528 } 1529 1530 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1531 return Dependence::Forward; 1532 } 1533 1534 // Write to the same location with the same size. 1535 // Could be improved to assert type sizes are the same (i32 == float, etc). 1536 if (Val == 0) { 1537 if (ATy == BTy) 1538 return Dependence::Forward; 1539 LLVM_DEBUG( 1540 dbgs() << "LAA: Zero dependence difference but different types\n"); 1541 return Dependence::Unknown; 1542 } 1543 1544 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1545 1546 if (ATy != BTy) { 1547 LLVM_DEBUG( 1548 dbgs() 1549 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1550 return Dependence::Unknown; 1551 } 1552 1553 // Bail out early if passed-in parameters make vectorization not feasible. 1554 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1555 VectorizerParams::VectorizationFactor : 1); 1556 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1557 VectorizerParams::VectorizationInterleave : 1); 1558 // The minimum number of iterations for a vectorized/unrolled version. 1559 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1560 1561 // It's not vectorizable if the distance is smaller than the minimum distance 1562 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1563 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1564 // TypeByteSize (No need to plus the last gap distance). 1565 // 1566 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1567 // foo(int *A) { 1568 // int *B = (int *)((char *)A + 14); 1569 // for (i = 0 ; i < 1024 ; i += 2) 1570 // B[i] = A[i] + 1; 1571 // } 1572 // 1573 // Two accesses in memory (stride is 2): 1574 // | A[0] | | A[2] | | A[4] | | A[6] | | 1575 // | B[0] | | B[2] | | B[4] | 1576 // 1577 // Distance needs for vectorizing iterations except the last iteration: 1578 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1579 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1580 // 1581 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1582 // 12, which is less than distance. 1583 // 1584 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1585 // the minimum distance needed is 28, which is greater than distance. It is 1586 // not safe to do vectorization. 1587 uint64_t MinDistanceNeeded = 1588 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1589 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1590 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1591 << Distance << '\n'); 1592 return Dependence::Backward; 1593 } 1594 1595 // Unsafe if the minimum distance needed is greater than max safe distance. 1596 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1597 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1598 << MinDistanceNeeded << " size in bytes"); 1599 return Dependence::Backward; 1600 } 1601 1602 // Positive distance bigger than max vectorization factor. 1603 // FIXME: Should use max factor instead of max distance in bytes, which could 1604 // not handle different types. 1605 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1606 // void foo (int *A, char *B) { 1607 // for (unsigned i = 0; i < 1024; i++) { 1608 // A[i+2] = A[i] + 1; 1609 // B[i+2] = B[i] + 1; 1610 // } 1611 // } 1612 // 1613 // This case is currently unsafe according to the max safe distance. If we 1614 // analyze the two accesses on array B, the max safe dependence distance 1615 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1616 // is 8, which is less than 2 and forbidden vectorization, But actually 1617 // both A and B could be vectorized by 2 iterations. 1618 MaxSafeDepDistBytes = 1619 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1620 1621 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1622 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1623 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1624 return Dependence::BackwardVectorizableButPreventsForwarding; 1625 1626 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1627 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1628 << " with max VF = " << MaxVF << '\n'); 1629 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1630 MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); 1631 return Dependence::BackwardVectorizable; 1632 } 1633 1634 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1635 MemAccessInfoList &CheckDeps, 1636 const ValueToValueMap &Strides) { 1637 1638 MaxSafeDepDistBytes = -1; 1639 SmallPtrSet<MemAccessInfo, 8> Visited; 1640 for (MemAccessInfo CurAccess : CheckDeps) { 1641 if (Visited.count(CurAccess)) 1642 continue; 1643 1644 // Get the relevant memory access set. 1645 EquivalenceClasses<MemAccessInfo>::iterator I = 1646 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1647 1648 // Check accesses within this set. 1649 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1650 AccessSets.member_begin(I); 1651 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1652 AccessSets.member_end(); 1653 1654 // Check every access pair. 1655 while (AI != AE) { 1656 Visited.insert(*AI); 1657 bool AIIsWrite = AI->getInt(); 1658 // Check loads only against next equivalent class, but stores also against 1659 // other stores in the same equivalence class - to the same address. 1660 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1661 (AIIsWrite ? AI : std::next(AI)); 1662 while (OI != AE) { 1663 // Check every accessing instruction pair in program order. 1664 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1665 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1666 // Scan all accesses of another equivalence class, but only the next 1667 // accesses of the same equivalent class. 1668 for (std::vector<unsigned>::iterator 1669 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1670 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1671 I2 != I2E; ++I2) { 1672 auto A = std::make_pair(&*AI, *I1); 1673 auto B = std::make_pair(&*OI, *I2); 1674 1675 assert(*I1 != *I2); 1676 if (*I1 > *I2) 1677 std::swap(A, B); 1678 1679 Dependence::DepType Type = 1680 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1681 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1682 1683 // Gather dependences unless we accumulated MaxDependences 1684 // dependences. In that case return as soon as we find the first 1685 // unsafe dependence. This puts a limit on this quadratic 1686 // algorithm. 1687 if (RecordDependences) { 1688 if (Type != Dependence::NoDep) 1689 Dependences.push_back(Dependence(A.second, B.second, Type)); 1690 1691 if (Dependences.size() >= MaxDependences) { 1692 RecordDependences = false; 1693 Dependences.clear(); 1694 LLVM_DEBUG(dbgs() 1695 << "Too many dependences, stopped recording\n"); 1696 } 1697 } 1698 if (!RecordDependences && !isSafeForVectorization()) 1699 return false; 1700 } 1701 ++OI; 1702 } 1703 AI++; 1704 } 1705 } 1706 1707 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1708 return isSafeForVectorization(); 1709 } 1710 1711 SmallVector<Instruction *, 4> 1712 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1713 MemAccessInfo Access(Ptr, isWrite); 1714 auto &IndexVector = Accesses.find(Access)->second; 1715 1716 SmallVector<Instruction *, 4> Insts; 1717 transform(IndexVector, 1718 std::back_inserter(Insts), 1719 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1720 return Insts; 1721 } 1722 1723 const char *MemoryDepChecker::Dependence::DepName[] = { 1724 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1725 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1726 1727 void MemoryDepChecker::Dependence::print( 1728 raw_ostream &OS, unsigned Depth, 1729 const SmallVectorImpl<Instruction *> &Instrs) const { 1730 OS.indent(Depth) << DepName[Type] << ":\n"; 1731 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1732 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1733 } 1734 1735 bool LoopAccessInfo::canAnalyzeLoop() { 1736 // We need to have a loop header. 1737 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1738 << TheLoop->getHeader()->getParent()->getName() << ": " 1739 << TheLoop->getHeader()->getName() << '\n'); 1740 1741 // We can only analyze innermost loops. 1742 if (!TheLoop->empty()) { 1743 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1744 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1745 return false; 1746 } 1747 1748 // We must have a single backedge. 1749 if (TheLoop->getNumBackEdges() != 1) { 1750 LLVM_DEBUG( 1751 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1752 recordAnalysis("CFGNotUnderstood") 1753 << "loop control flow is not understood by analyzer"; 1754 return false; 1755 } 1756 1757 // We must have a single exiting block. 1758 if (!TheLoop->getExitingBlock()) { 1759 LLVM_DEBUG( 1760 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1761 recordAnalysis("CFGNotUnderstood") 1762 << "loop control flow is not understood by analyzer"; 1763 return false; 1764 } 1765 1766 // We only handle bottom-tested loops, i.e. loop in which the condition is 1767 // checked at the end of each iteration. With that we can assume that all 1768 // instructions in the loop are executed the same number of times. 1769 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 1770 LLVM_DEBUG( 1771 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1772 recordAnalysis("CFGNotUnderstood") 1773 << "loop control flow is not understood by analyzer"; 1774 return false; 1775 } 1776 1777 // ScalarEvolution needs to be able to find the exit count. 1778 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1779 if (ExitCount == PSE->getSE()->getCouldNotCompute()) { 1780 recordAnalysis("CantComputeNumberOfIterations") 1781 << "could not determine number of loop iterations"; 1782 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1783 return false; 1784 } 1785 1786 return true; 1787 } 1788 1789 void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, 1790 const TargetLibraryInfo *TLI, 1791 DominatorTree *DT) { 1792 typedef SmallPtrSet<Value*, 16> ValueSet; 1793 1794 // Holds the Load and Store instructions. 1795 SmallVector<LoadInst *, 16> Loads; 1796 SmallVector<StoreInst *, 16> Stores; 1797 1798 // Holds all the different accesses in the loop. 1799 unsigned NumReads = 0; 1800 unsigned NumReadWrites = 0; 1801 1802 bool HasComplexMemInst = false; 1803 1804 // A runtime check is only legal to insert if there are no convergent calls. 1805 HasConvergentOp = false; 1806 1807 PtrRtChecking->Pointers.clear(); 1808 PtrRtChecking->Need = false; 1809 1810 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1811 1812 // For each block. 1813 for (BasicBlock *BB : TheLoop->blocks()) { 1814 // Scan the BB and collect legal loads and stores. Also detect any 1815 // convergent instructions. 1816 for (Instruction &I : *BB) { 1817 if (auto *Call = dyn_cast<CallBase>(&I)) { 1818 if (Call->isConvergent()) 1819 HasConvergentOp = true; 1820 } 1821 1822 // With both a non-vectorizable memory instruction and a convergent 1823 // operation, found in this loop, no reason to continue the search. 1824 if (HasComplexMemInst && HasConvergentOp) { 1825 CanVecMem = false; 1826 return; 1827 } 1828 1829 // Avoid hitting recordAnalysis multiple times. 1830 if (HasComplexMemInst) 1831 continue; 1832 1833 // If this is a load, save it. If this instruction can read from memory 1834 // but is not a load, then we quit. Notice that we don't handle function 1835 // calls that read or write. 1836 if (I.mayReadFromMemory()) { 1837 // Many math library functions read the rounding mode. We will only 1838 // vectorize a loop if it contains known function calls that don't set 1839 // the flag. Therefore, it is safe to ignore this read from memory. 1840 auto *Call = dyn_cast<CallInst>(&I); 1841 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1842 continue; 1843 1844 // If the function has an explicit vectorized counterpart, we can safely 1845 // assume that it can be vectorized. 1846 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1847 TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) 1848 continue; 1849 1850 auto *Ld = dyn_cast<LoadInst>(&I); 1851 if (!Ld) { 1852 recordAnalysis("CantVectorizeInstruction", Ld) 1853 << "instruction cannot be vectorized"; 1854 HasComplexMemInst = true; 1855 continue; 1856 } 1857 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1858 recordAnalysis("NonSimpleLoad", Ld) 1859 << "read with atomic ordering or volatile read"; 1860 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1861 HasComplexMemInst = true; 1862 continue; 1863 } 1864 NumLoads++; 1865 Loads.push_back(Ld); 1866 DepChecker->addAccess(Ld); 1867 if (EnableMemAccessVersioning) 1868 collectStridedAccess(Ld); 1869 continue; 1870 } 1871 1872 // Save 'store' instructions. Abort if other instructions write to memory. 1873 if (I.mayWriteToMemory()) { 1874 auto *St = dyn_cast<StoreInst>(&I); 1875 if (!St) { 1876 recordAnalysis("CantVectorizeInstruction", St) 1877 << "instruction cannot be vectorized"; 1878 HasComplexMemInst = true; 1879 continue; 1880 } 1881 if (!St->isSimple() && !IsAnnotatedParallel) { 1882 recordAnalysis("NonSimpleStore", St) 1883 << "write with atomic ordering or volatile write"; 1884 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1885 HasComplexMemInst = true; 1886 continue; 1887 } 1888 NumStores++; 1889 Stores.push_back(St); 1890 DepChecker->addAccess(St); 1891 if (EnableMemAccessVersioning) 1892 collectStridedAccess(St); 1893 } 1894 } // Next instr. 1895 } // Next block. 1896 1897 if (HasComplexMemInst) { 1898 CanVecMem = false; 1899 return; 1900 } 1901 1902 // Now we have two lists that hold the loads and the stores. 1903 // Next, we find the pointers that they use. 1904 1905 // Check if we see any stores. If there are no stores, then we don't 1906 // care if the pointers are *restrict*. 1907 if (!Stores.size()) { 1908 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1909 CanVecMem = true; 1910 return; 1911 } 1912 1913 MemoryDepChecker::DepCandidates DependentAccesses; 1914 AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), 1915 TheLoop, AA, LI, DependentAccesses, *PSE); 1916 1917 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 1918 // multiple times on the same object. If the ptr is accessed twice, once 1919 // for read and once for write, it will only appear once (on the write 1920 // list). This is okay, since we are going to check for conflicts between 1921 // writes and between reads and writes, but not between reads and reads. 1922 ValueSet Seen; 1923 1924 // Record uniform store addresses to identify if we have multiple stores 1925 // to the same address. 1926 ValueSet UniformStores; 1927 1928 for (StoreInst *ST : Stores) { 1929 Value *Ptr = ST->getPointerOperand(); 1930 1931 if (isUniform(Ptr)) 1932 HasDependenceInvolvingLoopInvariantAddress |= 1933 !UniformStores.insert(Ptr).second; 1934 1935 // If we did *not* see this pointer before, insert it to the read-write 1936 // list. At this phase it is only a 'write' list. 1937 if (Seen.insert(Ptr).second) { 1938 ++NumReadWrites; 1939 1940 MemoryLocation Loc = MemoryLocation::get(ST); 1941 // The TBAA metadata could have a control dependency on the predication 1942 // condition, so we cannot rely on it when determining whether or not we 1943 // need runtime pointer checks. 1944 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1945 Loc.AATags.TBAA = nullptr; 1946 1947 Accesses.addStore(Loc); 1948 } 1949 } 1950 1951 if (IsAnnotatedParallel) { 1952 LLVM_DEBUG( 1953 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1954 << "checks.\n"); 1955 CanVecMem = true; 1956 return; 1957 } 1958 1959 for (LoadInst *LD : Loads) { 1960 Value *Ptr = LD->getPointerOperand(); 1961 // If we did *not* see this pointer before, insert it to the 1962 // read list. If we *did* see it before, then it is already in 1963 // the read-write list. This allows us to vectorize expressions 1964 // such as A[i] += x; Because the address of A[i] is a read-write 1965 // pointer. This only works if the index of A[i] is consecutive. 1966 // If the address of i is unknown (for example A[B[i]]) then we may 1967 // read a few words, modify, and write a few words, and some of the 1968 // words may be written to the same address. 1969 bool IsReadOnlyPtr = false; 1970 if (Seen.insert(Ptr).second || 1971 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1972 ++NumReads; 1973 IsReadOnlyPtr = true; 1974 } 1975 1976 // See if there is an unsafe dependency between a load to a uniform address and 1977 // store to the same uniform address. 1978 if (UniformStores.count(Ptr)) { 1979 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1980 "load and uniform store to the same address!\n"); 1981 HasDependenceInvolvingLoopInvariantAddress = true; 1982 } 1983 1984 MemoryLocation Loc = MemoryLocation::get(LD); 1985 // The TBAA metadata could have a control dependency on the predication 1986 // condition, so we cannot rely on it when determining whether or not we 1987 // need runtime pointer checks. 1988 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1989 Loc.AATags.TBAA = nullptr; 1990 1991 Accesses.addLoad(Loc, IsReadOnlyPtr); 1992 } 1993 1994 // If we write (or read-write) to a single destination and there are no 1995 // other reads in this loop then is it safe to vectorize. 1996 if (NumReadWrites == 1 && NumReads == 0) { 1997 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 1998 CanVecMem = true; 1999 return; 2000 } 2001 2002 // Build dependence sets and check whether we need a runtime pointer bounds 2003 // check. 2004 Accesses.buildDependenceSets(); 2005 2006 // Find pointers with computable bounds. We are going to use this information 2007 // to place a runtime bound check. 2008 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2009 TheLoop, SymbolicStrides); 2010 if (!CanDoRTIfNeeded) { 2011 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2012 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2013 << "the array bounds.\n"); 2014 CanVecMem = false; 2015 return; 2016 } 2017 2018 LLVM_DEBUG( 2019 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2020 2021 CanVecMem = true; 2022 if (Accesses.isDependencyCheckNeeded()) { 2023 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2024 CanVecMem = DepChecker->areDepsSafe( 2025 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2026 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2027 2028 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2029 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2030 2031 // Clear the dependency checks. We assume they are not needed. 2032 Accesses.resetDepChecks(*DepChecker); 2033 2034 PtrRtChecking->reset(); 2035 PtrRtChecking->Need = true; 2036 2037 auto *SE = PSE->getSE(); 2038 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2039 SymbolicStrides, true); 2040 2041 // Check that we found the bounds for the pointer. 2042 if (!CanDoRTIfNeeded) { 2043 recordAnalysis("CantCheckMemDepsAtRunTime") 2044 << "cannot check memory dependencies at runtime"; 2045 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2046 CanVecMem = false; 2047 return; 2048 } 2049 2050 CanVecMem = true; 2051 } 2052 } 2053 2054 if (HasConvergentOp) { 2055 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2056 << "cannot add control dependency to convergent operation"; 2057 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2058 "would be needed with a convergent operation\n"); 2059 CanVecMem = false; 2060 return; 2061 } 2062 2063 if (CanVecMem) 2064 LLVM_DEBUG( 2065 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2066 << (PtrRtChecking->Need ? "" : " don't") 2067 << " need runtime memory checks.\n"); 2068 else { 2069 recordAnalysis("UnsafeMemDep") 2070 << "unsafe dependent memory operations in loop. Use " 2071 "#pragma loop distribute(enable) to allow loop distribution " 2072 "to attempt to isolate the offending operations into a separate " 2073 "loop"; 2074 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2075 } 2076 } 2077 2078 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2079 DominatorTree *DT) { 2080 assert(TheLoop->contains(BB) && "Unknown block used"); 2081 2082 // Blocks that do not dominate the latch need predication. 2083 BasicBlock* Latch = TheLoop->getLoopLatch(); 2084 return !DT->dominates(BB, Latch); 2085 } 2086 2087 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2088 Instruction *I) { 2089 assert(!Report && "Multiple reports generated"); 2090 2091 Value *CodeRegion = TheLoop->getHeader(); 2092 DebugLoc DL = TheLoop->getStartLoc(); 2093 2094 if (I) { 2095 CodeRegion = I->getParent(); 2096 // If there is no debug location attached to the instruction, revert back to 2097 // using the loop's. 2098 if (I->getDebugLoc()) 2099 DL = I->getDebugLoc(); 2100 } 2101 2102 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2103 CodeRegion); 2104 return *Report; 2105 } 2106 2107 bool LoopAccessInfo::isUniform(Value *V) const { 2108 auto *SE = PSE->getSE(); 2109 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2110 // never considered uniform. 2111 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2112 // trivially loop-invariant FP values to be considered uniform. 2113 if (!SE->isSCEVable(V->getType())) 2114 return false; 2115 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2116 } 2117 2118 // FIXME: this function is currently a duplicate of the one in 2119 // LoopVectorize.cpp. 2120 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2121 Instruction *Loc) { 2122 if (FirstInst) 2123 return FirstInst; 2124 if (Instruction *I = dyn_cast<Instruction>(V)) 2125 return I->getParent() == Loc->getParent() ? I : nullptr; 2126 return nullptr; 2127 } 2128 2129 namespace { 2130 2131 /// IR Values for the lower and upper bounds of a pointer evolution. We 2132 /// need to use value-handles because SCEV expansion can invalidate previously 2133 /// expanded values. Thus expansion of a pointer can invalidate the bounds for 2134 /// a previous one. 2135 struct PointerBounds { 2136 TrackingVH<Value> Start; 2137 TrackingVH<Value> End; 2138 }; 2139 2140 } // end anonymous namespace 2141 2142 /// Expand code for the lower and upper bound of the pointer group \p CG 2143 /// in \p TheLoop. \return the values for the bounds. 2144 static PointerBounds 2145 expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, 2146 Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, 2147 const RuntimePointerChecking &PtrRtChecking) { 2148 Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; 2149 const SCEV *Sc = SE->getSCEV(Ptr); 2150 2151 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2152 LLVMContext &Ctx = Loc->getContext(); 2153 2154 // Use this type for pointer arithmetic. 2155 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2156 2157 if (SE->isLoopInvariant(Sc, TheLoop)) { 2158 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" 2159 << *Ptr << "\n"); 2160 // Ptr could be in the loop body. If so, expand a new one at the correct 2161 // location. 2162 Instruction *Inst = dyn_cast<Instruction>(Ptr); 2163 Value *NewPtr = (Inst && TheLoop->contains(Inst)) 2164 ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) 2165 : Ptr; 2166 // We must return a half-open range, which means incrementing Sc. 2167 const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); 2168 Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); 2169 return {NewPtr, NewPtrPlusOne}; 2170 } else { 2171 Value *Start = nullptr, *End = nullptr; 2172 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); 2173 Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); 2174 End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); 2175 LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High 2176 << "\n"); 2177 return {Start, End}; 2178 } 2179 } 2180 2181 /// Turns a collection of checks into a collection of expanded upper and 2182 /// lower bounds for both pointers in the check. 2183 static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( 2184 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, 2185 Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, 2186 const RuntimePointerChecking &PtrRtChecking) { 2187 SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; 2188 2189 // Here we're relying on the SCEV Expander's cache to only emit code for the 2190 // same bounds once. 2191 transform( 2192 PointerChecks, std::back_inserter(ChecksWithBounds), 2193 [&](const RuntimePointerChecking::PointerCheck &Check) { 2194 PointerBounds 2195 First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), 2196 Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); 2197 return std::make_pair(First, Second); 2198 }); 2199 2200 return ChecksWithBounds; 2201 } 2202 2203 std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( 2204 Instruction *Loc, 2205 const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) 2206 const { 2207 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2208 auto *SE = PSE->getSE(); 2209 SCEVExpander Exp(*SE, DL, "induction"); 2210 auto ExpandedChecks = 2211 expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); 2212 2213 LLVMContext &Ctx = Loc->getContext(); 2214 Instruction *FirstInst = nullptr; 2215 IRBuilder<> ChkBuilder(Loc); 2216 // Our instructions might fold to a constant. 2217 Value *MemoryRuntimeCheck = nullptr; 2218 2219 for (const auto &Check : ExpandedChecks) { 2220 const PointerBounds &A = Check.first, &B = Check.second; 2221 // Check if two pointers (A and B) conflict where conflict is computed as: 2222 // start(A) <= end(B) && start(B) <= end(A) 2223 unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); 2224 unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); 2225 2226 assert((AS0 == B.End->getType()->getPointerAddressSpace()) && 2227 (AS1 == A.End->getType()->getPointerAddressSpace()) && 2228 "Trying to bounds check pointers with different address spaces"); 2229 2230 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2231 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2232 2233 Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); 2234 Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); 2235 Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc"); 2236 Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc"); 2237 2238 // [A|B].Start points to the first accessed byte under base [A|B]. 2239 // [A|B].End points to the last accessed byte, plus one. 2240 // There is no conflict when the intervals are disjoint: 2241 // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) 2242 // 2243 // bound0 = (B.Start < A.End) 2244 // bound1 = (A.Start < B.End) 2245 // IsConflict = bound0 & bound1 2246 Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); 2247 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2248 Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); 2249 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2250 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2251 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2252 if (MemoryRuntimeCheck) { 2253 IsConflict = 2254 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); 2255 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2256 } 2257 MemoryRuntimeCheck = IsConflict; 2258 } 2259 2260 if (!MemoryRuntimeCheck) 2261 return std::make_pair(nullptr, nullptr); 2262 2263 // We have to do this trickery because the IRBuilder might fold the check to a 2264 // constant expression in which case there is no Instruction anchored in a 2265 // the block. 2266 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2267 ConstantInt::getTrue(Ctx)); 2268 ChkBuilder.Insert(Check, "memcheck.conflict"); 2269 FirstInst = getFirstInst(FirstInst, Check, Loc); 2270 return std::make_pair(FirstInst, Check); 2271 } 2272 2273 std::pair<Instruction *, Instruction *> 2274 LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { 2275 if (!PtrRtChecking->Need) 2276 return std::make_pair(nullptr, nullptr); 2277 2278 return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); 2279 } 2280 2281 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2282 Value *Ptr = nullptr; 2283 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 2284 Ptr = LI->getPointerOperand(); 2285 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 2286 Ptr = SI->getPointerOperand(); 2287 else 2288 return; 2289 2290 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2291 if (!Stride) 2292 return; 2293 2294 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2295 "versioning:"); 2296 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2297 2298 // Avoid adding the "Stride == 1" predicate when we know that 2299 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2300 // or zero iteration loop, as Trip-Count <= Stride == 1. 2301 // 2302 // TODO: We are currently not making a very informed decision on when it is 2303 // beneficial to apply stride versioning. It might make more sense that the 2304 // users of this analysis (such as the vectorizer) will trigger it, based on 2305 // their specific cost considerations; For example, in cases where stride 2306 // versioning does not help resolving memory accesses/dependences, the 2307 // vectorizer should evaluate the cost of the runtime test, and the benefit 2308 // of various possible stride specializations, considering the alternatives 2309 // of using gather/scatters (if available). 2310 2311 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2312 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2313 2314 // Match the types so we can compare the stride and the BETakenCount. 2315 // The Stride can be positive/negative, so we sign extend Stride; 2316 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2317 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2318 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2319 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2320 const SCEV *CastedStride = StrideExpr; 2321 const SCEV *CastedBECount = BETakenCount; 2322 ScalarEvolution *SE = PSE->getSE(); 2323 if (BETypeSize >= StrideTypeSize) 2324 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2325 else 2326 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2327 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2328 // Since TripCount == BackEdgeTakenCount + 1, checking: 2329 // "Stride >= TripCount" is equivalent to checking: 2330 // Stride - BETakenCount > 0 2331 if (SE->isKnownPositive(StrideMinusBETaken)) { 2332 LLVM_DEBUG( 2333 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2334 "Stride==1 predicate will imply that the loop executes " 2335 "at most once.\n"); 2336 return; 2337 } 2338 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2339 2340 SymbolicStrides[Ptr] = Stride; 2341 StrideSet.insert(Stride); 2342 } 2343 2344 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2345 const TargetLibraryInfo *TLI, AliasAnalysis *AA, 2346 DominatorTree *DT, LoopInfo *LI) 2347 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2348 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2349 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2350 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2351 HasConvergentOp(false), 2352 HasDependenceInvolvingLoopInvariantAddress(false) { 2353 if (canAnalyzeLoop()) 2354 analyzeLoop(AA, LI, TLI, DT); 2355 } 2356 2357 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2358 if (CanVecMem) { 2359 OS.indent(Depth) << "Memory dependences are safe"; 2360 if (MaxSafeDepDistBytes != -1ULL) 2361 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2362 << " bytes"; 2363 if (PtrRtChecking->Need) 2364 OS << " with run-time checks"; 2365 OS << "\n"; 2366 } 2367 2368 if (HasConvergentOp) 2369 OS.indent(Depth) << "Has convergent operation in loop\n"; 2370 2371 if (Report) 2372 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2373 2374 if (auto *Dependences = DepChecker->getDependences()) { 2375 OS.indent(Depth) << "Dependences:\n"; 2376 for (auto &Dep : *Dependences) { 2377 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2378 OS << "\n"; 2379 } 2380 } else 2381 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2382 2383 // List the pair of accesses need run-time checks to prove independence. 2384 PtrRtChecking->print(OS, Depth); 2385 OS << "\n"; 2386 2387 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2388 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2389 << "found in loop.\n"; 2390 2391 OS.indent(Depth) << "SCEV assumptions:\n"; 2392 PSE->getUnionPredicate().print(OS, Depth); 2393 2394 OS << "\n"; 2395 2396 OS.indent(Depth) << "Expressions re-written:\n"; 2397 PSE->print(OS, Depth); 2398 } 2399 2400 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2401 auto &LAI = LoopAccessInfoMap[L]; 2402 2403 if (!LAI) 2404 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2405 2406 return *LAI.get(); 2407 } 2408 2409 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2410 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2411 2412 for (Loop *TopLevelLoop : *LI) 2413 for (Loop *L : depth_first(TopLevelLoop)) { 2414 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2415 auto &LAI = LAA.getInfo(L); 2416 LAI.print(OS, 4); 2417 } 2418 } 2419 2420 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2421 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2422 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2423 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2424 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2425 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2426 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2427 2428 return false; 2429 } 2430 2431 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2432 AU.addRequired<ScalarEvolutionWrapperPass>(); 2433 AU.addRequired<AAResultsWrapperPass>(); 2434 AU.addRequired<DominatorTreeWrapperPass>(); 2435 AU.addRequired<LoopInfoWrapperPass>(); 2436 2437 AU.setPreservesAll(); 2438 } 2439 2440 char LoopAccessLegacyAnalysis::ID = 0; 2441 static const char laa_name[] = "Loop Access Analysis"; 2442 #define LAA_NAME "loop-accesses" 2443 2444 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2445 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2446 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2447 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2448 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2449 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2450 2451 AnalysisKey LoopAccessAnalysis::Key; 2452 2453 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2454 LoopStandardAnalysisResults &AR) { 2455 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2456 } 2457 2458 namespace llvm { 2459 2460 Pass *createLAAPass() { 2461 return new LoopAccessLegacyAnalysis(); 2462 } 2463 2464 } // end namespace llvm 2465