1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/ADT/EquivalenceClasses.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AliasSetTracker.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryLocation.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/ScalarEvolution.h" 33 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <cstdlib> 64 #include <iterator> 65 #include <utility> 66 #include <vector> 67 68 using namespace llvm; 69 70 #define DEBUG_TYPE "loop-accesses" 71 72 static cl::opt<unsigned, true> 73 VectorizationFactor("force-vector-width", cl::Hidden, 74 cl::desc("Sets the SIMD width. Zero is autoselect."), 75 cl::location(VectorizerParams::VectorizationFactor)); 76 unsigned VectorizerParams::VectorizationFactor; 77 78 static cl::opt<unsigned, true> 79 VectorizationInterleave("force-vector-interleave", cl::Hidden, 80 cl::desc("Sets the vectorization interleave count. " 81 "Zero is autoselect."), 82 cl::location( 83 VectorizerParams::VectorizationInterleave)); 84 unsigned VectorizerParams::VectorizationInterleave; 85 86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 87 "runtime-memory-check-threshold", cl::Hidden, 88 cl::desc("When performing memory disambiguation checks at runtime do not " 89 "generate more than this number of comparisons (default = 8)."), 90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 92 93 /// The maximum iterations used to merge memory checks 94 static cl::opt<unsigned> MemoryCheckMergeThreshold( 95 "memory-check-merge-threshold", cl::Hidden, 96 cl::desc("Maximum number of comparisons done when trying to merge " 97 "runtime memory checks. (default = 100)"), 98 cl::init(100)); 99 100 /// Maximum SIMD width. 101 const unsigned VectorizerParams::MaxVectorWidth = 64; 102 103 /// We collect dependences up to this threshold. 104 static cl::opt<unsigned> 105 MaxDependences("max-dependences", cl::Hidden, 106 cl::desc("Maximum number of dependences collected by " 107 "loop-access analysis (default = 100)"), 108 cl::init(100)); 109 110 /// This enables versioning on the strides of symbolically striding memory 111 /// accesses in code like the following. 112 /// for (i = 0; i < N; ++i) 113 /// A[i * Stride1] += B[i * Stride2] ... 114 /// 115 /// Will be roughly translated to 116 /// if (Stride1 == 1 && Stride2 == 1) { 117 /// for (i = 0; i < N; i+=4) 118 /// A[i:i+3] += ... 119 /// } else 120 /// ... 121 static cl::opt<bool> EnableMemAccessVersioning( 122 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 123 cl::desc("Enable symbolic stride memory access versioning")); 124 125 /// Enable store-to-load forwarding conflict detection. This option can 126 /// be disabled for correctness testing. 127 static cl::opt<bool> EnableForwardingConflictDetection( 128 "store-to-load-forwarding-conflict-detection", cl::Hidden, 129 cl::desc("Enable conflict detection in loop-access analysis"), 130 cl::init(true)); 131 132 bool VectorizerParams::isInterleaveForced() { 133 return ::VectorizationInterleave.getNumOccurrences() > 0; 134 } 135 136 Value *llvm::stripIntegerCast(Value *V) { 137 if (auto *CI = dyn_cast<CastInst>(V)) 138 if (CI->getOperand(0)->getType()->isIntegerTy()) 139 return CI->getOperand(0); 140 return V; 141 } 142 143 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 144 const ValueToValueMap &PtrToStride, 145 Value *Ptr, Value *OrigPtr) { 146 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 147 148 // If there is an entry in the map return the SCEV of the pointer with the 149 // symbolic stride replaced by one. 150 ValueToValueMap::const_iterator SI = 151 PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 152 if (SI == PtrToStride.end()) 153 // For a non-symbolic stride, just return the original expression. 154 return OrigSCEV; 155 156 Value *StrideVal = stripIntegerCast(SI->second); 157 158 ScalarEvolution *SE = PSE.getSE(); 159 const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); 160 const auto *CT = 161 static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); 162 163 PSE.addPredicate(*SE->getEqualPredicate(U, CT)); 164 auto *Expr = PSE.getSCEV(Ptr); 165 166 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 167 << " by: " << *Expr << "\n"); 168 return Expr; 169 } 170 171 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 172 unsigned Index, RuntimePointerChecking &RtCheck) 173 : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End), 174 Low(RtCheck.Pointers[Index].Start) { 175 Members.push_back(Index); 176 } 177 178 /// Calculate Start and End points of memory access. 179 /// Let's assume A is the first access and B is a memory access on N-th loop 180 /// iteration. Then B is calculated as: 181 /// B = A + Step*N . 182 /// Step value may be positive or negative. 183 /// N is a calculated back-edge taken count: 184 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 185 /// Start and End points are calculated in the following way: 186 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 187 /// where SizeOfElt is the size of single memory access in bytes. 188 /// 189 /// There is no conflict when the intervals are disjoint: 190 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 191 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, 192 unsigned DepSetId, unsigned ASId, 193 const ValueToValueMap &Strides, 194 PredicatedScalarEvolution &PSE) { 195 // Get the stride replaced scev. 196 const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 197 ScalarEvolution *SE = PSE.getSE(); 198 199 const SCEV *ScStart; 200 const SCEV *ScEnd; 201 202 if (SE->isLoopInvariant(Sc, Lp)) 203 ScStart = ScEnd = Sc; 204 else { 205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 206 assert(AR && "Invalid addrec expression"); 207 const SCEV *Ex = PSE.getBackedgeTakenCount(); 208 209 ScStart = AR->getStart(); 210 ScEnd = AR->evaluateAtIteration(Ex, *SE); 211 const SCEV *Step = AR->getStepRecurrence(*SE); 212 213 // For expressions with negative step, the upper bound is ScStart and the 214 // lower bound is ScEnd. 215 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 216 if (CStep->getValue()->isNegative()) 217 std::swap(ScStart, ScEnd); 218 } else { 219 // Fallback case: the step is not constant, but we can still 220 // get the upper and lower bounds of the interval by using min/max 221 // expressions. 222 ScStart = SE->getUMinExpr(ScStart, ScEnd); 223 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 224 } 225 // Add the size of the pointed element to ScEnd. 226 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 227 Type *IdxTy = DL.getIndexType(Ptr->getType()); 228 const SCEV *EltSizeSCEV = 229 SE->getStoreSizeOfExpr(IdxTy, Ptr->getType()->getPointerElementType()); 230 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 231 } 232 233 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); 234 } 235 236 SmallVector<RuntimePointerCheck, 4> 237 RuntimePointerChecking::generateChecks() const { 238 SmallVector<RuntimePointerCheck, 4> Checks; 239 240 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 241 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 242 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 243 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 244 245 if (needsChecking(CGI, CGJ)) 246 Checks.push_back(std::make_pair(&CGI, &CGJ)); 247 } 248 } 249 return Checks; 250 } 251 252 void RuntimePointerChecking::generateChecks( 253 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 254 assert(Checks.empty() && "Checks is not empty"); 255 groupChecks(DepCands, UseDependencies); 256 Checks = generateChecks(); 257 } 258 259 bool RuntimePointerChecking::needsChecking( 260 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 261 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) 262 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) 263 if (needsChecking(M.Members[I], N.Members[J])) 264 return true; 265 return false; 266 } 267 268 /// Compare \p I and \p J and return the minimum. 269 /// Return nullptr in case we couldn't find an answer. 270 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 271 ScalarEvolution *SE) { 272 const SCEV *Diff = SE->getMinusSCEV(J, I); 273 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 274 275 if (!C) 276 return nullptr; 277 if (C->getValue()->isNegative()) 278 return J; 279 return I; 280 } 281 282 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index) { 283 const SCEV *Start = RtCheck.Pointers[Index].Start; 284 const SCEV *End = RtCheck.Pointers[Index].End; 285 286 // Compare the starts and ends with the known minimum and maximum 287 // of this set. We need to know how we compare against the min/max 288 // of the set in order to be able to emit memchecks. 289 const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); 290 if (!Min0) 291 return false; 292 293 const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); 294 if (!Min1) 295 return false; 296 297 // Update the low bound expression if we've found a new min value. 298 if (Min0 == Start) 299 Low = Start; 300 301 // Update the high bound expression if we've found a new max value. 302 if (Min1 != End) 303 High = End; 304 305 Members.push_back(Index); 306 return true; 307 } 308 309 void RuntimePointerChecking::groupChecks( 310 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 311 // We build the groups from dependency candidates equivalence classes 312 // because: 313 // - We know that pointers in the same equivalence class share 314 // the same underlying object and therefore there is a chance 315 // that we can compare pointers 316 // - We wouldn't be able to merge two pointers for which we need 317 // to emit a memcheck. The classes in DepCands are already 318 // conveniently built such that no two pointers in the same 319 // class need checking against each other. 320 321 // We use the following (greedy) algorithm to construct the groups 322 // For every pointer in the equivalence class: 323 // For each existing group: 324 // - if the difference between this pointer and the min/max bounds 325 // of the group is a constant, then make the pointer part of the 326 // group and update the min/max bounds of that group as required. 327 328 CheckingGroups.clear(); 329 330 // If we need to check two pointers to the same underlying object 331 // with a non-constant difference, we shouldn't perform any pointer 332 // grouping with those pointers. This is because we can easily get 333 // into cases where the resulting check would return false, even when 334 // the accesses are safe. 335 // 336 // The following example shows this: 337 // for (i = 0; i < 1000; ++i) 338 // a[5000 + i * m] = a[i] + a[i + 9000] 339 // 340 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 341 // (0, 10000) which is always false. However, if m is 1, there is no 342 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 343 // us to perform an accurate check in this case. 344 // 345 // The above case requires that we have an UnknownDependence between 346 // accesses to the same underlying object. This cannot happen unless 347 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 348 // is also false. In this case we will use the fallback path and create 349 // separate checking groups for all pointers. 350 351 // If we don't have the dependency partitions, construct a new 352 // checking pointer group for each pointer. This is also required 353 // for correctness, because in this case we can have checking between 354 // pointers to the same underlying object. 355 if (!UseDependencies) { 356 for (unsigned I = 0; I < Pointers.size(); ++I) 357 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 358 return; 359 } 360 361 unsigned TotalComparisons = 0; 362 363 DenseMap<Value *, unsigned> PositionMap; 364 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 365 PositionMap[Pointers[Index].PointerValue] = Index; 366 367 // We need to keep track of what pointers we've already seen so we 368 // don't process them twice. 369 SmallSet<unsigned, 2> Seen; 370 371 // Go through all equivalence classes, get the "pointer check groups" 372 // and add them to the overall solution. We use the order in which accesses 373 // appear in 'Pointers' to enforce determinism. 374 for (unsigned I = 0; I < Pointers.size(); ++I) { 375 // We've seen this pointer before, and therefore already processed 376 // its equivalence class. 377 if (Seen.count(I)) 378 continue; 379 380 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 381 Pointers[I].IsWritePtr); 382 383 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 384 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 385 386 // Because DepCands is constructed by visiting accesses in the order in 387 // which they appear in alias sets (which is deterministic) and the 388 // iteration order within an equivalence class member is only dependent on 389 // the order in which unions and insertions are performed on the 390 // equivalence class, the iteration order is deterministic. 391 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 392 MI != ME; ++MI) { 393 auto PointerI = PositionMap.find(MI->getPointer()); 394 assert(PointerI != PositionMap.end() && 395 "pointer in equivalence class not found in PositionMap"); 396 unsigned Pointer = PointerI->second; 397 bool Merged = false; 398 // Mark this pointer as seen. 399 Seen.insert(Pointer); 400 401 // Go through all the existing sets and see if we can find one 402 // which can include this pointer. 403 for (RuntimeCheckingPtrGroup &Group : Groups) { 404 // Don't perform more than a certain amount of comparisons. 405 // This should limit the cost of grouping the pointers to something 406 // reasonable. If we do end up hitting this threshold, the algorithm 407 // will create separate groups for all remaining pointers. 408 if (TotalComparisons > MemoryCheckMergeThreshold) 409 break; 410 411 TotalComparisons++; 412 413 if (Group.addPointer(Pointer)) { 414 Merged = true; 415 break; 416 } 417 } 418 419 if (!Merged) 420 // We couldn't add this pointer to any existing set or the threshold 421 // for the number of comparisons has been reached. Create a new group 422 // to hold the current pointer. 423 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 424 } 425 426 // We've computed the grouped checks for this partition. 427 // Save the results and continue with the next one. 428 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 429 } 430 } 431 432 bool RuntimePointerChecking::arePointersInSamePartition( 433 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 434 unsigned PtrIdx2) { 435 return (PtrToPartition[PtrIdx1] != -1 && 436 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 437 } 438 439 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 440 const PointerInfo &PointerI = Pointers[I]; 441 const PointerInfo &PointerJ = Pointers[J]; 442 443 // No need to check if two readonly pointers intersect. 444 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 445 return false; 446 447 // Only need to check pointers between two different dependency sets. 448 if (PointerI.DependencySetId == PointerJ.DependencySetId) 449 return false; 450 451 // Only need to check pointers in the same alias set. 452 if (PointerI.AliasSetId != PointerJ.AliasSetId) 453 return false; 454 455 return true; 456 } 457 458 void RuntimePointerChecking::printChecks( 459 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 460 unsigned Depth) const { 461 unsigned N = 0; 462 for (const auto &Check : Checks) { 463 const auto &First = Check.first->Members, &Second = Check.second->Members; 464 465 OS.indent(Depth) << "Check " << N++ << ":\n"; 466 467 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; 468 for (unsigned K = 0; K < First.size(); ++K) 469 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; 470 471 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; 472 for (unsigned K = 0; K < Second.size(); ++K) 473 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; 474 } 475 } 476 477 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 478 479 OS.indent(Depth) << "Run-time memory checks:\n"; 480 printChecks(OS, Checks, Depth); 481 482 OS.indent(Depth) << "Grouped accesses:\n"; 483 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 484 const auto &CG = CheckingGroups[I]; 485 486 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 487 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 488 << ")\n"; 489 for (unsigned J = 0; J < CG.Members.size(); ++J) { 490 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr 491 << "\n"; 492 } 493 } 494 } 495 496 namespace { 497 498 /// Analyses memory accesses in a loop. 499 /// 500 /// Checks whether run time pointer checks are needed and builds sets for data 501 /// dependence checking. 502 class AccessAnalysis { 503 public: 504 /// Read or write access location. 505 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 506 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 507 508 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 509 MemoryDepChecker::DepCandidates &DA, 510 PredicatedScalarEvolution &PSE) 511 : TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), 512 IsRTCheckAnalysisNeeded(false), PSE(PSE) {} 513 514 /// Register a load and whether it is only read from. 515 void addLoad(MemoryLocation &Loc, bool IsReadOnly) { 516 Value *Ptr = const_cast<Value*>(Loc.Ptr); 517 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 518 Accesses.insert(MemAccessInfo(Ptr, false)); 519 if (IsReadOnly) 520 ReadOnlyPtr.insert(Ptr); 521 } 522 523 /// Register a store. 524 void addStore(MemoryLocation &Loc) { 525 Value *Ptr = const_cast<Value*>(Loc.Ptr); 526 AST.add(Ptr, LocationSize::beforeOrAfterPointer(), Loc.AATags); 527 Accesses.insert(MemAccessInfo(Ptr, true)); 528 } 529 530 /// Check if we can emit a run-time no-alias check for \p Access. 531 /// 532 /// Returns true if we can emit a run-time no alias check for \p Access. 533 /// If we can check this access, this also adds it to a dependence set and 534 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 535 /// we will attempt to use additional run-time checks in order to get 536 /// the bounds of the pointer. 537 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 538 MemAccessInfo Access, 539 const ValueToValueMap &Strides, 540 DenseMap<Value *, unsigned> &DepSetId, 541 Loop *TheLoop, unsigned &RunningDepId, 542 unsigned ASId, bool ShouldCheckStride, 543 bool Assume); 544 545 /// Check whether we can check the pointers at runtime for 546 /// non-intersection. 547 /// 548 /// Returns true if we need no check or if we do and we can generate them 549 /// (i.e. the pointers have computable bounds). 550 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 551 Loop *TheLoop, const ValueToValueMap &Strides, 552 bool ShouldCheckWrap = false); 553 554 /// Goes over all memory accesses, checks whether a RT check is needed 555 /// and builds sets of dependent accesses. 556 void buildDependenceSets() { 557 processMemAccesses(); 558 } 559 560 /// Initial processing of memory accesses determined that we need to 561 /// perform dependency checking. 562 /// 563 /// Note that this can later be cleared if we retry memcheck analysis without 564 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 565 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 566 567 /// We decided that no dependence analysis would be used. Reset the state. 568 void resetDepChecks(MemoryDepChecker &DepChecker) { 569 CheckDeps.clear(); 570 DepChecker.clearDependences(); 571 } 572 573 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 574 575 private: 576 typedef SetVector<MemAccessInfo> PtrAccessSet; 577 578 /// Go over all memory access and check whether runtime pointer checks 579 /// are needed and build sets of dependency check candidates. 580 void processMemAccesses(); 581 582 /// Set of all accesses. 583 PtrAccessSet Accesses; 584 585 /// The loop being checked. 586 const Loop *TheLoop; 587 588 /// List of accesses that need a further dependence check. 589 MemAccessInfoList CheckDeps; 590 591 /// Set of pointers that are read only. 592 SmallPtrSet<Value*, 16> ReadOnlyPtr; 593 594 /// An alias set tracker to partition the access set by underlying object and 595 //intrinsic property (such as TBAA metadata). 596 AliasSetTracker AST; 597 598 LoopInfo *LI; 599 600 /// Sets of potentially dependent accesses - members of one set share an 601 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 602 /// dependence check. 603 MemoryDepChecker::DepCandidates &DepCands; 604 605 /// Initial processing of memory accesses determined that we may need 606 /// to add memchecks. Perform the analysis to determine the necessary checks. 607 /// 608 /// Note that, this is different from isDependencyCheckNeeded. When we retry 609 /// memcheck analysis without dependency checking 610 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 611 /// cleared while this remains set if we have potentially dependent accesses. 612 bool IsRTCheckAnalysisNeeded; 613 614 /// The SCEV predicate containing all the SCEV-related assumptions. 615 PredicatedScalarEvolution &PSE; 616 }; 617 618 } // end anonymous namespace 619 620 /// Check whether a pointer can participate in a runtime bounds check. 621 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 622 /// by adding run-time checks (overflow checks) if necessary. 623 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, 624 const ValueToValueMap &Strides, Value *Ptr, 625 Loop *L, bool Assume) { 626 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 627 628 // The bounds for loop-invariant pointer is trivial. 629 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 630 return true; 631 632 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 633 634 if (!AR && Assume) 635 AR = PSE.getAsAddRec(Ptr); 636 637 if (!AR) 638 return false; 639 640 return AR->isAffine(); 641 } 642 643 /// Check whether a pointer address cannot wrap. 644 static bool isNoWrap(PredicatedScalarEvolution &PSE, 645 const ValueToValueMap &Strides, Value *Ptr, Loop *L) { 646 const SCEV *PtrScev = PSE.getSCEV(Ptr); 647 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 648 return true; 649 650 int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); 651 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 652 return true; 653 654 return false; 655 } 656 657 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 658 MemAccessInfo Access, 659 const ValueToValueMap &StridesMap, 660 DenseMap<Value *, unsigned> &DepSetId, 661 Loop *TheLoop, unsigned &RunningDepId, 662 unsigned ASId, bool ShouldCheckWrap, 663 bool Assume) { 664 Value *Ptr = Access.getPointer(); 665 666 if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) 667 return false; 668 669 // When we run after a failing dependency check we have to make sure 670 // we don't have wrapping pointers. 671 if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { 672 auto *Expr = PSE.getSCEV(Ptr); 673 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 674 return false; 675 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 676 } 677 678 // The id of the dependence set. 679 unsigned DepId; 680 681 if (isDependencyCheckNeeded()) { 682 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 683 unsigned &LeaderId = DepSetId[Leader]; 684 if (!LeaderId) 685 LeaderId = RunningDepId++; 686 DepId = LeaderId; 687 } else 688 // Each access has its own dependence set. 689 DepId = RunningDepId++; 690 691 bool IsWrite = Access.getInt(); 692 RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); 693 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 694 695 return true; 696 } 697 698 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 699 ScalarEvolution *SE, Loop *TheLoop, 700 const ValueToValueMap &StridesMap, 701 bool ShouldCheckWrap) { 702 // Find pointers with computable bounds. We are going to use this information 703 // to place a runtime bound check. 704 bool CanDoRT = true; 705 706 bool MayNeedRTCheck = false; 707 if (!IsRTCheckAnalysisNeeded) return true; 708 709 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 710 711 // We assign a consecutive id to access from different alias sets. 712 // Accesses between different groups doesn't need to be checked. 713 unsigned ASId = 0; 714 for (auto &AS : AST) { 715 int NumReadPtrChecks = 0; 716 int NumWritePtrChecks = 0; 717 bool CanDoAliasSetRT = true; 718 ++ASId; 719 720 // We assign consecutive id to access from different dependence sets. 721 // Accesses within the same set don't need a runtime check. 722 unsigned RunningDepId = 1; 723 DenseMap<Value *, unsigned> DepSetId; 724 725 SmallVector<MemAccessInfo, 4> Retries; 726 727 // First, count how many write and read accesses are in the alias set. Also 728 // collect MemAccessInfos for later. 729 SmallVector<MemAccessInfo, 4> AccessInfos; 730 for (const auto &A : AS) { 731 Value *Ptr = A.getValue(); 732 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 733 734 if (IsWrite) 735 ++NumWritePtrChecks; 736 else 737 ++NumReadPtrChecks; 738 AccessInfos.emplace_back(Ptr, IsWrite); 739 } 740 741 // We do not need runtime checks for this alias set, if there are no writes 742 // or a single write and no reads. 743 if (NumWritePtrChecks == 0 || 744 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 745 assert((AS.size() <= 1 || 746 all_of(AS, 747 [this](auto AC) { 748 MemAccessInfo AccessWrite(AC.getValue(), true); 749 return DepCands.findValue(AccessWrite) == DepCands.end(); 750 })) && 751 "Can only skip updating CanDoRT below, if all entries in AS " 752 "are reads or there is at most 1 entry"); 753 continue; 754 } 755 756 for (auto &Access : AccessInfos) { 757 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, 758 RunningDepId, ASId, ShouldCheckWrap, false)) { 759 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 760 << *Access.getPointer() << '\n'); 761 Retries.push_back(Access); 762 CanDoAliasSetRT = false; 763 } 764 } 765 766 // Note that this function computes CanDoRT and MayNeedRTCheck 767 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 768 // we have a pointer for which we couldn't find the bounds but we don't 769 // actually need to emit any checks so it does not matter. 770 // 771 // We need runtime checks for this alias set, if there are at least 2 772 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 773 // any bound checks (because in that case the number of dependence sets is 774 // incomplete). 775 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 776 777 // We need to perform run-time alias checks, but some pointers had bounds 778 // that couldn't be checked. 779 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 780 // Reset the CanDoSetRt flag and retry all accesses that have failed. 781 // We know that we need these checks, so we can now be more aggressive 782 // and add further checks if required (overflow checks). 783 CanDoAliasSetRT = true; 784 for (auto Access : Retries) 785 if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, 786 TheLoop, RunningDepId, ASId, 787 ShouldCheckWrap, /*Assume=*/true)) { 788 CanDoAliasSetRT = false; 789 break; 790 } 791 } 792 793 CanDoRT &= CanDoAliasSetRT; 794 MayNeedRTCheck |= NeedsAliasSetRTCheck; 795 ++ASId; 796 } 797 798 // If the pointers that we would use for the bounds comparison have different 799 // address spaces, assume the values aren't directly comparable, so we can't 800 // use them for the runtime check. We also have to assume they could 801 // overlap. In the future there should be metadata for whether address spaces 802 // are disjoint. 803 unsigned NumPointers = RtCheck.Pointers.size(); 804 for (unsigned i = 0; i < NumPointers; ++i) { 805 for (unsigned j = i + 1; j < NumPointers; ++j) { 806 // Only need to check pointers between two different dependency sets. 807 if (RtCheck.Pointers[i].DependencySetId == 808 RtCheck.Pointers[j].DependencySetId) 809 continue; 810 // Only need to check pointers in the same alias set. 811 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 812 continue; 813 814 Value *PtrI = RtCheck.Pointers[i].PointerValue; 815 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 816 817 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 818 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 819 if (ASi != ASj) { 820 LLVM_DEBUG( 821 dbgs() << "LAA: Runtime check would require comparison between" 822 " different address spaces\n"); 823 return false; 824 } 825 } 826 } 827 828 if (MayNeedRTCheck && CanDoRT) 829 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 830 831 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 832 << " pointer comparisons.\n"); 833 834 // If we can do run-time checks, but there are no checks, no runtime checks 835 // are needed. This can happen when all pointers point to the same underlying 836 // object for example. 837 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 838 839 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 840 if (!CanDoRTIfNeeded) 841 RtCheck.reset(); 842 return CanDoRTIfNeeded; 843 } 844 845 void AccessAnalysis::processMemAccesses() { 846 // We process the set twice: first we process read-write pointers, last we 847 // process read-only pointers. This allows us to skip dependence tests for 848 // read-only pointers. 849 850 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 851 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 852 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 853 LLVM_DEBUG({ 854 for (auto A : Accesses) 855 dbgs() << "\t" << *A.getPointer() << " (" << 856 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 857 "read-only" : "read")) << ")\n"; 858 }); 859 860 // The AliasSetTracker has nicely partitioned our pointers by metadata 861 // compatibility and potential for underlying-object overlap. As a result, we 862 // only need to check for potential pointer dependencies within each alias 863 // set. 864 for (const auto &AS : AST) { 865 // Note that both the alias-set tracker and the alias sets themselves used 866 // linked lists internally and so the iteration order here is deterministic 867 // (matching the original instruction order within each set). 868 869 bool SetHasWrite = false; 870 871 // Map of pointers to last access encountered. 872 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 873 UnderlyingObjToAccessMap ObjToLastAccess; 874 875 // Set of access to check after all writes have been processed. 876 PtrAccessSet DeferredAccesses; 877 878 // Iterate over each alias set twice, once to process read/write pointers, 879 // and then to process read-only pointers. 880 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 881 bool UseDeferred = SetIteration > 0; 882 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 883 884 for (const auto &AV : AS) { 885 Value *Ptr = AV.getValue(); 886 887 // For a single memory access in AliasSetTracker, Accesses may contain 888 // both read and write, and they both need to be handled for CheckDeps. 889 for (const auto &AC : S) { 890 if (AC.getPointer() != Ptr) 891 continue; 892 893 bool IsWrite = AC.getInt(); 894 895 // If we're using the deferred access set, then it contains only 896 // reads. 897 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 898 if (UseDeferred && !IsReadOnlyPtr) 899 continue; 900 // Otherwise, the pointer must be in the PtrAccessSet, either as a 901 // read or a write. 902 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 903 S.count(MemAccessInfo(Ptr, false))) && 904 "Alias-set pointer not in the access set?"); 905 906 MemAccessInfo Access(Ptr, IsWrite); 907 DepCands.insert(Access); 908 909 // Memorize read-only pointers for later processing and skip them in 910 // the first round (they need to be checked after we have seen all 911 // write pointers). Note: we also mark pointer that are not 912 // consecutive as "read-only" pointers (so that we check 913 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 914 if (!UseDeferred && IsReadOnlyPtr) { 915 DeferredAccesses.insert(Access); 916 continue; 917 } 918 919 // If this is a write - check other reads and writes for conflicts. If 920 // this is a read only check other writes for conflicts (but only if 921 // there is no other write to the ptr - this is an optimization to 922 // catch "a[i] = a[i] + " without having to do a dependence check). 923 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 924 CheckDeps.push_back(Access); 925 IsRTCheckAnalysisNeeded = true; 926 } 927 928 if (IsWrite) 929 SetHasWrite = true; 930 931 // Create sets of pointers connected by a shared alias set and 932 // underlying object. 933 typedef SmallVector<const Value *, 16> ValueVector; 934 ValueVector TempObjects; 935 936 getUnderlyingObjects(Ptr, TempObjects, LI); 937 LLVM_DEBUG(dbgs() 938 << "Underlying objects for pointer " << *Ptr << "\n"); 939 for (const Value *UnderlyingObj : TempObjects) { 940 // nullptr never alias, don't join sets for pointer that have "null" 941 // in their UnderlyingObjects list. 942 if (isa<ConstantPointerNull>(UnderlyingObj) && 943 !NullPointerIsDefined( 944 TheLoop->getHeader()->getParent(), 945 UnderlyingObj->getType()->getPointerAddressSpace())) 946 continue; 947 948 UnderlyingObjToAccessMap::iterator Prev = 949 ObjToLastAccess.find(UnderlyingObj); 950 if (Prev != ObjToLastAccess.end()) 951 DepCands.unionSets(Access, Prev->second); 952 953 ObjToLastAccess[UnderlyingObj] = Access; 954 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 955 } 956 } 957 } 958 } 959 } 960 } 961 962 static bool isInBoundsGep(Value *Ptr) { 963 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 964 return GEP->isInBounds(); 965 return false; 966 } 967 968 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 969 /// i.e. monotonically increasing/decreasing. 970 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 971 PredicatedScalarEvolution &PSE, const Loop *L) { 972 // FIXME: This should probably only return true for NUW. 973 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 974 return true; 975 976 // Scalar evolution does not propagate the non-wrapping flags to values that 977 // are derived from a non-wrapping induction variable because non-wrapping 978 // could be flow-sensitive. 979 // 980 // Look through the potentially overflowing instruction to try to prove 981 // non-wrapping for the *specific* value of Ptr. 982 983 // The arithmetic implied by an inbounds GEP can't overflow. 984 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 985 if (!GEP || !GEP->isInBounds()) 986 return false; 987 988 // Make sure there is only one non-const index and analyze that. 989 Value *NonConstIndex = nullptr; 990 for (Value *Index : GEP->indices()) 991 if (!isa<ConstantInt>(Index)) { 992 if (NonConstIndex) 993 return false; 994 NonConstIndex = Index; 995 } 996 if (!NonConstIndex) 997 // The recurrence is on the pointer, ignore for now. 998 return false; 999 1000 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1001 // AddRec using a NSW operation. 1002 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1003 if (OBO->hasNoSignedWrap() && 1004 // Assume constant for other the operand so that the AddRec can be 1005 // easily found. 1006 isa<ConstantInt>(OBO->getOperand(1))) { 1007 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1008 1009 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1010 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1011 } 1012 1013 return false; 1014 } 1015 1016 /// Check whether the access through \p Ptr has a constant stride. 1017 int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, 1018 const Loop *Lp, const ValueToValueMap &StridesMap, 1019 bool Assume, bool ShouldCheckWrap) { 1020 Type *Ty = Ptr->getType(); 1021 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1022 1023 // Make sure that the pointer does not point to aggregate types. 1024 auto *PtrTy = cast<PointerType>(Ty); 1025 if (PtrTy->getElementType()->isAggregateType()) { 1026 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" 1027 << *Ptr << "\n"); 1028 return 0; 1029 } 1030 1031 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1032 1033 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1034 if (Assume && !AR) 1035 AR = PSE.getAsAddRec(Ptr); 1036 1037 if (!AR) { 1038 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1039 << " SCEV: " << *PtrScev << "\n"); 1040 return 0; 1041 } 1042 1043 // The access function must stride over the innermost loop. 1044 if (Lp != AR->getLoop()) { 1045 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1046 << *Ptr << " SCEV: " << *AR << "\n"); 1047 return 0; 1048 } 1049 1050 // The address calculation must not wrap. Otherwise, a dependence could be 1051 // inverted. 1052 // An inbounds getelementptr that is a AddRec with a unit stride 1053 // cannot wrap per definition. The unit stride requirement is checked later. 1054 // An getelementptr without an inbounds attribute and unit stride would have 1055 // to access the pointer value "0" which is undefined behavior in address 1056 // space 0, therefore we can also vectorize this case. 1057 bool IsInBoundsGEP = isInBoundsGep(Ptr); 1058 bool IsNoWrapAddRec = !ShouldCheckWrap || 1059 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || 1060 isNoWrapAddRec(Ptr, AR, PSE, Lp); 1061 if (!IsNoWrapAddRec && !IsInBoundsGEP && 1062 NullPointerIsDefined(Lp->getHeader()->getParent(), 1063 PtrTy->getAddressSpace())) { 1064 if (Assume) { 1065 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1066 IsNoWrapAddRec = true; 1067 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" 1068 << "LAA: Pointer: " << *Ptr << "\n" 1069 << "LAA: SCEV: " << *AR << "\n" 1070 << "LAA: Added an overflow assumption\n"); 1071 } else { 1072 LLVM_DEBUG( 1073 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1074 << *Ptr << " SCEV: " << *AR << "\n"); 1075 return 0; 1076 } 1077 } 1078 1079 // Check the step is constant. 1080 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1081 1082 // Calculate the pointer stride and check if it is constant. 1083 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1084 if (!C) { 1085 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1086 << " SCEV: " << *AR << "\n"); 1087 return 0; 1088 } 1089 1090 auto &DL = Lp->getHeader()->getModule()->getDataLayout(); 1091 int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 1092 const APInt &APStepVal = C->getAPInt(); 1093 1094 // Huge step value - give up. 1095 if (APStepVal.getBitWidth() > 64) 1096 return 0; 1097 1098 int64_t StepVal = APStepVal.getSExtValue(); 1099 1100 // Strided access. 1101 int64_t Stride = StepVal / Size; 1102 int64_t Rem = StepVal % Size; 1103 if (Rem) 1104 return 0; 1105 1106 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 1107 // know we can't "wrap around the address space". In case of address space 1108 // zero we know that this won't happen without triggering undefined behavior. 1109 if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && 1110 (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), 1111 PtrTy->getAddressSpace()))) { 1112 if (Assume) { 1113 // We can avoid this case by adding a run-time check. 1114 LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " 1115 << "inbounds or in address space 0 may wrap:\n" 1116 << "LAA: Pointer: " << *Ptr << "\n" 1117 << "LAA: SCEV: " << *AR << "\n" 1118 << "LAA: Added an overflow assumption\n"); 1119 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1120 } else 1121 return 0; 1122 } 1123 1124 return Stride; 1125 } 1126 1127 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, 1128 ScalarEvolution &SE, 1129 SmallVectorImpl<unsigned> &SortedIndices) { 1130 assert(llvm::all_of( 1131 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1132 "Expected list of pointer operands."); 1133 SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; 1134 OffValPairs.reserve(VL.size()); 1135 1136 // Walk over the pointers, and map each of them to an offset relative to 1137 // first pointer in the array. 1138 Value *Ptr0 = VL[0]; 1139 const SCEV *Scev0 = SE.getSCEV(Ptr0); 1140 Value *Obj0 = getUnderlyingObject(Ptr0); 1141 1142 llvm::SmallSet<int64_t, 4> Offsets; 1143 for (auto *Ptr : VL) { 1144 // TODO: Outline this code as a special, more time consuming, version of 1145 // computeConstantDifference() function. 1146 if (Ptr->getType()->getPointerAddressSpace() != 1147 Ptr0->getType()->getPointerAddressSpace()) 1148 return false; 1149 // If a pointer refers to a different underlying object, bail - the 1150 // pointers are by definition incomparable. 1151 Value *CurrObj = getUnderlyingObject(Ptr); 1152 if (CurrObj != Obj0) 1153 return false; 1154 1155 const SCEV *Scev = SE.getSCEV(Ptr); 1156 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); 1157 // The pointers may not have a constant offset from each other, or SCEV 1158 // may just not be smart enough to figure out they do. Regardless, 1159 // there's nothing we can do. 1160 if (!Diff) 1161 return false; 1162 1163 // Check if the pointer with the same offset is found. 1164 int64_t Offset = Diff->getAPInt().getSExtValue(); 1165 if (!Offsets.insert(Offset).second) 1166 return false; 1167 OffValPairs.emplace_back(Offset, Ptr); 1168 } 1169 SortedIndices.clear(); 1170 SortedIndices.resize(VL.size()); 1171 std::iota(SortedIndices.begin(), SortedIndices.end(), 0); 1172 1173 // Sort the memory accesses and keep the order of their uses in UseOrder. 1174 llvm::stable_sort(SortedIndices, [&](unsigned Left, unsigned Right) { 1175 return OffValPairs[Left].first < OffValPairs[Right].first; 1176 }); 1177 1178 // Check if the order is consecutive already. 1179 if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { 1180 return I == SortedIndices[I]; 1181 })) 1182 SortedIndices.clear(); 1183 1184 return true; 1185 } 1186 1187 /// Take the address space operand from the Load/Store instruction. 1188 /// Returns -1 if this is not a valid Load/Store instruction. 1189 static unsigned getAddressSpaceOperand(Value *I) { 1190 if (LoadInst *L = dyn_cast<LoadInst>(I)) 1191 return L->getPointerAddressSpace(); 1192 if (StoreInst *S = dyn_cast<StoreInst>(I)) 1193 return S->getPointerAddressSpace(); 1194 return -1; 1195 } 1196 1197 /// Returns true if the memory operations \p A and \p B are consecutive. 1198 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1199 ScalarEvolution &SE, bool CheckType) { 1200 Value *PtrA = getLoadStorePointerOperand(A); 1201 Value *PtrB = getLoadStorePointerOperand(B); 1202 unsigned ASA = getAddressSpaceOperand(A); 1203 unsigned ASB = getAddressSpaceOperand(B); 1204 1205 // Check that the address spaces match and that the pointers are valid. 1206 if (!PtrA || !PtrB || (ASA != ASB)) 1207 return false; 1208 1209 // Make sure that A and B are different pointers. 1210 if (PtrA == PtrB) 1211 return false; 1212 1213 // Make sure that A and B have the same type if required. 1214 if (CheckType && PtrA->getType() != PtrB->getType()) 1215 return false; 1216 1217 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1218 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); 1219 1220 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1221 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1222 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1223 1224 // Retrieve the address space again as pointer stripping now tracks through 1225 // `addrspacecast`. 1226 ASA = cast<PointerType>(PtrA->getType())->getAddressSpace(); 1227 ASB = cast<PointerType>(PtrB->getType())->getAddressSpace(); 1228 // Check that the address spaces match and that the pointers are valid. 1229 if (ASA != ASB) 1230 return false; 1231 1232 IdxWidth = DL.getIndexSizeInBits(ASA); 1233 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1234 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1235 1236 APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); 1237 1238 // OffsetDelta = OffsetB - OffsetA; 1239 const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); 1240 const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); 1241 const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); 1242 const APInt &OffsetDelta = cast<SCEVConstant>(OffsetDeltaSCEV)->getAPInt(); 1243 1244 // Check if they are based on the same pointer. That makes the offsets 1245 // sufficient. 1246 if (PtrA == PtrB) 1247 return OffsetDelta == Size; 1248 1249 // Compute the necessary base pointer delta to have the necessary final delta 1250 // equal to the size. 1251 // BaseDelta = Size - OffsetDelta; 1252 const SCEV *SizeSCEV = SE.getConstant(Size); 1253 const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); 1254 1255 // Otherwise compute the distance with SCEV between the base pointers. 1256 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1257 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1258 const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); 1259 return X == PtrSCEVB; 1260 } 1261 1262 MemoryDepChecker::VectorizationSafetyStatus 1263 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1264 switch (Type) { 1265 case NoDep: 1266 case Forward: 1267 case BackwardVectorizable: 1268 return VectorizationSafetyStatus::Safe; 1269 1270 case Unknown: 1271 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1272 case ForwardButPreventsForwarding: 1273 case Backward: 1274 case BackwardVectorizableButPreventsForwarding: 1275 return VectorizationSafetyStatus::Unsafe; 1276 } 1277 llvm_unreachable("unexpected DepType!"); 1278 } 1279 1280 bool MemoryDepChecker::Dependence::isBackward() const { 1281 switch (Type) { 1282 case NoDep: 1283 case Forward: 1284 case ForwardButPreventsForwarding: 1285 case Unknown: 1286 return false; 1287 1288 case BackwardVectorizable: 1289 case Backward: 1290 case BackwardVectorizableButPreventsForwarding: 1291 return true; 1292 } 1293 llvm_unreachable("unexpected DepType!"); 1294 } 1295 1296 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1297 return isBackward() || Type == Unknown; 1298 } 1299 1300 bool MemoryDepChecker::Dependence::isForward() const { 1301 switch (Type) { 1302 case Forward: 1303 case ForwardButPreventsForwarding: 1304 return true; 1305 1306 case NoDep: 1307 case Unknown: 1308 case BackwardVectorizable: 1309 case Backward: 1310 case BackwardVectorizableButPreventsForwarding: 1311 return false; 1312 } 1313 llvm_unreachable("unexpected DepType!"); 1314 } 1315 1316 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1317 uint64_t TypeByteSize) { 1318 // If loads occur at a distance that is not a multiple of a feasible vector 1319 // factor store-load forwarding does not take place. 1320 // Positive dependences might cause troubles because vectorizing them might 1321 // prevent store-load forwarding making vectorized code run a lot slower. 1322 // a[i] = a[i-3] ^ a[i-8]; 1323 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1324 // hence on your typical architecture store-load forwarding does not take 1325 // place. Vectorizing in such cases does not make sense. 1326 // Store-load forwarding distance. 1327 1328 // After this many iterations store-to-load forwarding conflicts should not 1329 // cause any slowdowns. 1330 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1331 // Maximum vector factor. 1332 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1333 VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); 1334 1335 // Compute the smallest VF at which the store and load would be misaligned. 1336 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1337 VF *= 2) { 1338 // If the number of vector iteration between the store and the load are 1339 // small we could incur conflicts. 1340 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1341 MaxVFWithoutSLForwardIssues = (VF >> 1); 1342 break; 1343 } 1344 } 1345 1346 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1347 LLVM_DEBUG( 1348 dbgs() << "LAA: Distance " << Distance 1349 << " that could cause a store-load forwarding conflict\n"); 1350 return true; 1351 } 1352 1353 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 1354 MaxVFWithoutSLForwardIssues != 1355 VectorizerParams::MaxVectorWidth * TypeByteSize) 1356 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 1357 return false; 1358 } 1359 1360 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1361 if (Status < S) 1362 Status = S; 1363 } 1364 1365 /// Given a non-constant (unknown) dependence-distance \p Dist between two 1366 /// memory accesses, that have the same stride whose absolute value is given 1367 /// in \p Stride, and that have the same type size \p TypeByteSize, 1368 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is 1369 /// possible to prove statically that the dependence distance is larger 1370 /// than the range that the accesses will travel through the execution of 1371 /// the loop. If so, return true; false otherwise. This is useful for 1372 /// example in loops such as the following (PR31098): 1373 /// for (i = 0; i < D; ++i) { 1374 /// = out[i]; 1375 /// out[i+D] = 1376 /// } 1377 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1378 const SCEV &BackedgeTakenCount, 1379 const SCEV &Dist, uint64_t Stride, 1380 uint64_t TypeByteSize) { 1381 1382 // If we can prove that 1383 // (**) |Dist| > BackedgeTakenCount * Step 1384 // where Step is the absolute stride of the memory accesses in bytes, 1385 // then there is no dependence. 1386 // 1387 // Rationale: 1388 // We basically want to check if the absolute distance (|Dist/Step|) 1389 // is >= the loop iteration count (or > BackedgeTakenCount). 1390 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1391 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1392 // that the dependence distance is >= VF; This is checked elsewhere. 1393 // But in some cases we can prune unknown dependence distances early, and 1394 // even before selecting the VF, and without a runtime test, by comparing 1395 // the distance against the loop iteration count. Since the vectorized code 1396 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1397 // also guarantees that distance >= VF. 1398 // 1399 const uint64_t ByteStride = Stride * TypeByteSize; 1400 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); 1401 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); 1402 1403 const SCEV *CastedDist = &Dist; 1404 const SCEV *CastedProduct = Product; 1405 uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); 1406 uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); 1407 1408 // The dependence distance can be positive/negative, so we sign extend Dist; 1409 // The multiplication of the absolute stride in bytes and the 1410 // backedgeTakenCount is non-negative, so we zero extend Product. 1411 if (DistTypeSize > ProductTypeSize) 1412 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1413 else 1414 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1415 1416 // Is Dist - (BackedgeTakenCount * Step) > 0 ? 1417 // (If so, then we have proven (**) because |Dist| >= Dist) 1418 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1419 if (SE.isKnownPositive(Minus)) 1420 return true; 1421 1422 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ? 1423 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1424 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1425 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1426 if (SE.isKnownPositive(Minus)) 1427 return true; 1428 1429 return false; 1430 } 1431 1432 /// Check the dependence for two accesses with the same stride \p Stride. 1433 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1434 /// bytes. 1435 /// 1436 /// \returns true if they are independent. 1437 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1438 uint64_t TypeByteSize) { 1439 assert(Stride > 1 && "The stride must be greater than 1"); 1440 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1441 assert(Distance > 0 && "The distance must be non-zero"); 1442 1443 // Skip if the distance is not multiple of type byte size. 1444 if (Distance % TypeByteSize) 1445 return false; 1446 1447 uint64_t ScaledDist = Distance / TypeByteSize; 1448 1449 // No dependence if the scaled distance is not multiple of the stride. 1450 // E.g. 1451 // for (i = 0; i < 1024 ; i += 4) 1452 // A[i+2] = A[i] + 1; 1453 // 1454 // Two accesses in memory (scaled distance is 2, stride is 4): 1455 // | A[0] | | | | A[4] | | | | 1456 // | | | A[2] | | | | A[6] | | 1457 // 1458 // E.g. 1459 // for (i = 0; i < 1024 ; i += 3) 1460 // A[i+4] = A[i] + 1; 1461 // 1462 // Two accesses in memory (scaled distance is 4, stride is 3): 1463 // | A[0] | | | A[3] | | | A[6] | | | 1464 // | | | | | A[4] | | | A[7] | | 1465 return ScaledDist % Stride; 1466 } 1467 1468 MemoryDepChecker::Dependence::DepType 1469 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 1470 const MemAccessInfo &B, unsigned BIdx, 1471 const ValueToValueMap &Strides) { 1472 assert (AIdx < BIdx && "Must pass arguments in program order"); 1473 1474 Value *APtr = A.getPointer(); 1475 Value *BPtr = B.getPointer(); 1476 bool AIsWrite = A.getInt(); 1477 bool BIsWrite = B.getInt(); 1478 1479 // Two reads are independent. 1480 if (!AIsWrite && !BIsWrite) 1481 return Dependence::NoDep; 1482 1483 // We cannot check pointers in different address spaces. 1484 if (APtr->getType()->getPointerAddressSpace() != 1485 BPtr->getType()->getPointerAddressSpace()) 1486 return Dependence::Unknown; 1487 1488 int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); 1489 int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); 1490 1491 const SCEV *Src = PSE.getSCEV(APtr); 1492 const SCEV *Sink = PSE.getSCEV(BPtr); 1493 1494 // If the induction step is negative we have to invert source and sink of the 1495 // dependence. 1496 if (StrideAPtr < 0) { 1497 std::swap(APtr, BPtr); 1498 std::swap(Src, Sink); 1499 std::swap(AIsWrite, BIsWrite); 1500 std::swap(AIdx, BIdx); 1501 std::swap(StrideAPtr, StrideBPtr); 1502 } 1503 1504 const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); 1505 1506 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1507 << "(Induction step: " << StrideAPtr << ")\n"); 1508 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " 1509 << *InstMap[BIdx] << ": " << *Dist << "\n"); 1510 1511 // Need accesses with constant stride. We don't want to vectorize 1512 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 1513 // the address space. 1514 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 1515 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1516 return Dependence::Unknown; 1517 } 1518 1519 Type *ATy = APtr->getType()->getPointerElementType(); 1520 Type *BTy = BPtr->getType()->getPointerElementType(); 1521 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); 1522 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1523 uint64_t Stride = std::abs(StrideAPtr); 1524 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 1525 if (!C) { 1526 if (TypeByteSize == DL.getTypeAllocSize(BTy) && 1527 isSafeDependenceDistance(DL, *(PSE.getSE()), 1528 *(PSE.getBackedgeTakenCount()), *Dist, Stride, 1529 TypeByteSize)) 1530 return Dependence::NoDep; 1531 1532 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); 1533 FoundNonConstantDistanceDependence = true; 1534 return Dependence::Unknown; 1535 } 1536 1537 const APInt &Val = C->getAPInt(); 1538 int64_t Distance = Val.getSExtValue(); 1539 1540 // Attempt to prove strided accesses independent. 1541 if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && 1542 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { 1543 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 1544 return Dependence::NoDep; 1545 } 1546 1547 // Negative distances are not plausible dependencies. 1548 if (Val.isNegative()) { 1549 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 1550 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1551 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 1552 ATy != BTy)) { 1553 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 1554 return Dependence::ForwardButPreventsForwarding; 1555 } 1556 1557 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 1558 return Dependence::Forward; 1559 } 1560 1561 // Write to the same location with the same size. 1562 // Could be improved to assert type sizes are the same (i32 == float, etc). 1563 if (Val == 0) { 1564 if (ATy == BTy) 1565 return Dependence::Forward; 1566 LLVM_DEBUG( 1567 dbgs() << "LAA: Zero dependence difference but different types\n"); 1568 return Dependence::Unknown; 1569 } 1570 1571 assert(Val.isStrictlyPositive() && "Expect a positive value"); 1572 1573 if (ATy != BTy) { 1574 LLVM_DEBUG( 1575 dbgs() 1576 << "LAA: ReadWrite-Write positive dependency with different types\n"); 1577 return Dependence::Unknown; 1578 } 1579 1580 // Bail out early if passed-in parameters make vectorization not feasible. 1581 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 1582 VectorizerParams::VectorizationFactor : 1); 1583 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 1584 VectorizerParams::VectorizationInterleave : 1); 1585 // The minimum number of iterations for a vectorized/unrolled version. 1586 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 1587 1588 // It's not vectorizable if the distance is smaller than the minimum distance 1589 // needed for a vectroized/unrolled version. Vectorizing one iteration in 1590 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 1591 // TypeByteSize (No need to plus the last gap distance). 1592 // 1593 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1594 // foo(int *A) { 1595 // int *B = (int *)((char *)A + 14); 1596 // for (i = 0 ; i < 1024 ; i += 2) 1597 // B[i] = A[i] + 1; 1598 // } 1599 // 1600 // Two accesses in memory (stride is 2): 1601 // | A[0] | | A[2] | | A[4] | | A[6] | | 1602 // | B[0] | | B[2] | | B[4] | 1603 // 1604 // Distance needs for vectorizing iterations except the last iteration: 1605 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. 1606 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 1607 // 1608 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 1609 // 12, which is less than distance. 1610 // 1611 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 1612 // the minimum distance needed is 28, which is greater than distance. It is 1613 // not safe to do vectorization. 1614 uint64_t MinDistanceNeeded = 1615 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; 1616 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { 1617 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " 1618 << Distance << '\n'); 1619 return Dependence::Backward; 1620 } 1621 1622 // Unsafe if the minimum distance needed is greater than max safe distance. 1623 if (MinDistanceNeeded > MaxSafeDepDistBytes) { 1624 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 1625 << MinDistanceNeeded << " size in bytes"); 1626 return Dependence::Backward; 1627 } 1628 1629 // Positive distance bigger than max vectorization factor. 1630 // FIXME: Should use max factor instead of max distance in bytes, which could 1631 // not handle different types. 1632 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 1633 // void foo (int *A, char *B) { 1634 // for (unsigned i = 0; i < 1024; i++) { 1635 // A[i+2] = A[i] + 1; 1636 // B[i+2] = B[i] + 1; 1637 // } 1638 // } 1639 // 1640 // This case is currently unsafe according to the max safe distance. If we 1641 // analyze the two accesses on array B, the max safe dependence distance 1642 // is 2. Then we analyze the accesses on array A, the minimum distance needed 1643 // is 8, which is less than 2 and forbidden vectorization, But actually 1644 // both A and B could be vectorized by 2 iterations. 1645 MaxSafeDepDistBytes = 1646 std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); 1647 1648 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 1649 if (IsTrueDataDependence && EnableForwardingConflictDetection && 1650 couldPreventStoreLoadForward(Distance, TypeByteSize)) 1651 return Dependence::BackwardVectorizableButPreventsForwarding; 1652 1653 uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); 1654 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() 1655 << " with max VF = " << MaxVF << '\n'); 1656 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 1657 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 1658 return Dependence::BackwardVectorizable; 1659 } 1660 1661 bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, 1662 MemAccessInfoList &CheckDeps, 1663 const ValueToValueMap &Strides) { 1664 1665 MaxSafeDepDistBytes = -1; 1666 SmallPtrSet<MemAccessInfo, 8> Visited; 1667 for (MemAccessInfo CurAccess : CheckDeps) { 1668 if (Visited.count(CurAccess)) 1669 continue; 1670 1671 // Get the relevant memory access set. 1672 EquivalenceClasses<MemAccessInfo>::iterator I = 1673 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 1674 1675 // Check accesses within this set. 1676 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 1677 AccessSets.member_begin(I); 1678 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 1679 AccessSets.member_end(); 1680 1681 // Check every access pair. 1682 while (AI != AE) { 1683 Visited.insert(*AI); 1684 bool AIIsWrite = AI->getInt(); 1685 // Check loads only against next equivalent class, but stores also against 1686 // other stores in the same equivalence class - to the same address. 1687 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 1688 (AIIsWrite ? AI : std::next(AI)); 1689 while (OI != AE) { 1690 // Check every accessing instruction pair in program order. 1691 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 1692 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 1693 // Scan all accesses of another equivalence class, but only the next 1694 // accesses of the same equivalent class. 1695 for (std::vector<unsigned>::iterator 1696 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 1697 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 1698 I2 != I2E; ++I2) { 1699 auto A = std::make_pair(&*AI, *I1); 1700 auto B = std::make_pair(&*OI, *I2); 1701 1702 assert(*I1 != *I2); 1703 if (*I1 > *I2) 1704 std::swap(A, B); 1705 1706 Dependence::DepType Type = 1707 isDependent(*A.first, A.second, *B.first, B.second, Strides); 1708 mergeInStatus(Dependence::isSafeForVectorization(Type)); 1709 1710 // Gather dependences unless we accumulated MaxDependences 1711 // dependences. In that case return as soon as we find the first 1712 // unsafe dependence. This puts a limit on this quadratic 1713 // algorithm. 1714 if (RecordDependences) { 1715 if (Type != Dependence::NoDep) 1716 Dependences.push_back(Dependence(A.second, B.second, Type)); 1717 1718 if (Dependences.size() >= MaxDependences) { 1719 RecordDependences = false; 1720 Dependences.clear(); 1721 LLVM_DEBUG(dbgs() 1722 << "Too many dependences, stopped recording\n"); 1723 } 1724 } 1725 if (!RecordDependences && !isSafeForVectorization()) 1726 return false; 1727 } 1728 ++OI; 1729 } 1730 AI++; 1731 } 1732 } 1733 1734 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 1735 return isSafeForVectorization(); 1736 } 1737 1738 SmallVector<Instruction *, 4> 1739 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { 1740 MemAccessInfo Access(Ptr, isWrite); 1741 auto &IndexVector = Accesses.find(Access)->second; 1742 1743 SmallVector<Instruction *, 4> Insts; 1744 transform(IndexVector, 1745 std::back_inserter(Insts), 1746 [&](unsigned Idx) { return this->InstMap[Idx]; }); 1747 return Insts; 1748 } 1749 1750 const char *MemoryDepChecker::Dependence::DepName[] = { 1751 "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", 1752 "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; 1753 1754 void MemoryDepChecker::Dependence::print( 1755 raw_ostream &OS, unsigned Depth, 1756 const SmallVectorImpl<Instruction *> &Instrs) const { 1757 OS.indent(Depth) << DepName[Type] << ":\n"; 1758 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 1759 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 1760 } 1761 1762 bool LoopAccessInfo::canAnalyzeLoop() { 1763 // We need to have a loop header. 1764 LLVM_DEBUG(dbgs() << "LAA: Found a loop in " 1765 << TheLoop->getHeader()->getParent()->getName() << ": " 1766 << TheLoop->getHeader()->getName() << '\n'); 1767 1768 // We can only analyze innermost loops. 1769 if (!TheLoop->isInnermost()) { 1770 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 1771 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 1772 return false; 1773 } 1774 1775 // We must have a single backedge. 1776 if (TheLoop->getNumBackEdges() != 1) { 1777 LLVM_DEBUG( 1778 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 1779 recordAnalysis("CFGNotUnderstood") 1780 << "loop control flow is not understood by analyzer"; 1781 return false; 1782 } 1783 1784 // ScalarEvolution needs to be able to find the exit count. 1785 const SCEV *ExitCount = PSE->getBackedgeTakenCount(); 1786 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1787 recordAnalysis("CantComputeNumberOfIterations") 1788 << "could not determine number of loop iterations"; 1789 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 1790 return false; 1791 } 1792 1793 return true; 1794 } 1795 1796 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 1797 const TargetLibraryInfo *TLI, 1798 DominatorTree *DT) { 1799 typedef SmallPtrSet<Value*, 16> ValueSet; 1800 1801 // Holds the Load and Store instructions. 1802 SmallVector<LoadInst *, 16> Loads; 1803 SmallVector<StoreInst *, 16> Stores; 1804 1805 // Holds all the different accesses in the loop. 1806 unsigned NumReads = 0; 1807 unsigned NumReadWrites = 0; 1808 1809 bool HasComplexMemInst = false; 1810 1811 // A runtime check is only legal to insert if there are no convergent calls. 1812 HasConvergentOp = false; 1813 1814 PtrRtChecking->Pointers.clear(); 1815 PtrRtChecking->Need = false; 1816 1817 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 1818 1819 const bool EnableMemAccessVersioningOfLoop = 1820 EnableMemAccessVersioning && 1821 !TheLoop->getHeader()->getParent()->hasOptSize(); 1822 1823 // For each block. 1824 for (BasicBlock *BB : TheLoop->blocks()) { 1825 // Scan the BB and collect legal loads and stores. Also detect any 1826 // convergent instructions. 1827 for (Instruction &I : *BB) { 1828 if (auto *Call = dyn_cast<CallBase>(&I)) { 1829 if (Call->isConvergent()) 1830 HasConvergentOp = true; 1831 } 1832 1833 // With both a non-vectorizable memory instruction and a convergent 1834 // operation, found in this loop, no reason to continue the search. 1835 if (HasComplexMemInst && HasConvergentOp) { 1836 CanVecMem = false; 1837 return; 1838 } 1839 1840 // Avoid hitting recordAnalysis multiple times. 1841 if (HasComplexMemInst) 1842 continue; 1843 1844 // If this is a load, save it. If this instruction can read from memory 1845 // but is not a load, then we quit. Notice that we don't handle function 1846 // calls that read or write. 1847 if (I.mayReadFromMemory()) { 1848 // Many math library functions read the rounding mode. We will only 1849 // vectorize a loop if it contains known function calls that don't set 1850 // the flag. Therefore, it is safe to ignore this read from memory. 1851 auto *Call = dyn_cast<CallInst>(&I); 1852 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 1853 continue; 1854 1855 // If the function has an explicit vectorized counterpart, we can safely 1856 // assume that it can be vectorized. 1857 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 1858 !VFDatabase::getMappings(*Call).empty()) 1859 continue; 1860 1861 auto *Ld = dyn_cast<LoadInst>(&I); 1862 if (!Ld) { 1863 recordAnalysis("CantVectorizeInstruction", Ld) 1864 << "instruction cannot be vectorized"; 1865 HasComplexMemInst = true; 1866 continue; 1867 } 1868 if (!Ld->isSimple() && !IsAnnotatedParallel) { 1869 recordAnalysis("NonSimpleLoad", Ld) 1870 << "read with atomic ordering or volatile read"; 1871 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 1872 HasComplexMemInst = true; 1873 continue; 1874 } 1875 NumLoads++; 1876 Loads.push_back(Ld); 1877 DepChecker->addAccess(Ld); 1878 if (EnableMemAccessVersioningOfLoop) 1879 collectStridedAccess(Ld); 1880 continue; 1881 } 1882 1883 // Save 'store' instructions. Abort if other instructions write to memory. 1884 if (I.mayWriteToMemory()) { 1885 auto *St = dyn_cast<StoreInst>(&I); 1886 if (!St) { 1887 recordAnalysis("CantVectorizeInstruction", St) 1888 << "instruction cannot be vectorized"; 1889 HasComplexMemInst = true; 1890 continue; 1891 } 1892 if (!St->isSimple() && !IsAnnotatedParallel) { 1893 recordAnalysis("NonSimpleStore", St) 1894 << "write with atomic ordering or volatile write"; 1895 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 1896 HasComplexMemInst = true; 1897 continue; 1898 } 1899 NumStores++; 1900 Stores.push_back(St); 1901 DepChecker->addAccess(St); 1902 if (EnableMemAccessVersioningOfLoop) 1903 collectStridedAccess(St); 1904 } 1905 } // Next instr. 1906 } // Next block. 1907 1908 if (HasComplexMemInst) { 1909 CanVecMem = false; 1910 return; 1911 } 1912 1913 // Now we have two lists that hold the loads and the stores. 1914 // Next, we find the pointers that they use. 1915 1916 // Check if we see any stores. If there are no stores, then we don't 1917 // care if the pointers are *restrict*. 1918 if (!Stores.size()) { 1919 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 1920 CanVecMem = true; 1921 return; 1922 } 1923 1924 MemoryDepChecker::DepCandidates DependentAccesses; 1925 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE); 1926 1927 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 1928 // multiple times on the same object. If the ptr is accessed twice, once 1929 // for read and once for write, it will only appear once (on the write 1930 // list). This is okay, since we are going to check for conflicts between 1931 // writes and between reads and writes, but not between reads and reads. 1932 ValueSet Seen; 1933 1934 // Record uniform store addresses to identify if we have multiple stores 1935 // to the same address. 1936 ValueSet UniformStores; 1937 1938 for (StoreInst *ST : Stores) { 1939 Value *Ptr = ST->getPointerOperand(); 1940 1941 if (isUniform(Ptr)) 1942 HasDependenceInvolvingLoopInvariantAddress |= 1943 !UniformStores.insert(Ptr).second; 1944 1945 // If we did *not* see this pointer before, insert it to the read-write 1946 // list. At this phase it is only a 'write' list. 1947 if (Seen.insert(Ptr).second) { 1948 ++NumReadWrites; 1949 1950 MemoryLocation Loc = MemoryLocation::get(ST); 1951 // The TBAA metadata could have a control dependency on the predication 1952 // condition, so we cannot rely on it when determining whether or not we 1953 // need runtime pointer checks. 1954 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 1955 Loc.AATags.TBAA = nullptr; 1956 1957 Accesses.addStore(Loc); 1958 } 1959 } 1960 1961 if (IsAnnotatedParallel) { 1962 LLVM_DEBUG( 1963 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 1964 << "checks.\n"); 1965 CanVecMem = true; 1966 return; 1967 } 1968 1969 for (LoadInst *LD : Loads) { 1970 Value *Ptr = LD->getPointerOperand(); 1971 // If we did *not* see this pointer before, insert it to the 1972 // read list. If we *did* see it before, then it is already in 1973 // the read-write list. This allows us to vectorize expressions 1974 // such as A[i] += x; Because the address of A[i] is a read-write 1975 // pointer. This only works if the index of A[i] is consecutive. 1976 // If the address of i is unknown (for example A[B[i]]) then we may 1977 // read a few words, modify, and write a few words, and some of the 1978 // words may be written to the same address. 1979 bool IsReadOnlyPtr = false; 1980 if (Seen.insert(Ptr).second || 1981 !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { 1982 ++NumReads; 1983 IsReadOnlyPtr = true; 1984 } 1985 1986 // See if there is an unsafe dependency between a load to a uniform address and 1987 // store to the same uniform address. 1988 if (UniformStores.count(Ptr)) { 1989 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 1990 "load and uniform store to the same address!\n"); 1991 HasDependenceInvolvingLoopInvariantAddress = true; 1992 } 1993 1994 MemoryLocation Loc = MemoryLocation::get(LD); 1995 // The TBAA metadata could have a control dependency on the predication 1996 // condition, so we cannot rely on it when determining whether or not we 1997 // need runtime pointer checks. 1998 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 1999 Loc.AATags.TBAA = nullptr; 2000 2001 Accesses.addLoad(Loc, IsReadOnlyPtr); 2002 } 2003 2004 // If we write (or read-write) to a single destination and there are no 2005 // other reads in this loop then is it safe to vectorize. 2006 if (NumReadWrites == 1 && NumReads == 0) { 2007 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2008 CanVecMem = true; 2009 return; 2010 } 2011 2012 // Build dependence sets and check whether we need a runtime pointer bounds 2013 // check. 2014 Accesses.buildDependenceSets(); 2015 2016 // Find pointers with computable bounds. We are going to use this information 2017 // to place a runtime bound check. 2018 bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), 2019 TheLoop, SymbolicStrides); 2020 if (!CanDoRTIfNeeded) { 2021 recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; 2022 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2023 << "the array bounds.\n"); 2024 CanVecMem = false; 2025 return; 2026 } 2027 2028 LLVM_DEBUG( 2029 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2030 2031 CanVecMem = true; 2032 if (Accesses.isDependencyCheckNeeded()) { 2033 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2034 CanVecMem = DepChecker->areDepsSafe( 2035 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); 2036 MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); 2037 2038 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { 2039 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2040 2041 // Clear the dependency checks. We assume they are not needed. 2042 Accesses.resetDepChecks(*DepChecker); 2043 2044 PtrRtChecking->reset(); 2045 PtrRtChecking->Need = true; 2046 2047 auto *SE = PSE->getSE(); 2048 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, 2049 SymbolicStrides, true); 2050 2051 // Check that we found the bounds for the pointer. 2052 if (!CanDoRTIfNeeded) { 2053 recordAnalysis("CantCheckMemDepsAtRunTime") 2054 << "cannot check memory dependencies at runtime"; 2055 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2056 CanVecMem = false; 2057 return; 2058 } 2059 2060 CanVecMem = true; 2061 } 2062 } 2063 2064 if (HasConvergentOp) { 2065 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2066 << "cannot add control dependency to convergent operation"; 2067 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2068 "would be needed with a convergent operation\n"); 2069 CanVecMem = false; 2070 return; 2071 } 2072 2073 if (CanVecMem) 2074 LLVM_DEBUG( 2075 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2076 << (PtrRtChecking->Need ? "" : " don't") 2077 << " need runtime memory checks.\n"); 2078 else { 2079 recordAnalysis("UnsafeMemDep") 2080 << "unsafe dependent memory operations in loop. Use " 2081 "#pragma loop distribute(enable) to allow loop distribution " 2082 "to attempt to isolate the offending operations into a separate " 2083 "loop"; 2084 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2085 } 2086 } 2087 2088 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2089 DominatorTree *DT) { 2090 assert(TheLoop->contains(BB) && "Unknown block used"); 2091 2092 // Blocks that do not dominate the latch need predication. 2093 BasicBlock* Latch = TheLoop->getLoopLatch(); 2094 return !DT->dominates(BB, Latch); 2095 } 2096 2097 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2098 Instruction *I) { 2099 assert(!Report && "Multiple reports generated"); 2100 2101 Value *CodeRegion = TheLoop->getHeader(); 2102 DebugLoc DL = TheLoop->getStartLoc(); 2103 2104 if (I) { 2105 CodeRegion = I->getParent(); 2106 // If there is no debug location attached to the instruction, revert back to 2107 // using the loop's. 2108 if (I->getDebugLoc()) 2109 DL = I->getDebugLoc(); 2110 } 2111 2112 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2113 CodeRegion); 2114 return *Report; 2115 } 2116 2117 bool LoopAccessInfo::isUniform(Value *V) const { 2118 auto *SE = PSE->getSE(); 2119 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is 2120 // never considered uniform. 2121 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2122 // trivially loop-invariant FP values to be considered uniform. 2123 if (!SE->isSCEVable(V->getType())) 2124 return false; 2125 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 2126 } 2127 2128 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2129 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2130 if (!Ptr) 2131 return; 2132 2133 Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2134 if (!Stride) 2135 return; 2136 2137 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2138 "versioning:"); 2139 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 2140 2141 // Avoid adding the "Stride == 1" predicate when we know that 2142 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2143 // or zero iteration loop, as Trip-Count <= Stride == 1. 2144 // 2145 // TODO: We are currently not making a very informed decision on when it is 2146 // beneficial to apply stride versioning. It might make more sense that the 2147 // users of this analysis (such as the vectorizer) will trigger it, based on 2148 // their specific cost considerations; For example, in cases where stride 2149 // versioning does not help resolving memory accesses/dependences, the 2150 // vectorizer should evaluate the cost of the runtime test, and the benefit 2151 // of various possible stride specializations, considering the alternatives 2152 // of using gather/scatters (if available). 2153 2154 const SCEV *StrideExpr = PSE->getSCEV(Stride); 2155 const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); 2156 2157 // Match the types so we can compare the stride and the BETakenCount. 2158 // The Stride can be positive/negative, so we sign extend Stride; 2159 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount. 2160 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 2161 uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); 2162 uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); 2163 const SCEV *CastedStride = StrideExpr; 2164 const SCEV *CastedBECount = BETakenCount; 2165 ScalarEvolution *SE = PSE->getSE(); 2166 if (BETypeSize >= StrideTypeSize) 2167 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); 2168 else 2169 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); 2170 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2171 // Since TripCount == BackEdgeTakenCount + 1, checking: 2172 // "Stride >= TripCount" is equivalent to checking: 2173 // Stride - BETakenCount > 0 2174 if (SE->isKnownPositive(StrideMinusBETaken)) { 2175 LLVM_DEBUG( 2176 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2177 "Stride==1 predicate will imply that the loop executes " 2178 "at most once.\n"); 2179 return; 2180 } 2181 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); 2182 2183 SymbolicStrides[Ptr] = Stride; 2184 StrideSet.insert(Stride); 2185 } 2186 2187 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2188 const TargetLibraryInfo *TLI, AAResults *AA, 2189 DominatorTree *DT, LoopInfo *LI) 2190 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2191 PtrRtChecking(std::make_unique<RuntimePointerChecking>(SE)), 2192 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), 2193 NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), 2194 HasConvergentOp(false), 2195 HasDependenceInvolvingLoopInvariantAddress(false) { 2196 if (canAnalyzeLoop()) 2197 analyzeLoop(AA, LI, TLI, DT); 2198 } 2199 2200 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 2201 if (CanVecMem) { 2202 OS.indent(Depth) << "Memory dependences are safe"; 2203 if (MaxSafeDepDistBytes != -1ULL) 2204 OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes 2205 << " bytes"; 2206 if (PtrRtChecking->Need) 2207 OS << " with run-time checks"; 2208 OS << "\n"; 2209 } 2210 2211 if (HasConvergentOp) 2212 OS.indent(Depth) << "Has convergent operation in loop\n"; 2213 2214 if (Report) 2215 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 2216 2217 if (auto *Dependences = DepChecker->getDependences()) { 2218 OS.indent(Depth) << "Dependences:\n"; 2219 for (auto &Dep : *Dependences) { 2220 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 2221 OS << "\n"; 2222 } 2223 } else 2224 OS.indent(Depth) << "Too many dependences, not recorded\n"; 2225 2226 // List the pair of accesses need run-time checks to prove independence. 2227 PtrRtChecking->print(OS, Depth); 2228 OS << "\n"; 2229 2230 OS.indent(Depth) << "Non vectorizable stores to invariant address were " 2231 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") 2232 << "found in loop.\n"; 2233 2234 OS.indent(Depth) << "SCEV assumptions:\n"; 2235 PSE->getUnionPredicate().print(OS, Depth); 2236 2237 OS << "\n"; 2238 2239 OS.indent(Depth) << "Expressions re-written:\n"; 2240 PSE->print(OS, Depth); 2241 } 2242 2243 LoopAccessLegacyAnalysis::LoopAccessLegacyAnalysis() : FunctionPass(ID) { 2244 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry()); 2245 } 2246 2247 const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { 2248 auto &LAI = LoopAccessInfoMap[L]; 2249 2250 if (!LAI) 2251 LAI = std::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); 2252 2253 return *LAI.get(); 2254 } 2255 2256 void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { 2257 LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); 2258 2259 for (Loop *TopLevelLoop : *LI) 2260 for (Loop *L : depth_first(TopLevelLoop)) { 2261 OS.indent(2) << L->getHeader()->getName() << ":\n"; 2262 auto &LAI = LAA.getInfo(L); 2263 LAI.print(OS, 4); 2264 } 2265 } 2266 2267 bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { 2268 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2269 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2270 TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2271 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2272 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2273 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2274 2275 return false; 2276 } 2277 2278 void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 2279 AU.addRequired<ScalarEvolutionWrapperPass>(); 2280 AU.addRequired<AAResultsWrapperPass>(); 2281 AU.addRequired<DominatorTreeWrapperPass>(); 2282 AU.addRequired<LoopInfoWrapperPass>(); 2283 2284 AU.setPreservesAll(); 2285 } 2286 2287 char LoopAccessLegacyAnalysis::ID = 0; 2288 static const char laa_name[] = "Loop Access Analysis"; 2289 #define LAA_NAME "loop-accesses" 2290 2291 INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 2293 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 2294 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2295 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 2296 INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) 2297 2298 AnalysisKey LoopAccessAnalysis::Key; 2299 2300 LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, 2301 LoopStandardAnalysisResults &AR) { 2302 return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); 2303 } 2304 2305 namespace llvm { 2306 2307 Pass *createLAAPass() { 2308 return new LoopAccessLegacyAnalysis(); 2309 } 2310 2311 } // end namespace llvm 2312